1
|
Asciolla JJ, Wu X, Adamopoulos C, Gavathiotis E, Poulikakos PI. Resistance mechanisms and therapeutic strategies of CDK4 and CDK6 kinase targeting in cancer. NATURE CANCER 2025; 6:24-40. [PMID: 39885369 DOI: 10.1038/s43018-024-00893-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 12/09/2024] [Indexed: 02/01/2025]
Abstract
Cyclin-dependent kinases (CDKs) 4 and 6 (CDK4/6) are important regulators of the cell cycle. Selective CDK4/6 small-molecule inhibitors have shown clinical activity in hormonal receptor-positive (HR+) metastatic breast cancer, but their effectiveness remains limited in other cancer types. CDK4/6 degradation and improved selectivity across CDK paralogs are approaches that could expand the effectiveness of CDK4/6 targeting. Recent studies also suggest the use of CDK4/6-targeting agents in cancer immunotherapy. In this Review, we highlight recent advancements in the mechanistic understanding and development of pharmacological approaches targeting CDK4/6. Collectively, these developments pose new challenges and opportunities for rationally designing more effective treatments.
Collapse
Affiliation(s)
- James J Asciolla
- Department of Oncological Sciences, Precision Immunology Institute, the Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Xuewei Wu
- Department of Oncological Sciences, Precision Immunology Institute, the Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- China Innovation Center of Roche, Shanghai, China
| | - Christos Adamopoulos
- Department of Oncological Sciences, Precision Immunology Institute, the Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Evripidis Gavathiotis
- Department of Biochemistry, Department of Medicine, Department of Oncology, Montefiore Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine, New York, NY, USA
| | - Poulikos I Poulikakos
- Department of Oncological Sciences, Precision Immunology Institute, the Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
2
|
Singh SP, Tewari M, Singh AK, Mishra RR, Shukla HS. Epigenetic Silencing of p16INK4a gene in Sporadic Breast Cancer. Indian J Surg Oncol 2023; 14:822-828. [PMID: 38187858 PMCID: PMC10766924 DOI: 10.1007/s13193-023-01780-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 06/06/2023] [Indexed: 01/09/2024] Open
Abstract
Epigenetic alterations of tumor suppressor genes (TSG) involved in the onset and progression of Breast Cancer (BC) may serve as biomarkers for early detection and prediction of disease prognosis. We have herein tried to determine the methylation status of TSG, p16INK4a, in our 50 BC patients and their association with clinicopathological parameters. The methylation status of the p16INK4a gene in fresh tissue samples from 50 patients with BC was assessed by methylation-specific polymerase chain reaction (MS-PCR). The mean age of BC patients was 49.30 ± 9.75 years. Of 50 BC samples tested, 21 (42%) had methylated p16INK4a gene. p16INK4a gene hypermethylation was significantly associated with age ≤ 50 years, premenopausal status and advanced BC stage. Multivariate analysis revealed a strong association between advanced BC stage (Stage III and Stage IV) and p16INK4a hypermethylation (P = 0.008, RR = 5.996, 95% CI = 1.581-22.739). p16INK4a methylation was significantly associated with Triple Negative BC (TNBC) (P = 0.045, OR = 4.181, 95% CI = 1.030-16.981). These findings indicate that p16INK4a hypermethylation frequently occurs in BC. Hypermethylation of p16INK4a in young, premenopausal, TNBC and with advance stage in BC patients suggests its association with aggressive BC.
Collapse
Affiliation(s)
- Satya P. Singh
- Department of Surgical Oncology, Faculty of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India 221005
| | - Mallika Tewari
- Department of Surgical Oncology, Faculty of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India 221005
| | - Alok K. Singh
- Department of Geriatric Medicine, Faculty of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India 221005
| | - Raghvendra R. Mishra
- Medical Lab Technology, DDU Kaushal Kendra, Banaras Hindu University, Varanasi, India
| | - Hari S. Shukla
- Department of Surgical Oncology, Faculty of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India 221005
| |
Collapse
|
3
|
Popov A, Mandys V. Senescence-Associated miRNAs and Their Role in Pancreatic Cancer. Pathol Oncol Res 2022; 28:1610156. [PMID: 35570840 PMCID: PMC9098800 DOI: 10.3389/pore.2022.1610156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 04/12/2022] [Indexed: 01/17/2023]
Abstract
Replicative senescence is irreversible cell proliferation arrest for somatic cells which can be circumvented in cancers. Cellular senescence is a process, which may play two opposite roles. On the one hand, this is a natural protection of somatic cells against unlimited proliferation and malignant transformation. On the other hand, cellular secretion caused by senescence can stimulate inflammation and proliferation of adjacent cells that may promote malignancy. The main genes controlling the senescence pathways are also well known as tumor suppressors. Almost 140 genes regulate both cellular senescence and cancer pathways. About two thirds of these genes (64%) are regulated by microRNAs. Senescence-associated miRNAs can stimulate cancer progression or act as tumor suppressors. Here we review the role playing by senescence-associated miRNAs in development, diagnostics and treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Alexey Popov
- Department of Pathology, Third Faculty of Medicine, Charles University and University Hospital Kralovske Vinohrady, Prague, Czechia
| | | |
Collapse
|
4
|
Effects of Changes in Osmolarity on the Biological Activity of Human Normal Nucleus Pulposus Mesenchymal Stem Cells. Stem Cells Int 2022; 2022:1121064. [PMID: 35502327 PMCID: PMC9056247 DOI: 10.1155/2022/1121064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 02/22/2022] [Accepted: 03/28/2022] [Indexed: 01/10/2023] Open
Abstract
The expansion and maintenance of the NPMSC (nucleus pulposus mesenchymal stem cell) phenotype are considered as potential therapeutic tools for clinical applications in intervertebral disc tissue engineering and regenerative medicine. However, the harsh microenvironment within the intervertebral disc is the main limitation of its regeneration. The osmolarity of the intervertebral disc is higher than that of other tissues, which has an important influence on the biological characteristics of NPMSCs. In this study, we observed the effect of different osmolarities on the biological characteristics of human normal NPMSCs cultured in vitro and explored the role of osmolarity in intervertebral disc degeneration. Our data demonstrated that the change in osmotic pressure has an important effect on the biological activity of NPMSCs, and this effect may occur through the P16INK4A/Rb pathway. This study provides a theoretical basis for the future treatment of intervertebral disc degeneration.
Collapse
|
5
|
Ribosomal RNA Transcription Regulation in Breast Cancer. Genes (Basel) 2021; 12:genes12040502. [PMID: 33805424 PMCID: PMC8066022 DOI: 10.3390/genes12040502] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 03/26/2021] [Accepted: 03/29/2021] [Indexed: 12/24/2022] Open
Abstract
Ribosome biogenesis is a complex process that is responsible for the formation of ribosomes and ultimately global protein synthesis. The first step in this process is the synthesis of the ribosomal RNA in the nucleolus, transcribed by RNA Polymerase I. Historically, abnormal nucleolar structure is indicative of poor cancer prognoses. In recent years, it has been shown that ribosome biogenesis, and rDNA transcription in particular, is dysregulated in cancer cells. Coupled with advancements in screening technology that allowed for the discovery of novel drugs targeting RNA Polymerase I, this transcriptional machinery is an increasingly viable target for cancer therapies. In this review, we discuss ribosome biogenesis in breast cancer and the different cellular pathways involved. Moreover, we discuss current therapeutics that have been found to affect rDNA transcription and more novel drugs that target rDNA transcription machinery as a promising avenue for breast cancer treatment.
Collapse
|
6
|
Jab1 promotes gastric cancer tumorigenesis via non-ubiquitin proteasomal degradation of p14ARF. Gastric Cancer 2020; 23:1003-1017. [PMID: 32458234 DOI: 10.1007/s10120-020-01087-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 05/16/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Jab1 has been reported to regulate various proteins in signal transduction pathways and be implicated in carcinogenesis or tumor progression. However, the precise role and molecular mechanism of Jab1 in gastric tumorigenesis have not yet been fully elucidated. METHODS Jab1 staining in gastric cancer tissues and paired non-cancerous tissues was measured using tissue microarray (TMA) technology. The impact of Jab1 on tumor growth in vivo was analyzed using xenotransplantation experiments in Balb/c mice. The expression of Jab1 and p14ARF in gastric cancer cells was analyzed by western blot and confocal immunofluorescence. CCK-8 and cell cycle experiment were used to evaluate the cell proliferation. Ubiquitination assay was performed to validate whether ubiquitination is involved in Jab1-mediated p14ARF degradation. RESULTS The expression level of protein p14ARF was inversely correlated with the protein level of Jab1. Then, we investigated the mechanism that how Jab1 induced p14ARF depletion. Mechanistic studies showed that Jab1 induced ubiquitin-independent proteasomal p14ARF degradation in gastric cancer cells. Our data demonstrated that Jab1 protein was a vital upstream negative modulation factor of p14ARF, and Jab1 could promote cell proliferation and tumor growth via inhibiting the expression of p14ARF in vivo and in vitro. Moreover, silencing Jab1 protein expression declined tumor growth and further increased the apoptosis rate of gastric cancer cells. In further studies of gastric cancer specimens, we found the increased level of Jab1 protein shortened the overall survival. CONCLUSION Jab1 is upstream of p14ARF and promote gastric cancer cell proliferation in vitro and in vivo. Furthermore, Jab1 decreased the expression of p14ARF though ubiquitination independent proteasomal degradation. Therefore, the connection of Jab1 and p14ARF may provide new methods for the treatment of gastric cancer.
Collapse
|
7
|
DNA Methylation in Pulmonary Fibrosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1255:51-62. [PMID: 32949389 DOI: 10.1007/978-981-15-4494-1_4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
DNA methylations, including global methylation pattern and specific gene methylation, are associated with pathogenesis and progress of pulmonary fibrosis. This chapter illustrates alteration of DNA methylation in pulmonary fibrosis as a predictive or prognostic factor. Treatment with the DNA methylation inhibitors will be an emerging anti-fibrosis therapy, although we are still in the pre-clinical stage of using epigenetic markers as potential targets for biomarkers and therapeutic interventions.
Collapse
|
8
|
Post-Translational Regulation of ARF: Perspective in Cancer. Biomolecules 2020; 10:biom10081143. [PMID: 32759846 PMCID: PMC7465197 DOI: 10.3390/biom10081143] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 07/25/2020] [Accepted: 07/29/2020] [Indexed: 02/07/2023] Open
Abstract
Tumorigenesis can be induced by various stresses that cause aberrant DNA mutations and unhindered cell proliferation. Under such conditions, normal cells autonomously induce defense mechanisms, thereby stimulating tumor suppressor activation. ARF, encoded by the CDKN2a locus, is one of the most frequently mutated or deleted tumor suppressors in human cancer. The safeguard roles of ARF in tumorigenesis are mainly mediated via the MDM2-p53 axis, which plays a prominent role in tumor suppression. Under normal conditions, low p53 expression is stringently regulated by its target gene, MDM2 E3 ligase, which induces p53 degradation in a ubiquitin-proteasome-dependent manner. Oncogenic signals induced by MYC, RAS, and E2Fs trap MDM2 in the inhibited state by inducing ARF expression as a safeguard measure, thereby activating the tumor-suppressive function of p53. In addition to the MDM2-p53 axis, ARF can also interact with diverse proteins and regulate various cellular functions, such as cellular senescence, apoptosis, and anoikis, in a p53-independent manner. As the evidence indicating ARF as a key tumor suppressor has been accumulated, there is growing evidence that ARF is sophisticatedly fine-tuned by the diverse factors through transcriptional and post-translational regulatory mechanisms. In this review, we mainly focused on how cancer cells employ transcriptional and post-translational regulatory mechanisms to manipulate ARF activities to circumvent the tumor-suppressive function of ARF. We further discussed the clinical implications of ARF in human cancer.
Collapse
|
9
|
Abdeahad H, Bahrami A, Saeedi N, Shabani M, Pezeshki M, Khazaei M, Shafiee M, Ghorbani E, Ferns GA, Soleimanpour S, Rahmani F, Soleimani A, Fiuji H, Ryzhikov M, Avan A, Mahdi Hassanian S. Association between genetic variants at 9p21 locus with risk of breast cancer: A systematic review and meta-analysis. Pathol Res Pract 2020; 216:152987. [PMID: 32534702 DOI: 10.1016/j.prp.2020.152987] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 04/04/2020] [Accepted: 04/15/2020] [Indexed: 12/27/2022]
Abstract
Breast cancer (BC) is the most frequent tumor in women and genetic factors are among the main risk factors contributing to this malignancy. Chromosome 9p21 contains important regulatory non-coding RNAs and is associated with multiple malignancies including BC. The current meta-analysis aimed to investigate the association between genetic variants within the 9p21 locus and risk of breast cancer. A literature search was performed using PubMed, Web of Science, Embase, MEDLINE, Scopus and Clinical key databases. Nine studies containing 23,726 subjects were eligible for the final analysis and specific odds ratios (OR) and confidence intervals (95% CI) were evaluated to assess the strength of the associations. In the pooled analysis, there was an association between the genetic variations in 9p21 locus (CDKN2A/2B) with risk of breast cancer with a standard OR of 1.22 (95% CI: 1.04-1.45, P = 0.016; random-effects model), supporting the significance of this locus as a novel risk factor for breast cancer patients. In conclusion, our results showed that 9p21 region is positively associated with risk of BC and its polymorphisms may be a candidate marker for BC susceptibility.
Collapse
Affiliation(s)
- Hossein Abdeahad
- Department of Medical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Department of nutrition and integrative physiology, University of Utah, Salt lake city, Utah, USA
| | - Afsane Bahrami
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Nikoo Saeedi
- Student Research Committee, Islamic Azad University, Mashhad Branch, Mashhad, Iran
| | - Mohammad Shabani
- Department of Medical Biochemistry, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Milad Pezeshki
- Molecular Medicine Research Center, Arak University of Medical Sciences, Arak, Iran
| | - Majid Khazaei
- Department of Medical Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mojtaba Shafiee
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK S7N 4Z2, Canada
| | - Elnaz Ghorbani
- Department of Microbiology and Virology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gordon A Ferns
- Brighton & Sussex Medical School, Division of Medical Education, Falmer, Brighton, Sussex, BN1 9PH, UK
| | - Saman Soleimanpour
- Department of Microbiology and Virology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Atena Soleimani
- Department of Medical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamid Fiuji
- Department of Biochemistry, Payame-Noor University, Mashhad, Iran
| | - Mikhail Ryzhikov
- Division of Pulmonary and Critical Care Medicine, Washington University, School of Medicine, Saint Louis, MO, USA
| | - Amir Avan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mahdi Hassanian
- Department of Medical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
10
|
Choi SH, Cho KJ, Yun SH, Jin B, Lee HY, Ro SW, Kim DY, Ahn SH, Han KH, Park JY. HKR3 regulates cell cycle through the inhibition of hTERT in hepatocellular carcinoma cell lines. J Cancer 2020; 11:2442-2452. [PMID: 32201515 PMCID: PMC7066026 DOI: 10.7150/jca.39380] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 01/20/2020] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma is a malignant disease with improved hepatic regeneration and survival, and is activated by human telomere transferase (hTERT). hTERT is expressed during early fetal development and switched off in most adult tissues, but it becomes reactivated in HCC. The exact mechanism regulating these expression changes remains unknown during HCC progress. We evaluated the relationship between hTERT expression and human kruppel-related 3 (HKR3) and cell cycle-related factors in HCC cell lines. Following transfection for hTERT knockdown and HKR3 overexpression, proteomic and transcriptomic analyses related to hTERT were performed using liquid chromatography/mass spectrometry (LC/MS) and RNA sequencing (RNAseq) in HCC cell lines. The expression levels of hTERT, HKR3, and cell cycle-related factors were measured using western blotting, and tumor growth were evaluated via cell proliferation and cell cycle assays. Transcriptomic and proteomic analyses showed that HKR3, hTERT and cyclin-dependent kinase inhibitor 2A (CDKN2A) were correlated. Up-regulation of HKR3 expression decreased hTERT and cyclin activation and suppressed the G1/S phase of the cell cycle through CDKN2A activation. Our results suggest that HKR3 induced regulation of cell cycle through hTERT inhibition and CDKN2A activation. Our results will facilitate further exploration of the pathways regulating human telomerase activity in HCC cell lines.
Collapse
Affiliation(s)
- Sung Hoon Choi
- Yonsei Liver Center, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Kyung Joo Cho
- Yonsei Liver Center, Yonsei University College of Medicine, Seoul, Republic of Korea
- BK21 plus project for medical science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sung Ho Yun
- Division of Bioconvergence Analysis, Drug & Disease Target Team, Korea Basic Science Institute (KBSI), Cheongju, Republic of Korea
| | - Bora Jin
- Yonsei Liver Center, Yonsei University College of Medicine, Seoul, Republic of Korea
- BK21 plus project for medical science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Ha Young Lee
- Division of Bioconvergence Analysis, Drug & Disease Target Team, Korea Basic Science Institute (KBSI), Cheongju, Republic of Korea
- Bio-Analysis Science, University of Science & Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, Republic of Korea
| | - Simon W Ro
- Yonsei Liver Center, Yonsei University College of Medicine, Seoul, Republic of Korea
- Department of Internal Medicine, Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Do Young Kim
- Yonsei Liver Center, Yonsei University College of Medicine, Seoul, Republic of Korea
- Department of Internal Medicine, Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sang Hoon Ahn
- Yonsei Liver Center, Yonsei University College of Medicine, Seoul, Republic of Korea
- BK21 plus project for medical science, Yonsei University College of Medicine, Seoul, Republic of Korea
- Department of Internal Medicine, Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Kwang-hyub Han
- Yonsei Liver Center, Yonsei University College of Medicine, Seoul, Republic of Korea
- Division of Bioconvergence Analysis, Drug & Disease Target Team, Korea Basic Science Institute (KBSI), Cheongju, Republic of Korea
- Department of Internal Medicine, Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jun Yong Park
- Yonsei Liver Center, Yonsei University College of Medicine, Seoul, Republic of Korea
- BK21 plus project for medical science, Yonsei University College of Medicine, Seoul, Republic of Korea
- Department of Internal Medicine, Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
11
|
Khan R, Aftab A, Tabassum S, Hussain HMJ, Hameed A, Mahmood H, Munir F, Bukhari I. Identification of CDKN2A variants in breast cancer patients in Pakistan. Genes Genet Syst 2019; 94:117-122. [PMID: 31231091 DOI: 10.1266/ggs.18-00053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The role of cyclin-dependent kinase inhibitor 2A gene (CDKN2A) variants in breast cancer is not well understood, here we investigated their possible effects on breast cancer in Pakistani women attending the NORI Hospital, Islamabad. Direct DNA sequencing of CDKN2A identified an already known polymorphism in the 3' UTR, c.*29G>C (rs11515), in 5.88% patients and two novel variants. One, a deep intronic substitution (c.458-554T>G) in 1.96% patients, is also detected as a compound heterozygous form along with c.*29G>C in 1.96% patients (c.[458-554T>G; *29G>C]). The other is a novel deletion (c.458-82delG) occurring as a compound variant with two other identified variants c.[458-554T>G; 458-82delG; *29G>C] in 1.96% patients. In silico pathogenicity prediction analyses did not predict pathogenic effects on breast cancer for these individual variants. We conclude that variations in CDKN2A are not the major genetic cause of breast cancer in the enrolled Pakistani patients.
Collapse
Affiliation(s)
- Ranjha Khan
- The CAS Key Laboratory of Innate Immunity and Chronic Diseases, School of Life Sciences, University of Science and Technology of China
| | - Ayesha Aftab
- Department of Biological Sciences, International Islamic University
| | - Sobia Tabassum
- Department of Biological Sciences, International Islamic University
| | - Hafiz Muhammad Jafar Hussain
- The CAS Key Laboratory of Innate Immunity and Chronic Diseases, School of Life Sciences, University of Science and Technology of China
| | - Abdul Hameed
- Institute of Biomedical and Genetic Engineering (IBGE)
| | - Humera Mahmood
- Department of Oncology, Nuclear Medicine Oncology & Radiotherapy Institute (NORI) Hospital
| | - Faiza Munir
- Department of Biological Sciences, International Islamic University
| | - Ihtisham Bukhari
- Translational Research Institute, Henan Provincial People's Hospital, School of Medicine, Henan University
| |
Collapse
|
12
|
Bie YN, Gu P, Chen YT, Zhou XX, Tian YG, Yang Q, Li HY, Lin X, Guan YH, Lin TY, Lu X, Shen HF, Fang TX, Liu YM, Xiao D, Gu WW. TZAP plays an inhibitory role in the self-renewal of porcine mesenchymal stromal cells and is implicated the regulation of premature senescence via the p53 pathway. J Transl Med 2019; 17:72. [PMID: 30845965 PMCID: PMC6404308 DOI: 10.1186/s12967-019-1820-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Accepted: 02/21/2019] [Indexed: 01/01/2023] Open
Abstract
Background Mesenchymal stromal cells (MSCs) were originally characterized by the ability to differentiate into different mesenchymal lineages in vitro, and their immunomodulatory and trophic functions have recently aroused significant interest in the application of MSCs in cell-based regenerative medicine. However, a major problem in clinical practice is the replicative senescence of MSCs, which limits the cell proliferation potential of MSCs after large-scale expansion. Telomeric zinc finger-associated protein (TZAP), a novel specific telomere-binding protein, was recently found to stimulate telomere trimming and prevent excessive telomere elongation. The aim of this study was to elucidate the role of TZAP in regulating MSCs senescence, differentiation and proliferation. Method Primary porcine mesenchymal stromal cells (pMSCs) were isolated from the bone marrow of Tibet minipigs by a noninvasive method in combination with frequent medium changes (FMCs). The deterioration of the pMSCs’ proliferation capacity and their resultant entry into senescence were analyzed by using CCK8 and EdU incorporation assays, SA-β-gal staining and comparisons of the expression levels of cellular senescence markers (p16INK14 and p21) in pMSC cell lines with TZAP overexpression or knockout. The effects of TZAP overexpression or knockout on the differentiation potential of pMSCs were assessed by alizarin red S staining after osteogenic induction or by oil red O staining after adipogenic induction. The effect of TZAP overexpression and the involvement of the p53 signaling pathway were evaluated by detecting changes in ARF, MDM2, P53 and P21 protein levels in pMSCs. Results TZAP levels were significantly elevated in late-passage pMSCs compared to those in early-passage pMSCs. We also observed significantly increased levels of the senescence markers p16INK4A and p21. Overexpression of TZAP reduced the differentiation potential of the cells, leading to premature senescence in early-passage pMSCs, while knockout of TZAP led to the opposite phenotype in late-passage pMSCs. Furthermore, overexpression of TZAP activated the P53 pathway (ARF-MDM2-P53-P21WAF/CDKN1A) in vitro. TZAP also downregulated the expression levels of PPARγ and Cebpα, two key modulators of adipogenesis. Conclusions This study demonstrates that the level of TZAP is closely related to differentiation potential in pMSCs and affects cellular senescence outcomes via the p53 pathway. Therefore, attenuation of intracellular TZAP levels could be a new strategy for improving the efficiency of pMSCs in cell therapy and tissue engineering applications. Electronic supplementary material The online version of this article (10.1186/s12967-019-1820-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ya-Nan Bie
- Institute of Comparative Medicine & Laboratory Animal Center, Southern Medical University, Guangzhou, China.,Songshan Lake Pearl Laboratory Animal Sci & Tech. Co., Ltd., Dongguan, China
| | - Peng Gu
- Institute of Comparative Medicine & Laboratory Animal Center, Southern Medical University, Guangzhou, China.,Songshan Lake Pearl Laboratory Animal Sci & Tech. Co., Ltd., Dongguan, China
| | - Yu-Ting Chen
- Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Xiao-Xu Zhou
- Institute of Comparative Medicine & Laboratory Animal Center, Southern Medical University, Guangzhou, China.,Songshan Lake Pearl Laboratory Animal Sci & Tech. Co., Ltd., Dongguan, China
| | - Yu-Guang Tian
- Institute of Comparative Medicine & Laboratory Animal Center, Southern Medical University, Guangzhou, China
| | - Qin Yang
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hai-Yan Li
- Institute of Comparative Medicine & Laboratory Animal Center, Southern Medical University, Guangzhou, China
| | - Xia Lin
- Guangdong Provincial Key Laboratory of Cancer Immunotherapy Research and Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, Southern Medical University, Guangzhou, China
| | - Yan-Hong Guan
- Institute of Comparative Medicine & Laboratory Animal Center, Southern Medical University, Guangzhou, China
| | - Tao-Yan Lin
- Guangdong Provincial Key Laboratory of Cancer Immunotherapy Research and Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, Southern Medical University, Guangzhou, China
| | - Xun Lu
- Institute of Comparative Medicine & Laboratory Animal Center, Southern Medical University, Guangzhou, China
| | - Hong-Fen Shen
- Guangdong Provincial Key Laboratory of Cancer Immunotherapy Research and Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, Southern Medical University, Guangzhou, China
| | - Ting-Xiao Fang
- Institute of Comparative Medicine & Laboratory Animal Center, Southern Medical University, Guangzhou, China
| | - Yu-Min Liu
- Institute of Comparative Medicine & Laboratory Animal Center, Southern Medical University, Guangzhou, China
| | - Dong Xiao
- Institute of Comparative Medicine & Laboratory Animal Center, Southern Medical University, Guangzhou, China. .,Guangdong Provincial Key Laboratory of Cancer Immunotherapy Research and Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, Southern Medical University, Guangzhou, China.
| | - Wei-Wang Gu
- Institute of Comparative Medicine & Laboratory Animal Center, Southern Medical University, Guangzhou, China. .,Songshan Lake Pearl Laboratory Animal Sci & Tech. Co., Ltd., Dongguan, China.
| |
Collapse
|
13
|
Abstract
The c-Myb gene encodes a transcription factor that regulates cell proliferation, differentiation, and apoptosis through protein-protein interaction and transcriptional regulation of signaling pathways. The protein is frequently overexpressed in human leukemias, breast cancers, and other solid tumors suggesting that it is a bona fide oncogene. c-MYB is often overexpressed by translocation in human tumors with t(6;7)(q23;q34) resulting in c-MYB-TCRβ in T cell ALL, t(X;6)(p11;q23) with c-MYB-GATA1 in acute basophilic leukemia, and t(6;9)(q22-23;p23-24) with c-MYB-NF1B in adenoid cystic carcinoma. Antisense oligonucleotides to c-MYB were developed to purge bone marrow cells to eliminate tumor cells in leukemias. Recently, small molecules that inhibit c-MYB activity have been developed to disrupt its interaction with p300. The Dmp1 (cyclin D binding myb-like protein 1; Dmtf1) gene was isolated through its virtue for binding to cyclin D2. It is a transcription factor that has a Myb-like repeat for DNA binding. The Dmtf1 protein directly binds to the Arf promoter for transactivation and physically interacts with p53 to activate the p53 pathway. The gene is hemizygously deleted in 35-42% of human cancers and is associated with longer survival. The significances of aberrant expression of c-MYB and DMTF1 proteins in human cancers and their clinical significances are discussed.
Collapse
Affiliation(s)
- Elizabeth A. Fry
- The Department of Pathology, Wake Forest University School of Medicine, Medical Center Blvd., Winston-Salem, NC 27157 USA
| | - Kazushi Inoue
- The Department of Pathology, Wake Forest University School of Medicine, Medical Center Blvd., Winston-Salem, NC 27157 USA
| |
Collapse
|
14
|
Shukla S, Penta D, Mondal P, Meeran SM. Epigenetics of Breast Cancer: Clinical Status of Epi-drugs and Phytochemicals. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1152:293-310. [PMID: 31456191 DOI: 10.1007/978-3-030-20301-6_16] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Epigenetics refers to alterations in gene expression due to differential histone modifications and DNA methylation at promoter sites of genes. Epigenetic alterations are reversible and are heritable during somatic cell division, but do not involve changes in nucleotide sequence. Epigenetic regulation plays a critical role in normal growth and embryonic development by controlling transcriptional activities of several genes. In last two decades, these modifications have been well recognized to be involved in tumor initiation and progression, which has motivated many investigators to incorporate this novel field in cancer drug development. Recently, growing number of epigenetic changes have been reported that are involved in the regulations of genes involved in breast tumor growth and metastasis. Drugs possessing epigenetic modulatory activities known as epi-drugs, mainly the inhibitors of histone deacetylases (HDACs) and DNA methyltransferases (DNMTs). Some of these drugs are undergoing different clinical trials for breast cancer treatment. Several phytochemicals such as green tea polyphenols, curcumin, genistein, resveratrol and sulforaphane have also been shown to alter epigenetic modifications in multiple cancer types including breast cancer. In this chapter, we summarize the role of epigenetic changes in breast cancer progression and metastasis. We have also discussed about various epigenetic modulators possessing chemopreventive and therapeutic efficacy against breast cancer with future perspectives.
Collapse
Affiliation(s)
- Samriddhi Shukla
- Department of Paediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Dhanamjai Penta
- Laboratory of Cancer Epigenetics, Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysore, India
| | - Priya Mondal
- Laboratory of Cancer Epigenetics, Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysore, India
| | - Syed Musthapa Meeran
- Laboratory of Cancer Epigenetics, Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysore, India.
| |
Collapse
|
15
|
Qi M, Xiong X. Promoter hypermethylation of RARβ2, DAPK, hMLH1, p14, and p15 is associated with progression of breast cancer: A PRISMA-compliant meta-analysis. Medicine (Baltimore) 2018; 97:e13666. [PMID: 30572486 PMCID: PMC6320171 DOI: 10.1097/md.0000000000013666] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Numerous studies have investigated the associations between RARβ2, DAPK, hMLH1, p14, and p15 promoter hypermethylation and clinical progression of patients with breast cancer, however the results remained uncertain due to the small sample size. Therefore, we performed a meta-analysis to explore the role of RARβ2, DAPK, hMLH1, p14, and p15 promoter hypermethylation in the susceptibility and clinical progression of breast cancer. METHODS Eligible studies were obtained by searching Medicine, Embase, Web of knowledge, and Chinese National Knowledge Infrastructure (CNKI) databases. The odds ratios (OR) and 95% confidence intervals (CI) were calculated to evaluate the associations of RARβ2, DAPK, hMLH1, p14, and p15 promoter hypermethylation with breast cancer pathogenesis. Trial sequential analysis (TSA) was applied to observe the reliability of pooled results of RARβ2 gene, and obtain a conservative required information size (RIS). RESULTS In primary screened 445 articles, 39 literatures with 4492 breast cancer patients were finally enrolled in the final meta-analysis. The results indicated that the frequency of RARβ2 promoter hypermethylation in case group was significantly higher than the frequency of control group (OR = 7.21, 95% CI = 1.54-33.80, P < .05). The RARβ2 promoter hypermethylation had a significant association with lymph node metastasis of breast cancer (OR = 2.13, 95% CI = 1.04-4.47, P < .05). And, the RARβ2 promoter hypermethylation was more common in the breast cancer patients of TNM III-IV stage than those patients of TNM I-II stage (OR = 1.85, 95% CI = 1.33-2.57, P < .05). In addition, the promoter hypermethylation of DAPK, hMLH1, and p14 genes were significantly associated with the susceptibility of breast cancer (for DAPK, OR = 4.93, 95% CI = 3.17-7.65; for hMLH1, OR = 1.84, 95% CI = 1.26-1.29; for p14, OR = 22.52, 95% CI = 7.00-72.41; for p15, OR = 2.13, 95% CI = 0.30-15.07). CONCLUSIONS Our findings revealed that the RARβ2 promoter hypermethylation significantly increased the risk of breast cancer. In the meantime, the meta-analysis demonstrated that there were significant associations of RARβ2 promoter hypermethylation with lymph node metastasis and TNM-stage of breast cancer patients. In addition, DAPK, hMLH1, and p14 genes promoter hypermethylation were significantly associated with the susceptibility of breast cancer.
Collapse
Affiliation(s)
- Ming Qi
- Department of Breast and Thyroid Surgery, Shandong Provincial Hospital Affiliated to Shandong University
| | - Xiang Xiong
- Department of Burn and Plastic Surgery, the Second Xiangya Hospital, Central South University, Changsha City, Hunan Province, P. R. China
| |
Collapse
|
16
|
Méndez-García LA, Nava-Castro KE, Ochoa-Mercado TDL, Palacios-Arreola MI, Ruiz-Manzano RA, Segovia-Mendoza M, Solleiro-Villavicencio H, Cázarez-Martínez C, Morales-Montor J. Breast Cancer Metastasis: Are Cytokines Important Players During Its Development and Progression? J Interferon Cytokine Res 2018; 39:39-55. [PMID: 30321090 DOI: 10.1089/jir.2018.0024] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
In breast cancer, an uncontrolled cell proliferation leads to tumor formation and development of a multifactorial disease. Metastasis is a complex process that involves tumor spread to distant parts of the body from its original site. Metastatic dissemination represents the main physiopathology of cancer. Inter- and intracellular communication in all systems in vertebrates is mediated by cytokines, which are highly inducible, secretory proteins, produced not only by immune system cells, but also by endocrine and nervous system cells. It has become clear in recent years that cytokines, as well as their receptors are produced in the organisms under physiological and pathological conditions; recently, they have been closely related to breast cancer metastasis. The exact initiation process of breast cancer metastasis is unknown, although several hypotheses have emerged. In this study, we thoroughly reviewed the role of several cytokines in breast cancer metastasis. Data reviewed suggest that cytokines and growth factors are key players in the breast cancer metastasis induction. This knowledge must be considered with the aim to development of new therapeutic approaches to counter breast cancer metastasis.
Collapse
Affiliation(s)
| | - Karen Elizabeth Nava-Castro
- 2 Laboratorio de Genotoxicología y Medicina Ambientales, Departamento de Ciencias Ambientales, Centro de Ciencias de la Atmósfera, Universidad Nacional Autónoma de México, México DF, México
| | - Tania de Lourdes Ochoa-Mercado
- 3 Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Margarita Isabel Palacios-Arreola
- 2 Laboratorio de Genotoxicología y Medicina Ambientales, Departamento de Ciencias Ambientales, Centro de Ciencias de la Atmósfera, Universidad Nacional Autónoma de México, México DF, México
| | - Rocío Alejandra Ruiz-Manzano
- 3 Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Mariana Segovia-Mendoza
- 3 Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Helena Solleiro-Villavicencio
- 4 Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad Universitaria, México DF, Mexico
| | - Cinthia Cázarez-Martínez
- 2 Laboratorio de Genotoxicología y Medicina Ambientales, Departamento de Ciencias Ambientales, Centro de Ciencias de la Atmósfera, Universidad Nacional Autónoma de México, México DF, México
| | - Jorge Morales-Montor
- 3 Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, México
| |
Collapse
|
17
|
Aftab A, Shahzad S, Hussain HMJ, Khan R, Irum S, Tabassum S. CDKN2A/P16INK4A variants association with breast cancer and their in-silico analysis. Breast Cancer 2018; 26:11-28. [DOI: 10.1007/s12282-018-0894-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 07/13/2018] [Indexed: 12/12/2022]
|
18
|
Ko A, Han SY, Song J. Regulatory Network of ARF in Cancer Development. Mol Cells 2018; 41:381-389. [PMID: 29665672 PMCID: PMC5974615 DOI: 10.14348/molcells.2018.0100] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 04/03/2018] [Accepted: 04/04/2018] [Indexed: 12/21/2022] Open
Abstract
ARF is a tumor suppressor protein that has a pivotal role in the prevention of cancer development through regulating cell proliferation, senescence, and apoptosis. As a factor that induces senescence, the role of ARF as a tumor suppressor is closely linked to the p53-MDM2 axis, which is a key process that restrains tumor formation. Thus, many cancer cells either lack a functional ARF or p53, which enables them to evade cell oncogenic stress-mediated cycle arrest, senescence, or apoptosis. In particular, the ARF gene is a frequent target of genetic and epigenetic alterations including promoter hyper-methylation or gene deletion. However, as many cancer cells still express ARF, pathways that negatively modulate transcriptional or post-translational regulation of ARF could be potentially important means for cancer cells to induce cellular proliferation. These recent findings of regulators affecting ARF protein stability along with its low levels in numerous human cancers indicate the significance of an ARF post-translational mechanism in cancers. Novel findings of regulators stimulating or suppressing ARF function would provide new therapeutic targets to manage cancer- and senescence-related diseases. In this review, we present the current knowledge on the regulation and alterations of ARF expression in human cancers, and indicate the importance of regulators of ARF as a prognostic marker and in potential therapeutic strategies.
Collapse
Affiliation(s)
- Aram Ko
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722,
Korea
| | - Su Yeon Han
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722,
Korea
| | - Jaewhan Song
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722,
Korea
| |
Collapse
|
19
|
Al-Khalaf HH, Aboussekhra A. p16 Controls p53 Protein Expression Through miR-dependent Destabilization of MDM2. Mol Cancer Res 2018; 16:1299-1308. [DOI: 10.1158/1541-7786.mcr-18-0017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 03/22/2018] [Accepted: 04/24/2018] [Indexed: 11/16/2022]
|
20
|
Abstract
Since every cell of a multicellular organism contains the same genome, it is intriguing to understand why genetically homogenous cells are different from each other and what controls this. Several observations indicate that DNA methylation has an essential regulatory function in mammalian development, which is to establish the correct pattern of gene expression, and that DNA methylation pattern is tightly correlated with chromatin structure. Various physiological processes are controlled by specific DNA methylation patterns including genomic imprinting, inactivation of the X chromosome, regulation of tissue-specific gene expression and repression of transposons. Moreover, aberrant methylation could confer a selective advantage to cells, leading to cancerous growth. In this review we focus on the epigenetic molecular mechanisms during normal development and discuss how DNA methylation could affect the expression of genes leading to cancer transformation.
Collapse
Affiliation(s)
- Marcella Macaluso
- Sbarro Institute for Cancer Research and Molecular Medicine, College of Science and Technology, Temple University, Philadelphia, PA, USA
| | | |
Collapse
|
21
|
Inoue K, Fry EA. Aberrant Expression of p14 ARF in Human Cancers: A New Biomarker? TUMOR & MICROENVIRONMENT 2018; 1:37-44. [PMID: 30740529 PMCID: PMC6364748 DOI: 10.4103/tme.tme_24_17] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The ARF and INK4a genes are located on the CDKN2a locus, both showing tumor suppressive activity. ARF has been shown to monitor potentially harmful oncogenic signalings, making early stage cancer cells undergo senescence or programmed cell death to prevent cancer. Conversely, INK4a detects both aging and incipient cancer cell signals, and thus these two gene functions are different. The efficiency of detection of oncogenic signals is more efficient for the for the former than the latter in the mouse system. Both ARF and INK4a genes are inactivated by gene deletion, promoter methylation, frame shift, aberrant splicing although point mutations for the coding region affect only the latter. Recent studies show the splicing alterations that affect only ARF or both ARF and INK4a genes suggesting that ARF is inactivated in human tumors more frequently than what was previously thought. The ARF gene is activated by E2Fs and Dmp1 transcription factors while it is repressed by Bmi1, Tbx2/3, Twist1, and Pokemon nuclear proteins. It is also regulated at protein levels by Arf ubiquitin ligase named ULF, MKRN1, and Siva1. The prognostic value of ARF overexpression is controversial since it is induced in early stage cancer cells to eliminate pre-malignant cells (better prognosis); however, it may also indicate that the tumor cells have mutant p53 associated with worse prognosis. The ARF tumor suppressive protein can be used as a biomarker to detect early stage cancer cells as well as advanced stage tumors with p53 inactivation.
Collapse
Affiliation(s)
- Kazushi Inoue
- The Department of Pathology, Wake Forest University Health Sciences, Winston-Salem, NC 27157
| | - Elizabeth A. Fry
- The Department of Pathology, Wake Forest University Health Sciences, Winston-Salem, NC 27157
| |
Collapse
|
22
|
Aberrantly Methylated DNA as a Biomarker in Breast Cancer. Int J Biol Markers 2018; 28:141-50. [DOI: 10.5301/jbm.5000009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/20/2013] [Indexed: 11/20/2022]
Abstract
Aberrant DNA hypermethylation at gene promoters is a frequent event in human breast cancer. Recent genome-wide studies have identified hundreds of genes that exhibit differential methylation between breast cancer cells and normal breast tissue. Due to the tumor-specific nature of DNA hypermethylation events, their use as tumor biomarkers is usually not hampered by analytical signals from normal cells, which is a general problem for existing protein tumor markers used for clinical assessment of breast cancer. There is accumulating evidence that DNA-methylation changes in breast cancer patients occur early during tumorigenesis. This may open up for effective screening, and analysis of blood or nipple aspirate may later help in diagnosing breast cancer. As a more detailed molecular characterization of different types of breast cancer becomes available, the ability to divide patients into subgroups based on DNA biomarkers may improve prognosis. Serial monitoring of DNA-methylation markers in blood during treatment may be useful, particularly when the cancer burden is below the detection level for standard imaging techniques. Overall, aberrant DNA methylation has a great potential as a versatile biomarker tool for screening, diagnosis, prognosis and monitoring of breast cancer. Standardization of methods and biomarker panels will be required to fully exploit this clinical potential.
Collapse
|
23
|
Lebok P, Roming M, Kluth M, Koop C, Özden C, Taskin B, Hussein K, Lebeau A, Witzel I, Wölber L, Geist S, Paluchowski P, Wilke C, Heilenkötter U, Müller V, Schmalfeldt B, Simon R, Sauter G, Terracciano L, Krech RH, von der Assen A, Burandt E. p16 overexpression and 9p21 deletion are linked to unfavorable tumor phenotype in breast cancer. Oncotarget 2018; 7:81322-81331. [PMID: 27835607 PMCID: PMC5348395 DOI: 10.18632/oncotarget.13227] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 11/01/2016] [Indexed: 11/30/2022] Open
Abstract
Overexpression of the p16 tumor suppressor, but also deletion of its gene locus 9p21, is linked to unfavorable tumor phenotype and poor prognosis in breast cancer. To better understand these contradictory observations, and to clarify the prognostic impact of p16 expression and 9p21 deletion, a tissue microarray (TMA) with 2,197 breast cancers was analyzed by fluorescence in-situ hybridization and immunohistochemistry (FISH) for 9p21 deletion and p16 expression. p16 immunostaining was weak in 25.6%, moderate in 7.1%, and strong in 12.7% of 1,684 evaluable cancers. Strong p16 staining was linked to advanced tumor stage (p = 0.0003), high-grade (p < 0.0001), high tumor cell proliferation (p < 0.0001), negative hormone receptor (ER/PR) status (p < 0.0001 each), and shorter overall survival (p = 0.0038). 9p21 deletion was found in 15.3% of 1,089 analyzable breast cancers, including 1.7% homozygous and 13.6% heterozygous deletions. 9p21 deletion was linked to adverse tumor features, including high-grade (p < 0.0001) and nodal positive cancers (p = 0.0063), high cell proliferation (p < 0.0001), negative hormone receptor (ER/PR) status (p ≤ 0.0006), and HER2 amplification (p = 0.0078). Patient outcome was worse in 9p21 deleted than in undeleted cancers (p = 0.0720). p16 expression was absent in cancers harboring homozygous 9p21 deletions, but no difference in p16 expression was found between cancers with (59.2% p16 positive) and without heterozygous 9p21 deletion (51.3% p16 positive, p = 0.0256). In summary, p16 expression is unrelated to partial 9p21 deletion, but both alterations are linked to aggressive breast cancer phenotype. High-level p16 expression is a strong predictor of unfavorable disease course in breast cancer.
Collapse
Affiliation(s)
- Patrick Lebok
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Magdalena Roming
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Martina Kluth
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christina Koop
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Cansu Özden
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Berivan Taskin
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Khakan Hussein
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Annette Lebeau
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Isabell Witzel
- Department of Gynecology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Linn Wölber
- Department of Gynecology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stefan Geist
- Department of Gynecology, Regio Clinic Pinneberg, Pinneberg, Germany
| | - Peter Paluchowski
- Department of Gynecology, Regio Clinic Pinneberg, Pinneberg, Germany
| | - Christian Wilke
- Department of Gynecology, Regio Clinic Elmshorn, Elmshorn, Germany
| | - Uwe Heilenkötter
- Department of Gynecology, Clinical Centre Itzehoe, Itzehoe, Germany
| | - Volkmar Müller
- Department of Gynecology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Barbara Schmalfeldt
- Department of Gynecology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ronald Simon
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Guido Sauter
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Luigi Terracciano
- Department of Pathology, Basel University Clinics, Basel, Switzerland
| | | | | | - Eike Burandt
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
24
|
Rivandi M, Khorrami MS, Fiuji H, Shahidsales S, Hasanzadeh M, Jazayeri MH, Hassanian SM, Ferns GA, Saghafi N, Avan A. The 9p21 locus: A potential therapeutic target and prognostic marker in breast cancer. J Cell Physiol 2018; 233:5170-5179. [PMID: 29240242 DOI: 10.1002/jcp.26332] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 11/29/2017] [Indexed: 12/24/2022]
Abstract
Breast cancer is an important cause of cancer related mortality in women. Despite extensive efforts to identify valid biomarkers for risk stratification, there are relatively few with proven clinical utility. It is recognized that genetic factors play a major role in determining susceptibility to breast cancer. Recent genome-wide-association-studies and gene expression analysis have demonstrated that a locus on chromosome 9p21, which contains three genes; CDKN2B (encoding p15ink4b), CDKN2A (encoding p16ink4a and p14ARF) and the 3' end of CDKN2BAS (an antisense noncoding RNA in the INK4 locus [ANRIL]) are associated with an increased risk of this malignancy. ANRIL has a post transcriptional modulatory activity, which has been shown to perturb the expression of nearby genes and may play an important role in coordinating tissue remodeling through regulation of cell proliferation, apoptosis, aging, extra-cellular matrix remodeling, and inflammatory response. However, the role of ANRIL is not well understood in breast cancer. Hypermethylation of the p14ARF and p16INK4a genes is found in some tumor types. Nevertheless, further studies are necessary to confirm the clinical utility of these putative markers in risk stratification, or assessing prognosis. In this review, we have summarized the prognostic and therapeutic potential of the p14ARF and p16INK4a genes in patients with breast cancer.
Collapse
Affiliation(s)
- Mahdi Rivandi
- Department of Modern Sciences and Technologies, Faculty of Medicine Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad-Sadegh Khorrami
- Department of Modern Sciences and Technologies, Faculty of Medicine Mashhad University of Medical Sciences, Mashhad, Iran.,Student Research Committee of Department of modern Sciences and Technology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamid Fiuji
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Malihe Hasanzadeh
- Department of Gynecology Oncology, Woman Health Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mir Hadi Jazayeri
- Immunology Research Center, Iran University of Medical Sciences, Tehran, Iran.,Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Seyed Mahdi Hassanian
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Medical Biochemistry, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gordon A Ferns
- Brighton and Sussex Medical School, Division of Medical Education, Falmer, Brighton, UK
| | - Nafiseh Saghafi
- Department of Gynecology Oncology, Woman Health Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Avan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Cancer Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
25
|
Ip PP, Lim D, Cheung ANY, Oliva E. Immunoexpression of p16 in uterine leiomyomas with infarct-type necrosis: an analysis of 35 cases. Histopathology 2017; 71:743-750. [DOI: 10.1111/his.13282] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 06/07/2017] [Indexed: 01/12/2023]
Affiliation(s)
- Philip P Ip
- Department of Pathology; The University of Hong Kong; Queen Mary Hospital; Hong Kong
| | - Diana Lim
- Department of Pathology; National University Health System; Singapore
| | - Annie N Y Cheung
- Department of Pathology; The University of Hong Kong; Queen Mary Hospital; Hong Kong
| | - Esther Oliva
- Department of Pathology; Massachusetts General Hospital; Harvard Medical School; Boston MA USA
| |
Collapse
|
26
|
Fry EA, Taneja P, Inoue K. Oncogenic and tumor-suppressive mouse models for breast cancer engaging HER2/neu. Int J Cancer 2017; 140:495-503. [PMID: 27553713 PMCID: PMC5159240 DOI: 10.1002/ijc.30399] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 08/15/2016] [Accepted: 08/17/2016] [Indexed: 12/30/2022]
Abstract
The human c-ErbB2 (HER2) gene is amplified in ∼20% of human breast cancers (BCs), but the protein is overexpressed in ∼30% of the cases indicating that multiple different mechanisms contribute to HER2 overexpression in tumors. It has long been used as a molecular marker of BC for subcategorization for the prediction of prognosis and determination of therapeutic strategies. In comparison to ER(+) BCs, HER2-positive BCs are more invasive, but the patients respond to monoclonal antibody therapy with trastuzumab or tyrosine kinase inhibitors at least at early stages. To understand the pathophysiology of HER2-driven carcinogenesis and test HER2-targeting therapeutic agents in vivo, numerous mouse models have been created that faithfully reproduce HER2(+) BCs in mice. They include MMTV-neu (active mutant or wild type, rat neu or HER2) models, neu promoter-driven neuNT-transgenic mice, neuNT-knock-in mice at the neu locus and doxycycline-inducible neuNT-transgenic models. HER2/neu activates the Phosphatidylinositol-3 kinase-AKT-NF-κB pathway to stimulate the mitogenic cyclin D1/Cdk4-Rb-E2F pathway. Of note, overexpression of HER2 also stimulates the cell autonomous Dmp1-Arf-p53 tumor suppressor pathway to quench oncogenic signals to prevent the emergence of cancer cells. Hence tumor development by MMTV-neu mice was dramatically accelerated in mice that lack Dmp1, Arf or p53 with invasion and metastasis. Expressions of neuNT under the endogenous promoter underwent gene amplification, closely recapitulating human HER2(+) BCs. MMTV-HER2 models have been shown to be useful to test humanized monoclonal antibodies to HER2. These mouse models will be useful for the screening of novel therapeutic agents against BCs with HER2 overexpression.
Collapse
Affiliation(s)
- Elizabeth A. Fry
- Department of Pathology, Wake Forest University Health Sciences, Medical Center Boulevard, Winston-Salem, NC 27157 USA
| | - Pankaj Taneja
- Department of Biotechnology, Sharda University, Greater Noida, UP 201306, India
| | - Kazushi Inoue
- Department of Pathology, Wake Forest University Health Sciences, Medical Center Boulevard, Winston-Salem, NC 27157 USA
| |
Collapse
|
27
|
Ko A, Han SY, Song J. Dynamics of ARF regulation that control senescence and cancer. BMB Rep 2017; 49:598-606. [PMID: 27470213 PMCID: PMC5346319 DOI: 10.5483/bmbrep.2016.49.11.120] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Indexed: 12/16/2022] Open
Abstract
ARF is an alternative reading frame product of the INK4a/ARF locus, inactivated in numerous human cancers. ARF is a key regulator of cellular senescence, an irreversible cell growth arrest that suppresses tumor cell growth. It functions by sequestering MDM2 (a p53 E3 ligase) in the nucleolus, thus activating p53. Besides MDM2, ARF has numerous other interacting partners that induce either cellular senescence or apoptosis in a p53-independent manner. This further complicates the dynamics of the ARF network. Expression of ARF is frequently disrupted in human cancers, mainly due to epigenetic and transcriptional regulation. Vigorous studies on various transcription factors that either positively or negatively regulate ARF transcription have been carried out. However, recent focus on posttranslational modifications, particularly ubiquitination, indicates wider dynamic controls of ARF than previously known. In this review, we discuss the role and dynamic regulation of ARF in senescence and cancer.
Collapse
Affiliation(s)
- Aram Ko
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea
| | - Su Yeon Han
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea
| | - Jaewhan Song
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea
| |
Collapse
|
28
|
Pare R, Shin JS, Lee CS. Increased expression of senescence markers p14(ARF) and p16(INK4a) in breast cancer is associated with an increased risk of disease recurrence and poor survival outcome. Histopathology 2016; 69:479-91. [PMID: 26843058 DOI: 10.1111/his.12948] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 01/31/2016] [Indexed: 11/28/2022]
Abstract
AIMS Breast cancer is a hormonally driven disease. Cellular senescence is an age-related irreversible cell cycle arrest at the G1 phase upon induction. The aim of this study was to characterize the expression patterns of the senescence markers p14(ARF) , p16(INK4a) and p21(WAF1/Cip1) during breast cancer progression in a large patient cohort. METHODS AND RESULTS We conducted a retrospective study of 1080 patients with invasive ductal carcinoma, no special type, over an 11-year period. We performed immunohistochemical staining on tissue microarrays that included normal, benign hyperplasia, ductal carcinoma in situ and invasive ductal carcinoma tissue from each patient. Invasive ductal carcinomas showed higher expression of p14(ARF) and p16(INK4a) but lower expression of p21(WAF1/Cip1) than non-malignant tissues. There were significant correlations of normal, benign, preinvasive and malignant tissues with p14(ARF) , p16(INK4a) and p21(WAF1/Cip1) expression (P < 0.05). Univariate comparison showed a correlation between high p16(INK4a) expression and poor survival (P = 0.000) and an increased risk of relapse (P = 0.000), whereas high p14(ARF) expression correlated only with an increased risk of relapse (P = 0.038). Multivariate analysis showed p16(INK4a) to be an important prognostic factor for overall survival (P = 0.011) and disease-free survival (P = 0.004), with p14(ARF) also being a significant prognostic factor for disease-free survival (P = 0.043). Moreover, patients showing both high p16(INK4a) expression and and high p14(ARF) expression had an adjusted three-fold increased risk of disease recurrence (P < 0.05) and a two-fold increased risk of all-cause-related death (P < 0.05). CONCLUSIONS These finding suggest p16(INK4a) expression and p14(ARF) expression may play an important role in the progression of proliferative breast tissue to invasive cancer, and may be useful as prognostic factors.
Collapse
Affiliation(s)
- Rahmawati Pare
- Discipline of Pathology, School of Medicine, Western Sydney University, Liverpool, NSW, Australia.,Ingham Institute for Applied Medical Research, Liverpool, NSW, Australia
| | - Joo-Shik Shin
- Discipline of Pathology, School of Medicine, Western Sydney University, Liverpool, NSW, Australia.,Ingham Institute for Applied Medical Research, Liverpool, NSW, Australia.,Department of Anatomical Pathology, Liverpool Hospital, Liverpool, NSW, Australia
| | - Cheok Soon Lee
- Discipline of Pathology, School of Medicine, Western Sydney University, Liverpool, NSW, Australia.,Ingham Institute for Applied Medical Research, Liverpool, NSW, Australia.,Department of Anatomical Pathology, Liverpool Hospital, Liverpool, NSW, Australia.,Cancer Pathology, Bosch Institute, University of Sydney, Sydney, NSW, Australia.,South Western Sydney Clinical School, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
29
|
Mocanu MM, Nagy P, Szöllősi J. Chemoprevention of Breast Cancer by Dietary Polyphenols. Molecules 2015; 20:22578-620. [PMID: 26694341 PMCID: PMC6332464 DOI: 10.3390/molecules201219864] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 12/04/2015] [Accepted: 12/08/2015] [Indexed: 02/07/2023] Open
Abstract
The review will discuss in detail the effects of polyphenols on breast cancer, including both the advantages and disadvantages of the applications of these natural compounds. First, we focus on the characterization of the main classes of polyphenols and then on in vitro and in vivo experiments carried out in breast cancer models. Since the therapeutic effects of the administration of a single type of polyphenol might be limited because of the reduced bioavailability of these drugs, investigations on combination of several polyphenols or polyphenols with conventional therapy will also be discussed. In addition, we present recent data focusing on clinical trials with polyphenols and new approaches with nanoparticles in breast cancer. Besides the clinical and translational findings this review systematically summarizes our current knowledge about the molecular mechanisms of anti-cancer effects of polyphenols, which are related to apoptosis, cell cycle regulation, plasma membrane receptors, signaling pathways and epigenetic mechanisms. At the same time the effects of polyphenols on primary tumor, metastasis and angiogenesis in breast cancer are discussed. The increasing enthusiasm regarding the combination of polyphenols and conventional therapy in breast cancer might lead to additional efforts to motivate further research in this field.
Collapse
Affiliation(s)
- Maria-Magdalena Mocanu
- Department of Biophysics, "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania.
| | - Péter Nagy
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary.
| | - János Szöllősi
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary.
- MTA-DE Cell Biology and Signaling Research Group, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary.
| |
Collapse
|
30
|
Maroni L, Pierantonelli I, Banales JM, Benedetti A, Marzioni M. The significance of genetics for cholangiocarcinoma development. ANNALS OF TRANSLATIONAL MEDICINE 2014; 1:28. [PMID: 25332972 DOI: 10.3978/j.issn.2305-5839.2012.10.04] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Accepted: 10/15/2012] [Indexed: 12/15/2022]
Abstract
Cholangiocarcinoma (CCA) is a rare malignancy of the liver, arising from bile ducts. The incidence is increasing worldwide, but the prognosis has remained dismal and virtually unchanged in the past 30 years. Although several risk factors have been associated with the development of this cancer, none of them are normally identified in most patients. Diagnosis in advanced stages of the disease and limited therapeutic options contribute to poor survival rates. The recent analysis of genetic and epigenetic alterations occurring in CCA has shed new light in the understanding of the molecular mechanisms leading to the malignant transformation of biliary cells. Further studies in this direction may foster new diagnostic, prognostic and therapeutic approaches. This review provides a global overview of recent advances in CCA and describes the most important genetic mutations and epigenetic alterations so far reported in CCA.
Collapse
Affiliation(s)
- Luca Maroni
- 1 Department of Gastroenterology, Università Politecnica delle Marche, Ancona, Italy ; 2 Department of Gastroenterology and Hepatology, Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands ; 3 Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria ; 4 Division of Hepatology and Gastroenterology, Biodonostia Research Institute (Donostia University Hospital), CIBERehd, University of Basque Country, San Sebastián, Spain - IKERBASQUE (Basque Foundation of Science), and "Asociación Española Contra el Cáncer, (AECC)"
| | - Irene Pierantonelli
- 1 Department of Gastroenterology, Università Politecnica delle Marche, Ancona, Italy ; 2 Department of Gastroenterology and Hepatology, Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands ; 3 Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria ; 4 Division of Hepatology and Gastroenterology, Biodonostia Research Institute (Donostia University Hospital), CIBERehd, University of Basque Country, San Sebastián, Spain - IKERBASQUE (Basque Foundation of Science), and "Asociación Española Contra el Cáncer, (AECC)"
| | - Jesus M Banales
- 1 Department of Gastroenterology, Università Politecnica delle Marche, Ancona, Italy ; 2 Department of Gastroenterology and Hepatology, Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands ; 3 Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria ; 4 Division of Hepatology and Gastroenterology, Biodonostia Research Institute (Donostia University Hospital), CIBERehd, University of Basque Country, San Sebastián, Spain - IKERBASQUE (Basque Foundation of Science), and "Asociación Española Contra el Cáncer, (AECC)"
| | - Antonio Benedetti
- 1 Department of Gastroenterology, Università Politecnica delle Marche, Ancona, Italy ; 2 Department of Gastroenterology and Hepatology, Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands ; 3 Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria ; 4 Division of Hepatology and Gastroenterology, Biodonostia Research Institute (Donostia University Hospital), CIBERehd, University of Basque Country, San Sebastián, Spain - IKERBASQUE (Basque Foundation of Science), and "Asociación Española Contra el Cáncer, (AECC)"
| | - Marco Marzioni
- 1 Department of Gastroenterology, Università Politecnica delle Marche, Ancona, Italy ; 2 Department of Gastroenterology and Hepatology, Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands ; 3 Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria ; 4 Division of Hepatology and Gastroenterology, Biodonostia Research Institute (Donostia University Hospital), CIBERehd, University of Basque Country, San Sebastián, Spain - IKERBASQUE (Basque Foundation of Science), and "Asociación Española Contra el Cáncer, (AECC)"
| |
Collapse
|
31
|
Maggi LB, Winkeler CL, Miceli AP, Apicelli AJ, Brady SN, Kuchenreuther MJ, Weber JD. ARF tumor suppression in the nucleolus. Biochim Biophys Acta Mol Basis Dis 2014; 1842:831-9. [PMID: 24525025 DOI: 10.1016/j.bbadis.2014.01.016] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 01/27/2014] [Accepted: 01/28/2014] [Indexed: 02/06/2023]
Abstract
Since its discovery close to twenty years ago, the ARF tumor suppressor has played a pivotal role in the field of cancer biology. Elucidating ARF's basal physiological function in the cell has been the focal interest of numerous laboratories throughout the world for many years. Our current understanding of ARF is constantly evolving to include novel frameworks for conceptualizing the regulation of this critical tumor suppressor. As a result of this complexity, there is great need to broaden our understanding of the intricacies governing the biology of the ARF tumor suppressor. The ARF tumor suppressor is a key sensor of signals that instruct a cell to grow and proliferate and is appropriately localized in nucleoli to limit these processes. This article is part of a Special Issue entitled: Role of the Nucleolus in Human Disease.
Collapse
Affiliation(s)
- Leonard B Maggi
- BRIGHT Institute, Department of Internal Medicine, Division of Molecular Oncology, Siteman Cancer Center, Washington University School of Medicine, Saint Louis, MO, USA
| | - Crystal L Winkeler
- BRIGHT Institute, Department of Internal Medicine, Division of Molecular Oncology, Siteman Cancer Center, Washington University School of Medicine, Saint Louis, MO, USA
| | - Alexander P Miceli
- BRIGHT Institute, Department of Internal Medicine, Division of Molecular Oncology, Siteman Cancer Center, Washington University School of Medicine, Saint Louis, MO, USA
| | - Anthony J Apicelli
- BRIGHT Institute, Department of Internal Medicine, Division of Molecular Oncology, Siteman Cancer Center, Washington University School of Medicine, Saint Louis, MO, USA
| | - Suzanne N Brady
- BRIGHT Institute, Department of Internal Medicine, Division of Molecular Oncology, Siteman Cancer Center, Washington University School of Medicine, Saint Louis, MO, USA
| | - Michael J Kuchenreuther
- BRIGHT Institute, Department of Internal Medicine, Division of Molecular Oncology, Siteman Cancer Center, Washington University School of Medicine, Saint Louis, MO, USA
| | - Jason D Weber
- BRIGHT Institute, Department of Internal Medicine, Division of Molecular Oncology, Siteman Cancer Center, Washington University School of Medicine, Saint Louis, MO, USA.
| |
Collapse
|
32
|
Yoon JH, Choi WI, Jeon BN, Koh DI, Kim MK, Kim MH, Kim J, Hur SS, Kim KS, Hur MW. Human Kruppel-related 3 (HKR3) is a novel transcription activator of alternate reading frame (ARF) gene. J Biol Chem 2014; 289:4018-31. [PMID: 24382891 DOI: 10.1074/jbc.m113.526855] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
HKR3 (Human Krüppel-related 3) is a novel POK (POZ-domain Krüppel-like zinc-finger) family transcription factor. Recently, some of the POK (POZ-domain Krüppel-like zinc finger) family proteins have been shown to play roles in cell cycle arrest, apoptosis, cell proliferation, and oncogenesis. We investigated whether HKR3, an inhibitor of cell proliferation and an uncharacterized POK family protein, could regulate the cell cycle by controlling expression of genes within the p53 pathway (ARF-MDM2-TP53-p21WAF/CDKN1A). HKR3 potently activated the transcription of the tumor suppressor gene ARF by acting on the proximal promoter region (bp, -149∼+53), which contains Sp1 and FBI-1 binding elements (FREs). HKR3 interacted with the co-activator p300 to activate ARF transcription, which increased the acetylation of histones H3 and H4 within the proximal promoter. Oligonucleotide pull-down assays and ChIP assays revealed that HKR3 interferes with the binding of the proto-oncogenic transcription repressor FBI-1 to proximal FREs, thus derepressing ARF transcription.
Collapse
Affiliation(s)
- Jae-Hyeon Yoon
- From the Department of Biochemistry and Molecular Biology, Brain Korea 21 PLUS Project for Medical Science, Severance Biomedical Science Institute, Yonsei University School of Medicine, 50 Yonsei-Ro, SeoDaeMun-Gu, Seoul 120-752, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Shan M, Zhang X, Liu X, Qin Y, Liu T, Liu Y, Wang J, Zhong Z, Zhang Y, Geng J, Pang D. P16 and p53 play distinct roles in different subtypes of breast cancer. PLoS One 2013; 8:e76408. [PMID: 24146864 PMCID: PMC3795768 DOI: 10.1371/journal.pone.0076408] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Accepted: 08/26/2013] [Indexed: 11/18/2022] Open
Abstract
Breast cancers are heterogeneous and complex diseases, and subtypes of breast cancers may involve unique molecular mechanisms. The p16INK4a and p53 pathways are two of the major pathways involved in control of the cell cycle. They also play key roles in tumorigenesis. However, whether the roles of these pathways differ in the subtypes of breast cancer is unclear. Therefore, p16 and p53 expression were investigated in different breast cancer subtypes to ascertain their contributions to these cancers. A total of 400 cases of non-invasive ductal carcinoma in situ (DCIS) and invasive ductal carcinoma (IDC), including the major molecular subtypes luminal-A, luminal-B, Her-2, and triple-negative subtypes, and 50 cases of normal controls were compared. Luminal-A cancers expressed the lowest level of p16 among the subtypes in DCIS, and the level of p16 expression was up-regulated in the luminal-A of IDC (P<0.008). Triple-negative breast cancers were characterized by a correlation of p53 overexpression with a high level of p16 expression. Luminal lesion types with high p16 expression in DCIS were found to be more likely to develop into aggressive breast cancers, possibly promoted by p53 dysfunction. Taken together, the present study suggest that p16 expression in luminal-A breast cancers is associated with their progression from DCIS to IDC, and both p53 and p16 expressions are important for the development of triple-negative breast cancers in DCIS and IDC.
Collapse
Affiliation(s)
- Ming Shan
- Department of Breast Surgery, The Affiliated Tumor Hospital of Harbin Medical University, Harbin, China
| | - Xianyu Zhang
- Department of Breast Surgery, The Affiliated Tumor Hospital of Harbin Medical University, Harbin, China
| | - Xiaolong Liu
- Department of Pathology, The Affiliated Tumor Hospital of Harbin Medical University, Harbin, China
| | - Yu Qin
- Department of Pathology, The Affiliated Tumor Hospital of Harbin Medical University, Harbin, China
| | - Tong Liu
- Department of Breast Surgery, The Affiliated Tumor Hospital of Harbin Medical University, Harbin, China
| | - Yang Liu
- Department of Breast Surgery, The Affiliated Tumor Hospital of Harbin Medical University, Harbin, China
| | - Ji Wang
- Department of Breast Surgery, The Affiliated Tumor Hospital of Harbin Medical University, Harbin, China
| | - Zhenbin Zhong
- Department of Breast Surgery, The Affiliated Tumor Hospital of Harbin Medical University, Harbin, China
| | - Youxue Zhang
- Department of Breast Surgery, The Affiliated Tumor Hospital of Harbin Medical University, Harbin, China
| | - Jingshu Geng
- Department of Pathology, The Affiliated Tumor Hospital of Harbin Medical University, Harbin, China
| | - Da Pang
- Department of Breast Surgery, The Affiliated Tumor Hospital of Harbin Medical University, Harbin, China
- * E-mail:
| |
Collapse
|
34
|
Resveratrol activates the histone H2B ubiquitin ligase, RNF20, in MDA-MB-231 breast cancer cells. J Funct Foods 2013. [DOI: 10.1016/j.jff.2013.01.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
35
|
Lu Y, Zhang X, Zhang J. Inhibition of Breast Tumor Cell Growth by Ectopic Expression of p16/INK4A Via Combined Effects of Cell Cycle Arrest, Senescence and Apoptotic Induction, and Angiogenesis Inhibition. J Cancer 2012; 3:333-44. [PMID: 22866168 PMCID: PMC3408698 DOI: 10.7150/jca.4046] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Accepted: 02/23/2012] [Indexed: 11/26/2022] Open
Abstract
p16-mediated inhibition of cancer cell proliferation and tumor suppression have been studied before,; the common consensus is that p16's cell-cycle arrest function plays a primary role in these actions, with some additional apoptotic induction by p16. However, other effects of p16 that may potentially contribute to p16-mediated anti-tumor ability have not been well studied. The emerging data including ours indicated that p16 contributes its anti-cancer ability by inducing tumor cells to senescence. Moreover, we showed that p16 inhibits breast cancer cell growth by inhibiting the VEGF signaling pathway and angiogenesis. In this study, we used adenoviral-mediated p16 expression (AdRSVp16) and breast cancer cell line MDA-MB-231 as the model to simultaneously analyze all these p16's anti-tumor functions. We demonstrated that adenoviral-mediated p16 expression exhibited multiple anti-tumor functions by simultaneously suppressing in vitro growth and in vivo angiogenesis of breast cancer cells, blocking cell division, as well as inducing senescence and apoptosis. The in vivo study implies that p16's effect on anti-angiogenesis may play a more significant role than its anti-cell proliferation in the overall suppression of tumor growth. These results suggest, for the first time, that AdRSVp16-mediated tumor suppression results from a combination of p16's multiple anti-tumor functions including p16's well-known anti-proliferation/cell division function, apoptotic and senescence induction function, and its lesser-known/under-investigated anti-angiogenesis function. These combined results strongly indicate that p16 gene therapy has a multi-module platform with different anti-tumor functions; therefore, this study justifies and promotes the viral-mediated p16 gene therapy as a promising and powerful treatment approach for cancer patients due to p16's multiple anti-tumor functions.
Collapse
Affiliation(s)
- Yi Lu
- 1. Department of Pathology, University of Tennessee Health Science Center, Memphis, TN, USA
| | | | | |
Collapse
|
36
|
McGowan EM, Tran N, Alling N, Yagoub D, Sedger LM, Martiniello-Wilks R. p14ARF post-transcriptional regulation of nuclear cyclin D1 in MCF-7 breast cancer cells: discrimination between a good and bad prognosis? PLoS One 2012; 7:e42246. [PMID: 22860097 PMCID: PMC3408480 DOI: 10.1371/journal.pone.0042246] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Accepted: 07/05/2012] [Indexed: 12/02/2022] Open
Abstract
As part of a cell’s inherent protection against carcinogenesis, p14ARF is upregulated in response to hyperproliferative signalling to induce cell cycle arrest. This property makes p14ARF a leading candidate for cancer therapy. This study explores the consequences of reactivating p14ARF in breast cancer and the potential of targeting p14ARF in breast cancer treatment. Our results show that activation of the p14ARF-p53-p21-Rb pathway in the estrogen sensitive MCF-7 breast cancer cells induces many hallmarks of senescence including a large flat cell morphology, multinucleation, senescence-associated-β-gal staining, and rapid G1 and G2/M phase cell cycle arrest. P14ARF also induces the expression of the proto-oncogene cyclin D1, which is most often associated with a transition from G1-S phase and is highly expressed in breast cancers with poor clinical prognosis. In this study, siRNA knockdown of cyclin D1, p21 and p53 show p21 plays a pivotal role in the maintenance of high cyclin D1 expression, cell cycle and growth arrest post-p14ARF induction. High p53 and p14ARF expression and low p21/cyclin D1 did not cause cell-cycle arrest. Knockdown of cyclin D1 stops proliferation but does not reverse senescence-associated cell growth. Furthermore, cyclin D1 accumulation in the nucleus post-p14ARF activation correlated with a rapid loss of nucleolar Ki-67 protein and inhibition of DNA synthesis. Latent effects of the p14ARF-induced cellular processes resulting from high nuclear cyclin D1 accumulation included a redistribution of Ki-67 into the nucleoli, aberrant nuclear growth (multinucleation), and cell proliferation. Lastly, downregulation of cyclin D1 through inhibition of ER abrogated latent recurrence. The mediation of these latent effects by continuous expression of p14ARF further suggests a novel mechanism whereby dysregulation of cyclin D1 could have a double-edged effect. Our results suggest that p14ARF induced-senescence is related to late-onset breast cancer in estrogen responsive breast cancers and/or the recurrence of more aggressive breast cancer post-therapy.
Collapse
Affiliation(s)
- Eileen M McGowan
- Translational Cancer Research Group, School of Medical and Molecular Biosciences, Faculty of Science and Centre for Health Technologies, University of Technology Sydney, Sydney, New South Wales, Australia.
| | | | | | | | | | | |
Collapse
|
37
|
Natrajan R, Mackay A, Lambros MB, Weigelt B, Wilkerson PM, Manie E, Grigoriadis A, A’Hern R, van der Groep P, Kozarewa I, Popova T, Mariani O, Turaljic S, Furney SJ, Marais R, Rodruigues DN, Flora AC, Wai P, Pawar V, McDade S, Carroll J, Stoppa-Lyonnet D, Green AR, Ellis IO, Swanton C, van Diest P, Delattre O, Lord CJ, Foulkes WD, Vincent-Salomon A, Ashworth A, Stern MH, Reis-Filho JS. A whole-genome massively parallel sequencing analysis of BRCA1 mutant oestrogen receptor-negative and -positive breast cancers. J Pathol 2012; 227:29-41. [PMID: 22362584 PMCID: PMC4976800 DOI: 10.1002/path.4003] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Revised: 01/29/2012] [Accepted: 01/31/2012] [Indexed: 12/12/2022]
Abstract
BRCA1 encodes a tumour suppressor protein that plays pivotal roles in homologous recombination (HR) DNA repair, cell-cycle checkpoints, and transcriptional regulation. BRCA1 germline mutations confer a high risk of early-onset breast and ovarian cancer. In more than 80% of cases, tumours arising in BRCA1 germline mutation carriers are oestrogen receptor (ER)-negative; however, up to 15% are ER-positive. It has been suggested that BRCA1 ER-positive breast cancers constitute sporadic cancers arising in the context of a BRCA1 germline mutation rather than being causally related to BRCA1 loss-of-function. Whole-genome massively parallel sequencing of ER-positive and ER-negative BRCA1 breast cancers, and their respective germline DNAs, was used to characterize the genetic landscape of BRCA1 cancers at base-pair resolution. Only BRCA1 germline mutations, somatic loss of the wild-type allele, and TP53 somatic mutations were recurrently found in the index cases. BRCA1 breast cancers displayed a mutational signature consistent with that caused by lack of HR DNA repair in both ER-positive and ER-negative cases. Sequencing analysis of independent cohorts of hereditary BRCA1 and sporadic non-BRCA1 breast cancers for the presence of recurrent pathogenic mutations and/or homozygous deletions found in the index cases revealed that DAPK3, TMEM135, KIAA1797, PDE4D, and GATA4 are potential additional drivers of breast cancers. This study demonstrates that BRCA1 pathogenic germline mutations coupled with somatic loss of the wild-type allele are not sufficient for hereditary breast cancers to display an ER-negative phenotype, and has led to the identification of three potential novel breast cancer genes (ie DAPK3, TMEM135, and GATA4).
Collapse
Affiliation(s)
- Rachael Natrajan
- The Breakthrough Breast Cancer Research Centre, The Institute of
Cancer Research, London, SW3 6JB, UK
| | - Alan Mackay
- The Breakthrough Breast Cancer Research Centre, The Institute of
Cancer Research, London, SW3 6JB, UK
| | - Maryou B Lambros
- The Breakthrough Breast Cancer Research Centre, The Institute of
Cancer Research, London, SW3 6JB, UK
| | - Britta Weigelt
- Signal Transduction Laboratory, Cancer Research UK London Research
Institute, WC2A 3LY, UK
| | - Paul M Wilkerson
- The Breakthrough Breast Cancer Research Centre, The Institute of
Cancer Research, London, SW3 6JB, UK
| | - Elodie Manie
- Institut Curie, INSERM U830, 75248 Paris, France
| | - Anita Grigoriadis
- Breakthrough Research Unit, Bermondsey Wing, Guy’s Hospital,
London, SE1 9RT, UK
| | - Roger A’Hern
- CRUK Clinical Trials Unit, The Institute of Cancer Research, Sutton,
SM2 5NG, UK
| | | | - Iwanka Kozarewa
- The Breakthrough Breast Cancer Research Centre, The Institute of
Cancer Research, London, SW3 6JB, UK
| | | | - Odette Mariani
- Institut Curie, Department of Tumour Biology, 75248 Paris,
France
| | - Samra Turaljic
- Signal Transduction Team, Division of Cell and Molecular Biology,
The Institute of Cancer Research, London, SW3 6JB, UK
| | - Simon J Furney
- Signal Transduction Team, Division of Cell and Molecular Biology,
The Institute of Cancer Research, London, SW3 6JB, UK
| | - Richard Marais
- Signal Transduction Team, Division of Cell and Molecular Biology,
The Institute of Cancer Research, London, SW3 6JB, UK
| | - Daniel-Nava Rodruigues
- The Breakthrough Breast Cancer Research Centre, The Institute of
Cancer Research, London, SW3 6JB, UK
| | - Adriana C Flora
- The Breakthrough Breast Cancer Research Centre, The Institute of
Cancer Research, London, SW3 6JB, UK
| | - Patty Wai
- The Breakthrough Breast Cancer Research Centre, The Institute of
Cancer Research, London, SW3 6JB, UK
| | - Vidya Pawar
- The Breakthrough Breast Cancer Research Centre, The Institute of
Cancer Research, London, SW3 6JB, UK
| | - Simon McDade
- Centre for Cancer Research and Cell Biology, Queen’s
University, Belfast, BT9 7BL, Northern Ireland, UK
| | - Jason Carroll
- Nuclear Receptor Transcription Laboratory, Cancer Research UK
Cambridge Research Institute, Cambridge, CB2 0RE, UK
| | - Dominique Stoppa-Lyonnet
- Institut Curie, INSERM U830, 75248 Paris, France
- Institut Curie, Department of Tumour Biology, 75248 Paris,
France
| | - Andrew R Green
- Department of Histopathology, School of Molecular Medical Sciences,
University of Nottingham and Nottingham University Hospitals Trust, Nottingham, NG7
2UH, UK
| | - Ian O Ellis
- Department of Histopathology, School of Molecular Medical Sciences,
University of Nottingham and Nottingham University Hospitals Trust, Nottingham, NG7
2UH, UK
| | - Charles Swanton
- Translational Cancer Therapeutics Laboratory, Cancer Research UK
London Research Institute, WC2A 3LY, UK
- UCL Cancer Institute, Huntley Street, London WC1E 6DD, UK
| | - Paul van Diest
- University Medical Centre Utrecht, 3584 CX Utrecht, The
Netherlands
| | | | - Christopher J Lord
- The Breakthrough Breast Cancer Research Centre, The Institute of
Cancer Research, London, SW3 6JB, UK
| | - William D Foulkes
- Program in Cancer Genetics, Departments of Human Genetics and
Oncology, McGill University, Montreal, QC, H2W 1S6, Canada
| | - Anne Vincent-Salomon
- Institut Curie, INSERM U830, 75248 Paris, France
- Institut Curie, Department of Tumour Biology, 75248 Paris,
France
| | - Alan Ashworth
- The Breakthrough Breast Cancer Research Centre, The Institute of
Cancer Research, London, SW3 6JB, UK
| | - Marc Henri Stern
- Institut Curie, INSERM U830, 75248 Paris, France
- Institut Curie, Department of Tumour Biology, 75248 Paris,
France
| | - Jorge S Reis-Filho
- The Breakthrough Breast Cancer Research Centre, The Institute of
Cancer Research, London, SW3 6JB, UK
| |
Collapse
|
38
|
Development of a novel approach, the epigenome-based outlier approach, to identify tumor-suppressor genes silenced by aberrant DNA methylation. Cancer Lett 2012; 322:204-12. [PMID: 22433712 DOI: 10.1016/j.canlet.2012.03.016] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Revised: 03/10/2012] [Accepted: 03/12/2012] [Indexed: 12/22/2022]
Abstract
Identification of tumor-suppressor genes (TSGs) silenced by aberrant methylation of promoter CpG islands (CGIs) is important, but hampered by a large number of genes methylated as passengers of carcinogenesis. To overcome this issue, we here took advantage of the fact that the vast majority of genes methylated in cancers lack, in normal cells, RNA polymerase II (Pol II) and have trimethylation of histone H3 lysine 27 (H3K27me3) in their promoter CGIs. First, we demonstrated that three of six known TSGs in breast cancer and two of three in colon cancer had Pol II and lacked H3K27me3 in normal cells, being outliers to the general rule. BRCA1, HOXA5, MLH1, and RASSF1A had high Pol II, but were expressed only at low levels in normal cells, and were unlikely to be identified as outliers by their expression statuses in normal cells. Then, using epigenome statuses (Pol II binding and H3K27me3) in normal cells, we made a genome-wide search for outliers in breast cancers, and identified 14 outlier promoter CGIs. Among these, DZIP1, FBN2, HOXA5, and HOXC9 were confirmed to be methylated in primary breast cancer samples. Knockdown of DZIP1 in breast cancer cell lines led to increases of their growth, suggesting it to be a novel TSG. The outliers based on their epigenome statuses contained unique TSGs, including DZIP1, compared with those identified by the expression microarray data. These results showed that the epigenome-based outlier approach is capable of identifying a different set of TSGs, compared to the expression-based outlier approach.
Collapse
|
39
|
Abstract
Cancer patients' outcome and survival depends on the early diagnosis of malignant lesions. Several investigation methods used for the prevention and early detection strategies have specific limitations. More recently, epigenetic changes have been considered one of the most promising tools for the early diagnosis of cancer. Some of these epigenetic alterations including promoter hypermethylation of genes like P16INK4a, BRCA1, BRCA2, ERα and RARβ2, APC, and RASSF1A have been associated with early stages of mammary gland tumorigenesis and have been suggested to be included in the models that evaluate individual breast cancer risk. In lung cancer, P16INK4a and MGMT gene hypermethylation was observed in sputum years before clinical manifestation of the squamous cell carcinoma among smokers. Loss of GSTP1 function by DNA hypermethylation together with changes in the methylation levels of repetitive elements like LINE-1 and Sat2 was reported in prostatic preneoplastic lesions. Also, DNA hypermethylation for hMLH1 and MGMT DNA repair genes was reported in precursor lesions to colorectal cancer. These epigenetic alterations may be influenced by factors such as xenoestrogens, folate, and multivitamins. Detection of these changes may help determining cancer susceptibility and early diagnosis.
Collapse
|
40
|
Khan SI, Aumsuwan P, Khan IA, Walker LA, Dasmahapatra AK. Epigenetic events associated with breast cancer and their prevention by dietary components targeting the epigenome. Chem Res Toxicol 2011; 25:61-73. [PMID: 21992498 DOI: 10.1021/tx200378c] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Aberrant epigenetic alterations in the genome such as DNA methylation and chromatin remodeling play a significant role in breast cancer development. Since epigenetic alterations are considered to be more easily reversible compared to genetic changes, epigenetic therapy is potentially very useful in reversing some of these defects. Methylation of CpG islands is an important component of the epigenetic code, and a number of genes become abnormally methylated in breast cancer patients. Currently, several epigenetic-based synthetic drugs that can reduce DNA hypermethylation and histone deacetylation are undergoing preclinical and clinical trials. However, these chemicals are generally very toxic and do not have gene specificity. Epidemiological studies have shown that Asian women are less prone to breast cancer due to their high consumption of soy food than the Caucasian women of western countries. Moreover, complementary/and or alternative medicines are commonly used by Asian populations which are rich in bioactive ingredients known to be chemopreventive against tumorigenesis in general. Examples of such agents include dietary polyphenols, (-)-epigallocatechin-3-gallate (EGCG) from green tea, genistein from soybean, isothiocyanates from plant foods, curcumin from turmeric, resveratrol from grapes, and sulforaphane from cruciferous vegetables. These bioactive components are able to modulate epigenetic events, and their epigenetic targets are known to be associated with breast cancer prevention and therapy. This approach could facilitate the discovery and development of novel drugs for the treatment of breast cancer. In this brief review, we will summarize the epigenetic events associated with breast cancer and the potential of some of these bioactive dietary components to modulate these events and thus afford new therapeutic or preventive approaches.
Collapse
Affiliation(s)
- Shabana I Khan
- National Center for Natural Products Research, University of Mississippi, University, Mississippi 38677, United States
| | | | | | | | | |
Collapse
|
41
|
Karray-Chouayekh S, Baccouche S, Khabir A, Sellami-Boudawara T, Daoud J, Frikha M, Jlidi R, Gargouri A, Mokdad-Gargouri R. Prognostic significance of p16INK4a/p53 in Tunisian patients with breast carcinoma. Acta Histochem 2011; 113:508-13. [PMID: 20598349 DOI: 10.1016/j.acthis.2010.05.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2010] [Revised: 04/30/2010] [Accepted: 05/03/2010] [Indexed: 02/07/2023]
Abstract
Infiltrating ductal carcinoma (IDC) of the breast is a result of genetic alterations that affect the regulation of the cell cycle check-point and apoptosis. The aim of the present study was analysis using immunohistochemical localization of mouse double minute-2 (mdm2), p16INK4a, p53, bax and bcl-2 markers in Tunisian patients with breast IDC and to determine if there was correlation with the major clinico-pathological parameters and with survival of patients. We showed that the expression of p53, p16INK4a, mdm2, bcl-2, and bax was observed in 46.3%, 20.7%, 38%, 50% and 11.9% of cases, respectively. Statistical analysis revealed that positive expression of mdm2 was associated with larger tumors (P=0.013), whereas bax positivity was more prevalent in younger patients and in tumors of smaller size (P=0.008 and P=0.012 respectively). Furthermore, the expression of p16INK4a correlated with advanced grade (P<0.0001), triple negative tumors (ER-/PR-/HER2-, P=0.001) and mdm2 expression (P=0.017). The absence of nuclear p53 accumulation was predictive of good prognosis as well as when it was associated with negative expression of p16INK4a. Our findings suggest that among the biomarkers tested, p16INK4a might have a useful clinical and prognostic significance in infiltrating ductal carcinoma of the breast.
Collapse
|
42
|
Promoter Hypermethylation in Tumor Suppressing Genes p16 and FHIT and Their Relationship with Estrogen Receptor and Progesterone Receptor Status in Breast Cancer Patients from Northern India. Transl Oncol 2011; 2:264-70. [PMID: 19956388 DOI: 10.1593/tlo.09148] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2009] [Revised: 07/02/2009] [Accepted: 07/02/2009] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Aberrant DNA methylation has been recognized in human breast carcinogenesis as a common molecular alteration associated with the loss of expression of a number of key regulatory genes. The present study was undertaken to determine whether methylation and expression of p16 and FHIT genes would correlate with the estrogen receptor (ER) and progesterone receptor (PR) status. METHODS Methylation-specific polymerase chain reaction, messenger RNA (mRNA) expression analysis, immunohistochemistry, and Western blot analysis were performed to study the methylation of p16 and FHIT genes in 351 pairs of malignant/normal breast tissues. We examined the expression of ER and PR in those specimens by immunohistochemistry. Mutations of p16 and FHIT genes in tumors were detected by direct sequencing. RESULTS The frequency of hypermethylation was 31.9% and 36.8% in p16 and FHIT genes, respectively, and showed significant harmony in concordant hypermethylation (P < .0001). In postmenopausal patients, methylation frequency in both genes is significantly higher in poorly and moderately differentiated tumors. Loss of protein expression of p16 and FHIT in 77 and 74 tumors, respectively, is associated with their methylation status in premenopausal women. CONCLUSION We did not find any significant differences in tumor-related gene methylation patterns relevant to both ER and PR status of breast tumors.
Collapse
|
43
|
Abstract
p53 is a potent tumor suppressor with a crucial role in preventing uncontrolled cell proliferation and is therefore frequently deleted or mutated in cancer. For tumors with wild-type p53, its function can be overcome by overactive cellular antagonists, such as the ubiquitin ligase murine double minute clone 2 (MDM2). Restoring p53 activity by inhibiting MDM2 in such cancers can eradicate tumors. Consequently, the MDM2-p53 interaction has been extensively targeted for inhibition by small molecules. In recent years, MDM2-like protein (MDMX), another key downregulator of p53, has gained increasing importance as an additional target for drug development, in order to provide a complementary approach to MDM2 inhibition. In this review, we describe how detailed structural knowledge of the MDM2-p53 interface and, more recently, of the MDMX-p53 interaction have helped advance the development of inhibitors against the two targets. We present a summary of the functional biochemistry of MDM2, MDMX and p53 as well as their interactions and examine recent progress in the development of inhibitors of MDM2 and MDMX.
Collapse
|
44
|
Iizuka D, Imaoka T, Takabatake T, Nishimura M, Kakinuma S, Nishimura Y, Shimada Y. DNA copy number aberrations and disruption of the p16Ink4a/Rb pathway in radiation-induced and spontaneous rat mammary carcinomas. Radiat Res 2010; 174:206-15. [PMID: 20681787 DOI: 10.1667/rr2006.1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Chromosomal amplifications and deletions are thought to be important events in spontaneous and radiation-induced carcinogenesis. To clarify how ionizing radiation induces mammary carcinogenesis, we characterized genomic copy number aberrations for gamma-ray-induced rat mammary carcinomas using microarray-based comparative genomic hybridization. We examined 14 carcinomas induced by gamma radiation (2 Gy) and found 26 aberrations, including trisomies of chromosomes 4 and 10 for three and one carcinomas, respectively, an amplification of the chromosomal region 1q12 in two carcinomas, and deletions of the chromosomal regions 3q35q36, 5q32 and 7q11 in two, two and four carcinomas, respectively. These aberrations were not observed in seven spontaneous mammary carcinomas. The expression of p16Ink4a and p19Arf, which are located in the chromosomal region 5q32, was always up-regulated except for a carcinoma with a homozygous deletion of region 5q32. The up-regulation was not accounted for by gene mutations or promoter hypomethylation. However, the amounts of Rb and its mRNA were down-regulated in these carcinomas, indicating a disruption of the p16Ink4a/Rb pathway. This is the first report of array CGH analysis for radiation-induced mammary tumors, which reveals that they show distinct DNA copy number aberration patterns that are different from those of spontaneous tumors and those reported previously for chemically induced tumors.
Collapse
Affiliation(s)
- Daisuke Iizuka
- Experimental Radiobiology for Children's Health Research Group, Research Center for Radiation Protection, National Institute of Radiological Sciences, Chiba, 263-8555, Japan
| | | | | | | | | | | | | |
Collapse
|
45
|
Park G, Kang SH, Lee JH, Suh C, Kim M, Park SM, Kim TY, Oh B, Min HJ, Yoon SS, Yang IC, Cho HI, Lee DS. Concurrent p16 methylation pattern as an adverse prognostic factor in multiple myeloma: a methylation-specific polymerase chain reaction study using two different primer sets. Ann Hematol 2010; 90:73-9. [PMID: 20721556 DOI: 10.1007/s00277-010-1043-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2010] [Accepted: 08/02/2010] [Indexed: 12/22/2022]
Abstract
Disruption of cell cycle control genes, including p16, is known to contribute to the cancerogenesis of multiple myeloma (MM). We investigated the methylation status of p16 and its association with common cytogenetic changes, clinicolaboratory findings, and survival in MM. Methylation-specific polymerase chain reaction was performed in 99 newly diagnosed MM patients using two different sets of primers (p16M1 and p16M2). Four patterns of p16 promoter methylation were observed: (1) concurrent methylation of p16M1 and p16M2 (P1P2), 27.3%; (2) methylation of p16M1 alone (P1N2), 7.1%; (3) methylation of p16M2 alone (N1P2), 26.3%; and (4) no methylation (N1N2), 39.4%. Patients with p16P1P1 showed shorter survivals than those with the other methylation patterns (P1N2, N1P2, or N1N2; median survival, 12 vs. 43 months; P < 0.001), regardless of the treatment protocol. In a multivariate analysis, p16P1P2 was an independent prognostic factor of adverse outcome in MM. According to International Staging System (ISS), the study population could be divided into 21.2% (20/94) for stage I, 22.3% (21/94) for stage II, and 56.4% (53/94) for stage III (P = 0.003). ISS can divide patients into prognostic groups. Of note, in patients older than 60 years, ISS was not reflective of disease stage (P = 0.114). If p16P1P2 sets up as stage 4 of ISS, modified ISS could be a more reliable staging system irrespective of age in Korean MM patients (P = 0.003 and P = 0.004 in patients younger than 60 years and in patients older than 60 years, respectively). Our study suggests the potential use of p16 methylation status in predicting the outcome of MM patients and the applicability of demethylating agents in MM.
Collapse
Affiliation(s)
- Geon Park
- Department of Laboratory Medicine, Chosun University College of Medicine, Gwangju, South Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Barekati Z, Radpour R, Kohler C, Zhang B, Toniolo P, Lenner P, Lv Q, Zheng H, Zhong XY. Methylation profile of TP53 regulatory pathway and mtDNA alterations in breast cancer patients lacking TP53 mutations. Hum Mol Genet 2010; 19:2936-46. [PMID: 20466735 DOI: 10.1093/hmg/ddq199] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The present study investigated promoter hypermethylation of TP53 regulatory pathways providing a potential link between epigenetic changes and mitochondrial DNA (mtDNA) alterations in breast cancer patients lacking a TP53 mutation. The possibility of using the cancer-specific alterations in serum samples as a blood-based test was also explored. Triple-matched samples (cancerous tissues, matched adjacent normal tissues and serum samples) from breast cancer patients were screened for TP53 mutations, and the promoter methylation profile of P14(ARF), MDM2, TP53 and PTEN genes was analyzed as well as mtDNA alterations, including D-loop mutations and mtDNA content. In the studied cohort, no mutation was found in TP53 (DNA-binding domain). Comparison of P14(ARF) and PTEN methylation patterns showed significant hypermethylation levels in tumor tissues (P < 0.05 and <0.01, respectively) whereas the TP53 tumor suppressor gene was not hypermethylated (P < 0.511). The proportion of PTEN methylation was significantly higher in serum than in the normal tissues and it has a significant correlation to tumor tissues (P < 0.05). mtDNA analysis revealed 36.36% somatic and 90.91% germline mutations in the D-loop region and also significant mtDNA depletion in tumor tissues (P < 0.01). In addition, the mtDNA content in matched serum was significantly lower than in the normal tissues (P < 0.05). These data can provide an insight into the management of a therapeutic approach based on the reversal of epigenetic silencing of the crucial genes involved in regulatory pathways of the tumor suppressor TP53. Additionally, release of significant aberrant methylated PTEN in matched serum samples might represent a promising biomarker for breast cancer.
Collapse
Affiliation(s)
- Zeinab Barekati
- Laboratory for Gynecological Oncology, Women's Hospital/Department of Biomedicine, University of Basel, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Taneja P, Maglic D, Kai F, Zhu S, Kendig RD, Fry EA, Inoue K. Classical and Novel Prognostic Markers for Breast Cancer and their Clinical Significance. CLINICAL MEDICINE INSIGHTS-ONCOLOGY 2010; 4:15-34. [PMID: 20567632 PMCID: PMC2883240 DOI: 10.4137/cmo.s4773] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The use of biomarkers ensures breast cancer patients receive optimal treatment. Established biomarkers such as estrogen receptor (ER) and progesterone receptor (PR) have been playing significant roles in the selection and management of patients for endocrine therapy. HER2 is a strong predictor of response to trastuzumab. Recently, the roles of ER as a negative and HER2 as a positive indicator for chemotherapy have been established. Ki67 has traditionally been recognized as a poor prognostic factor, but recent studies suggest that measurement of Ki67-positive cells during treatment will more effectively predict treatment efficacy for both anti-hormonal and chemotherapy. p53 mutations are found in 20–35% of human breast cancers and are associated with aggressive disease with poor clinical outcome when the DNA-binding domain is mutated. The utility of cyclin D1 as a predictor of breast cancer prognosis is controversial, but cyclin D1b overexpression is associated with poor prognosis. Likewise, overexpression of the low molecular weight form of cyclin E1 protein predicts poor prognosis. Breast cancers from BRCA1/2 carriers often show high nuclear grades, negativity to ER/PR/HER2, and p53 mutations, and thus, are associated with poor prognosis. The prognostic values of other molecular markers, such as p14ARF, TBX2/3, VEGF in breast cancer are also discussed. Careful evaluation of these biomarkers with current treatment modality is required to determine whether their measurement or monitoring offer significant clinical benefits.
Collapse
|
48
|
Westhoff B, Colaluca IN, D'Ario G, Donzelli M, Tosoni D, Volorio S, Pelosi G, Spaggiari L, Mazzarol G, Viale G, Pece S, Di Fiore PP. Alterations of the Notch pathway in lung cancer. Proc Natl Acad Sci U S A 2009; 106:22293-8. [PMID: 20007775 PMCID: PMC2799768 DOI: 10.1073/pnas.0907781106] [Citation(s) in RCA: 315] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2009] [Indexed: 12/21/2022] Open
Abstract
Notch signaling regulates cell specification and homeostasis of stem cell compartments, and it is counteracted by the cell fate determinant Numb. Both Numb and Notch have been implicated in human tumors. Here, we show that Notch signaling is altered in approximately one third of non-small-cell lung carcinomas (NSCLCs), which are the leading cause of cancer-related deaths: in approximately 30% of NSCLCs, loss of Numb expression leads to increased Notch activity, while in a smaller fraction of cases (around 10%), gain-of-function mutations of the NOTCH-1 gene are present. Activation of Notch correlates with poor clinical outcomes in NSCLC patients without TP53 mutations. Finally, primary epithelial cell cultures, derived from NSCLC harboring constitutive activation of the Notch pathway, are selectively killed by inhibitors of Notch (gamma-secretase inhibitors), showing that the proliferative advantage of these tumors is dependent upon Notch signaling. Our results show that the deregulation of the Notch pathway is a relatively frequent event in NSCLCs and suggest that it might represent a possible target for molecular therapies in these tumors.
Collapse
MESH Headings
- Aged
- Base Sequence
- Basic Helix-Loop-Helix Transcription Factors/genetics
- Basic Helix-Loop-Helix Transcription Factors/metabolism
- Carcinoma, Non-Small-Cell Lung/genetics
- Carcinoma, Non-Small-Cell Lung/metabolism
- Carcinoma, Non-Small-Cell Lung/pathology
- DNA Mutational Analysis
- DNA, Neoplasm/genetics
- Female
- Gene Expression
- Homeodomain Proteins/genetics
- Homeodomain Proteins/metabolism
- Humans
- Lung Neoplasms/genetics
- Lung Neoplasms/metabolism
- Lung Neoplasms/pathology
- Male
- Membrane Proteins/genetics
- Membrane Proteins/metabolism
- Middle Aged
- Mutation
- Nerve Tissue Proteins/genetics
- Nerve Tissue Proteins/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Neoplasm/genetics
- RNA, Neoplasm/metabolism
- Receptor, Notch1/genetics
- Receptor, Notch1/metabolism
- Receptors, Notch/genetics
- Receptors, Notch/metabolism
- Signal Transduction
- Transcription Factor HES-1
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Britta Westhoff
- IFOM, Fondazione Istituto FIRC di Oncologia Molecolare, Milan, Italy
- European Institute of Oncology, Milan, Italy; and
| | - Ivan N. Colaluca
- IFOM, Fondazione Istituto FIRC di Oncologia Molecolare, Milan, Italy
- European Institute of Oncology, Milan, Italy; and
| | - Giovanni D'Ario
- IFOM, Fondazione Istituto FIRC di Oncologia Molecolare, Milan, Italy
| | - Maddalena Donzelli
- IFOM, Fondazione Istituto FIRC di Oncologia Molecolare, Milan, Italy
- European Institute of Oncology, Milan, Italy; and
| | - Daniela Tosoni
- IFOM, Fondazione Istituto FIRC di Oncologia Molecolare, Milan, Italy
- European Institute of Oncology, Milan, Italy; and
| | - Sara Volorio
- IFOM, Fondazione Istituto FIRC di Oncologia Molecolare, Milan, Italy
- European Institute of Oncology, Milan, Italy; and
| | - Giuseppe Pelosi
- European Institute of Oncology, Milan, Italy; and
- Dipartimento di Medicina, Chirurgia ed Odontoiatria, Università degli Studi di Milano, Milan, Italy
| | - Lorenzo Spaggiari
- European Institute of Oncology, Milan, Italy; and
- Dipartimento di Medicina, Chirurgia ed Odontoiatria, Università degli Studi di Milano, Milan, Italy
| | - Giovanni Mazzarol
- IFOM, Fondazione Istituto FIRC di Oncologia Molecolare, Milan, Italy
- European Institute of Oncology, Milan, Italy; and
| | - Giuseppe Viale
- European Institute of Oncology, Milan, Italy; and
- Dipartimento di Medicina, Chirurgia ed Odontoiatria, Università degli Studi di Milano, Milan, Italy
| | - Salvatore Pece
- IFOM, Fondazione Istituto FIRC di Oncologia Molecolare, Milan, Italy
- European Institute of Oncology, Milan, Italy; and
- Dipartimento di Medicina, Chirurgia ed Odontoiatria, Università degli Studi di Milano, Milan, Italy
| | - Pier Paolo Di Fiore
- IFOM, Fondazione Istituto FIRC di Oncologia Molecolare, Milan, Italy
- European Institute of Oncology, Milan, Italy; and
- Dipartimento di Medicina, Chirurgia ed Odontoiatria, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
49
|
Mu R, Qi Q, Gu H, Wang J, Yang Y, Rong J, Liu W, Lu N, You Q, Guo Q. Involvement of p53 in oroxylin A-induced apoptosis in cancer cells. Mol Carcinog 2009; 48:1159-69. [PMID: 19626645 DOI: 10.1002/mc.20570] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Oroxylin A, a naturally occurring monoflavonoid extracted from Scutellariae radix, exhibits anticancer activity and induces apoptosis in human hepatocellular carcinoma HepG2 cells according to our previous data. In this study, we investigate whether p53 is involved in oroxylin A-triggered viability inhibition and apoptosis induction in cancer cells. In a panel of different cancer cell lines, more potent inhibitory effects of oroxylin A were observed in wtp53 cells than those in mtp53 or p53-null cells. Moreover, p53-siRNA-transfected HepG2 cells showed lower levels of apoptosis induced by oroxylin A than control-siRNA-transfected cells. Likewise, after oroxylin A treatment, p53-null K-562 cells displayed promoted apoptosis rate when transfected with wtp53 plasmid. Western blot and real-time RT-PCR assay revealed that oroxylin A markedly upregulated p53 protein expression in HepG2 and p53-overexpressing K-562 cells, but had no influence on p53 mRNA synthesis. Furthermore, after co-treatment with cycloheximide, oroxylin A still exerted a little effect on p53 expression. The negative regulator of p53, MDM2 protein was detected, and downregulated expression was observed. In the presence of MG132, an inhibitor of proteasome-mediated proteolysis, no change in p53 expression was obtained. Additionally, the antioxidant N-acetyl-L-cysteine could obviously abrogate p53 stabilization triggered by oroxylin A. Therefore, it is summarized that oroxylin A stabilized p53 expression and induced apoptosis at the posttranslational level via downregulating MDM2 expression and interfering MDM2-modulated proteasome-related p53 degradation. This indicated that oroxylin A could be served as a potential, novel agent candidate for cancer therapy.
Collapse
Affiliation(s)
- Rong Mu
- Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Kamalakaran S, Kendall J, Zhao X, Tang C, Khan S, Ravi K, Auletta T, Riggs M, Wang Y, Helland A, Naume B, Dimitrova N, Børresen-Dale AL, Hicks J, Lucito R. Methylation detection oligonucleotide microarray analysis: a high-resolution method for detection of CpG island methylation. Nucleic Acids Res 2009; 37:e89. [PMID: 19474344 PMCID: PMC2709589 DOI: 10.1093/nar/gkp413] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Methylation of CpG islands associated with genes can affect the expression of the proximal gene, and methylation of non-associated CpG islands correlates to genomic instability. This epigenetic modification has been shown to be important in many pathologies, from development and disease to cancer. We report the development of a novel high-resolution microarray that detects the methylation status of over 25,000 CpG islands in the human genome. Experiments were performed to demonstrate low system noise in the methodology and that the array probes have a high signal to noise ratio. Methylation measurements between different cell lines were validated demonstrating the accuracy of measurement. We then identified alterations in CpG islands, both those associated with gene promoters, as well as non-promoter-associated islands in a set of breast and ovarian tumors. We demonstrate that this methodology accurately identifies methylation profiles in cancer and in principle it can differentiate any CpG methylation alterations and can be adapted to analyze other species.
Collapse
|