1
|
Chen PH, Tsai TM, Lu TP, Lu HH, Pamart D, Kotronoulas A, Herzog M, Micallef JV, Hsu HH, Chen JS. Accurate Diagnosis of High-Risk Pulmonary Nodules Using a Non-Invasive Epigenetic Biomarker Test. Cancers (Basel) 2025; 17:916. [PMID: 40149253 PMCID: PMC11940740 DOI: 10.3390/cancers17060916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 02/21/2025] [Accepted: 02/26/2025] [Indexed: 03/29/2025] Open
Abstract
BACKGROUND/OBJECTIVES Accurate non-invasive tests to improve early detection and diagnosis of lung cancer are urgently needed. However, no regulatory-approved blood tests are available for this purpose. We aimed to improve pulmonary nodule classification to identify malignant nodules in a high-prevalence patient group. METHODS This study involved 806 participants with undiagnosed nodules larger than 5 mm, focusing on assessing nucleosome levels and histone modifications (H3.1 and H3K27Me3) in circulating blood. Nodules were classified as malignant or benign. For model development, the data were randomly divided into training (n = 483) and validation (n = 121) datasets. The model's performance was then evaluated using a separate testing dataset (n = 202). RESULTS Among the patients, 755 (93.7%) had a tissue diagnosis. The overall malignancy rate was 80.4%. For all datasets, the areas under curves were as follows: training, 0.74; validation, 0.86; and test, 0.79 (accuracy range: 0.80-0.88). Sensitivity showed consistent results across all datasets (0.91, 0.95, and 0.93, respectively), whereas specificity ranged from 0.37 to 0.64. For smaller nodules (5-10 mm), the model recorded accuracy values of 0.76, 0.88, and 0.85. The sensitivity values of 0.91, 1.00, and 0.94 further highlight the robust diagnostic capability of the model. The performance of the model across the reporting and data system (RADS) categories demonstrated consistent accuracy. CONCLUSIONS Our epigenetic biomarker panel detected non-small-cell lung cancer early in a high-risk patient group with high sensitivity and accuracy. The epigenetic biomarker model was particularly effective in identifying high-risk lung nodules, including small, part-solid, and non-solid nodules, and provided further evidence for validation.
Collapse
Affiliation(s)
- Pei-Hsing Chen
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei City 106, Taiwan;
- Department of Surgery, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei City 100, Taiwan; (T.-P.L.); (H.-H.H.)
| | - Tung-Ming Tsai
- Department of Surgical Oncology, National Taiwan University Cancer Center, College of Medicine, National Taiwan University, Taipei City 106, Taiwan
| | - Tzu-Pin Lu
- Department of Surgery, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei City 100, Taiwan; (T.-P.L.); (H.-H.H.)
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei City 100, Taiwan
| | - Hsiao-Hung Lu
- Department of Surgery, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei City 100, Taiwan; (T.-P.L.); (H.-H.H.)
| | - Dorian Pamart
- Belgian Volition SRL, 22 Rue Phocas Lejeune, Parc Scientifique Crealys, 5032 Isnes, Belgium; (D.P.); (M.H.)
| | - Aristotelis Kotronoulas
- Belgian Volition SRL, 22 Rue Phocas Lejeune, Parc Scientifique Crealys, 5032 Isnes, Belgium; (D.P.); (M.H.)
| | - Marielle Herzog
- Belgian Volition SRL, 22 Rue Phocas Lejeune, Parc Scientifique Crealys, 5032 Isnes, Belgium; (D.P.); (M.H.)
| | | | - Hsao-Hsun Hsu
- Department of Surgery, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei City 100, Taiwan; (T.-P.L.); (H.-H.H.)
- Department of Surgical Oncology, National Taiwan University Cancer Center, College of Medicine, National Taiwan University, Taipei City 106, Taiwan
| | - Jin-Shing Chen
- Department of Surgery, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei City 100, Taiwan; (T.-P.L.); (H.-H.H.)
| |
Collapse
|
2
|
Jahantab MB, Salehi M, Koushki M, Farrokhi Yekta R, Amiri-Dashatan N, Rezaei-Tavirani M. Modelling of miRNA-mRNA Network to Identify Gene Signatures with Diagnostic and Prognostic Value in Gastric Cancer: Evidence from In-Silico and In-Vitro Studies. Rep Biochem Mol Biol 2024; 13:281-300. [PMID: 39995653 PMCID: PMC11847593 DOI: 10.61186/rbmb.13.2.281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 12/08/2024] [Indexed: 02/26/2025]
Abstract
Background Gastric cancer (GC) is a prevalent malignancy with high recurrence. Advances in systems biology have identified molecular pathways and biomarkers. This study focuses on discovering gene and miRNA biomarkers for diagnosing and predicting survival in GC patients. Methods Three sets of genes (GSE19826, GSE81948, and GSE112369) and two sets of miRNA expression (GSE26595, GSE78775) were obtained from the Gene Expression Omnibus (GEO), and subsequently, differentially expressed genes (DEGs) and miRNAs (DEMs) were identified. Functional pathway enrichment, DEG-miR-TF-protein-protein interaction network, DEM-mRNA network, ROC curve, and survival analyses were performed. Finally, qRT-PCR was applied to validate our results. Results From the high-throughput profiling studies of GC, we investigated 10 candidate mRNA and 7 candidate miRNAs as potential biomarkers. Expression analysis of these hubs revealed that 5 miRNAs (including miR-141-3p, miR-204-5p, miR-338-3p, miR-609, and miR-369-5p) were significantly upregulated compared to the controls. The genes with the highest degree included 6 upregulated and 4 downregulated genes in tumor samples compared to controls. The expression of miR-141-3p, miR-204-5p, SESTD1, and ANTXR1 were verified in vitro from these hub DEMs and DEGs. The findings indicated a decrease in the expression of miR-141-3p and miR-204-5p and increased expression of SESTD1 and ANTXR1 in GC cell lines compared to the GES-1 cell line. Conclusions The current investigation successfully recognized a set of prospective miRNAs and genes that may serve as potential biomarkers for GC's early diagnosis and prognosis.
Collapse
Affiliation(s)
- Mohammad Bagher Jahantab
- Clinical Research Development Unit, Shahid Jalil Hospital, Yasuj University of Medical Sciences, Yasuj, Iran.
| | - Mohammad Salehi
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Mehdi Koushki
- Cancer Gene Therapy Research Center, Zanjan University of Medical Sciences, Zanjan, Iran.
- Department of Clinical Biochemistry, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran.
| | - Reyhaneh Farrokhi Yekta
- Proteomics Research Center, School of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Nasrin Amiri-Dashatan
- Proteomics Research Center, School of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Zanjan Metabolic Diseases Research Center, Health and Metabolic Diseases Research Institute, Zanjan University of Medical Sciences, Zanjan, Iran.
| | - Mostafa Rezaei-Tavirani
- Proteomics Research Center, School of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Geng Z, Chen M, Yu Q, Guo S, Chen T, Liu D. Histone Modification of Colorectal Cancer by Natural Products. Pharmaceuticals (Basel) 2023; 16:1095. [PMID: 37631010 PMCID: PMC10458348 DOI: 10.3390/ph16081095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/25/2023] [Accepted: 07/27/2023] [Indexed: 08/27/2023] Open
Abstract
Natural products play important roles in the pathogenesis of many human malignancies, including colorectal cancer, and can act as a gene regulator in many cancers. They regulate malignant cell growth through many cellular signal pathways, including Rac family small GTPase 1 (RAC1)/PI3K/AKT (α-serine/threonine-protein kinase), mitogen-activated protein kinase (MAPK), Wnt/β-catenin pathway, transforming growth factor-β (TGF-β), Janus kinase and signal transducer and activator of transcription (JAK-STAT), nuclear factor kappa-B (NF-κB), the Notch pathway, Hippo pathway, and Hedgehog pathway. In this review, we describe the epigenetic roles of several natural products, e.g., platycodin D (PD), ginsenoside Rd, tretinoin, Rutin, curcumin, clove extract, betulinic acid, resveratrol, and curcumin, in colorectal cancer, including their impact on colorectal cancer cell proliferation, apoptosis, invasion, migration, and anti-chemotherapeutic resistance. The aim is to illustrate the epigenetic mechanisms of action of natural products in cancer prevention and treatment, and to provide (1) a theoretical basis for the study of the role of epigenetics in influencing colorectal cancer; (2) new directions for studying the occurrence, development, and prognosis of colorectal cancer; and (3) new targets for treating and preventing colorectal cancer.
Collapse
Affiliation(s)
| | | | | | | | - Tianli Chen
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China; (Z.G.); (M.C.); (Q.Y.); (S.G.)
| | - Da Liu
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China; (Z.G.); (M.C.); (Q.Y.); (S.G.)
| |
Collapse
|
4
|
Liu R, Wu J, Guo H, Yao W, Li S, Lu Y, Jia Y, Liang X, Tang J, Zhang H. Post-translational modifications of histones: Mechanisms, biological functions, and therapeutic targets. MedComm (Beijing) 2023; 4:e292. [PMID: 37220590 PMCID: PMC10200003 DOI: 10.1002/mco2.292] [Citation(s) in RCA: 81] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 05/05/2023] [Accepted: 05/09/2023] [Indexed: 05/25/2023] Open
Abstract
Histones are DNA-binding basic proteins found in chromosomes. After the histone translation, its amino tail undergoes various modifications, such as methylation, acetylation, phosphorylation, ubiquitination, malonylation, propionylation, butyrylation, crotonylation, and lactylation, which together constitute the "histone code." The relationship between their combination and biological function can be used as an important epigenetic marker. Methylation and demethylation of the same histone residue, acetylation and deacetylation, phosphorylation and dephosphorylation, and even methylation and acetylation between different histone residues cooperate or antagonize with each other, forming a complex network. Histone-modifying enzymes, which cause numerous histone codes, have become a hot topic in the research on cancer therapeutic targets. Therefore, a thorough understanding of the role of histone post-translational modifications (PTMs) in cell life activities is very important for preventing and treating human diseases. In this review, several most thoroughly studied and newly discovered histone PTMs are introduced. Furthermore, we focus on the histone-modifying enzymes with carcinogenic potential, their abnormal modification sites in various tumors, and multiple essential molecular regulation mechanism. Finally, we summarize the missing areas of the current research and point out the direction of future research. We hope to provide a comprehensive understanding and promote further research in this field.
Collapse
Affiliation(s)
- Ruiqi Liu
- Cancer CenterDepartment of Radiation OncologyZhejiang Provincial People's HospitalAffiliated People's HospitalHangzhou Medical CollegeHangzhouZhejiangChina
- Graduate DepartmentBengbu Medical College, BengbuAnhuiChina
| | - Jiajun Wu
- Graduate DepartmentBengbu Medical College, BengbuAnhuiChina
- Otolaryngology & Head and Neck CenterCancer CenterDepartment of Head and Neck SurgeryZhejiang Provincial People's HospitalAffiliated People's Hospital, Hangzhou Medical CollegeHangzhouZhejiangChina
| | - Haiwei Guo
- Otolaryngology & Head and Neck CenterCancer CenterDepartment of Head and Neck SurgeryZhejiang Provincial People's HospitalAffiliated People's Hospital, Hangzhou Medical CollegeHangzhouZhejiangChina
| | - Weiping Yao
- Cancer CenterDepartment of Radiation OncologyZhejiang Provincial People's HospitalAffiliated People's HospitalHangzhou Medical CollegeHangzhouZhejiangChina
- Graduate DepartmentBengbu Medical College, BengbuAnhuiChina
| | - Shuang Li
- Cancer CenterDepartment of Radiation OncologyZhejiang Provincial People's HospitalAffiliated People's HospitalHangzhou Medical CollegeHangzhouZhejiangChina
- Graduate DepartmentJinzhou Medical UniversityJinzhouLiaoningChina
| | - Yanwei Lu
- Cancer CenterDepartment of Radiation OncologyZhejiang Provincial People's HospitalAffiliated People's HospitalHangzhou Medical CollegeHangzhouZhejiangChina
| | - Yongshi Jia
- Cancer CenterDepartment of Radiation OncologyZhejiang Provincial People's HospitalAffiliated People's HospitalHangzhou Medical CollegeHangzhouZhejiangChina
| | - Xiaodong Liang
- Cancer CenterDepartment of Radiation OncologyZhejiang Provincial People's HospitalAffiliated People's HospitalHangzhou Medical CollegeHangzhouZhejiangChina
- Graduate DepartmentBengbu Medical College, BengbuAnhuiChina
| | - Jianming Tang
- Department of Radiation OncologyThe First Hospital of Lanzhou UniversityLanzhou UniversityLanzhouGansuChina
| | - Haibo Zhang
- Cancer CenterDepartment of Radiation OncologyZhejiang Provincial People's HospitalAffiliated People's HospitalHangzhou Medical CollegeHangzhouZhejiangChina
| |
Collapse
|
5
|
Bhattacharya A. Epigenetic modifications and regulations in gastrointestinal diseases. EPIGENETICS IN ORGAN SPECIFIC DISORDERS 2023:497-543. [DOI: 10.1016/b978-0-12-823931-5.00005-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
6
|
Yang Y, Zhang M, Wang Y. The roles of histone modifications in tumorigenesis and associated inhibitors in cancer therapy. JOURNAL OF THE NATIONAL CANCER CENTER 2022; 2:277-290. [PMID: 39036551 PMCID: PMC11256729 DOI: 10.1016/j.jncc.2022.09.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 09/19/2022] [Accepted: 09/26/2022] [Indexed: 11/25/2022] Open
Abstract
Histone modifications are key factors in chromatin packaging, and are responsible for gene regulation during cell fate determination and development. Abnormal alterations in histone modifications potentially affect the stability of the genome and disrupt gene expression patterns, leading to many diseases, including cancer. In recent years, mounting evidence has shown that various histone modifications altered by aberrantly expressed modifier enzymes contribute to tumor development and metastasis through the induction of epigenetic, transcriptional, and phenotypic changes. In this review, we will discuss the existing histone modifications, both well-studied and rare ones, and their roles in solid tumors and hematopoietic cancers, to identify the molecular pathways involved and investigate targeted therapeutic drugs to reorganize the chromatin and enhance cancer treatment efficiency. Finally, clinical inhibitors of histone modifications are summarized to better understand the developmental stage of cancer therapy in using these drugs to inhibit the histone modification enzymes.
Collapse
Affiliation(s)
| | | | - Yan Wang
- Key Laboratory of Cancer and Microbiome, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
7
|
Sogutlu F, Pekerbas M, Biray Avci C. Epigenetic signatures in gastric cancer: current knowledge and future perspectives. Expert Rev Mol Diagn 2022; 22:1063-1075. [PMID: 36522183 DOI: 10.1080/14737159.2022.2159381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
INTRODUCTION Gastric cancer (GC) is the fifth most common malignancy in the world and accounts for 7.7% of all cancer-related deaths. Early diagnosis of GC is critical in terms of prognosis, and aberrations at the molecular level, especially epigenetic alterations, manifest much earlier than histological findings. In recent years, there has been a great deal of research on the epigenomic profile of GC, and epigenetic alterations seem to play a more important role than genetic factors. With the introduction of epigenetic drugs into clinical use in the last decade, the importance of the epigenetic background of GC has increased considerably. AREAS COVERED In this review, we summarize the role of methylation changes, histone modifications, and non-coding RNAs in the pathogenesis of GC and how these signatures can be used as diagnostic and therapeutic targets in clinical management. EXPERT OPINION Epigenetic alterations take place before most genetic aberrations observed in GC and may have an initiating role in the pathogenesis of GC. They can be used as biomarkers in risk calculation, early diagnosis, and evaluation of prognosis of GC, as well as treatment targets.
Collapse
Affiliation(s)
- Fatma Sogutlu
- Department of Medical Biology, Faculty of Medicine, Ege University, Bornova, 35100, Izmir, Turkey
| | - Mert Pekerbas
- Department of Medical Genetics, Faculty of Medicine, Ege University, Bornova, 35100, Izmir, Turkey
| | - Cigir Biray Avci
- Department of Medical Biology, Faculty of Medicine, Ege University, Bornova, 35100, Izmir, Turkey
| |
Collapse
|
8
|
Zhang H, Wu J, Li Y, Jin G, Tian Y, Kang S. Identification of Key Differentially Methylated/Expressed Genes and Pathways for Ovarian Endometriosis by Bioinformatics Analysis. Reprod Sci 2021; 29:1630-1643. [PMID: 34671938 DOI: 10.1007/s43032-021-00751-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 09/25/2021] [Indexed: 12/25/2022]
Abstract
The goal of this study was to identify genes that were differentially methylated and differentially expressed and their related signaling pathways in ovarian endometriosis tissue. First, the DNA methylation and gene expression profiles in the endometrial tissue of patients with ovarian endometriosis were studied using Illumina 450K methylation microarray analysis and the GSE141549 gene expression dataset. Second, differentially methylated and differentially expressed genes, herein referred to as differentially methylated/expressed genes, were identified and protein-protein interaction networks and functional analysis of these genes were determined. Third, qPCR and immunohistochemistry of patient samples was used to confirm the differential expression of a subset of differentially methylated/expressed genes. Finally, the GSE7305 dataset was used confirm the expression profile of differentially methylated/expressed genes and to determine the potential usefulness of these genes for diagnosis of endometriosis. A total of 37 hypermethylated low-expression genes and 66 hypomethylated high-expression genes were identified in ovarian endometriosis patients. Protein-protein interaction and functional analysis highlighted 8 hypermethylated low-expression genes (KRT19, KRT8, ESR1, PRL, SFN, IL20RA, IL2RB, and PAX8) and 4 hypomethylated high-expression genes (CYP11A1, NR5A1, ME1, and GSTM1). Significantly, both of these gene sets had a diagnostic value for patients with ovarian endometriosis. Signaling pathways that were identified included JAK-STAT (involving IL20RA and IL2RB), prolactin (involving PRL and ESR1), Staphylococcus aureus infection (involving KRT19), viral protein interaction with cytokine and cytokine receptor (involving IL20RA and IL2RB), cytokine-cytokine receptor interaction (involving IL20RA and IL2RB), and drug metabolism-cytochrome P450 (involving GSTM1). The differentially methylated/expressed genes and enriched signaling pathways identified in this study are likely to be associated with the process of ovarian endometriosis.
Collapse
Affiliation(s)
- Haibo Zhang
- Department of Gynecology, Hebei Medical University Fourth Hospital, Jiankanglu 12, Shijiazhuang, 050011, People's Republic of China
| | - Jianlei Wu
- Department of Gynecology, Hebei Medical University Fourth Hospital, Jiankanglu 12, Shijiazhuang, 050011, People's Republic of China
| | - Yan Li
- Department of Molecular Biology, Hebei Medical University Fourth Hospital, Shijiazhuang, People's Republic of China
| | - Ge Jin
- Department of Gynecological Oncology, Medical University Fourth Hospital, Shijiazhuang, People's Republic of China
| | - Yunjie Tian
- Department of Gynecology, Hebei Medical University Fourth Hospital, Jiankanglu 12, Shijiazhuang, 050011, People's Republic of China
| | - Shan Kang
- Department of Gynecology, Hebei Medical University Fourth Hospital, Jiankanglu 12, Shijiazhuang, 050011, People's Republic of China.
| |
Collapse
|
9
|
Nagaraju GP, Kasa P, Dariya B, Surepalli N, Peela S, Ahmad S. Epigenetics and therapeutic targets in gastrointestinal malignancies. Drug Discov Today 2021; 26:2303-2314. [PMID: 33895313 DOI: 10.1016/j.drudis.2021.04.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 04/07/2021] [Accepted: 04/11/2021] [Indexed: 12/12/2022]
Abstract
Gastrointestinal (GI) malignancies account for substantial mortality and morbidity worldwide. They are generally promoted by dysregulated signal transduction and epigenetic pathways, which are controlled by specific enzymes. Recent studies demonstrated that histone deacetylases (HDACs) together with DNA methyltransferases (DNMTs) have crucial roles in the signal transduction/epigenetic pathways in GI regulation. In this review, we discuss various enzyme targets and their functional mechanisms responsible for the regulatory processes of GI malignancies. We also discuss the epigenetic therapeutic targets that are mainly facilitated by DNMT and HDAC inhibitors, which have functional consequences and clinical outcomes for GI malignancies.
Collapse
Affiliation(s)
- Ganji Purnachandra Nagaraju
- Department of Hematology & Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA 30332, USA
| | - Prameswari Kasa
- Dr L.V. Prasad Diagnostics and Research Laboratory, Khairtabad, Hyderabad 500004, India
| | - Begum Dariya
- Department of Biosciences and Biotechnology, Banasthali University, Banasthali 304022, Rajasthan, India
| | | | - Sujatha Peela
- Department of Biotechnology, Dr B.R. Ambedkar University, Srikakulam 532410, AP, India
| | - Sarfraz Ahmad
- AdventHealth Cancer Institute, FSU and UCF Colleges of Medicine, Orlando, FL 32804, USA.
| |
Collapse
|
10
|
Cao L, Zhao S, Yang Q, Shi Z, Liu J, Pan T, Zhou D, Zhang J. Chidamide Combined With Doxorubicin Induced p53-Driven Cell Cycle Arrest and Cell Apoptosis Reverse Multidrug Resistance of Breast Cancer. Front Oncol 2021; 11:614458. [PMID: 33738256 PMCID: PMC7962870 DOI: 10.3389/fonc.2021.614458] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 01/27/2021] [Indexed: 02/05/2023] Open
Abstract
The multidrug-resistant (MDR) phenotype is usually accompanied by an abnormal expression of histone deacetylase (HDAC). Given that HDAC is vital in chromatin remodeling and epigenetics, inhibiting the role of HDAC has become an important approach for tumor treatment. However, the effect of HDAC inhibitors on MDR breast cancer has not been elucidated. This study aim to demonstrate the potential of chidamide (CHI) combined with the chemotherapy drug doxorubicin (DOX) to overcome chemotherapeutic resistance of breast cancer in vitro and in vivo, laying the experimental foundation for the next clinical application. The results showed that, CHI combined with DOX showed significant cytotoxicity to MDR breast cancer cells in vitro and in vivo compared with the CHI monotherapy. The cell cycle distribution results showed that CHI caused G0/G1 cell cycle arrest and inhibited cell growth regardless of the addition of DOX. At the same time, annexin V staining and TUNEL staining results showed that CHI enhanced the number of cell apoptosis in drug-resistant cells. The western blot analysis found that p53 was activated in the CHI-treated group and combined treatment group, and then the activated p53 up-regulated p21, apoptosis regulator recombinant protein (Puma), and pro-apoptotic protein Bax, down-regulated the apoptotic proteins Bcl-xL and Bcl-2, and activated the caspase cascade to induce apoptosis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jin Zhang
- Third Department of Breast Surgery, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Clinical Research Center for Cancer, Tianjin, China
| |
Collapse
|
11
|
Choi RSY, Lai WYX, Lee LTC, Wong WLC, Pei XM, Tsang HF, Leung JJ, Cho WCS, Chu MKM, Wong EYL, Wong SCC. Current and future molecular diagnostics of gastric cancer. Expert Rev Mol Diagn 2019; 19:863-874. [PMID: 31448971 DOI: 10.1080/14737159.2019.1660645] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Accepted: 08/23/2019] [Indexed: 12/14/2022]
Abstract
Introduction: Gastric cancer (GC) is the fifth most common cancer and confers the second-highest mortality among other cancers. Improving the survival rates of GC patients requires prompt and accurate diagnosis and effective treatment which is often preceded by the poorly understood pathogenic mechanisms. Area covered: This literature review aims to summarize current understanding of genetic and molecular alterations that promote carcinogenesis including (1) activation of oncogenes, (2) overexpression of growth factors, receptors and matrix metalloproteinases, (3) inactivation of tumor suppressor genes, DNA repair genes, and cell adhesion molecules and (4) alterations of cell-cycle regulators that regulate biological characteristics of cancer cells. Moreover, the significance of molecular biomarkers such as micro-RNAs (miRNAs) and long non-coding RNAs (lncRNAs) and advanced molecular techniques including droplet digital polymerase chain reaction (ddPCR), quantitative PCR (qPCR) and next-generation sequencing (NGS) are also discussed. Expert opinion: A GC-specific panel of biomarkers based on the NGS or ddPCR has the potential for diagnosis, prognosis, and monitoring treatment response in GC patients. Despite the requirements for validation in larger population in clinical studies, race-specific differences in the gene panel have also to be examined by performing the clinical trials in subjects with different races.
Collapse
Affiliation(s)
- Rachel Sin-Yu Choi
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, Hong Kong Polytechnic University , Hong Kong , Hong Kong Special Administrative Region, China
| | - Wing Yin Xenia Lai
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, Hong Kong Polytechnic University , Hong Kong , Hong Kong Special Administrative Region, China
| | - Lok Ting Claire Lee
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, Hong Kong Polytechnic University , Hong Kong , Hong Kong Special Administrative Region, China
| | - Wing Lam Christa Wong
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, Hong Kong Polytechnic University , Hong Kong , Hong Kong Special Administrative Region, China
| | - Xiao Meng Pei
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, Hong Kong Polytechnic University , Hong Kong , Hong Kong Special Administrative Region, China
| | - Hin Fung Tsang
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, Hong Kong Polytechnic University , Hong Kong , Hong Kong Special Administrative Region, China
| | - Joel Johnson Leung
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, Hong Kong Polytechnic University , Hong Kong , Hong Kong Special Administrative Region, China
| | - William Chi Shing Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital , Kowloon , Hong Kong Special Administrative Region, China
| | - Man Kee Maggie Chu
- Division of Life Science, The Hong Kong University of Science and Technology , Clear Water Bay , Hong Kong Special Administrative Region, China
| | - Elaine Yue Ling Wong
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, Hong Kong Polytechnic University , Hong Kong , Hong Kong Special Administrative Region, China
| | - Sze Chuen Cesar Wong
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, Hong Kong Polytechnic University , Hong Kong , Hong Kong Special Administrative Region, China
| |
Collapse
|
12
|
Kolli RT, Glenn TC, Brown BT, Kaur SP, Barnett LM, Lash LH, Cummings BS. Bromate-induced Changes in p21 DNA Methylation and Histone Acetylation in Renal Cells. Toxicol Sci 2019; 168:460-473. [PMID: 30649504 PMCID: PMC6432867 DOI: 10.1093/toxsci/kfz016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Bromate (BrO3-) is a water disinfection byproduct (DBP) previously shown to induce nephrotoxicity in vitro and in vivo. We recently showed that inhibitors of DNA methyltransferase 5-aza-2'-deoxycytidine (5-Aza) and histone deacetylase trichostatin A (TSA) increased BrO3- nephrotoxicity whereas altering the expression of the cyclin-dependent kinase inhibitor p21. Human embryonic kidney cells (HEK293) and normal rat kidney (NRK) cells were sub-chronically exposed to BrO3- or epigenetic inhibitors for 18 days, followed by 9 days of withdrawal. DNA methylation was studied using a modification of bisulfite amplicon sequencing called targeted gene bisulfite sequencing. Basal promoter methylation in the human p21 promoter region was substantially lower than that of the rat DNA. Furthermore, 5-Aza decreased DNA methylation in HEK293 cells at the sis-inducible element at 3 distinct CpG sites located at 691, 855, and 895 bp upstream of transcription start site (TSS). 5-Aza also decreased methylation at the rat p21 promoter about 250 bp upstream of the p21 TSS. In contrast, sub-chronic BrO3- exposure failed to alter methylation in human or rat renal cells. BrO3- exposure altered histone acetylation in NRK cells at the p21 TSS, but not in HEK293 cells. Interestingly, changes in DNA methylation induced by 5-Aza persisted after its removal; however, TSA- and BrO3--induced histone hyperacetylation returned to basal levels after 3 days of withdrawal. These data demonstrate novel sites within the p21 gene that are epigenetically regulated and further show that significant differences exist in the epigenetic landscape between rat and human p21, especially with regards to toxicant-induced changes in histone acetylation.
Collapse
Affiliation(s)
- Ramya T Kolli
- Department of Pharmaceutical and Biomedical Sciences
- Interdisciplinary Toxicology Program
- National Institute of Environmental Health Sciences, Building 101, 111 TW Alexander Drive, Durham, NC 27709
| | - Travis C Glenn
- Interdisciplinary Toxicology Program
- Environmental Health Science
| | - Bradley T Brown
- College of Pharmacy, University of Georgia, Athens, Georgia 30602
| | | | - Lillie M Barnett
- Department of Pharmaceutical and Biomedical Sciences
- Interdisciplinary Toxicology Program
| | - Lawrence H Lash
- Department of Pharmacology, Wayne State University, Detroit, Michigan 48201
| | - Brian S Cummings
- Department of Pharmaceutical and Biomedical Sciences
- Interdisciplinary Toxicology Program
| |
Collapse
|
13
|
Calcagno DQ, Wisnieski F, Mota ERDS, Maia de Sousa SB, Costa da Silva JM, Leal MF, Gigek CO, Santos LC, Rasmussen LT, Assumpção PP, Burbano RR, Smith MAC. Role of histone acetylation in gastric cancer: implications of dietetic compounds and clinical perspectives. Epigenomics 2019; 11:349-362. [DOI: 10.2217/epi-2018-0081] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Histone modifications regulate the structural status of chromatin and thereby influence the transcriptional status of genes. These processes are controlled by the recruitment of different enzymes to a specific genomic site. Furthermore, obtaining an understanding of these mechanisms could help delineate alternative treatment and preventive strategies for cancer. For example, in gastric cancer, cholecalciferol, curcumin, resveratrol, quercetin, garcinol and sodium butyrate are natural regulators of acetylation and deacetylation enzyme activity that exert chemopreventive and anticancer effects. Here, we review the recent findings on histone acetylation in gastric cancer and discuss the effects of nutrients and bioactive compounds on histone acetylation and their potential role in the prevention and treatment of this type of cancer.
Collapse
Affiliation(s)
- Danielle Q Calcagno
- Programa de Pós-graduação em Oncologia e Ciências Médicas, Núcleo de Pesquisas em Oncologia, Universidade Federal do Pará, Belém, PA, Brazil
- Programa de Pós-graduação em Química Medicinal e Modelagem Molecular, Universidade Federal do Pará, Belém, PA, Brazil
- Residência Multiprofissional em Saúde/Oncologia, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, PA, Brazil
| | | | - Elizangela R da Silva Mota
- Programa de Pós-graduação em Química Medicinal e Modelagem Molecular, Universidade Federal do Pará, Belém, PA, Brazil
| | - Stefanie B Maia de Sousa
- Programa de Pós-graduação em Oncologia e Ciências Médicas, Núcleo de Pesquisas em Oncologia, Universidade Federal do Pará, Belém, PA, Brazil
| | | | - Mariana F Leal
- Programa de Pós-graduação em Oncologia e Ciências Médicas, Núcleo de Pesquisas em Oncologia, Universidade Federal do Pará, Belém, PA, Brazil
- Disciplina de Genética, Universidade Federal de São Paulo, SP, Brazil
| | - Carolina O Gigek
- Disciplina de Genética, Universidade Federal de São Paulo, SP, Brazil
- Departamento de Patologia, Universidade Federal de São Paulo, SP, Brazil
| | - Leonardo C Santos
- Disciplina de Genética, Universidade Federal de São Paulo, SP, Brazil
| | - Lucas T Rasmussen
- Disciplina de Genética, Universidade Federal de São Paulo, SP, Brazil
- Pró-Reitoria de Pesquisa e Pós-Graduação, Universidade do Sagrado Coração, Bauru, SP, Brazil
| | - Paulo P Assumpção
- Programa de Pós-graduação em Oncologia e Ciências Médicas, Núcleo de Pesquisas em Oncologia, Universidade Federal do Pará, Belém, PA, Brazil
| | - Rommel R Burbano
- Programa de Pós-graduação em Oncologia e Ciências Médicas, Núcleo de Pesquisas em Oncologia, Universidade Federal do Pará, Belém, PA, Brazil
- Laboratório de Biologia Molecular, Hospital Ophir Loyola, Belém, PA, Brazil
| | - Marília AC Smith
- Disciplina de Genética, Universidade Federal de São Paulo, SP, Brazil
| |
Collapse
|
14
|
Expression profiles of histone modification genes in gastric cancer progression. Mol Biol Rep 2018; 45:2275-2282. [PMID: 30250993 DOI: 10.1007/s11033-018-4389-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 09/14/2018] [Indexed: 12/24/2022]
Abstract
Gastric cancer (GC) development can be attributed to several risk factors including atrophic gastritis (AG), intestinal metaplasia (IM), and the presence of Helicobacter pylori (HP). Also, histone modification is an epigenetic mechanism that plays a pivotal role in GC carcinogenesis. In this preliminary study, we aimed to describe the expression profiles of histone modification in the AG, IM, and GC patient groups. A total of 80 patients with AG (n = 27), IM (n = 25), and GC (n = 28) with an additional 20 control subjects were included in the study. Expression profiles of three histone phosphorylation genes (PAK1, NEK6, and AURKA) and five histone deacetylation genes (HDACs 1, 2, 3, 5, and 7) were examined based on the results of Real Time qPCR method. It was observed that AURKA and HDAC2 genes were significantly overexpressed in all groups compared to the control (P < 0.05). In GC patients, overexpression of HDAC2 gene was detected in the absence of metastasis, and overexpression of AURKA, HDAC2, and NEK6 genes was detected in the presence of metastasis. When cancer involvements were compared, significant overexpression of the HDAC2 gene was noted in overall and corpus involvements (P < 0.05). In addition, overexpression of AURKA, NEK6, HDAC1, and HDAC2 genes and underexpression of HDAC5 gene were detected in the antrum involvement (P < 0.05). In conclusion, decreased expression of HDAC5 in GC is reported for the first time in this study, while supporting the existing literature in AURKA, NEK6, HDAC1, and HDAC2 up regulations during GC development.
Collapse
|
15
|
Puneet, Kazmi HR, Kumari S, Tiwari S, Khanna A, Narayan G. Epigenetic Mechanisms and Events in Gastric Cancer-Emerging Novel Biomarkers. Pathol Oncol Res 2018; 24:757-770. [PMID: 29552712 DOI: 10.1007/s12253-018-0410-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 03/07/2018] [Indexed: 12/12/2022]
Abstract
Gastric cancer is one of the most common malignancy worldwide. The various genetic and epigenetic events have been found to be associated with its carcinogenesis. The epigenetic is a heritable and transient/reversible change in the gene expression that is not accompanied by modification in the DNA sequence. This event is characterized by the alteration in the promoter CpG island of the gene or histone modification. These events are associated with silencing of critical tumor suppressor gene and activation of oncogenes leading to carcinogenesis. The DNA methylation is a chemical change in the DNA sequence that most commonly occurs at cytosine moiety of CpG dinucleotide and histone, primarily on N- terminal tail that ultimately effect the interaction of DNA with chromatin modifying protein.Hypermethylation of tumor suppressor genes and global hypomethylation of oncogenes are widely studied epigenetic modifications. There are large number of publish reports regarding epigenetic events involving gastric cancer. These changes are potentially useful in identifying markers for early diagnosis and management of this lethal malignancy. Also, role of specific miRNAs and long non coding RNAs in regulation of gene expression is gaining interest and is a matter of further investigation. In this review, we aimed to summarize major epigenetic events (DNA methylation) in gastric cancer along with alteration in miRNAs and long non coding RNAs which plays an important role in pathology of this poorly understood malignancy.
Collapse
Affiliation(s)
- Puneet
- Department of Surgery, Institute of Medical Science, Banaras Hindu University, Varanasi, 221005, India.
| | - Hasan Raza Kazmi
- Cancer Genetics Laboratory, Department of Molecular and Human Genetics, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Soni Kumari
- Cancer Genetics Laboratory, Department of Molecular and Human Genetics, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Satendra Tiwari
- Department of Surgery, Institute of Medical Science, Banaras Hindu University, Varanasi, 221005, India
| | - A Khanna
- Department of Surgery, Institute of Medical Science, Banaras Hindu University, Varanasi, 221005, India
| | - Gopeshwar Narayan
- Cancer Genetics Laboratory, Department of Molecular and Human Genetics, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| |
Collapse
|
16
|
Tie J, Zhang X, Fan D. Epigenetic roles in the malignant transformation of gastric mucosal cells. Cell Mol Life Sci 2016; 73:4599-4610. [PMID: 27464701 PMCID: PMC5097112 DOI: 10.1007/s00018-016-2308-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 06/10/2016] [Accepted: 07/08/2016] [Indexed: 12/14/2022]
Abstract
Gastric carcinogenesis occurs when gastric epithelial cells transition through the initial, immortal, premalignant, and malignant stages of transformation. Epigenetic regulations contribute to this multistep process. Due to the critical role of epigenetic modifications , these changes are highly likely to be of clinical use in the future as new biomarkers and therapeutic targets for the early detection and treatment of cancers. Here, we summarize the recent findings on how epigenetic modifications, including DNA methylation, histone modifications, and non-coding RNAs, regulate gastric carcinogenesis, and we discuss potential new strategies for the diagnosis and treatments of gastric cancer. The strategies may be helpful in the further understanding of epigenetic regulation in human diseases.
Collapse
Affiliation(s)
- Jun Tie
- State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, No. 127, West Chang-Le Road, Xi'an, Shaanxi, 710032, People's Republic of China
| | - Xiangyuan Zhang
- State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, No. 127, West Chang-Le Road, Xi'an, Shaanxi, 710032, People's Republic of China
| | - Daiming Fan
- State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, No. 127, West Chang-Le Road, Xi'an, Shaanxi, 710032, People's Republic of China.
| |
Collapse
|
17
|
Wisnieski F, Leal MF, Calcagno DQ, Santos LC, Gigek CO, Chen ES, Artigiani R, Demachki S, Assumpção PP, Lourenço LG, Burbano RR, Smith MC. BMP8B Is a Tumor Suppressor Gene Regulated by Histone Acetylation in Gastric Cancer. J Cell Biochem 2016; 118:869-877. [PMID: 27748538 DOI: 10.1002/jcb.25766] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 10/14/2016] [Indexed: 12/13/2022]
Abstract
Different from genetic alterations, the reversible nature of epigenetic modifications provides an interesting opportunity for the development of clinically relevant therapeutics in different tumors. In this study, we aimed to screen and validate candidate genes regulated by the epigenetic marker associated with transcriptional activation, histone acetylation, in gastric cancer (GC). We first compared gene expression profile of trichostatin A-treated and control GC cell lines using microarray assay. Among the 55 differentially expressed genes identified in this analysis, we chose the up-regulated genes BMP8B and BAMBI for further analyses, that included mRNA and histone acetylation quantification in paired GC and nontumor tissue samples. BMP8B expression was reduced in GC compared to nontumor samples (P < 0.01). In addition, reduced BMP8B expression was associated with poorly differentiated GC (P = 0.02). No differences or histopathological associations were identified concerning BAMBI expression. Furthermore, acetylated H3K9 and H4K16 levels at BMP8B were increased in GC compared to nontumors (P < 0.05). However, reduced levels of acetylated H3K9 and H4K16 were associated with poorly differentiated GC (P < 0.05). Reduced levels of acetylated H3K9 was also associated with diffuse-type histological GC (P < 0.05). Notably, reduced BMP8B mRNA and acetylated H4K16 levels were positively correlated in poorly differentiated GC (P < 0.05). Our study demonstrated that BMP8B seems to be a tumor suppressor gene regulated by H4K16 acetylation in poorly differentiated GC. Therefore, BMP8B may be a potential target for TSA-based therapies in this GC sample subset. J. Cell. Biochem. 118: 869-877, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Fernanda Wisnieski
- Disciplina de Genética, Departamento de Morfologia e Genética, Universidade Federal de São Paulo, Rua Botucatu, 740, São Paulo 04023900, São Paulo, Brazil
| | - Mariana Ferreira Leal
- Disciplina de Genética, Departamento de Morfologia e Genética, Universidade Federal de São Paulo, Rua Botucatu, 740, São Paulo 04023900, São Paulo, Brazil.,Departamento de Ortopedia e Traumatologia, Universidade Federal de São Paulo, Rua Borges Lagoa, 783, São Paulo 04038032, São Paulo, Brazil
| | - Danielle Queiroz Calcagno
- Núcleo de Pesquisas em Oncologia, Hospital João de Barros Barreto, Universidade Federal do Pará, Avenida Mundurucus, 4487, Belém 66073000, Pará, Brazil
| | - Leonardo Caires Santos
- Disciplina de Genética, Departamento de Morfologia e Genética, Universidade Federal de São Paulo, Rua Botucatu, 740, São Paulo 04023900, São Paulo, Brazil
| | - Carolina Oliveira Gigek
- Disciplina de Genética, Departamento de Morfologia e Genética, Universidade Federal de São Paulo, Rua Botucatu, 740, São Paulo 04023900, São Paulo, Brazil.,Disciplina de Gastroenterologia Cirúrgica, Departamento de Cirurgia, Universidade Federal de São Paulo, Rua Napoleão de Barros, 715, São Paulo 04024002, São Paulo, Brazil
| | - Elizabeth Suchi Chen
- Disciplina de Genética, Departamento de Morfologia e Genética, Universidade Federal de São Paulo, Rua Botucatu, 740, São Paulo 04023900, São Paulo, Brazil
| | - Ricardo Artigiani
- Departamento de Patologia, Universidade Federal de São Paulo, Rua Botucatu, 740, São Paulo 04023000, São Paulo, Brazil
| | - Sâmia Demachki
- Núcleo de Pesquisas em Oncologia, Hospital João de Barros Barreto, Universidade Federal do Pará, Avenida Mundurucus, 4487, Belém 66073000, Pará, Brazil
| | - Paulo Pimentel Assumpção
- Núcleo de Pesquisas em Oncologia, Hospital João de Barros Barreto, Universidade Federal do Pará, Avenida Mundurucus, 4487, Belém 66073000, Pará, Brazil
| | - Laércio Gomes Lourenço
- Disciplina de Gastroenterologia Cirúrgica, Departamento de Cirurgia, Universidade Federal de São Paulo, Rua Napoleão de Barros, 715, São Paulo 04024002, São Paulo, Brazil
| | - Rommel Rodríguez Burbano
- Laboratório de Citogenética Humana, Instituto de Ciências Biológicas, Universidade Federal do Pará, Rua Augusto Correia, 01, Belém 66075110, Pará, Brazil
| | - Marília Cardoso Smith
- Disciplina de Genética, Departamento de Morfologia e Genética, Universidade Federal de São Paulo, Rua Botucatu, 740, São Paulo 04023900, São Paulo, Brazil
| |
Collapse
|
18
|
Abstract
Gastric carcinogenesis is a multistep process, during which numerous genetic and epigenetic alterations accumulate: there are abnormalities of growth factors/receptors, angiogenic factors, cell cycle regulators, DNA mismatch repair genes etc. These abnormalities define, at the same time, the biological character of the cancer cell and may thus serve as therapeutic targets. Genetic instability may cause accumulation of genetic abnormalities. The most important epigenetic alterations are DNA methylation, histone modification and chromatin remodeling. Some of these changes are common in gastric cancer, regardless of subtype, and some differ by histological type or (gastric or intestinal) mucin phenotype. Genetic polymorphism is a crucial endogenous cause and fundamental aspect of cancer risk. Importantly, genetic polymorphisms are also associated with the therapeutic efficacy and toxicity of anti-cancer drugs. Genomic science and technology such as Serial Analysis of Gene Expression (SAGE) allows the identification of novel genes and molecules specifically up-regulated or down-regulated in gastric cancer, e.g., RegIV and claudin-18 can be identified. Advances in our understanding of the genetic and molecular bases lead to improved diagnosis, personalised medicine and prevention of gastric cancer.
Collapse
Affiliation(s)
- W Yasui
- Department of Molecular Pathology, Hiroshima University Graduate School of Biomedical Sciences, Minami-ku, Hiroshima, Japan.
| | | | | | | |
Collapse
|
19
|
Wisnieski F, Calcagno DQ, Leal MF, Santos LC, Gigek CO, Chen ES, Demachki S, Artigiani R, Assumpção PP, Lourenço LG, Burbano RR, Smith MC. CDKN1A histone acetylation and gene expression relationship in gastric adenocarcinomas. Clin Exp Med 2015; 17:121-129. [PMID: 26567008 DOI: 10.1007/s10238-015-0400-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 10/26/2015] [Indexed: 12/13/2022]
Abstract
CDKN1A is a tumor suppressor gene involved in gastric carcinogenesis and is a potential target for histone deacetylase inhibitor-based therapies. Upregulation of CDKN1A is generally observed in several cell lines after histone deacetylase inhibitor treatment; however, little is known about the histone acetylation status associated with this gene in clinical samples, including gastric tumor tissue samples. Therefore, our goal was to quantify the H3K9 and H4K16 acetylation levels associated with three CDKN1A regions in 21 matched pairs of gastric adenocarcinoma and corresponding adjacent non-tumor samples by chromatin immunoprecipitation and to correlate these data with the gene expression. Our results demonstrated that the -402, -20, and +182 CDKN1A regions showed a significantly increased acetylation level in at least one of the histones evaluated (p < 0.05, for all comparisons), and these levels were positively correlated in gastric tumors. However, an inverse correlation was detected between both H3K9 and H4K16 acetylation at the -402 CDKN1A region and mRNA levels in gastric tumors (r = -0.51, p = 0.02; r = -0.60, p < 0.01, respectively). Furthermore, increased H4K16 acetylation at the -20 CDKN1A region was associated with gastric tumors of patients without lymph node metastasis (p = 0.04). These results highlight the complexity of these processes in gastric adenocarcinoma and contribute to a better understanding of CDKN1A regulation in carcinogenesis.
Collapse
Affiliation(s)
- Fernanda Wisnieski
- Disciplina de Genética, Departamento de Morfologia e Genética, Universidade Federal de São Paulo, Rua Botucatu, 740, São Paulo, 04023900, Brazil.
| | - Danielle Queiroz Calcagno
- Núcleo de Pesquisas em Oncologia, Hospital João de Barros Barreto, Universidade Federal do Pará, Avenida Mundurucus, 4487, Belém, 66073000, Brazil
| | - Mariana Ferreira Leal
- Disciplina de Genética, Departamento de Morfologia e Genética, Universidade Federal de São Paulo, Rua Botucatu, 740, São Paulo, 04023900, Brazil
- Departamento de Ortopedia e Traumatologia, Universidade Federal de São Paulo, Rua Borges Lagoa, 783, São Paulo, 04038032, Brazil
| | - Leonardo Caires Santos
- Disciplina de Genética, Departamento de Morfologia e Genética, Universidade Federal de São Paulo, Rua Botucatu, 740, São Paulo, 04023900, Brazil
| | - Carolina Oliveira Gigek
- Disciplina de Genética, Departamento de Morfologia e Genética, Universidade Federal de São Paulo, Rua Botucatu, 740, São Paulo, 04023900, Brazil
| | - Elizabeth Suchi Chen
- Disciplina de Genética, Departamento de Morfologia e Genética, Universidade Federal de São Paulo, Rua Botucatu, 740, São Paulo, 04023900, Brazil
| | - Sâmia Demachki
- Núcleo de Pesquisas em Oncologia, Hospital João de Barros Barreto, Universidade Federal do Pará, Avenida Mundurucus, 4487, Belém, 66073000, Brazil
| | - Ricardo Artigiani
- Departamento de Patologia, Universidade Federal de São Paulo, Rua Botucatu, 740, São Paulo, 04023000, Brazil
| | - Paulo Pimentel Assumpção
- Núcleo de Pesquisas em Oncologia, Hospital João de Barros Barreto, Universidade Federal do Pará, Avenida Mundurucus, 4487, Belém, 66073000, Brazil
| | - Laércio Gomes Lourenço
- Disciplina de Gastroenterologia Cirúrgica, Departamento de Cirurgia, Universidade Federal de São Paulo, Rua Napoleão de Barros, 715, São Paulo, 04024002, Brazil
| | - Rommel Rodríguez Burbano
- Laboratório de Citogenética Humana, Instituto de Ciências Biológicas, Universidade Federal do Pará, Rua Augusto Correia, 01, Belém, 66075110, Brazil
| | - Marília Cardoso Smith
- Disciplina de Genética, Departamento de Morfologia e Genética, Universidade Federal de São Paulo, Rua Botucatu, 740, São Paulo, 04023900, Brazil
| |
Collapse
|
20
|
Chhabria SV, Akbarsha MA, Li AP, Kharkar PS, Desai KB. In situ allicin generation using targeted alliinase delivery for inhibition of MIA PaCa-2 cells via epigenetic changes, oxidative stress and cyclin-dependent kinase inhibitor (CDKI) expression. Apoptosis 2015; 20:1388-1409. [PMID: 26286853 DOI: 10.1007/s10495-015-1159-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Allicin, an extremely active constituent of freshly crushed garlic, is produced upon reaction of substrate alliin with the enzyme alliinase (EC 4.4.1.4). Allicin has been shown to be toxic to several mammalian cells in vitro in a dose-dependent manner. In the present study this cytotoxicity was taken to advantage to develop a novel approach to cancer treatment, based on site directed generation of allicin. Alliinase was chemically conjugated to a monoclonal antibody (mAb) which was directed against a specific pancreatic cancer marker, CA19-9. After the CA19-9 mAb-alliinase conjugate was bound to targeted pancreatic cancer cells (MIA PaCa-2 cells), on addition of alliin, the cancer cell-localized alliinase produced allicin, which effectively induced apoptosis in MIA PaCa-2 cells. Specificity of anticancer activity of in situ generated allicin was demonstrated using a novel in vitro system-integrated discrete multiple organ co-culture technique. Further, allicin-induced caspase-3 expression, DNA fragmentation, cell cycle arrest, p21(Waf1/Cip1) cyclin-dependent kinase inhibitor expression, ROS generation, GSH depletion, and led to various epigenetic modifications which resulted in stimulation of apoptosis. This approach offers a new therapeutic strategy, wherein alliin and alliinase-bound antibody work together to produce allicin at targeted locations which would reverse gene silencing and suppress cancer cell growth, suggesting that combination of these targeted agents may improve pancreatic cancer therapy.
Collapse
Affiliation(s)
- Sagar V Chhabria
- Department of Biological Sciences, School of Science, SVKM's NMIMS University, Vile Parle (W), Mumbai, 400056, India
| | | | | | | | | |
Collapse
|
21
|
Santos JC, Ribeiro ML. Epigenetic regulation of DNA repair machinery in Helicobacter pylori-induced gastric carcinogenesis. World J Gastroenterol 2015; 21:9021-9037. [PMID: 26290630 PMCID: PMC4533035 DOI: 10.3748/wjg.v21.i30.9021] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 06/02/2015] [Accepted: 07/08/2015] [Indexed: 02/06/2023] Open
Abstract
Although thousands of DNA damaging events occur in each cell every day, efficient DNA repair pathways have evolved to counteract them. The DNA repair machinery plays a key role in maintaining genomic stability by avoiding the maintenance of mutations. The DNA repair enzymes continuously monitor the chromosomes to correct any damage that is caused by exogenous and endogenous mutagens. If DNA damage in proliferating cells is not repaired because of an inadequate expression of DNA repair genes, it might increase the risk of cancer. In addition to mutations, which can be either inherited or somatically acquired, epigenetic silencing of DNA repair genes has been associated with carcinogenesis. Gastric cancer represents the second highest cause of cancer mortality worldwide. The disease develops from the accumulation of several genetic and epigenetic changes during the lifetime. Among the risk factors, Helicobacter pylori (H. pylori) infection is considered the main driving factor to gastric cancer development. Thus, in this review, we summarize the current knowledge of the role of H. pylori infection on the epigenetic regulation of DNA repair machinery in gastric carcinogenesis.
Collapse
|
22
|
Sanchez OF, Williamson D, Cai L, Yuan C. A sensitive protein-based sensor for quantifying histone acetylation levels. Talanta 2015; 140:212-218. [DOI: 10.1016/j.talanta.2015.03.046] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 03/19/2015] [Accepted: 03/21/2015] [Indexed: 01/05/2023]
|
23
|
Fu DG. Epigenetic alterations in gastric cancer (Review). Mol Med Rep 2015; 12:3223-3230. [PMID: 25997695 PMCID: PMC4526033 DOI: 10.3892/mmr.2015.3816] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 05/22/2015] [Indexed: 12/21/2022] Open
Abstract
Gastric cancer is one of the most common types of cancer and the second most common cause of cancer-related mortality worldwide. An increasing number of recent studies have confirmed that gastric cancer is a multistage pathological state that arises from environmental factors; dietary factors in particulary are considered to play an important role in the etiology of gastric cancer. Improper dietary habits are one of the primary concerns as they influence key molecular events associated with the onset of gastric carcinogenesis. In the field of genetics, anticancer research has mainly focused on the various genetic markers and genetic molecular mechanisms responsible for the development of this of this disease. Some of this research has proven to be very fruitful, providing insight into the possible mechamisms repsonsible for this disease and into possible treatment modalities. However, the mortality rate associated with gastric cancer remains relatively high. Thus, epigenetics has become a hot topic for research, whereby genetic markers are bypassed and this research is directed towards reversible epigenetic events, such as methylation and histone modifications that play a crucial role in carcinogenesis. The present review focuses on the epigenetic events which play an important role in the development and progression of this deadly disease, gastric cancer.
Collapse
Affiliation(s)
- Du-Guan Fu
- Department of Cardiology, Xiangyang Hospital Affiliated to Hubei University of Medicine, Xiangyang, Hubei 441000, P.R. China
| |
Collapse
|
24
|
Abstract
Epigenetic changes frequently occur in human gastric cancer. Gene promoter region hypermethylation, genomic global hypomethylation, histone modifications, and alterations of noncoding RNAs are major epigenetic changes in gastric cancer. As a key risk factor of gastric cancer, H. pylori infection is an independent predictive indicator of gene methylation. A growing number of epigenetic studies in gastric cancer have provided lots of potential diagnostic and prognostic markers and therapeutic targets.
Collapse
Affiliation(s)
- Mingzhou Guo
- Department of Gastroenterology and Hepatology, Chinese PLA General Hospital, #28 Fuxing Road, Beijing, 100853, China,
| | | |
Collapse
|
25
|
Hanada K, Graham DY. Helicobacter pylori and the molecular pathogenesis of intestinal-type gastric carcinoma. Expert Rev Anticancer Ther 2014; 14:947-54. [PMID: 24802804 DOI: 10.1586/14737140.2014.911092] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Gastric carcinoma is an inflammation-related cancer caused by long-term infection with the human bacterial pathogen, Helicobacter pylori. The pattern of acute-on-chronic inflammation causes progressive mucosal damage which may result in atrophy with metaplastic epithelia and eventually gastric cancer. Recently, it has been recognized that H. pylori can also cause genetic instability such as double-stranded DNA breaks and can produce gene activation and silencing via epigenetic pathways. As genetic instability is the hallmark of cancer, we highlight recent progress in understanding the gastric carcinogenesis in relation to H. pylori-related inflammation, H. pylori-induced double-stranded DNA breakage and aberrant gene expression as well as the mechanisms and role of H. pylori-associated epigenetic change in gene expression.
Collapse
Affiliation(s)
- Katsuhiro Hanada
- Department of Environmental and Preventive Medicine, Faculty of Medicine, Oita University, Yufu, Japan
| | | |
Collapse
|
26
|
Epigenetic biomarkers: potential applications in gastrointestinal cancers. ISRN GASTROENTEROLOGY 2014; 2014:464015. [PMID: 24729878 PMCID: PMC3963109 DOI: 10.1155/2014/464015] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Accepted: 01/25/2014] [Indexed: 12/14/2022]
Abstract
Genetics and epigenetics coregulate the cancer initiation and progression. Epigenetic mechanisms include DNA methylation, histone modification, chromatin remodeling, and noncoding RNAs. Aberrant epigenetic modifications play a fundamental role in the formation of gastrointestinal cancers. Advances in epigenetics offer a better understanding of the carcinogenesis and provide new insights into the discovery of biomarkers for diagnosis, and prognosis prediction of human cancers. This review aims to overview the epigenetic aberrance and the clinical applications as biomarkers in gastrointestinal cancers mainly gastric cancer and colorectal cancer.
Collapse
|
27
|
Li B, Ye Z. Epigenetic alterations in osteosarcoma: promising targets. Mol Biol Rep 2014; 41:3303-15. [PMID: 24500341 DOI: 10.1007/s11033-014-3193-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 01/22/2014] [Indexed: 01/10/2023]
Abstract
Cancer is being reinterpreted due to recent discoveries related to epigenetic regulation during development, and the importance of epigenetic mechanisms in initiation and progression of cancer has been further highlighted by the recent explosion in medical information. Osteosarcoma is highly genetically unstable, and current therapeutic regimens are subject to chemoresistance and tumor relapse. Understanding the epigenetic mechanisms in the pathogenesis of osteosarcoma will provide novel avenues for cancer therapy. In this review, we examine the epigenetic alterations in gene expression in osteosarcoma, and discuss the utilization of epigenetic regulation therapy in treatment against osteosarcoma.
Collapse
Affiliation(s)
- Binghao Li
- Department of Orthopaedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310008, China
| | | |
Collapse
|
28
|
Chen X, Song N, Matsumoto K, Nanashima A, Nagayasu T, Hayashi T, Ying M, Endo D, Wu Z, Koji T. High expression of trimethylated histone H3 at lysine 27 predicts better prognosis in non-small cell lung cancer. Int J Oncol 2013; 43:1467-80. [PMID: 23969945 DOI: 10.3892/ijo.2013.2062] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2013] [Accepted: 06/03/2013] [Indexed: 12/22/2022] Open
Abstract
Epigenetic parameters such as DNA methylation and histone modifications play pivotal roles in carcinogenesis. Global histone modification patterns have been implicated as possible predictors of cancer recurrence and prognoses in a great variety of tumor entities. Our study was designed to evaluate the association among trimethylated histone H3 at lysine 27 (H3K27me3), clinicopathological variables and outcome in early-stage non-small cell lung cancer (NSCLC). The expression of H3K27me3 and its methyl-transferase, enhancer of zeste homolog 2 (EZH2) together with proliferating cell nuclear antigen (PCNA) were evaluated by immunohistochemistry in normal lung tissue (n=5) and resected NSCLC patients (n=42). In addition, the specificity of antibody for H3K27me3 was tested by western blot analysis. The optimal cut-off point of H3K27me3 expression for prognosis was determined by the X-tile program. The prognostic significance was determined by means of Kaplan-Meier survival estimates and log-rank tests. As a result, enhanced trimethylation of H3K27me3 was correlated with longer overall survival (OS) and better prognosis (P<0.05). Moreover, both univariate and multivariate analyses indicated that H3K27me3 level was a significant and independent predictor of better survival (hazard ratio, 0.187; 95% confidence interval, 0.066-0.531, P=0.002). Furthermore, H3K27me3 expression was positively correlated with DNA methylation level at CCGG sites while reversely related to EZH2 expression (P<0.05). In conclusion, H3K27me3 level defines unrecognized subgroups of NSCLC patients with distinct epigenetic phenotype and clinical outcome, and can probably be used as a novel predictor for better prognosis in NSCLC patients.
Collapse
Affiliation(s)
- Xiaohui Chen
- Department of Histology and Cell Biology, Nagasaki University Graduate School of Biomedical Science, Nagasaki, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Monteiro JB, Colón-Díaz M, García M, Gutierrez S, Colón M, Seto E, Laboy J, Flores I. Endometriosis is characterized by a distinct pattern of histone 3 and histone 4 lysine modifications. Reprod Sci 2013; 21:305-18. [PMID: 23899551 DOI: 10.1177/1933719113497267] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND The histone modification patterns in endometriosis have not been fully characterized. This gap in knowledge results in a poor understanding of the epigenetic mechanisms (and potential therapeutic targets) at play. We aimed to (1) assess global acetylation status of histone 3 (H3) and histone 4 (H4), (2) measure levels of H3 and H4 lysine (K) acetylation and methylation, and (3) to identify histone acetylation patterns in promoter regions of candidate genes in tissues from patients and controls. METHODS Global and K-specific acetylation/methylation levels of histones were measured in 24 lesions, 15 endometrium from patients, and 26 endometrium from controls. Chromatin immunoprecipitation (ChIP)-polymerase chain reaction was used to determine the histone acetylation status of the promoter regions of candidate genes in tissues. RESULTS The lesions were globally hypoacetylated at H3 (but not H4) compared to eutopic endometrium from controls. Lesions had significantly lower levels of H3K9ac and H4K16ac compared to eutopic endometrium from patients and controls. Tissues from patients were hypermethylated at H3K4, H3K9, and H3K27 compared to endometrium from controls. The ChIP analysis showed hypoacetylation of H3/H4 within promoter regions of candidate genes known to be downregulated in endometriosis (e.g., HOXA10, ESR1, CDH1, and p21 (WAF1/Cip1) ) in lesions versus control endometrium. The stereoidogenic factor 1 (SF1) promoter region was enriched for acetylated H3 and H4 in lesions versus control tissues, correlating with its reported high expression in lesions. CONCLUSIONS This study describes the histone code of lesions and endometrium from patients with endometriosis and provides support for a possible role of histone modification in modulation of gene expression in endometriosis.
Collapse
Affiliation(s)
- Janice B Monteiro
- 1Department of Biochemistry, Ponce School of Medicine and Health Sciences, Ponce, Puerto Rico
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Epigenetic modifications induced by Helicobacter pylori infection through a direct microbe–gastric epithelial cells cross-talk. Med Microbiol Immunol 2013; 202:327-37. [DOI: 10.1007/s00430-013-0301-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Accepted: 05/17/2013] [Indexed: 02/07/2023]
|
31
|
Carneiro F, Lauwers GY. Epithelial Tumours of the Stomach. MORSON AND DAWSON'S GASTROINTESTINAL PATHOLOGY 2013:180-222. [DOI: 10.1002/9781118399668.ch13] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
32
|
Gigek CO, Chen ES, Calcagno DQ, Wisnieski F, Burbano RR, Smith MAC. Epigenetic mechanisms in gastric cancer. Epigenomics 2012; 4:279-94. [PMID: 22690664 DOI: 10.2217/epi.12.22] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Cancer is considered one of the major health issues worldwide, and gastric cancer accounted for 8% of total cases and 10% of total deaths in 2008. Gastric cancer is considered an age-related disease, and the total number of newly diagnosed cases has been increasing as a result of the higher life expectancy. Therefore, the basic mechanisms underlying gastric tumorigenesis is worth investigation. This review provides an overview of the epigenetic mechanisms, such as DNA methylation, histone modifications, chromatin remodeling complex and miRNA, involved in gastric cancer. As the studies in gastric cancer continue, the mapping of an epigenome code is not far for this disease. In conclusion, an epigenetic therapy might appear in the not too distant future.
Collapse
Affiliation(s)
- Carolina Oliveira Gigek
- Disciplina de Genética, Departamento de Morfologia e Genética, Escola Paulista de Medicina/Universidade Federal de São Paulo, Rua Botucatu 740, São Paulo, SP, Brazil.
| | | | | | | | | | | |
Collapse
|
33
|
Nagini S. Carcinoma of the stomach: A review of epidemiology, pathogenesis, molecular genetics and chemoprevention. World J Gastrointest Oncol 2012; 4:156-69. [PMID: 22844547 PMCID: PMC3406280 DOI: 10.4251/wjgo.v4.i7.156] [Citation(s) in RCA: 327] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Revised: 06/04/2012] [Accepted: 06/12/2012] [Indexed: 02/05/2023] Open
Abstract
Carcinoma of the stomach is still the second most common cause of cancer death worldwide, although the incidence and mortality have fallen dramatically over the last 50 years in many regions. The incidence of gastric cancer varies in different parts of the world and among various ethnic groups. Despite advances in diagnosis and treatment, the 5-year survival rate of stomach cancer is only 20 per cent. Stomach cancer can be classified into intestinal and diffuse types based on epidemiological and clinicopathological features. The etiology of gastric cancer is multifactorial and includes both dietary and nondietary factors. The major diet-related risk factors implicated in stomach cancer development include high content of nitrates and high salt intake. Accumulating evidence has implicated the role of Helicobacter pylori (H. pylori) infection in the pathogenesis of gastric cancer. The development of gastric cancer is a complex, multistep process involving multiple genetic and epigenetic alterations of oncogenes, tumor suppressor genes, DNA repair genes, cell cycle regulators, and signaling molecules. A plausible program for gastric cancer prevention involves intake of a balanced diet containing fruits and vegetables, improved sanitation and hygiene, screening and treatment of H. pylori infection, and follow-up of precancerous lesions. The fact that diet plays an important role in the etiology of gastric cancer offers scope for nutritional chemoprevention. Animal models have been extensively used to analyze the stepwise evolution of gastric carcinogenesis and to test dietary chemopreventive agents. Development of multitargeted preventive and therapeutic strategies for gastric cancer is a major challenge for the future.
Collapse
Affiliation(s)
- Siddavaram Nagini
- Siddavaram Nagini, Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar-608 002, Tamil Nadu, India
| |
Collapse
|
34
|
A gestational low-protein diet represses p21(WAF1/Cip1) expression in the mammary gland of offspring rats through promoter histone modifications. Br J Nutr 2011; 108:998-1007. [PMID: 22152918 DOI: 10.1017/s0007114511006222] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Maternal exposure to environmental agents throughout pregnancy may change certain metabolic processes during the offspring's mammary gland development and alter the epigenome. This may predispose the offspring to breast cancer later in life. The purpose of the present study was to examine the effect of maternal protein restriction on the regulation of cyclin-dependent kinase inhibitor 1 (p21) gene expression in the mammary gland of rat offspring. Timed-mated Sprague-Dawley rats were fed one of the two isoenergetic diets, control (C, 18 % casein) or low protein (LP, 9 % casein), during gestation. Compared with the C group, LP offspring showed a decrease of p21 in the mammary gland at both the mRNA and protein levels. Chromatin immunoprecipitation assay demonstrated that the down-regulation of p21 transcription in LP offspring was associated with reduced acetylation of histone H3 and dimethylation of H3K4 within the p21 promoter region, but was not associated with acetylation of histone H4 or histone methylation. DNA methylation analysis using bisulphite sequencing did not detect differences in methylation at the p21 promoter between the offspring of the C and LP groups. We conclude that maternal protein restriction inhibits p21 gene expression in the mammary gland of offspring through histone modifications at the promoter region of the p21 gene.
Collapse
|
35
|
Ding SZ, Goldberg JB, Hatakeyama M. Helicobacter pylori infection, oncogenic pathways and epigenetic mechanisms in gastric carcinogenesis. Future Oncol 2010; 6:851-62. [PMID: 20465395 PMCID: PMC2882595 DOI: 10.2217/fon.10.37] [Citation(s) in RCA: 126] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Chronic colonization of the human stomach by Helicobacter pylori, a Gram-negative bacterium, is the major cause of chronic gastritis, peptic ulcers and gastric cancer. Recent progress has elucidated important bacterial and host factors that are responsible for H. pylori-induced gastric inflammation and gastric malignancy. H. pylori cytotoxin-associated antigen A is the major oncogenic factor injected into host cells from bacteria and it disrupts epithelial cell functions. Together with H. pylori cag pathogenicity island, it causes general inflammatory stress within gastric mucosa and activates multiple oncogenic pathways in epithelial cells. A growing list of these pathways includes NF-kappaB, activator protein-1, PI3K, signal transducers and activators of transcription 3, Wnt/beta-catenin and cyclooxygenase 2. H. pylori induces epigenetic alterations, such as DNA methylation and histone modification, which play critical roles in oncogenic transformation. In addition, investigations into gastric stem cell or progenitor cell biology have shed light on the mechanisms through which gastric cancer may originate. Continued investigation in these areas will yield novel insights and help to elucidate the mechanisms of bacteria-induced carcinogenesis.
Collapse
Affiliation(s)
- Song-Ze Ding
- Department of Microbiology, University of Virginia Health System, Charlottesville, VA 22908, USA.
| | | | | |
Collapse
|
36
|
Vlaicu SI, Tegla CA, Cudrici CD, Fosbrink M, Nguyen V, Azimzadeh P, Rus V, Chen H, Mircea PA, Shamsuddin A, Rus H. Epigenetic modifications induced by RGC-32 in colon cancer. Exp Mol Pathol 2010; 88:67-76. [PMID: 19883641 PMCID: PMC2815209 DOI: 10.1016/j.yexmp.2009.10.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2009] [Revised: 10/23/2009] [Accepted: 10/26/2009] [Indexed: 10/20/2022]
Abstract
First described as a cell cycle activator, RGC-32 is both an activator and a substrate for CDC2. Deregulation of RGC-32 expression has been detected in a wide variety of human cancers. We have now shown that RGC-32 is expressed in precancerous states, and its expression is significantly higher in adenomas than in normal colon tissue. The expression of RGC-32 was higher in advanced stages of colon cancer than in precancerous states or the initial stages of colon cancer. In order to identify the genes that are regulated by RGC-32, we used gene array analysis to investigate the effect of RGC-32 knockdown on gene expression in the SW480 colon cancer cell line. Of the 230 genes that were differentially regulated after RGC-32 knockdown, a group of genes involved in chromatin assembly were the most significantly regulated in these cells: RGC-32 knockdown induced an increase in acetylation of histones H2B lysine 5 (H2BK5), H2BK15, H3K9, H3K18, and H4K8. RGC-32 silencing was also associated with decreased expression of SIRT1 and decreased trimethylation of histone H3K27 (H3K27me3). In addition, RGC-32 knockdown caused a significantly higher percentage of SW480 cells to enter S phase and subsequently G2/M. These data suggest that RGC-32 may contribute to the development of colon cancer by regulating chromatin assembly.
Collapse
Affiliation(s)
- Sonia I. Vlaicu
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Cosmin A. Tegla
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Cornelia D. Cudrici
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Matthew Fosbrink
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Vingh Nguyen
- Department of Medicine, Division of Rheumatology and Clinical Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Philippe Azimzadeh
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Violeta Rus
- Department of Medicine, Division of Rheumatology and Clinical Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Hegang Chen
- Department of Epidemiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | | | - Abulkalam Shamsuddin
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Horea Rus
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, USA
- Veterans Administration Maryland Health Care System, Baltimore, MD, USA
| |
Collapse
|
37
|
Zhen L, Gui-lan L, Ping Y, Jin H, Ya-li W. The expression of H3K9Ac, H3K14Ac, and H4K20TriMe in epithelial ovarian tumors and the clinical significance. Int J Gynecol Cancer 2010; 20:82-6. [PMID: 20057286 DOI: 10.1111/igc.0b013e3181ae3efa] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVE To study the expression of acetylation of histone H3 Lys9, Lys14 (H3K9Ac, H3K14Ac), and trimethylation of histone H4 Lys20 (H4K20TriMe) in ovarian epithelial tumors and the relation with histological grading and clinical staging. METHODS The mean optical density of H3K9Ac, H3K14Ac, and H4K20TriMe of normal ovarian epithelium, ovarian adenomas, ovarian borderline tumors, and ovarian epithelial carcinomas was determined by immunohistochemistry, and the relation with histological grading and clinical staging was analyzed. RESULTS As the malignancy of ovarian epithelial tumors increased, the expression of H3K9Ac and H4K20TriMe significantly decreased (P < 0.05). Although the expressing difference of H3K14Ac was without statistical significance in each group (P > 0.05), there were no differences in the expression of H3K9Ac, H3K14Ac, and H4K20TriMe in serous cystadenomas, borderline serous cystadenomas, and mucinous cystadenomas (P > 0.05). Compared with mucinous cystadenocarcinomas, the expression of H3K9Ac and H4K20TriMe in serous cystadenocarcinomas was lower (P < 0.05). Although there was no difference of H3K14Ac expression in serous and mucinous cystadenocarcinomas (P > 0.05), as the histological grade reduced, the expression of H3K9Ac and H4K20TriMe reduced (P < 0.05), and it was lower in the late clinical stage than those in the earlier stage (P < 0.01). CONCLUSIONS The decreasing of H3K9Ac and H4K20TriMe is possibly related with the occurrence of epithelial ovarian tumors. The more significant the expression of H3K9Ac and H4K20TriMe was, the lower the histological grading and the later the clinical staging were. H3K9Ac and H4K20TriMe were potential biomarkers for prognosis. H3K14Ac showed no significant relation with the occurrence and development of ovarian tumors.
Collapse
Affiliation(s)
- Li Zhen
- Department of Obstetrics and Gynecology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China.
| | | | | | | | | |
Collapse
|
38
|
Ashktorab H, Belgrave K, Hosseinkhah F, Brim H, Nouraie M, Takkikto M, Hewitt S, Lee EL, Dashwood RH, Smoot D. Global histone H4 acetylation and HDAC2 expression in colon adenoma and carcinoma. Dig Dis Sci 2009; 54:2109-17. [PMID: 19057998 PMCID: PMC2737733 DOI: 10.1007/s10620-008-0601-7] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2008] [Accepted: 10/22/2008] [Indexed: 12/20/2022]
Abstract
Chromatin remodeling and activation of transcription are important aspects of gene regulation, but these often go awry in disease progression, including during colon cancer development. We investigated the status of global histone acetylation (by measuring H3, H4 acetylation of lysine residues, which also occur over large regions of chromatin including coding regions and non-promoter sequences) and expression of histone deacetylase 2 (HDAC2) in colorectal cancer (CRC) tissue microarrays using immunohistochemical staining. Specifically, HDAC2 and the acetylation of histones H4K12 and H3K18 were evaluated in 134 colonic adenomas, 55 moderate to well differentiated carcinomas, and 4 poorly differentiated carcinomas compared to matched normal tissue. In addition, the correlation between expression of these epigenetic biomarkers and various clinicopathological factors including, age, location, and stage of the disease were analyzed. HDAC2 nuclear expression was detected at high levels in 81.9%, 62.1%, and 53.1% of CRC, adenomas, and normal tissue, respectively (P = 0.002). The corresponding nuclear global expression levels in moderate to well differentiated tumors for H4K12 and H3K18 acetylation were increased while these levels were decreased in poorly differentiated tumors (P = 0.02). HDAC2 expression was correlated significantly with progression of adenoma to carcinoma (P = 0.002), with a discriminative power of 0.74, when comparing cancer and non-cancer cases. These results suggest HDAC2 expression is significantly associated with CRC progression.
Collapse
Affiliation(s)
- Hassan Ashktorab
- Department of Medicine and Cancer Center, Howard University College of Medicine, Washington, DC, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Lugrin J, Ding XC, Le Roy D, Chanson AL, Sweep FCGJ, Calandra T, Roger T. Histone deacetylase inhibitors repress macrophage migration inhibitory factor (MIF) expression by targeting MIF gene transcription through a local chromatin deacetylation. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2009; 1793:1749-58. [PMID: 19747950 DOI: 10.1016/j.bbamcr.2009.09.007] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2009] [Revised: 08/30/2009] [Accepted: 09/03/2009] [Indexed: 12/20/2022]
Abstract
The cytokine macrophage migration inhibitory factor plays a central role in inflammation, cell proliferation and tumorigenesis. Moreover, macrophage migration inhibitory factor levels correlate with tumor aggressiveness and metastatic potential. Histone deacetylase inhibitors are potent antitumor agents recently introduced in the clinic. Therefore, we hypothesized that macrophage migration inhibitory factor would represent a target of histone deacetylase inhibitors. Confirming our hypothesis, we report that histone deacetylase inhibitors of various chemical classes strongly inhibited macrophage migration inhibitory factor expression in a broad range of cell lines, in primary cells and in vivo. Nuclear run on, transient transfection with macrophage migration inhibitory factor promoter reporter constructs and transduction with macrophage migration inhibitory factor expressing adenovirus demonstrated that trichostatin A (a prototypical histone deacetylase inhibitor) inhibited endogenous, but not episomal, MIF gene transcription. Interestingly, trichostatin A induced a local and specific deacetylation of macrophage migration inhibitory factor promoter-associated H3 and H4 histones which did not affect chromatin accessibility but was associated with an impaired recruitment of RNA polymerase II and Sp1 and CREB transcription factors required for basal MIF gene transcription. Altogether, this study describes a new molecular mechanism by which histone deacetylase inhibitors inhibit MIF gene expression, and suggests that macrophage migration inhibitory factor inhibition by histone deacetylase inhibitors may contribute to the antitumorigenic effects of histone deacetylase inhibitors.
Collapse
Affiliation(s)
- Jérôme Lugrin
- Infectious Diseases Service, Department of Medicine, Centre Hospitalier Universitaire Vaudois and University of Lausanne, CH-1011 Lausanne, Switzerland
| | | | | | | | | | | | | |
Collapse
|
40
|
Savickiene J, Treigyte G, Magnusson KE, Navakauskiene R. Response of Retinoic Acid-Resistant KG1 Cells to Combination of Retinoic Acid with Diverse Histone Deacetylase Inhibitors. Ann N Y Acad Sci 2009; 1171:321-33. [DOI: 10.1111/j.1749-6632.2009.04718.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
41
|
Staege MS, Körholz D. New treatment strategies for Hodgkin's lymphoma. Leuk Res 2009; 33:886-8. [DOI: 10.1016/j.leukres.2009.01.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2009] [Revised: 01/11/2009] [Accepted: 01/12/2009] [Indexed: 01/01/2023]
|
42
|
Herfs M, Hubert P, Delvenne P. Epithelial metaplasia: adult stem cell reprogramming and (pre)neoplastic transformation mediated by inflammation? Trends Mol Med 2009; 15:245-53. [PMID: 19457719 DOI: 10.1016/j.molmed.2009.04.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2009] [Revised: 04/03/2009] [Accepted: 04/03/2009] [Indexed: 12/17/2022]
Abstract
Throughout adult life, new developmental commitment of adult stem cells causes metaplastic conversions to occur frequently in some organs. These reversible epithelial replacements are almost always observed in association with chronic inflammation and persistent irritation. Although metaplasia is not synonymous with dysplasia, clinical surveillance has demonstrated that these adaptive processes have an increased susceptibility to evolve into cancer. We propose that cytokines and other soluble factors released by both epithelial and inflammatory cells might alter the transcription-factor expression profile of stem cells and lead to the development of metaplasia. Furthermore, inflammatory mediators might also promote the malignant transformation of epithelial metaplasia by inducing genetic and epigenetic changes and by preventing the immune system from mounting an efficient anti-tumour immune response. A better understanding of the molecular mechanisms leading to metaplasia might help in the design of new therapies for neoplastic and degenerative diseases.
Collapse
Affiliation(s)
- Michael Herfs
- Laboratory of Experimental Pathology, GIGA-Cancer (Centre for Experimental Cancer Research), University of Liege, Liege, Belgium
| | | | | |
Collapse
|
43
|
Tahara E. Abnormal growth factor/cytokine network in gastric cancer. CANCER MICROENVIRONMENT : OFFICIAL JOURNAL OF THE INTERNATIONAL CANCER MICROENVIRONMENT SOCIETY 2008; 1:85-91. [PMID: 19308687 PMCID: PMC2654359 DOI: 10.1007/s12307-008-0008-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2007] [Accepted: 02/18/2008] [Indexed: 12/11/2022]
Abstract
Gastric cancer cells express a broad spectrum of the growth factor/cytokine receptor systems that organize the complex interaction between cancer cells and stromal cells in tumor microenvironment, which confers cell growth, apoptosis, morphogenesis, angiogenesis, progression and metastasis. However, these abnormal growth factor/cytokine networks differ in the two histological types of gastric cancer. Importantly, activation of nuclear factor-kB pathway by Helicobacter pylori infection may act as a key player for induction of growth factor/cytokine networks in gastritis and pathogenesis of gastric cancer. Better understanding of these events will no doubt provide new approaches for biomarkers of diagnosis and effective therapeutic targeting of gastric cancer.
Collapse
Affiliation(s)
- Eiichi Tahara
- Hiroshima University, Hiroshima Cancer Seminar Foundation, Naka-ku, Hiroshima, Japan.
| |
Collapse
|
44
|
Decreased Acetylation of Histone H3 in Renal Cell Carcinoma: A Potential Target of Histone Deacetylase Inhibitors. J Urol 2008; 180:1131-6. [DOI: 10.1016/j.juro.2008.04.136] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2007] [Indexed: 11/20/2022]
|
45
|
Abstract
This article discusses recent advances in gastric cancer research that have improved treatment and outcomes of gastric malignancy, or have the potential to do so. The significance of Helicobacter pylori infection and eradication, immunology, host genetics, proto-oncogenes, and epigenetic alterations in gastric cancer are discussed. Abnormal signaling through growth factor pathways (tyrosine kinases and gastrointestinal peptides) presents ample opportunities for therapeutic intervention that are currently being tested in clinical trials. Drugs targeting abnormal epigenetic changes, such as DNA hypermethylation and histone deacetylation, are also on the horizon, although most of this research is still in the preclinical phase. The potential prognostic implications of genetics and immunology in gastric cancer prognosis are also reviewed.
Collapse
|
46
|
Park YS, Jin MY, Kim YJ, Yook JH, Kim BS, Jang SJ. The global histone modification pattern correlates with cancer recurrence and overall survival in gastric adenocarcinoma. Ann Surg Oncol 2008; 15:1968-76. [PMID: 18470569 DOI: 10.1245/s10434-008-9927-9] [Citation(s) in RCA: 131] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2008] [Revised: 03/12/2008] [Accepted: 03/12/2008] [Indexed: 12/14/2022]
Abstract
BACKGROUND Epigenetic alterations such as DNA methylation and histone modification play important roles in carcinogenesis. It has been recently suggested that global histone modification patterns are independent predictors of cancer recurrence. In this study, we used immunohistochemistry to evaluate the patterns of histone H3 and H4 acetylation and trimethylation in gastric adenocarcinomas. METHODS Double 2-mm core tissue microarrays were made from 261 paraffin-embedded gastric adenocarcinoma samples and examined by immunohistochemistry for histone H3 lysine 9 (H3K9) acetylation and trimethylation, histone H4 lysine 16 acetylation, and histone H4 lysine 20 trimethylation. Sections were graded according to the proportion of tumor cells showing nuclear staining. RESULTS Trimethylation of H3K9 positively correlated with tumor stage (P = 0.043); lymphovascular invasion (P = 0.029), cancer recurrence (P = 0.043), and higher level of H3K9 trimethylation correlated with a poor survival rate (P = 0.008). Multivariate survival analysis showed that H3K9 trimethylation status is an independent prognostic factor (P = 0.014). After categorizing cases according to the dominant modification pattern, we found that methylation dominance was associated with lymphovascular invasion (P = 0.001), cancer recurrence (P = 0.001), and poor survival rate (P = 0.028). Methylation dominance was also an independent prognostic factor (P = 0.026) in multivariate survival analysis. CONCLUSION The pattern of histone modification as detected by immunohistochemistry may be useful as a predictor for the recurrence of cancer and may be an independent prognostic factor in gastric adenocarcinomas.
Collapse
Affiliation(s)
- Young Soo Park
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, 388-1, Poongnap-Dong, Songpa-Gu, 138-736, Seoul, Republic of Korea
| | | | | | | | | | | |
Collapse
|
47
|
Panani AD. Cytogenetic and molecular aspects of gastric cancer: clinical implications. Cancer Lett 2008; 266:99-115. [PMID: 18381231 DOI: 10.1016/j.canlet.2008.02.053] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2007] [Revised: 02/05/2008] [Accepted: 02/22/2008] [Indexed: 12/13/2022]
Abstract
Gastric cancer is of major importance world-wide being the second most common cause of cancer-related death in the world. According to Lauren's histological classification gastric cancer is divided in two groups, the better differentiated intestinal carcinomas and the poorly differentiated diffuse-type cancers. The genetic changes underlying the initiation and progression of gastric cancer are not well defined. Gastric carcinogenesis is a multistep process involving a number of genetic and epigenetic factors. Although it has been proposed that different genetic pathways exist for differentiated and undifferentiated carcinomas, the two histological subtypes of gastric cancer share some common genetic alterations. Currently, tumor histology and pathologic stage are the major prognostic variables used in the clinical practice for gastric cancer patients. However, it is known that tumors with similar morphology may differ in biological aggressiveness, prognosis and response to treatment. Molecular genetic analysis of gastric cancer revealed a number of associations of certain genetic changes with pathological features, tumor biological behavior and prognosis of gastric cancer patients, suggesting that these genetic abnormalities might play an important role in gastric tumorigenesis. Increasing evidence suggests that the molecular genetic changes could be helpful in the clinical setting, contributing to prognosis and management of patients. Regarding epigenetic events in gastric tumorigenesis, a number of methylating markers have been proposed for risk assessment, prognostic evaluation and as therapeutic targets. However, further research is required in order to systematically investigate the genetic changes in gastric cancer estimating also their usefulness in the clinical practice. A good understanding of the genetic changes underlying gastric carcinogenesis may provide new perspectives for prognosis and screening of high risk individuals. Some of the genetic alterations could definitely improve tumor classification and management of gastric cancer patients. Also, based on molecular data identified in gastric cancer novel therapeutics might help to improve the treatment of this disease.
Collapse
Affiliation(s)
- Anna D Panani
- Critical Care Department, Medical School of Athens University, Cytogenetics Unit, Evangelismos Hospital, Ipsilandou 45-47, Athens 10676, Greece
| |
Collapse
|
48
|
Heller G, Schmidt WM, Ziegler B, Holzer S, Müllauer L, Bilban M, Zielinski CC, Drach J, Zöchbauer-Müller S. Genome-wide transcriptional response to 5-aza-2'-deoxycytidine and trichostatin a in multiple myeloma cells. Cancer Res 2008; 68:44-54. [PMID: 18172295 DOI: 10.1158/0008-5472.can-07-2531] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
To identify epigenetically silenced cancer-related genes and to determine molecular effects of 5-aza-2'-deoxycytidine (Aza-dC) and/or trichostatin A (TSA) in multiple myeloma (MM), we analyzed global changes in gene expression profiles of three MM cell lines by microarray analysis. We identified up-regulation of several genes whose epigenetic silencing in MM is well known. However, much more importantly, we identified a large number of epigenetically inactivated cancer-related genes that are involved in various physiologic processes and whose epigenetic regulation in MM was unknown thus far. In addition, drug treatment of MM cell lines resulted in down-regulation of several MM proliferation-associated factors (i.e., MAF, CCND1/2, MYC, FGFR3, MMSET). Ten Aza-dC and/or TSA up-regulated genes (CPEB1, CD9, GJA1, BCL7c, GADD45G, AKAP12, TFPI2, CCNA1, SPARC, and BNIP3) were selected for methylation analysis in six MM cell lines, 24 samples from patients with monoclonal gammopathy of undetermined significance (MGUS), and 111 samples from patients with MM. Methylation frequencies of these genes ranged between 0% and 17% in MGUS samples and between 5% and 50% in MM samples. Interestingly, methylation of SPARC and BNIP3 was statistically significantly associated with a poor overall survival of MM patients (P = 0.003 and P = 0.017, respectively). Moreover, SPARC methylation was associated with loss of SPARC protein expression by immunostaining in a subset of MM patients. In conclusion, we identified new targets for aberrant methylation in monoclonal gammopathies, and our results suggest that DNA methyltransferase and histone deacetylase inhibition might play an important role in the future treatment of patients with MM.
Collapse
Affiliation(s)
- Gerwin Heller
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Währinger Gürtel 18-20, A-1090 Vienna, Austria
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Ogino S, Kawasaki T, Kirkner GJ, Ogawa A, Dorfman I, Loda M, Fuchs CS. Down-regulation of p21 (CDKN1A/CIP1) is inversely associated with microsatellite instability and CpG island methylator phenotype (CIMP) in colorectal cancer. J Pathol 2007; 210:147-54. [PMID: 16850502 DOI: 10.1002/path.2030] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
p21 (CDKN1A/CIP1/WAF1), one of the cyclin-dependent kinase inhibitors, plays a key role in regulating the cell cycle and is transcriptionally regulated by p53. Down-regulation of p21 is caused by TP53 mutations in colorectal cancer. CpG island methylator phenotype (CIMP) appears to be a distinct subtype of colorectal cancer with concordant methylation of multiple gene promoters and is associated with a high degree of microsatellite instability (MSI-H) and BRAF mutations. However, no study to date has evaluated the relationship between p21 expression and CIMP in colorectal cancer. The purpose of this study was to examine the inter-relationships between p21, p53, CIMP, MSI and KRAS/BRAF status in colorectal cancer. We utilized 737 relatively unbiased samples of colorectal cancers from two large prospective cohort studies. Using quantitative real-time PCR (MethyLight), we measured DNA methylation in five CIMP-specific gene promoters [CACNA1G, CDKN2A (p16/INK4A), CRABP1, MLH1 and NEUROG1]. CIMP-high (>or=4/5 methylated promoters) was diagnosed in 118 (16%) of the 737 tumours. We also assessed expression of p21 and p53 by immunohistochemistry. Among the 737 tumours, 371 (50%) showed p21 loss. Both p21 loss and p53 positivity were inversely associated with CIMP-high, MSI-H and BRAF mutations. The associations of p21 with these molecular features were still present after tumours were stratified by p53 status. In contrast, the associations of p53 positivity with the molecular features were no longer present after tumours were stratified by p21 status. When CIMP-high and non-CIMP-high tumours were stratified by MSI or KRAS/BRAF status, CIMP-high and MSI-H (but not BRAF mutations) were still inversely associated with p21 loss. In conclusion, down-regulation of p21 is inversely correlated with CIMP-high and MSI-H in colorectal cancer, independent of TP53 and BRAF status.
Collapse
Affiliation(s)
- S Ogino
- Department of Pathology, Brigham and Women's Hospital, Boston, MA 02115, USA.
| | | | | | | | | | | | | |
Collapse
|
50
|
Vogiatzi P, Vindigni C, Roviello F, Renieri A, Giordano A. Deciphering the underlying genetic and epigenetic events leading to gastric carcinogenesis. J Cell Physiol 2007; 211:287-95. [PMID: 17238139 DOI: 10.1002/jcp.20982] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Gastric cancer is a common aggressive malignancy. Although its incidence shows considerable variation among different countries, gastric cancer is still a major health problem worldwide. The causes of stomach cancer are not completely understood. What is clear is that gastric cancer is a multi-stage process involving genetic and epigenetic factors. This review is an in-depth study of the known genetic and epigenetic processes in the development of this tumor, and delineates possible approaches in gene and epigenetic therapy.
Collapse
Affiliation(s)
- Paraskevi Vogiatzi
- Department of Molecular Biology, Medical Genetics, University of Siena, Siena, Italy
| | | | | | | | | |
Collapse
|