1
|
Mondaca JM, Muñoz JMF, Barraza GA, Vanderhoeven F, Redondo AL, Flamini MI, Sanchez AM. Therapeutic potential of GNRHR analogs and SRC/FAK inhibitors to counteract tumor growth and metastasis in breast cancer. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167826. [PMID: 40189112 DOI: 10.1016/j.bbadis.2025.167826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 03/27/2025] [Accepted: 03/31/2025] [Indexed: 04/09/2025]
Abstract
Breast cancer (BC) is the leading cause of cancer death in women, with hormone-dependent BC accounting for about 80 % of cases, primarily affecting postmenopausal women with gonadotropins, luteinizing hormone (LH), and follicle-stimulating hormone (FSH) elevated. Treatments targeting the gonadotropin-releasing hormone receptor (GnRHR), such as the agonist leuprorelin (LEU) and antagonist degarelix (DEGA), are used for hormone-dependent tumors. While the functional role of gonadotropin receptors in extragonadal tissues remains uncertain, recent studies suggest LH contributes to tumor development and progression. Tumor progression involves reorganization in the actin cytoskeleton, induction of adhesion, and cell migration, driven by proteins such as Src and the focal adhesion kinase (FAK), which are related to invasive behaviors. The overexpression of both protein kinases generates an invasive and metastatic phenotype, then inhibitors targeting Src (PP2) and FAK (FAKi) have been developed to counteract this effect. This study combined GnRH analogs with Src and FAK inhibitors to target BC progression. We found that LH treatment influenced gene expression linked to tumor development. Examining the GnRHR-LEU and GnRHR-DEGA complexes revealed structural differences affecting ligand binding. In an orthotopic tumor model, DEGA reduced tumor growth, while LEU had the opposite effect. Combining DEGA with PP2 or FAKi enhanced tumor inhibition, improving mice survival. These findings provide valuable insights into the essential regulatory role of gonadotropins in genes involved in tumorigenic processes, highlighting the potential of GnRHR antagonists combined with Src or FAK inhibitors as a promising strategy to develop new drugs that interfere with the ability of breast tumor progression.
Collapse
Affiliation(s)
- Joselina Magali Mondaca
- Laboratorio de Transducción de Señales y Movimiento Celular, Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Juan Manuel Fernandez Muñoz
- Departamento de Laboratorio de Salud Pública, Ministerio de Salud y Deportes, Gobierno de Mendoza, Mendoza, Argentina
| | - Gustavo Adolfo Barraza
- Laboratorio de Transducción de Señales y Movimiento Celular, Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Fiorella Vanderhoeven
- Laboratorio de Biología Tumoral, Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Analía Lourdes Redondo
- Laboratorio de Biología Tumoral, Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Marina Inés Flamini
- Laboratorio de Biología Tumoral, Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Cuyo, Mendoza, Argentina.
| | - Angel Matias Sanchez
- Laboratorio de Transducción de Señales y Movimiento Celular, Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Cuyo, Mendoza, Argentina.
| |
Collapse
|
2
|
Niu R, Wang C, Xie Y, Li S, Zhao Q, Chang Y, Mei Z. Prognostic significance of CD8 + tumor-infiltrating lymphocytes in operable breast cancer: a meta-analysis. BMC Cancer 2025; 25:601. [PMID: 40175948 PMCID: PMC11967132 DOI: 10.1186/s12885-025-13912-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 03/11/2025] [Indexed: 04/04/2025] Open
Abstract
BACKGROUND As key mediators of antitumor immunity, CD8 + tumor-infiltrating lymphocytes present antigens and initiate robust immune responses against cancer cells. When stratified by location, CD8 + T lymphocytes were counted and classified as intratumoral, stromal, or total CD8 + tumor-infiltrating lymphocytes. Despite their crucial role, the impact, especially the specific type of CD8 + T lymphocytes on breast cancer prognosis remains controversial. This meta-analysis synthesized evidence to delineate the relationship between CD8 + tumor-infiltrating lymphocytes density of different counting methods and breast cancer patient outcomes. METHODS PubMed, Embase, and the Cochrane Library were systemically searched from inception through January 2024 for studies evaluating the prognostic significance of CD8 + tumor-infiltrating lymphocytes in breast cancer. The primary endpoint was disease-free survival (DFS), and the second endpoints were overall survival (OS), breast cancer-specific survival (BCSS), and recurrence-free survival (RFS). RESULTS Thirty-four studies encompassing 23,626 breast cancer patients were included. Pooled hazard ratios (HRs) indicated a significant association of high CD8 + TIL presence with improved DFS (HR = 0.63; 95% CI = 0.54-0.73), OS (HR = 0.72; 95% CI = 0.65-0.79), BCSS (HR = 0.67; 95% CI = 0.58-0.78), and RFS (HR = 0.53; 95% CI = 0.38-0.73). Stratification by TIL location (intratumoral [iCD8], stromal [sCD8], or total [tCD8]) did not significantly impact DFS or OS. CONCLUSION High CD8 + TIL density in breast cancer patients is correlated with a favorable prognosis, irrespective of the location of CD8 + tumor-infiltrating lymphocytes. These findings affirm the prognostic utility of CD8 + TIL assessment and may guide future immunotherapeutic strategies.
Collapse
Affiliation(s)
- Ruijie Niu
- Department of Breast Surgery, Huangpu Branch of the Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
| | - Cheng Wang
- Department of Breast Surgery, Huangpu Branch of the Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
| | - Yiqun Xie
- Department of Breast Surgery, Huangpu Branch of the Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
- Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Shuangshuang Li
- Department of Pathology, Huangpu Branch of the Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
| | - Qian Zhao
- Department of Pathology, Huangpu Branch of the Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
| | - Yuqing Chang
- Department of Pathology, Huangpu Branch of the Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
| | - Zubing Mei
- Department of Anorectal Surgery, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Shanghai, 201203, China.
- Anorectal Disease Institute of Shuguang Hospital, Shanghai, People's Republic of China.
| |
Collapse
|
3
|
Williams MJ, Oliphant MUJ, Au V, Liu C, Baril C, O'Flanagan C, Lai D, Beatty S, Van Vliet M, Yiu JC, O'Connor L, Goh WL, Pollaci A, Weiner AC, Grewal D, McPherson A, Norton K, Moore M, Prabhakar V, Agarwal S, Garber JE, Dillon DA, Shah SP, Brugge JS, Aparicio S. Luminal breast epithelial cells of BRCA1 or BRCA2 mutation carriers and noncarriers harbor common breast cancer copy number alterations. Nat Genet 2024; 56:2753-2762. [PMID: 39567747 PMCID: PMC11631757 DOI: 10.1038/s41588-024-01988-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 10/15/2024] [Indexed: 11/22/2024]
Abstract
The prevalence and nature of somatic copy number alterations (CNAs) in breast epithelium and their role in tumor initiation and evolution remain poorly understood. Using single-cell DNA sequencing (49,238 cells) of epithelium from BRCA1 and BRCA2 carriers or wild-type individuals, we identified recurrent CNAs (for example, 1q-gain and 7q, 10q, 16q and 22q-loss) that are present in a rare population of cells across almost all samples (n = 28). In BRCA1/BRCA2 carriers, these occur before loss of heterozygosity (LOH) of wild-type alleles. These CNAs, common in malignant tumors, are enriched in luminal cells but absent in basal myoepithelial cells. Allele-specific analysis of prevalent CNAs reveals that they arose by independent mutational events, consistent with convergent evolution. BRCA1/BRCA2 carriers contained a small percentage of cells with extreme aneuploidy, featuring loss of TP53, BRCA1/BRCA2 LOH and multiple breast cancer-associated CNAs. Our findings suggest that CNAs arising in normal luminal breast epithelium are precursors to clonally expanded tumor genomes.
Collapse
Affiliation(s)
- Marc J Williams
- Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
- The Halvorsen Center for Computational Oncology, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | - Michael U J Oliphant
- Department of Cell Biology, Ludwig Center at Harvard, Harvard Medical School (HMS), Boston, MA, USA
| | - Vinci Au
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Cathy Liu
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Caroline Baril
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Ciara O'Flanagan
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Daniel Lai
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Sean Beatty
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Michael Van Vliet
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jacky Ch Yiu
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Lauren O'Connor
- Department of Cell Biology, Ludwig Center at Harvard, Harvard Medical School (HMS), Boston, MA, USA
| | - Walter L Goh
- Department of Cell Biology, Ludwig Center at Harvard, Harvard Medical School (HMS), Boston, MA, USA
| | - Alicia Pollaci
- Department of Medical Oncology, Dana-Farber Cancer Institute (DFCI), Boston, MA, USA
| | - Adam C Weiner
- Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
- The Halvorsen Center for Computational Oncology, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | - Diljot Grewal
- Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
- The Halvorsen Center for Computational Oncology, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | - Andrew McPherson
- Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
- The Halvorsen Center for Computational Oncology, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | - Klarisa Norton
- Department of Cell Biology, Ludwig Center at Harvard, Harvard Medical School (HMS), Boston, MA, USA
| | - McKenna Moore
- Department of Medical Oncology, Dana-Farber Cancer Institute (DFCI), Boston, MA, USA
| | - Vikas Prabhakar
- Department of Pathology, Brigham and Women's Hospital (BWH), Boston, MA, USA
| | - Shailesh Agarwal
- Department of Surgery, Brigham and Women's Hospital (BWH), Boston, MA, USA
| | - Judy E Garber
- Department of Medical Oncology, Dana-Farber Cancer Institute (DFCI), Boston, MA, USA
| | - Deborah A Dillon
- Department of Medical Oncology, Dana-Farber Cancer Institute (DFCI), Boston, MA, USA
| | - Sohrab P Shah
- Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York City, NY, USA.
- The Halvorsen Center for Computational Oncology, Memorial Sloan Kettering Cancer Center, New York City, NY, USA.
| | - Joan S Brugge
- Department of Cell Biology, Ludwig Center at Harvard, Harvard Medical School (HMS), Boston, MA, USA.
| | - Samuel Aparicio
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada.
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
4
|
Downs E, Gulbahce HE. "Lobular lesions of the breast: From the classic to the variants". Semin Diagn Pathol 2024; 41:258-271. [PMID: 39510943 DOI: 10.1053/j.semdp.2024.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 10/03/2024] [Indexed: 11/15/2024]
Abstract
The aim of this review is to provide the surgical pathologist an overview of lobular lesions, from in situ to invasive carcinoma and the variants, by discussing the epidemiology, clinical characteristics, morphology, immunohistochemistry, known molecular data as well as the treatment recommendations. The recognition of histologic variants of both in situ and invasive lobular carcinoma has expanded the differential diagnosis. Awareness of these different entities is important as treatment recommendations continue to evolve.
Collapse
Affiliation(s)
- Erinn Downs
- Mayo Clinic Arizona Scottsdale, AZ, United States.
| | | |
Collapse
|
5
|
Mohammed SS, Al Mahmoodi H, Yalda MI. Expression of Axl Receptor Tyrosine Kinase and Its Association With Ki-67 Proliferation Marker, BCL-2 Anti-apoptotic Protein, Hormone Receptor Status, and HER2/Neu Status in Breast Cancer Among Women From Duhok, Iraq. Cureus 2024; 16:e70204. [PMID: 39463509 PMCID: PMC11510083 DOI: 10.7759/cureus.70204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/25/2024] [Indexed: 10/29/2024] Open
Abstract
Background Breast cancer (BC) is the most prevalent cancer among women worldwide, contributing to high mortality rates, especially in Iraqi women. Detecting the disease before metastasis may increase survival chances for many patients, but that is not the case for most of them. Thus the search for new prognostic biomarkers or testing the relevance of existing ones could contribute to therapeutic decisions complementing the traditional methods, including TNM (tumor, node, and metastasis) staging, tumor grade, and other clinicopathological features in addition to the use of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2/neu). The Axl receptor is frequently associated with invasion, migration, poor prognosis, and angiogenesis. Furthermore, its association with chemotherapy and targeted therapy resistance makes it an ideal biomarker for therapeutic targeting. Methodology This study involved 50 malignant cases with 25 benign fibroadenoma and non-neoplastic cases represented by inflammatory conditions, collected with their corresponding data from the central lab in Duhok Governorate, Iraq. Expression of Kiel 67 (Ki-67) proliferation marker and B-cell lymphoma 2 (BCL-2) anti-apoptotic protein was measured using immunohistochemistry (IHC) to estimate tumor growth and apoptosis. Gene expression of the Axl receptor was evaluated using reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Results Cases with high Ki-67 accounted for 68% and low Ki-67 cases were 32% across the graded groups and were significantly associated with tumor grade, PR, and HER2. BCL-2-negative cases accounted for 62% and BCL-2-positive cases were 38%. It was revealed that BCL-2 had a strong correlation with age, especially in those under 50 years. As for the Axl gene expression, the average fold change in expression in the high-grade (H.) group was 1.74 times higher than in the control group, while in the low/intermediate (L.) group, it was 3.74 times higher. Additionally, when comparing these results with other variables, no significant associations were observed. Conclusion Axl receptor was not associated with all of the clinicopathological variables, the expression values were high in malignant tumors in comparison with the benign tumors, and it was found that Axl receptor expression was associated with low/intermediate grade, which is considered a favorable prognostic factor. Although Axl receptor expression was previously linked with proliferation and invasiveness in BC, its association with the Ki-67 proliferation marker and BCL-2 anti-apoptotic protein was not observed.
Collapse
Affiliation(s)
- Sada S Mohammed
- Department of Molecular and Medical Biotechnology, College of Biotechnology, Al-Nahrain University, Baghdad, IRQ
| | - Hanaa Al Mahmoodi
- Department of Molecular and Medical Biotechnology, College of Biotechnology, Al-Nahrain University, Baghdad, IRQ
| | - Mayada I Yalda
- Department of Pathology, College of Medicine, University of Duhok, Duhok, IRQ
| |
Collapse
|
6
|
Li T, Chen YC, Ao P. Heterogeneous Evolution of Breast Cancer Cells-An Endogenous Molecular-Cellular Network Study. BIOLOGY 2024; 13:564. [PMID: 39194502 DOI: 10.3390/biology13080564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/23/2024] [Accepted: 07/25/2024] [Indexed: 08/29/2024]
Abstract
Breast cancer heterogeneity presents a significant challenge in clinical therapy, such as over-treatment and drug resistance. These challenges are largely due to its obscure normal epithelial origins, evolutionary stability, and transitions on the cancer subtypes. This study aims to elucidate the cellular emergence and maintenance of heterogeneous breast cancer via quantitative bio-process modeling, with potential benefit to therapeutic strategies for the disease. An endogenous molecular-cellular hypothesis posits that both pathological and physiological states are phenotypes evolved from and shaped by interactions among a number of conserved modules and cellular factors within a biological network. We hereby developed a model of core endogenous network for breast cancer in accordance with the theory, quantifying its intrinsic dynamic properties with dynamic modeling. The model spontaneously generates cell states that align with molecular classifications at both the molecular and modular level, replicating four widely recognized molecular subtypes of the cancer and validating against data extracted from the TCGA database. Further analysis shows that topologically, a singular progression gateway from normal breast cells to cancerous states is identified as the Luminal A-type breast cancer. Activated positive feedback loops are found to stabilize cellular states, while negative feedback loops facilitate state transitions. Overall, more routes are revealed on the cellular transition between stable states, and a traceable count explains the origin of breast cancer heterogeneity. Ultimately, the research intended to strength the search for therapeutic targets.
Collapse
Affiliation(s)
- Tianqi Li
- Center for Quantitative Life Sciences & Physics Department, Shanghai University, Shanghai 200444, China
| | - Yong-Cong Chen
- Center for Quantitative Life Sciences & Physics Department, Shanghai University, Shanghai 200444, China
| | - Ping Ao
- School of Biomedical Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
7
|
Williams MJ, Oliphant MU, Au V, Liu C, Baril C, O'Flanagan C, Lai D, Beatty S, Van Vliet M, Yiu JC, O'Connor L, Goh WL, Pollaci A, Weiner AC, Grewal D, McPherson A, Moore M, Prabhakar V, Agarwal S, Garber JE, Dillon D, Shah SP, Brugge J, Aparicio S. Luminal breast epithelial cells from wildtype and BRCA mutation carriers harbor copy number alterations commonly associated with breast cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.01.591587. [PMID: 38746396 PMCID: PMC11092623 DOI: 10.1101/2024.05.01.591587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Cancer-associated mutations have been documented in normal tissues, but the prevalence and nature of somatic copy number alterations and their role in tumor initiation and evolution is not well understood. Here, using single cell DNA sequencing, we describe the landscape of CNAs in >42,000 breast epithelial cells from women with normal or high risk of developing breast cancer. Accumulation of individual cells with one or two of a specific subset of CNAs (e.g. 1q gain and 16q, 22q, 7q, and 10q loss) is detectable in almost all breast tissues and, in those from BRCA1 or BRCA2 mutations carriers, occurs prior to loss of heterozygosity (LOH) of the wildtype alleles. These CNAs, which are among the most common associated with ductal carcinoma in situ (DCIS) and malignant breast tumors, are enriched almost exclusively in luminal cells not basal myoepithelial cells. Allele-specific analysis of the enriched CNAs reveals that each allele was independently altered, demonstrating convergent evolution of these CNAs in an individual breast. Tissues from BRCA1 or BRCA2 mutation carriers contain a small percentage of cells with extreme aneuploidy, featuring loss of TP53 , LOH of BRCA1 or BRCA2 , and multiple breast cancer-associated CNAs in addition to one or more of the common CNAs in 1q, 10q or 16q. Notably, cells with intermediate levels of CNAs are not detected, arguing against a stepwise gradual accumulation of CNAs. Overall, our findings demonstrate that chromosomal alterations in normal breast epithelium partially mirror those of established cancer genomes and are chromosome- and cell lineage-specific.
Collapse
|
8
|
Wang J, Li B, Luo M, Huang J, Zhang K, Zheng S, Zhang S, Zhou J. Progression from ductal carcinoma in situ to invasive breast cancer: molecular features and clinical significance. Signal Transduct Target Ther 2024; 9:83. [PMID: 38570490 PMCID: PMC10991592 DOI: 10.1038/s41392-024-01779-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 02/14/2024] [Accepted: 02/26/2024] [Indexed: 04/05/2024] Open
Abstract
Ductal carcinoma in situ (DCIS) represents pre-invasive breast carcinoma. In untreated cases, 25-60% DCIS progress to invasive ductal carcinoma (IDC). The challenge lies in distinguishing between non-progressive and progressive DCIS, often resulting in over- or under-treatment in many cases. With increasing screen-detected DCIS in these years, the nature of DCIS has aroused worldwide attention. A deeper understanding of the biological nature of DCIS and the molecular journey of the DCIS-IDC transition is crucial for more effective clinical management. Here, we reviewed the key signaling pathways in breast cancer that may contribute to DCIS initiation and progression. We also explored the molecular features of DCIS and IDC, shedding light on the progression of DCIS through both inherent changes within tumor cells and alterations in the tumor microenvironment. In addition, valuable research tools utilized in studying DCIS including preclinical models and newer advanced technologies such as single-cell sequencing, spatial transcriptomics and artificial intelligence, have been systematically summarized. Further, we thoroughly discussed the clinical advancements in DCIS and IDC, including prognostic biomarkers and clinical managements, with the aim of facilitating more personalized treatment strategies in the future. Research on DCIS has already yielded significant insights into breast carcinogenesis and will continue to pave the way for practical clinical applications.
Collapse
Affiliation(s)
- Jing Wang
- The Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Breast Surgery and Oncology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Clinical Research Center for Cancer, Hangzhou, China
| | - Baizhou Li
- Department of Pathology, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
| | - Meng Luo
- The Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Clinical Research Center for Cancer, Hangzhou, China
- Department of Plastic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jia Huang
- The Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Clinical Research Center for Cancer, Hangzhou, China
| | - Kun Zhang
- Department of Breast Surgery and Oncology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shu Zheng
- The Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Clinical Research Center for Cancer, Hangzhou, China
| | - Suzhan Zhang
- The Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Zhejiang Provincial Clinical Research Center for Cancer, Hangzhou, China.
| | - Jiaojiao Zhou
- The Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Department of Breast Surgery and Oncology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Zhejiang Provincial Clinical Research Center for Cancer, Hangzhou, China.
- Cancer Center, Zhejiang University, Hangzhou, China.
| |
Collapse
|
9
|
Koninckx PR, Ussia A, Page G. Breast cancer screening in women taking hormone replacement therapy needs updating. Facts Views Vis Obgyn 2024; 16:5-8. [PMID: 38551470 PMCID: PMC11198888 DOI: 10.52054/fvvo.16.1.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024] Open
Abstract
Breast cancer screening by mammography is widely used. The diagnostic accuracy is limited, with a positive predictive value of 16%. Therefore, a stepwise investigation, with repeat mammography and confirmation by pathology, is usually proposed. Although this stepwise investigation intends to avoid overtreatment, the many false positives result in unnecessary fear and diagnostic surgery in many women. The false negatives are not known since these women have not been investigated. Given the estimated low risk of missing breast cancer and the slow growth, repeating a screening mammography every two years is sufficient. The false positive screening results, increase with breast density, and breast density increases when hormone replacement therapy (HRT) is given. It, therefore, is suggested to use clinical judgment and stop HRT for 3 to 6 months before repeating the mammography instead of starting immediately a stepwise investigation in all women.
Collapse
|
10
|
Lashen A, Al-Kawaz A, Jeyapalan JN, Alqahtani S, Shoqafi A, Algethami M, Toss M, Green AR, Mongan NP, Sharma S, Akbari MR, Rakha EA, Madhusudan S. Immune infiltration, aggressive pathology, and poor survival outcomes in RECQL helicase deficient breast cancers. Neoplasia 2024; 47:100957. [PMID: 38134458 PMCID: PMC10777014 DOI: 10.1016/j.neo.2023.100957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023]
Abstract
RECQL is essential for genomic stability. Here, we evaluated RECQL in 449 pure ductal carcinomas in situ (DCIS), 152 DCIS components of mixed DCIS/invasive breast cancer (IBC) tumors, 157 IBC components of mixed DCIS/IBC and 50 normal epithelial terminal ductal lobular units (TDLUs). In 726 IBCs, CD8+, FOXP3+, IL17+, PDL1+, PD1+ T-cell infiltration (TILs) were investigated in RECQL deficient and proficient cancers. Tumor mutation burden (TMB) was evaluated in five RECQL germ-line mutation carriers with IBC by genome sequencing. Compared with normal epithelial cells, a striking reduction in nuclear RECQL in DCIS was evident with aggressive pathology and poor survival. In RECQL deficient IBCs, CD8+, FOXP3+, IL17+ or PDL1+ TILs were linked with aggressive pathology and shorter survival. In germline RECQL mutation carriers, increased TMB was observed in 4/5 tumors. We conclude that RECQL loss is an early event in breast cancer and promote immune cell infiltration.
Collapse
Affiliation(s)
- Ayat Lashen
- Nottingham Breast Cancer Research Centre, Nottingham Biodiscovery Institute, School of Medicine, University of Nottingham, University Park, Nottingham NG7 3RD, UK
| | - Abdulbaqi Al-Kawaz
- Nottingham Breast Cancer Research Centre, Nottingham Biodiscovery Institute, School of Medicine, University of Nottingham, University Park, Nottingham NG7 3RD, UK; Department of Pathology, Nottingham University Hospital, City Campus, Hucknall Road, Nottingham NG51PB, UK
| | - Jennie N Jeyapalan
- Nottingham Breast Cancer Research Centre, Nottingham Biodiscovery Institute, School of Medicine, University of Nottingham, University Park, Nottingham NG7 3RD, UK
| | - Shatha Alqahtani
- Nottingham Breast Cancer Research Centre, Nottingham Biodiscovery Institute, School of Medicine, University of Nottingham, University Park, Nottingham NG7 3RD, UK
| | - Ahmed Shoqafi
- Nottingham Breast Cancer Research Centre, Nottingham Biodiscovery Institute, School of Medicine, University of Nottingham, University Park, Nottingham NG7 3RD, UK
| | - Mashael Algethami
- Nottingham Breast Cancer Research Centre, Nottingham Biodiscovery Institute, School of Medicine, University of Nottingham, University Park, Nottingham NG7 3RD, UK
| | - Michael Toss
- Nottingham Breast Cancer Research Centre, Nottingham Biodiscovery Institute, School of Medicine, University of Nottingham, University Park, Nottingham NG7 3RD, UK; Department of Pathology, Nottingham University Hospital, City Campus, Hucknall Road, Nottingham NG51PB, UK
| | - Andrew R Green
- Nottingham Breast Cancer Research Centre, Nottingham Biodiscovery Institute, School of Medicine, University of Nottingham, University Park, Nottingham NG7 3RD, UK
| | - Nigel P Mongan
- Nottingham Breast Cancer Research Centre, Nottingham Biodiscovery Institute, School of Medicine, University of Nottingham, University Park, Nottingham NG7 3RD, UK; Department of Pharmacology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Sudha Sharma
- Department of Biochemistry and Molecular Biology, College of Medicine, Howard University, 520 W Street, NW, Washington, DC 20059, USA
| | - Mohammad R Akbari
- Women's College Research Institute, Women's College Hospital, University of Toronto, Toronto, Canada; Institute of Medical Science, Faculty of Medicine, University of Toronto. Toronto, Canada; Dalla Lana School of Public Health, University of Toronto, Toronto, Canada
| | - Emad A Rakha
- Nottingham Breast Cancer Research Centre, Nottingham Biodiscovery Institute, School of Medicine, University of Nottingham, University Park, Nottingham NG7 3RD, UK; Department of Pathology, Nottingham University Hospital, City Campus, Hucknall Road, Nottingham NG51PB, UK
| | - Srinivasan Madhusudan
- Nottingham Breast Cancer Research Centre, Nottingham Biodiscovery Institute, School of Medicine, University of Nottingham, University Park, Nottingham NG7 3RD, UK; Department of Oncology, Nottingham University Hospitals, Nottingham NG51PB, UK.
| |
Collapse
|
11
|
Ali M, Bamezai RNK, Singh RP. Invasive Breast Cancer: miR-24-2 Targets Genes Associated with Survival and Sensitizes MDA-MB-231 Cells to Berberine. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2023; 27:409-420. [PMID: 37669117 DOI: 10.1089/omi.2023.0092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
MicroRNA aberrations including that of miR-24-2 have been reported in various cancers. However, the target genes for miR-24-2 are yet to be identified and validated in invasive breast cancer and the triple-negative breast cancer (TNBC). Using in silico approaches and gene expression analyses, we identified and validated the target genes of miR-24-2 in invasive breast cancer, majority of which were TNBC. We studied the translational potential of these target genes using berberine in a TNBC cell line. Differentially expressed genes targeted by miR-24-2 were identified and analyzed for their survival effects using the The Cancer Genome Atlas-Breast Invasive Carcinoma (-BRCA) samples. Furthermore, we carried out protein-protein interaction, Gene Ontology, Kyoto Encyclopedia of Genes and Genomes, gene expression, and Kaplan-Meier survival analyses using common targets of miR-24-2 in invasive breast cancer/TNBC. We identified 11 biomarker candidate genes as crucial targets of miR-24-2. The survival of breast cancer patients was significantly associated with the low expressions of nine genes, including RACGAP1, KIAA1199, TIMM17A, LYRM7, IL1R1, SLC1A3, DTX4, L1CAM, and SAP30-like (SAP30L), and high expressions of two genes, SOD2 and HLA-DQB2. These in silico findings were validated by overexpressing miR-24-2 and assessing the expression pattern of these target genes in the TNBC MDA-MB-231 cells. miR-24-2 overexpression inhibited (by 20%; p < 0.001) cell proliferation and sensitized the anticancer effect of berberine. In all, this study reports on the novel target genes of miR-24-2 in invasive breast cancer/TNBC, and that miR-24-2 sensitizes MDA-MB-231 cells to berberine. These data lend evidence for the translational potentials of miR-24-2 for invasive breast cancer diagnostic and therapeutic innovation.
Collapse
Affiliation(s)
- Mansoor Ali
- Cancer Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Rameshwar N K Bamezai
- Cancer Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Rana P Singh
- Cancer Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
- Special Centre for Systems Medicine, Jawaharlal Nehru University, New Delhi, India
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Denver, Aurora, Colorado, USA
| |
Collapse
|
12
|
Yu J, da Silva EM, La HS, Clark BZ, Fine JL, Carter GJ, Villatoro TM, Soong TR, Lee AV, Oesterreich S, Basili T, Blanco-Heredia J, Selenica P, Ye Q, Da Cruz Paula A, Dopeso H, Gazzo A, Marra A, Pareja F, Reis-Filho JS, Bhargava R. Clinicopathologic and genomic features of lobular like invasive mammary carcinoma: is it a distinct entity? NPJ Breast Cancer 2023; 9:60. [PMID: 37443169 DOI: 10.1038/s41523-023-00566-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 07/04/2023] [Indexed: 07/15/2023] Open
Abstract
This study describes "lobular-like invasive mammary carcinomas" (LLIMCas), a group of low- to intermediate-grade invasive mammary carcinomas with discohesive, diffusely infiltrative cells showing retained circumferential membranous immunoreactivity for both E-cadherin and p120. We analyzed the clinical-pathologic features of 166 LLIMCas compared to 104 classical invasive lobular carcinomas (ILCs) and 100 grade 1 and 2 invasive ductal carcinomas (IDCs). Tumor size and pT stage of LLIMCas were intermediate between IDCs and ILCs, and yet often underestimated on imaging and showed frequent positive margins on the first resection. Despite histomorphologic similarities to classical ILC, the discohesion in LLIMCa was independent of E-cadherin/p120 immunophenotypic alteration. An exploratory, hypothesis-generating analysis of the genomic features of 14 randomly selected LLIMCas and classical ILCs (7 from each category) was performed utilizing an FDA-authorized targeted capture sequencing assay (MSK-IMPACT). None of the seven LLIMCas harbored CDH1 loss-of-function mutations, and none of the CDH1 alterations detected in two of the LLIMCas was pathogenic. In contrast, all seven ILCs harbored CDH1 loss-of-function mutations coupled with the loss of heterozygosity of the CDH1 wild-type allele. Four of the six evaluable LLIMCas were positive for CDH1 promoter methylation, which may partially explain the single-cell infiltrative morphology seen in LLIMCa. Further studies are warranted to better define the molecular basis of the discohesive cellular morphology in LLIMCa. Until more data becomes available, identifying LLIMCas and distinguishing them from typical IDCs and ILCs would be justified. In patients with LLIMCas, preoperative MRI should be entertained to guide surgical management.
Collapse
Affiliation(s)
- Jing Yu
- Department of Pathology, University of Pittsburgh Medical Center Magee-Womens Hospital, Pittsburgh, PA, USA.
| | - Edaise M da Silva
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Hae-Sun La
- Department of Pathology, University of Pittsburgh Medical Center Magee-Womens Hospital, Pittsburgh, PA, USA
| | - Beth Z Clark
- Department of Pathology, University of Pittsburgh Medical Center Magee-Womens Hospital, Pittsburgh, PA, USA
| | - Jeffrey L Fine
- Department of Pathology, University of Pittsburgh Medical Center Magee-Womens Hospital, Pittsburgh, PA, USA
| | - Gloria J Carter
- Department of Pathology, University of Pittsburgh Medical Center Magee-Womens Hospital, Pittsburgh, PA, USA
| | - Tatiana M Villatoro
- Department of Pathology, University of Pittsburgh Medical Center Magee-Womens Hospital, Pittsburgh, PA, USA
| | - T Rinda Soong
- Department of Pathology, University of Pittsburgh Medical Center Magee-Womens Hospital, Pittsburgh, PA, USA
| | - Adrian V Lee
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Steffi Oesterreich
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Thais Basili
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Juan Blanco-Heredia
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Pier Selenica
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Qiqi Ye
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Arnaud Da Cruz Paula
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Higinio Dopeso
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Andrea Gazzo
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Antonio Marra
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Fresia Pareja
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jorge S Reis-Filho
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | - Rohit Bhargava
- Department of Pathology, University of Pittsburgh Medical Center Magee-Womens Hospital, Pittsburgh, PA, USA.
| |
Collapse
|
13
|
Liang D, Gao Q, Meng Z, Li W, Song J, Xue K. Glycosylation in breast cancer progression and mammary development: Molecular connections and malignant transformations. Life Sci 2023; 326:121781. [PMID: 37207809 DOI: 10.1016/j.lfs.2023.121781] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/13/2023] [Accepted: 05/12/2023] [Indexed: 05/21/2023]
Abstract
INTRODUCTION The cellular behavior in normal mammary gland development and the progression of breast cancer is like the relationship between an object and its mirror image: they may appear similar, but their essence is completely different. Breast cancer can be considered as temporal and spatial aberrations of normal development in mammary gland. Glycans have been shown to regulate key pathophysiological steps during mammary development and breast cancer progression, and the glycoproteins that play a key role in both processes can affect the normal differentiation and development of mammary cells, and even cause malignant transformation or accelerate tumorigenesis due to differences in their type and level of glycosylation. KEY FINDINGS In this review, we summarize the roles of glycan alterations in essential cellular behaviors during breast cancer progression and mammary development, and also highlight the importance of key glycan-binding proteins such as epidermal growth factor receptor, transforming growth factor β receptors and other proteins, which are pivotal in the modulation of cellular signaling in mammary gland. Our review takes an overall view of the molecular interplay, signal transduction and cellular behaviors in mammary gland development and breast cancer progression from a glycobiological perspective. SIGNIFICANCE This review will give a better understanding of the similarities and differences in glycosylation between mammary gland development and breast cancer progression, laying the foundation for elucidating the key molecular mechanisms of glycobiology underlying the malignant transformation of mammary cells.
Collapse
Affiliation(s)
- Dongyang Liang
- College of Basic Medical Sciences, Dalian Medical University, Liaoning, China
| | - Qian Gao
- College of Basic Medical Sciences, Dalian Medical University, Liaoning, China
| | - Zixuan Meng
- College of Basic Medical Sciences, Dalian Medical University, Liaoning, China
| | - Wenzhe Li
- College of Basic Medical Sciences, Dalian Medical University, Liaoning, China
| | - Jiazhe Song
- College of Basic Medical Sciences, Dalian Medical University, Liaoning, China.
| | - Kai Xue
- College of Basic Medical Sciences, Dalian Medical University, Liaoning, China.
| |
Collapse
|
14
|
Kalwaniya DS, Gairola M, Gupta S, Pawan G. Ductal Carcinoma in Situ: A Detailed Review of Current Practices. Cureus 2023; 15:e37932. [PMID: 37220466 PMCID: PMC10200127 DOI: 10.7759/cureus.37932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/21/2023] [Indexed: 05/25/2023] Open
Abstract
Ductal carcinoma in situ is a challenge for breast surgeons, beginning with its difficult radiological detection and continuing with its contentious multimodal treatment and management. It is becoming more common as a result of widespread screening mammography and usually manifests as a cluster of calcifications. Patients are usually asymptomatic or present with a small, palpable lump. It is, however, a premalignant lesion that has the potential to progress to invasive carcinoma and is treated similarly with multimodal therapy. Treatment options currently include total or simple mastectomy with sentinel lymph node biopsy or lumpectomy with radiation. Tamoxifen and human epidermal growth factor receptor two suppression therapy are examples of adjuvant therapy. A review of consensus guidelines and literature was performed, in which we included the available online literature on the concerned topic from 2000-2022. This article is not a complete review of all the available literature; rather, it is a comprehensive review of the topic and its current management guidelines.
Collapse
Affiliation(s)
- Dheer S Kalwaniya
- General Surgery, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, IND
| | - Madhur Gairola
- General Surgery, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, IND
| | - Sumedha Gupta
- Obstetrics and Gynaecology, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, IND
| | - G Pawan
- General Surgery, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, IND
| |
Collapse
|
15
|
Aguiar F, Rhana P, Bloise E, Nunes C, Rodrigues A, Ferreira E. T-type Ca2+ channels and their relationship with pre-neoplastic and neoplastic lesions in the human breast. Braz J Med Biol Res 2023; 56:e11879. [PMID: 36790286 PMCID: PMC9925191 DOI: 10.1590/1414-431x2023e11879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 01/04/2023] [Indexed: 02/12/2023] Open
Abstract
The expression of T-type voltage-dependent Ca2+ channels (Cav3) has been previously observed in breast cancer, but their expression and subcellular localization were not evaluated in pre-neoplastic lesions. Therefore, this work aimed to evaluate protein expression and subcellular localization of T-type channel isoforms in human breast tissue samples. Protein expressions of CaV3.1, CaV3.2, and CaV3.3 were evaluated by immunohistochemistry in breast without alteration, in proliferative non-neoplastic lesions, and in neoplastic ductal epithelial lesions of the human breast. CaV3.1, CaV3.2, and CaV3.3 nuclear expressions were decreased in advanced stages of neoplastic transformation, whereas CaV3.1 and CaV3.2 cytoplasmic expression increased. Also, the decrease in nuclear expression was correlated with an increase in cytoplasmic expression for CaV3.1 isoform. The change in CaV3 protein expression and subcellular localization are consistent with the neoplastic transformation stages of mammary epithelial cells, evident in early neoplastic lesions, such as ductal carcinomas in situ. These results suggest a possible involvement of CaV3 in the carcinogenic processes and could be considered as a potential pharmacological target in new therapies for breast cancer treatment.
Collapse
Affiliation(s)
- F. Aguiar
- Departamento de Patologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil,Programa de Imunologia e Biologia Tumoral, Instituto Nacional de Câncer, Rio de Janeiro, RJ, Brasil
| | - P. Rhana
- Department of Physiology and Membrane Biology, University of California Davis, Davis, CA, USA
| | - E. Bloise
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | - C.B. Nunes
- Departamento de Anatomia Patológica e Medicina Legal, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | - A.L. Rodrigues
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | - E. Ferreira
- Departamento de Patologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| |
Collapse
|
16
|
Soong TR, Dillon DA, Rice-Stitt TL, Wieczorek TJ, Baker GM, Darvishian F, Collins LC, Lester SC, Schnitt SJ, Harrison BT. Invasive lobular carcinoma with extracellular mucin (ILCEM): clinicopathologic and molecular characterization of a rare entity. Mod Pathol 2022; 35:1370-1382. [PMID: 35477749 DOI: 10.1038/s41379-022-01084-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 04/05/2022] [Accepted: 04/06/2022] [Indexed: 02/07/2023]
Abstract
Invasive lobular carcinoma with extracellular mucin (ILCEM) is a rare histologic subtype of breast cancer. Little is known about the pathologic or genomic signatures that distinguish ILCEM from classic invasive lobular carcinoma (ILC) or mucinous carcinoma. We studied 17 breast cancers with lobular morphology and extracellular mucin. Thirteen tumors with sufficient tissue for DNA extraction were analyzed by a next generation sequencing (NGS) assay that interrogates 447 genes for mutations and copy number variations (CNVs). Median patient age was 66 yrs (range: 31-77 yrs). Sixteen patients presented with masses, 7 of which were >2 cm. Seven patients had lymph node metastases. The cases of ILCEM were moderately (n = 13) or poorly differentiated (n = 4), frequently exhibiting variant morphology that has not been previously described or emphasized, including grade 3 nuclei (n = 11), diffuse signet ring cells (n = 10), solid growth (n = 4), tumor necrosis (n = 3) or apocrine features (n = 2). All tumors showed absent or reduced membranous E-cadherin expression. Concurrent lobular carcinoma in situ (LCIS) was seen in 11/17 cases, 1 of which was a striking example of signet ring cell LCIS with extracellular mucin. Receptor profiles were ER+/HER2- (n = 15) and ER+/HER2+ (n = 2). With a median follow-up of 83.5 months (range: 3-171 months) in 12 patients with available information, 8 patients had recurrences resulting in 4 cancer-related deaths. The most common CNVs were 16q loss (n = 11) and 1q gain (n = 9). CDH1 gene-level alterations were detected in all but one case, including frameshift (n = 7), nonsense (n = 2), and donor splice site (n = 1) mutations and indels (n = 2). Recurrent mutations were also seen in PIK3CA (n = 3), POLQ (n = 3), TP53 (n = 3), ERBB3 (n = 3), ERBB2 (n = 2), and RUNX1 (n = 2). Genes with recurrent amplifications included GATA3 (n = 4), FOXA1 (n = 3), CCND1 (n = 2). Our data highlights ILCEM as a distinct variant of ILC that often presents with higher-grade and variant morphologic features and is associated with an aggressive clinical course. NGS data support an overall lobular-type molecular profile and reveal potentially targetable alterations in a subset of cases with recurrence.
Collapse
Affiliation(s)
- T Rinda Soong
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Deborah A Dillon
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | | | - Tad John Wieczorek
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA.,Department of Pathology, Brigham and Women's Faulkner Hospital, Boston, MA, USA
| | - Gabrielle M Baker
- Harvard Medical School, Boston, MA, USA.,Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Farbod Darvishian
- Department of Pathology, New York University Langone Medical Center, New York, NY, USA
| | - Laura C Collins
- Harvard Medical School, Boston, MA, USA.,Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Susan C Lester
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Stuart J Schnitt
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Beth T Harrison
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA. .,Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
17
|
Lv Z, Wang Q, Liu X, Du Z, Liang W, Liu T, Zheng Y, Ma B, Xue D. Genetic instability-related lncRNAs predict prognosis and influence the immune microenvironment in breast cancer. Front Genet 2022; 13:926984. [PMID: 36118853 PMCID: PMC9478756 DOI: 10.3389/fgene.2022.926984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 08/08/2022] [Indexed: 11/14/2022] Open
Abstract
Genome instability is a hallmark of cancer, and the function of lncRNAs in regulating genomic stability has been gradually characterized. However, the prognostic value of lncRNAs related to genetic instability has not been found in breast cancer. Here we constructed a genetic instability-related lncRNA model including U62317.4, SEMA3B-AS1, MAPT-AS1, AC115837.2, LINC01269, AL645608.7, and GACAT2. This model can evaluate the risk and predict the survival outcomes of patients. Further analysis showed that the differentially expressed genes between the high- and low-risk groups were enriched in immunity and cornified envelope formation pathways. In addition, M2 macrophages infiltrated more obviously in the high-risk group. In summary, lncRNAs related to genetic instability may influence the development of breast cancer through immune infiltration and keratinization. This study provides a wider insight into breast cancer development and treatment.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Biao Ma
- *Correspondence: Biao Ma, ; Dongbo Xue,
| | | |
Collapse
|
18
|
Aguiar F, Rhana P, Bloise E, Rodrigues ALP, Ferreira E. L-type voltage-dependent Ca2+ channels expression involved in pre-neoplastic transformation of breast cancer. SURGICAL AND EXPERIMENTAL PATHOLOGY 2022. [DOI: 10.1186/s42047-022-00117-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Intracellular Ca2+ levels can modulate several cellular functions, including proliferation and other processes found altered in neoplastic cells. Helping to maintain Ca2+ homeostasis, L-type voltage-dependent Ca2+ channels had its expression identified in neoplasias, including breast cancer. Invasive breast carcinoma of no special type, the most common classification of breast cancer, has ductal hyperplasia and ductal carcinoma in situ as its possible non-obligate precursors. This channel’s role in breast cancer development from these precursors has not been investigated. Evaluate protein expression and subcellular localization of CaV1.1, CaV1.2, and CaV1.3 in mammary epithelium without alteration and neoplastic and non-neoplastic ductal proliferative lesions through immunohistochemistry was the aim of this investigation.
Methods
In the present study, CaV1.1, CaV1.2, and CaV1.3 protein expression was evaluated by immunohistochemistry in breast without alteration and in proliferative non-neoplastic and neoplastic ductal epithelial lesions of the human breast.
Results
It was observed that CaV1.3 presented a reduction in nuclear expression at neoplastic lesions, in addition to an increase in cytoplasmic CaV1.1 expression. The analyses of membrane immunostaining showed that CaV1.2 and CaV1.3 had an increase of expression as the lesions progressed in the stages leading to invasive carcinomas.
Conclusions
Changes in protein expression and subcellular localization of these channels during the progression stages indicate that they may be involved in neoplastic transformation.
Collapse
|
19
|
Cao B, Lei Y, Xue H, Liang Y, Liu Y, Xie Q, Yan L, Cui L, Li N. Changes in the Serum Concentrations of Essential Trace Metals in Patients with Benign and Malignant Breast Cancers. Biol Trace Elem Res 2022; 200:3537-3544. [PMID: 34671925 DOI: 10.1007/s12011-021-02964-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 10/10/2021] [Indexed: 10/20/2022]
Abstract
Essential trace metals (ETMs) may play important roles in the pathophysiology of benign and malignant breast cancers. Our study aimed to find associations between ETMs and benign and malignant breast cancers. We recruited 146 patients with benign (n = 73) and malignant (n = 73) breast tumors and 95 healthy controls (HCs) from Peking University Third Hospital, Beijing, China. The serum concentrations of seven ETMs (Zn, Mn, Cu, Fe, Co, Ni, and Mo) were evaluated using inductively coupled plasma mass spectrometry (ICP-MS). The serum concentrations of Zn were significantly lower in the malignant group than in the HC group, whereas the concentrations of Cu (p < 0.001) were significantly higher in the malignant group. The concentrations of Fe were significantly lower in both malignant and benign groups than in the HC group (p < 0.05). We observed that the Fe/Cu ratio was lower and the Cu/Ni ratio was higher in the malignant group than in the HCs, as well as in the benign group than in the HCs. The serum concentration of Fe (OR = 0.454; 95% CI, 0.263, 0.784; p = 0.005) was negatively associated with breast tumors after adjusting for potential confounders, including age, BMI, and smoking, drinking and menopause statuses; that of Cu (OR = 2.274; 95% CI, 1.282, 4.031; p = 0.005) was positively associated. Changes in the concentrations of ETMs (Zn, Cu, Fe, and Ni) may be involved in the development of malignant breast cancer. The findings provide foundations for further exploration of ETMs in the prevention and treatment of breast tumors.
Collapse
Affiliation(s)
- Bing Cao
- Key Laboratory of Cognition and Personality (SWU), Faculty of Psychology, Ministry of Education, Southwest University, Chongqing, 400715, People's Republic of China
| | - Yutao Lei
- Department of General Surgery, Peking University Third Hospital, Beijing, 100191, People's Republic of China
| | - Heng Xue
- Department of Ultrasound, Peking University Third Hospital, Beijing, 100191, People's Republic of China
| | - Yongming Liang
- Department of Laboratory Medicine, Peking University Third Hospital, Beijing, 100191, People's Republic of China
| | - Yaqiong Liu
- Department of Laboratorial Science and Technology, School of Public Health, Peking University, Beijing, 100191, People's Republic of China
- Vaccine Research Center, School of Public Health, Peking University, Beijing, 100191, People's Republic of China
| | - Qing Xie
- Department of Laboratorial Science and Technology, School of Public Health, Peking University, Beijing, 100191, People's Republic of China
- Vaccine Research Center, School of Public Health, Peking University, Beijing, 100191, People's Republic of China
| | - Lailai Yan
- Department of Laboratorial Science and Technology, School of Public Health, Peking University, Beijing, 100191, People's Republic of China
- Vaccine Research Center, School of Public Health, Peking University, Beijing, 100191, People's Republic of China
| | - Ligang Cui
- Department of Ultrasound, Peking University Third Hospital, Beijing, 100191, People's Republic of China
| | - Nan Li
- Research Center of Clinical Epidemiology, Peking University Third Hospital, Beijing, 100191, People's Republic of China.
| |
Collapse
|
20
|
Thennavan A, Garcia-Recio S, Liu S, He X, Perou CM. Molecular signatures of in situ to invasive progression for basal-like breast cancers: An integrated mouse model and human DCIS study. NPJ Breast Cancer 2022; 8:83. [PMID: 35851387 PMCID: PMC9293914 DOI: 10.1038/s41523-022-00450-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 06/24/2022] [Indexed: 11/08/2022] Open
Abstract
Ductal carcinoma in situ (DCIS) of the breast is a non-obligate precursor of Invasive Ductal Carcinoma (IDC) and thus the identification of features that may predict DCIS progression would be of potential clinical value. Experimental mouse models can be used to address this challenge by studying DCIS-to-IDC biology. Here we utilize single cell RNA sequencing (scRNAseq) on the C3Tag genetically engineered mouse model that forms DCIS-like precursor lesions and for which many lesions progress into end-stage basal-like molecular subtype IDC. We also perform bulk RNAseq analysis on 10 human synchronous DCIS-IDC pairs comprised of estrogen receptor (ER) positive and ER-negative subsets and utilize 2 additional public human DCIS data sets for comparison to our mouse model. By identifying malignant cells using inferred DNA copy number changes from the murine C3Tag scRNAseq data, we show the existence of cancer cells within the C3Tag pre-DCIS, DCIS, and IDC-like tumor specimens. These cancer cells were further classified into proliferative, hypoxic, and inflammatory subpopulations, which change in frequency in DCIS versus IDC. The C3Tag tumor progression model was also associated with increase in Cancer-Associated Fibroblasts and decrease in activated T cells in IDC. Importantly, we translate the C3Tag murine genomic findings into human DCIS where we find common features only with human basal-like DCIS, suggesting there are intrinsic subtype unique DCIS features. This study identifies several tumor and microenvironmental features associated with DCIS progression and may also provide genomic signatures that can identify progression-prone DCIS within the context of human basal-like breast cancers.
Collapse
Affiliation(s)
- Aatish Thennavan
- Oral and Craniofacial Biomedicine Program, School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Susana Garcia-Recio
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Siyao Liu
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Xiaping He
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Charles M Perou
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- Department of Pathology & Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
21
|
Solek J, Chrzanowski J, Cieslak A, Zielinska A, Piasecka D, Braun M, Sadej R, Romanska HM. Subtype-Specific Tumour Immune Microenvironment in Risk of Recurrence of Ductal Carcinoma In Situ: Prognostic Value of HER2. Biomedicines 2022; 10:1061. [PMID: 35625798 PMCID: PMC9138378 DOI: 10.3390/biomedicines10051061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/25/2022] [Accepted: 04/30/2022] [Indexed: 11/16/2022] Open
Abstract
Increasing evidence suggests that the significance of the tumour immune microenvironment (TIME) for disease prognostication in invasive breast carcinoma is subtype-specific but equivalent studies in ductal carcinoma in situ (DCIS) are limited. The purpose of this paper is to review the existing data on immune cell composition in DCIS in relation to the clinicopathological features and molecular subtype of the lesion. We discuss the value of infiltration by various types of immune cells and the PD-1/PD-L1 axis as potential markers of the risk of recurrence. Analysis of the literature available in PubMed and Medline databases overwhelmingly supports an association between densities of infiltrating immune cells, traits of immune exhaustion, the foci of microinvasion, and overexpression of HER2. Moreover, in several studies, the density of immune infiltration was found to be predictive of local recurrence as either in situ or invasive cancer in HER2-positive or ER-negative DCIS. In light of the recently reported first randomized DCIS trial, relating recurrence risk with overexpression of HER2, we also include a closing paragraph compiling the latest mechanistic data on a functional link between HER2 and the density/composition of TIME in relation to its potential value in the prognostication of the risk of recurrence.
Collapse
Affiliation(s)
- Julia Solek
- Department of Pathology, Chair of Oncology, Medical University of Lodz, 92-213 Lodz, Poland; (J.S.); (A.Z.); (M.B.)
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, 90-419 Lodz, Poland; (J.C.); (A.C.)
| | - Jedrzej Chrzanowski
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, 90-419 Lodz, Poland; (J.C.); (A.C.)
| | - Adrianna Cieslak
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, 90-419 Lodz, Poland; (J.C.); (A.C.)
| | - Aleksandra Zielinska
- Department of Pathology, Chair of Oncology, Medical University of Lodz, 92-213 Lodz, Poland; (J.S.); (A.Z.); (M.B.)
| | - Dominika Piasecka
- Department of Molecular Enzymology and Oncology, Intercollegiate Faculty of Biotechnology, Medical University of Gdansk, 80-210 Gdansk, Poland;
| | - Marcin Braun
- Department of Pathology, Chair of Oncology, Medical University of Lodz, 92-213 Lodz, Poland; (J.S.); (A.Z.); (M.B.)
| | - Rafal Sadej
- Department of Molecular Enzymology and Oncology, Intercollegiate Faculty of Biotechnology, Medical University of Gdansk, 80-210 Gdansk, Poland;
| | - Hanna M. Romanska
- Department of Pathology, Chair of Oncology, Medical University of Lodz, 92-213 Lodz, Poland; (J.S.); (A.Z.); (M.B.)
| |
Collapse
|
22
|
Elfgen C, Tausch C, Rodewald AK, Güth U, Rageth C, Bjelic-Radisic V, Fleisch M, Kurtz C, Gonzalez Diaz J, Varga Z. Factors Indicating Surgical Excision in Classical Type of Lobular Neoplasia of the Breast. Breast Care (Basel) 2022; 17:121-128. [PMID: 35702498 PMCID: PMC9149506 DOI: 10.1159/000516609] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 04/12/2021] [Indexed: 09/08/2023] Open
Abstract
PURPOSE Classical type of lobular neoplasia (LN) encompassing both atypical lobular hyperplasia and classical lobular carcinoma in situ of the breast is a lesion with uncertain malignant potential and has been the topic of several studies with conflicting outcome results. The aim of our study was to clarify outcome-relevant factors and treatment options of classical LN. METHODS We performed a pathological re-evaluation of the preoperative biopsy specimens and a retrospective clinical and radiological data analysis of 160 patients with LN from the Breast Center Zurich. Open surgery was performed in 65 patients, vacuum-assisted biopsy (VAB) in 79 patients, and surveillance after breast core needle biopsy (CNB) in 16 patients. RESULTS The upgrade rate into ductal carcinoma in situ/invasive cancer was the highest in case of imaging/histology discordance (40%). If the number of foci in the biopsy specimen was ≥3, the upgrade rate in the consecutive surgical specimens was increased (p = 0.01). The association of classical LN with histological microcalcification correlated with shortened disease-free survival (p < 0.01), whereas other factors showed no impact on follow-up. CONCLUSIONS Surveillance or subsequent VAB after CNB of LN is sufficient in most cases. Careful consideration of individual radiological and histological factors is required to identify patients with a high risk of upgrade into malignancy. In those cases, surgical excision is indicated.
Collapse
Affiliation(s)
- Constanze Elfgen
- Breast Center Zurich, Zurich, Switzerland
- University of Witten-Herdecke, Witten, Germany
| | | | - Ann-Katrin Rodewald
- Institute of Pathology and Molecular Pathology, University Hospital Zurich, Zurich, Switzerland
| | - Uwe Güth
- Breast Center Zurich, Zurich, Switzerland
- Faculty of Medicine, University of Basel, Basel, Switzerland
| | - Christoph Rageth
- Department of Gynecology and Obstetrics, Breast Center, Hôpitaux Universitaires de Genève, Geneva, Switzerland
| | - Vesna Bjelic-Radisic
- University of Witten-Herdecke, Witten, Germany
- Institute of Gynecology and Obstetrics, University Hospital Wuppertal, Wuppertal, Germany
| | - Markus Fleisch
- University of Witten-Herdecke, Witten, Germany
- Institute of Gynecology and Obstetrics, University Hospital Wuppertal, Wuppertal, Germany
| | - Claudia Kurtz
- Department of Radiology and Nuclear Medicine, Kantonsspital Luzern, Lucerne, Switzerland
| | | | - Zsuzsanna Varga
- Institute of Pathology and Molecular Pathology, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
23
|
Luque M, Cristóbal I, Sanz-Álvarez M, Santos A, Zazo S, Eroles P, Arpí O, Rovira A, Albanell J, Madoz-Gúrpide J, García-Foncillas J, Rojo F. CIP2A as a Key Regulator for AKT Phosphorylation Has Partial Impact Determining Clinical Outcome in Breast Cancer. J Clin Med 2022; 11:jcm11061610. [PMID: 35329936 PMCID: PMC8955826 DOI: 10.3390/jcm11061610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/03/2022] [Accepted: 03/12/2022] [Indexed: 12/07/2022] Open
Abstract
Together with its reported ability to modulate AKT phosphorylation (p-AKT) status in several tumor types, the oncoprotein CIP2A has been described to induce breast cancer progression and drug resistance. However, the clinical and therapeutic relevance of the CIP2A/AKT interplay in breast cancer remains to be fully clarified. Here, we found high p-AKT levels in 80 out of 220 cases (36.4%), which were associated with negative estrogen receptor expression (p = 0.049) and CIP2A overexpression (p < 0.001). Interestingly, p-AKT determined substantially shorter overall (p = 0.002) and progression-free survival (p = 0.003), and multivariate analyses showed its CIP2A-independent prognostic value. Moreover, its clinical relevance was further confirmed in the triple negative and HER2-positive subgroups after stratifying our series by molecular subtype. Functionally, we confirmed in vitro the role of CIP2A as a regulator of p-AKT levels in breast cancer cell lines, and the importance of the CIP2A/AKT axis was also validated in vivo. Finally, p-AKT also showed a higher predictive value of response to doxorubicin than CIP2A in ex vivo analyses. In conclusion, our findings suggest that CIP2A overexpression is a key contributing event to AKT phosphorylation and highlights the CIP2A/AKT axis as a promising therapeutic target in breast cancer. However, our observations highlight the existence of alternative mechanisms that regulate AKT signaling in a subgroup of breast tumors without altered CIP2A expression that determines its independent value as a marker of poor outcome in this disease.
Collapse
Affiliation(s)
- Melani Luque
- Pathology Department, IIS-Fundación Jiménez Diaz-UAM, 28040 Madrid, Spain; (M.L.); (M.S.-Á.); (S.Z.); (J.M.-G.)
| | - Ion Cristóbal
- Cancer Unit for Research on Novel Therapeutic Targets, Oncohealth Institute, ISS-FJD-UAM, 28040 Madrid, Spain;
- Translational Oncology Division, Oncohealth Institute, IIS-Fundación Jiménez Diaz-UAM, 28040 Madrid, Spain;
- Correspondence: (I.C.); (F.R.); Tel.: +34-915-504-800 (I.C. & F.R.)
| | - Marta Sanz-Álvarez
- Pathology Department, IIS-Fundación Jiménez Diaz-UAM, 28040 Madrid, Spain; (M.L.); (M.S.-Á.); (S.Z.); (J.M.-G.)
| | - Andrea Santos
- Cancer Unit for Research on Novel Therapeutic Targets, Oncohealth Institute, ISS-FJD-UAM, 28040 Madrid, Spain;
- Translational Oncology Division, Oncohealth Institute, IIS-Fundación Jiménez Diaz-UAM, 28040 Madrid, Spain;
| | - Sandra Zazo
- Pathology Department, IIS-Fundación Jiménez Diaz-UAM, 28040 Madrid, Spain; (M.L.); (M.S.-Á.); (S.Z.); (J.M.-G.)
| | - Pilar Eroles
- Institute of Health Research INCLIVA, 46010 Valencia, Spain;
| | - Oriol Arpí
- Medical Oncology Department, Hospital del Mar, 08003 Barcelona, Spain; (O.A.); (A.R.); (J.A.)
| | - Ana Rovira
- Medical Oncology Department, Hospital del Mar, 08003 Barcelona, Spain; (O.A.); (A.R.); (J.A.)
| | - Joan Albanell
- Medical Oncology Department, Hospital del Mar, 08003 Barcelona, Spain; (O.A.); (A.R.); (J.A.)
| | - Juan Madoz-Gúrpide
- Pathology Department, IIS-Fundación Jiménez Diaz-UAM, 28040 Madrid, Spain; (M.L.); (M.S.-Á.); (S.Z.); (J.M.-G.)
| | - Jesús García-Foncillas
- Translational Oncology Division, Oncohealth Institute, IIS-Fundación Jiménez Diaz-UAM, 28040 Madrid, Spain;
| | - Federico Rojo
- Pathology Department, IIS-Fundación Jiménez Diaz-UAM, 28040 Madrid, Spain; (M.L.); (M.S.-Á.); (S.Z.); (J.M.-G.)
- Correspondence: (I.C.); (F.R.); Tel.: +34-915-504-800 (I.C. & F.R.)
| |
Collapse
|
24
|
Mehraj U, Mushtaq U, Mir MA, Saleem A, Macha MA, Lone MN, Hamid A, Zargar MA, Ahmad SM, Wani NA. Chemokines in Triple-Negative Breast Cancer Heterogeneity: New Challenges for Clinical Implications. Semin Cancer Biol 2022; 86:769-783. [PMID: 35278636 DOI: 10.1016/j.semcancer.2022.03.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 03/01/2022] [Accepted: 03/07/2022] [Indexed: 12/12/2022]
Abstract
Tumor heterogeneity is a hallmark of cancer and one of the primary causes of resistance to therapies. Triple-negative breast cancer (TNBC), which accounts for 15% to 20% of all breast cancers and is the most aggressive subtype, is very diverse, connected to metastatic potential and response to therapy. It is a very diverse disease at the molecular, pathologic, and clinical levels. TNBC is substantially more likely to recur and has a worse overall survival rate following diagnosis than other breast cancer subtypes. Chemokines, low molecular weight proteins that stimulate chemotaxis, have been shown to control the cues responsible for TNBC heterogeneity. In this review, we have focused on tumor heterogeneity and the role of chemokines in modulating tumor heterogeneity, since this is the most critical issue in treating TNBC. Additionally, we examined numerous cues mediated by chemokine networks that contribute to the heterogeneity of TNBC. Recent developments in our knowledge of the chemokine networks that regulate TNBC heterogeneity may pave the door for developing difficult-to-treat TNBC treatment options.
Collapse
Affiliation(s)
- Umar Mehraj
- Department of Bioresources, School of Life Sciences, University of Kashmir, Srinagar, Jammu & Kashmir India
| | - Umer Mushtaq
- Department of Biotechnology, School of Life Sciences, Central University of Kashmir, Ganderbal, J&K, India
| | - Manzoor A Mir
- Department of Bioresources, School of Life Sciences, University of Kashmir, Srinagar, Jammu & Kashmir India
| | - Afnan Saleem
- Division of Animal Biotechnology Faculty of Veterinary Sciences and Animal Husbandry, Shuhama Sher-e- Kashmir University of Agricultural Sciences and Technology-Kashmir, India
| | - Muzafar A Macha
- Watson-Crick Centre for Molecular Medicine, Islamic University of Science & Technology Awantipora, Jammu & Kashmir, India
| | - Mohammad Nadeem Lone
- Department of Chemistry, School of Physical & Chemical Sciences, Central University of Kashmir, Ganderbal J & K, India
| | - Abid Hamid
- Department of Biotechnology, School of Life Sciences, Central University of Kashmir, Ganderbal, J&K, India
| | - Mohammed A Zargar
- Department of Biotechnology, School of Life Sciences, Central University of Kashmir, Ganderbal, J&K, India
| | - Syed Mudasir Ahmad
- Division of Animal Biotechnology Faculty of Veterinary Sciences and Animal Husbandry, Shuhama Sher-e- Kashmir University of Agricultural Sciences and Technology-Kashmir, India
| | - Nissar Ahmad Wani
- Department of Biotechnology, School of Life Sciences, Central University of Kashmir, Ganderbal, J&K, India.
| |
Collapse
|
25
|
Howard GR, Jost TA, Yankeelov TE, Brock A. Quantification of long-term doxorubicin response dynamics in breast cancer cell lines to direct treatment schedules. PLoS Comput Biol 2022; 18:e1009104. [PMID: 35358172 PMCID: PMC9004764 DOI: 10.1371/journal.pcbi.1009104] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 04/12/2022] [Accepted: 02/07/2022] [Indexed: 01/05/2023] Open
Abstract
While acquired chemoresistance is recognized as a key challenge to treating many types of cancer, the dynamics with which drug sensitivity changes after exposure are poorly characterized. Most chemotherapeutic regimens call for repeated dosing at regular intervals, and if drug sensitivity changes on a similar time scale then the treatment interval could be optimized to improve treatment performance. Theoretical work suggests that such optimal schedules exist, but experimental confirmation has been obstructed by the difficulty of deconvolving the simultaneous processes of death, adaptation, and regrowth taking place in cancer cell populations. Here we present a method of optimizing drug schedules in vitro through iterative application of experimentally calibrated models, and demonstrate its ability to characterize dynamic changes in sensitivity to the chemotherapeutic doxorubicin in three breast cancer cell lines subjected to treatment schedules varying in concentration, interval between pulse treatments, and number of sequential pulse treatments. Cell populations are monitored longitudinally through automated imaging for 600–800 hours, and this data is used to calibrate a family of cancer growth models, each consisting of a system of ordinary differential equations, derived from the bi-exponential model which characterizes resistant and sensitive subpopulations. We identify a model incorporating both a period of growth arrest in surviving cells and a delay in the death of chemosensitive cells which outperforms the original bi-exponential growth model in Akaike Information Criterion based model selection, and use the calibrated model to quantify the performance of each drug schedule. We find that the inter-treatment interval is a key variable in determining the performance of sequential dosing schedules and identify an optimal retreatment time for each cell line which extends regrowth time by 40%-239%, demonstrating that the time scale of changes in chemosensitivity following doxorubicin exposure allows optimization of drug scheduling by varying this inter-treatment interval. Acquired chemoresistance is a common cause of treatment failure in cancer. The scheduling of a multi-dose course of chemotherapeutic treatment may influence the dynamics of acquired chemoresistance, and drug schedule optimization may increase the duration of effectiveness of a particular chemotherapeutic agent for a particular patient. Here we present a method for experimentally optimizing an in vitro drug schedule through iterative rounds of experimentation and computational analysis, and demonstrate the method’s ability to improve the performance of doxorubicin treatment in three breast carcinoma cell lines. Specifically, we find that the interval between drug exposures can be optimized while holding drug concentration and number of treatments constant, suggesting that this may be a key variable to explore in future drug schedule optimization efforts. We further use this method’s model calibration and selection process to extract information about the underlying biology of the doxorubicin response, and find that the incorporation of delays on both cell death and regrowth are necessary for accurate parameterization of cell growth data.
Collapse
Affiliation(s)
- Grant R. Howard
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas, United States of America
| | - Tyler A. Jost
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas, United States of America
| | - Thomas E. Yankeelov
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas, United States of America
- Department of Diagnostic Medicine, The University of Texas at Austin, Austin, Texas, United States of America
- Department of Oncology, The University of Texas at Austin, Austin, Texas, United States of America
- Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, Texas, United States of America
- Livestrong Cancer Institutes, The University of Texas at Austin, Austin, Texas, United States of America
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Amy Brock
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas, United States of America
- Department of Cell and Molecular Biology, The University of Texas at Austin, Austin, Texas, United States of America
- * E-mail:
| |
Collapse
|
26
|
Mierke CT. Viscoelasticity, Like Forces, Plays a Role in Mechanotransduction. Front Cell Dev Biol 2022; 10:789841. [PMID: 35223831 PMCID: PMC8864183 DOI: 10.3389/fcell.2022.789841] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 01/11/2022] [Indexed: 12/13/2022] Open
Abstract
Viscoelasticity and its alteration in time and space has turned out to act as a key element in fundamental biological processes in living systems, such as morphogenesis and motility. Based on experimental and theoretical findings it can be proposed that viscoelasticity of cells, spheroids and tissues seems to be a collective characteristic that demands macromolecular, intracellular component and intercellular interactions. A major challenge is to couple the alterations in the macroscopic structural or material characteristics of cells, spheroids and tissues, such as cell and tissue phase transitions, to the microscopic interferences of their elements. Therefore, the biophysical technologies need to be improved, advanced and connected to classical biological assays. In this review, the viscoelastic nature of cytoskeletal, extracellular and cellular networks is presented and discussed. Viscoelasticity is conceptualized as a major contributor to cell migration and invasion and it is discussed whether it can serve as a biomarker for the cells' migratory capacity in several biological contexts. It can be hypothesized that the statistical mechanics of intra- and extracellular networks may be applied in the future as a powerful tool to explore quantitatively the biomechanical foundation of viscoelasticity over a broad range of time and length scales. Finally, the importance of the cellular viscoelasticity is illustrated in identifying and characterizing multiple disorders, such as cancer, tissue injuries, acute or chronic inflammations or fibrotic diseases.
Collapse
Affiliation(s)
- Claudia Tanja Mierke
- Faculty of Physics and Earth Science, Peter Debye Institute of Soft Matter Physics, Biological Physics Division, University of Leipzig, Leipzig, Germany
| |
Collapse
|
27
|
Yamaguchi M, Sasaki T, Uemura K, Tajima Y, Kato S, Takagi K, Yamazaki Y, Saito-Koyama R, Inoue C, Kawaguchi K, Soma T, Miyata T, Suzuki T. Automatic breast carcinoma detection in histopathological micrographs based on Single Shot Multibox Detector. J Pathol Inform 2022; 13:100147. [PMID: 36268083 PMCID: PMC9577133 DOI: 10.1016/j.jpi.2022.100147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/13/2022] [Accepted: 09/22/2022] [Indexed: 12/24/2022] Open
Abstract
Background A diagnosis with histological classification by pathologists is very important for appropriate treatments to improve the prognosis of patients with breast cancer. However, the number of pathologists is limited, and assisting the pathological diagnosis by artificial intelligence becomes very important. Here, we presented an automatic breast lesions detection model using microscopic histopathological images based on a Single Shot Multibox Detector (SSD) for the first time and evaluated its significance in assisting the diagnosis. Methods We built the data set and trained the SSD model with 1361 microscopic images and evaluated using 315 images. Pathologists and medical students diagnosed the images with or without the assistance of the model to investigate the significance of our model in assisting the diagnosis. Results The model achieved 88.3% and 90.5% diagnostic accuracies in 3-class (benign, non-invasive carcinoma, or invasive carcinoma) or 2-class (benign or malignant) classification tasks, respectively, and the mean intersection over union was 0.59. Medical students achieved a remarkably higher diagnostic accuracy score (average 84.7%) with the assistance of the model compared to those without assistance (average 67.4%). Some people diagnosed images in a short time using the assistance of the model (shorten by average 6.4 min) while others required a longer time (extended by 7.2 min). Conclusion We presented the automatic breast lesions detection method at high speed using histopathological micrographs. The present system may conveniently support the histological diagnosis by pathologists in laboratories.
Collapse
|
28
|
Oliemuller E, Newman R, Howard BA. Intraductal Injections into the Mouse Mammary Gland. Methods Mol Biol 2022; 2471:221-233. [PMID: 35175600 DOI: 10.1007/978-1-0716-2193-6_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The mammary intraductal xenografting technique has been established to inject cells or other substances directly into the mammary ducts of female mice. Using this refined xenografting method provides the possibility of mimicking the normal microenvironment of preinvasive breast lesions including, ductal carcinoma in situ (DCIS), to study of the progression of DCIS to invasive breast cancer in a more relevant manner than with other mammary xenografting methods. Xenografting into the mammary fat pad delivers cells directly into the stroma and bypasses the occurrence of invasive transition, during which cells invade through the basement membrane. Either breast cancer cell lines or patient-derived breast cancer cells can be injected into the mammary duct using this protocol to model breast cancer progression. This protocol will cover the procedures required to perform this technique.
Collapse
Affiliation(s)
- Erik Oliemuller
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
| | - Richard Newman
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
| | - Beatrice A Howard
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK.
| |
Collapse
|
29
|
Rweyemamu LP, Akan G, Adolf IC, Magorosa EP, Mosha IJ, Dharsee N, Namkinga LA, Lyantagaye SL, Nateri AS, Atalar F. The distribution of reproductive risk factors disclosed the heterogeneity of receptor-defined breast cancer subtypes among Tanzanian women. BMC Womens Health 2021; 21:423. [PMID: 34930226 PMCID: PMC8686374 DOI: 10.1186/s12905-021-01536-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 11/08/2021] [Indexed: 12/29/2022] Open
Abstract
Background Recent epidemiological studies suggest that reproductive factors are associated with breast cancer (BC) molecular subtypes. However, these associations have not been thoroughly studied in the African populations. The present study aimed to investigate the prevalence of BC molecular subtypes and assess their association with reproductive factors in Tanzanian BC patients. Methods This hospital-based case-only cross-sectional study consisted of 263 histologically confirmed BC patients in Tanzania. Clinico-pathological data, socio-demographic characteristics, anthropometric measurements, and reproductive risk factors were examined using the Chi-square test and one-way ANOVA. The association among reproductive factors and BC molecular subtypes was analyzed using multinomial logistic regression. The heterogeneity of the associations was assessed using the Wald test. Results We found evident subtype heterogeneity for reproductive factors. We observed that post-menopausal status was more prevalent in luminal-A subtype, while compared to luminal-A subtype, luminal-B and HER-2 enriched subtypes were less likely to be found in post-menopausal women (OR: 0.21, 95%CI 0.10–0.41, p = 0.001; OR: 0.39, 95%CI 0.17–0.89, p = 0.026, respectively). Also, the luminal-B subtype was more likely to be diagnosed in patients aged ≤ 40 years than the luminal-A subtype (OR: 2.80, 95%CI 1.46–5.32, p = 0.002). Women who had their first full-term pregnancy at < 30 years were more likely to be of luminal-B (OR: 2.71, 95%CI 1.18–4.17, p = 0.018), and triple-negative (OR: 2.28, 95%CI 1.02–4.07, p = 0.044) subtypes relative to luminal-A subtype. Furthermore, we observed that breastfeeding might have reduced odds of developing luminal-A, luminal-B and triple-negative subtypes. Women who never breastfed were more likely to be diagnosed with luminal-B and triple-negative subtypes when compared to luminal-A subtype (OR: 0.46, 95%CI 0.22–0.95, p = 0.035; OR: 0.41, 95%CI 0.20–0.85, p = 0.017, respectively). . Conclusion Our results are the first data reporting reproductive factors heterogeneity among BC molecular subtypes in Tanzania. Our findings suggest that breast-feeding may reduce the likelihood of developing luminal-A, luminal-B, and triple-negative subtypes. Meanwhile, the first full-term pregnancy after 30 years of age could increase the chance of developing luminal-A subtype, a highly prevalent subtype in Tanzania. More interventions to promote modifiable risk factors across multiple levels may most successfully reduce BC incidence in Africa. Supplementary Information The online version contains supplementary material available at 10.1186/s12905-021-01536-6.
Collapse
Affiliation(s)
- Linus P Rweyemamu
- Department of Molecular Biology and Biotechnology, University of Dar es Salaam, P.O Box 35179, Dar es Salaam, Tanzania.,Mbeya College of Health and Allied Sciences, University of Dar es Salaam, P.O Box 608, Mbeya, Tanzania
| | - Gokce Akan
- MUHAS Genetic Laboratory, Department of Biochemistry, Muhimbili University of Health and Allied Sciences, P.O Box 65001, Dar es Salaam, Tanzania
| | - Ismael C Adolf
- Mbeya College of Health and Allied Sciences, University of Dar es Salaam, P.O Box 608, Mbeya, Tanzania
| | - Erick P Magorosa
- Department of Anatomical Pathology, Muhimbili National Hospital, P.O Box 65000, Dar es Salaam, Tanzania
| | - Innocent J Mosha
- Department of Anatomical Pathology, Muhimbili National Hospital, P.O Box 65000, Dar es Salaam, Tanzania
| | - Nazima Dharsee
- Academic, Research and Consultancy Unit, Ocean Road Cancer Institute, P.O Box 3592, Dar es Salaam, Tanzania
| | - Lucy A Namkinga
- Department of Molecular Biology and Biotechnology, University of Dar es Salaam, P.O Box 35179, Dar es Salaam, Tanzania
| | - Sylvester L Lyantagaye
- Mbeya College of Health and Allied Sciences, University of Dar es Salaam, P.O Box 608, Mbeya, Tanzania
| | - Abdolrahman S Nateri
- Cancer Genetics and Stem Cell Group, Division of Cancer and Stem Cells, School of Medicine, BioDiscovery Institute, University of Nottingham, Nottingham, NG7 2UH, UK.
| | - Fatmahan Atalar
- MUHAS Genetic Laboratory, Department of Biochemistry, Muhimbili University of Health and Allied Sciences, P.O Box 65001, Dar es Salaam, Tanzania. .,Department of Rare Diseases, Child Health Institute, Istanbul University, Istanbul, 34093, Turkey.
| |
Collapse
|
30
|
Mierke CT. Viscoelasticity Acts as a Marker for Tumor Extracellular Matrix Characteristics. Front Cell Dev Biol 2021; 9:785138. [PMID: 34950661 PMCID: PMC8691700 DOI: 10.3389/fcell.2021.785138] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 11/23/2021] [Indexed: 12/28/2022] Open
Abstract
Biological materials such as extracellular matrix scaffolds, cancer cells, and tissues are often assumed to respond elastically for simplicity; the viscoelastic response is quite commonly ignored. Extracellular matrix mechanics including the viscoelasticity has turned out to be a key feature of cellular behavior and the entire shape and function of healthy and diseased tissues, such as cancer. The interference of cells with their local microenvironment and the interaction among different cell types relies both on the mechanical phenotype of each involved element. However, there is still not yet clearly understood how viscoelasticity alters the functional phenotype of the tumor extracellular matrix environment. Especially the biophysical technologies are still under ongoing improvement and further development. In addition, the effect of matrix mechanics in the progression of cancer is the subject of discussion. Hence, the topic of this review is especially attractive to collect the existing endeavors to characterize the viscoelastic features of tumor extracellular matrices and to briefly highlight the present frontiers in cancer progression and escape of cancers from therapy. Finally, this review article illustrates the importance of the tumor extracellular matrix mechano-phenotype, including the phenomenon viscoelasticity in identifying, characterizing, and treating specific cancer types.
Collapse
Affiliation(s)
- Claudia Tanja Mierke
- Faculty of Physics and Earth Science, Peter Debye Institute of Soft Matter Physics, Biological Physics Division, University of Leipzig, Leipzig, Germany
| |
Collapse
|
31
|
Yu Y, Wang W, Lu W, Chen W, Shang A. Inhibin β-A (INHBA) induces epithelial-mesenchymal transition and accelerates the motility of breast cancer cells by activating the TGF-β signaling pathway. Bioengineered 2021; 12:4681-4696. [PMID: 34346300 PMCID: PMC8806747 DOI: 10.1080/21655979.2021.1957754] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 07/14/2021] [Accepted: 07/15/2021] [Indexed: 12/22/2022] Open
Abstract
Accumulating evidence indicates that INHBA (Inhibin β-A, a member of the TGF-β superfamily) functions as an oncogene in cancer progression. However, little is known as to how INHBA regulates the progression and aggressiveness of breast cancer (BC). This study explored the function and underlying mechanism of INHBA in epithelial-mesenchymal transition (EMT) of BC cells. INHBA expression in BC cell lines was measured using RT-qPCR and Western blot. The would-healing and transwell migration assays were used to investigate the effect of INHBA overexpression or silencing on BC cell motility. Moreover, the expression levels of EMT-related genes were quantified after overexpressing or silencing of INHBA. Based on published dataset, INHBA was significantly upregulated in BC tissues compared to the adjacent normal tissues. A higher level of INHBA expression was also correlated with a poor survival in BC patients. In addition, in vitro study showed that INHBA played an indispensable role in promoting BC cell proliferation and invasion. Mechanistically, INHBA induced epithelial-mesenchymal transition (EMT) and accelerated the motility of BC cells by activating TGF-β-regulated genes. In conclusion, INHBA plays a functional role in supporting EMT phenotype of BC cells, and it may serve as a diagnostic biomarker and a potential therapeutic target for BC treatment.
Collapse
Affiliation(s)
- Yingying Yu
- Department of Obstetrics and Gynecology, the International Peace Maternity & Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
- Shanghai Municipal Key Clinical Specialty, Shanghai, China
| | - Weiwei Wang
- Department of Pathology, Tinghu District People’s Hospital of Yancheng City, Yancheng, Jiangsu, China
| | - Wenying Lu
- Department of Pathology, Tinghu District People’s Hospital of Yancheng City, Yancheng, Jiangsu, China
| | - Wei Chen
- Department of Emergency, Tongji Hospital, Tongji University, School of Medicine, Shanghai, China
| | - Anquan Shang
- Department of Laboratory Medicine, Shanghai Tongji Hospital, Shanghai, China
| |
Collapse
|
32
|
Colorimetric histology using plasmonically active microscope slides. Nature 2021; 598:65-71. [PMID: 34616057 DOI: 10.1038/s41586-021-03835-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 07/19/2021] [Indexed: 11/08/2022]
Abstract
The human eye can distinguish as many as 10,000 different colours but is far less sensitive to variations in intensity1, meaning that colour is highly desirable when interpreting images. However, most biological samples are essentially transparent, and nearly invisible when viewed using a standard optical microscope2. It is therefore highly desirable to be able to produce coloured images without needing to add any stains or dyes, which can alter the sample properties. Here we demonstrate that colorimetric histology images can be generated using full-sized plasmonically active microscope slides. These slides translate subtle changes in the dielectric constant into striking colour contrast when samples are placed upon them. We demonstrate the biomedical potential of this technique, which we term histoplasmonics, by distinguishing neoplastic cells from normal breast epithelium during the earliest stages of tumorigenesis in the mouse MMTV-PyMT mammary tumour model. We then apply this method to human diagnostic tissue and validate its utility in distinguishing normal epithelium, usual ductal hyperplasia, and early-stage breast cancer (ductal carcinoma in situ). The colorimetric output of the image pixels is compared to conventional histopathology. The results we report here support the hypothesis that histoplasmonics can be used as a novel alternative or adjunct to general staining. The widespread availability of this technique and its incorporation into standard laboratory workflows may prove transformative for applications extending well beyond tissue diagnostics. This work also highlights opportunities for improvements to digital pathology that have yet to be explored.
Collapse
|
33
|
Differences in tumour heterogeneity based on dynamic contrast-enhanced MRI between tumour and peritumoural stroma for predicting Ki-67 status of invasive ductal carcinoma. Clin Radiol 2021; 76:470.e13-470.e22. [PMID: 33648758 DOI: 10.1016/j.crad.2020.12.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 12/18/2020] [Indexed: 10/22/2022]
Abstract
AIM To evaluate and compare the heterogeneity of intratumour and peritumour areas in the prediction of Ki-67 of invasive ductal carcinoma (IDC) and the predictive accuracy of different contrast frames based on dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI). MATERIALS AND METHODS This study included 88 patients with histologically confirmed IDC with 57 patients with high Ki-67 status and 31 patients with low Ki-67 status. All patients underwent DCE-MRI before surgery. A grey-level co-occurrence matrix (GLCM) was performed on slice-matched images from six frames by drawing the region of the interest (ROI) on the inner and outer regions of the tumours. The correlations between texture characteristics and Ki-67 status of lesions were analysed, using the Mann-Whitney test and receiver operating characteristic curve analysis. RESULTS In the high-Ki-67 group, the entropy was significantly higher than that of the low-Ki-67 group (p<0.001). The entropy obtained, based on the tumour boundary as a band-like area inside and outside at the first post-contrast series, revealed the highest receiver operating characteristic (AUC = 0.765). In the multivariate analysis, a higher entropy value (>4.305; p<0.001) remained independently associated with a high-Ki-67 status after adjustment for menopausal status, tumour size, histologic grade, oestrogen receptor (ER) status, and progesterone receptor (PR) status. The other parameters did not show significant differences between the high- and low-Ki-67 groups. CONCLUSION Heterogeneity analysis based on DCE-MRI could discriminate between high- and low-Ki-67 status. Texture characteristics from the band-like region inside and outside the tumour boundary could predict the Ki-67 status and showed higher accuracy.
Collapse
|
34
|
Complete Removal of the Lesion as a Guidance in the Management of Patients with Breast Ductal Carcinoma In Situ. Cancers (Basel) 2021; 13:cancers13040868. [PMID: 33670739 PMCID: PMC7923077 DOI: 10.3390/cancers13040868] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/29/2021] [Accepted: 02/11/2021] [Indexed: 12/27/2022] Open
Abstract
Simple Summary A diagnosis of ductal carcinoma in situ, made on biopsy, is often followed by surgery or radiotherapy because of the risk of an upgrading disease upon subsequent surgical specimens, finding invasive carcinoma. In order to select which patients can be spared overtreatments and alternatively followed with active surveillance, we retrospectively reviewed 2173 vacuum assisted breast biopsies. Our goal was to demonstrate if complete removal of the lesion by biopsy, documented by mammograms, can be a valid criterion to select the patients that can be spared further treatments. The results of our study demonstrate a significant lower upgrading rate of disease when the lesion is completely removed. Thus, performing a mammogram to document the absence of residual lesion following vacuum-assisted breast biopsy (VABB) allows us to reduce overtreatments and to select which patients can be followed with an active surveillance, sparing unjustified public health costs. Abstract Background: Considering highly selected patients with ductal carcinoma in situ (DCIS), active surveillance is a valid alternative to surgery. Our study aimed to show the reliability of post-biopsy complete lesion removal, documented by mammogram, as additional criterion to select these patients. Methods: A total of 2173 vacuum-assisted breast biopsies (VABBs) documented as DCIS were reviewed. Surgery was performed in all cases. We retrospectively collected the reports of post-VABB complete lesion removal and the histological results of the biopsy and surgery. We calculated the rate of upgrade of DCIS identified on VABB upon excision for patients with post-biopsy complete lesion removal and for those showing residual lesion. Results: We observed 2173 cases of DCIS: 408 classified as low-grade, 1262 as intermediate-grade, and 503 as high-grade. The overall upgrading rate to invasive carcinoma was 15.2% (330/2173). The upgrade rate was 8.2% in patients showing mammographically documented complete removal of the lesion and 19% in patients without complete removal. Conclusion: The absence of mammographically documented residual lesion following VABB was found to be associated with a lower upgrading rate of DCIS to invasive carcinoma on surgical excision and should be considered when deciding the proper management DCIS diagnosis.
Collapse
|
35
|
Qi P, Yang Y, Bai QM, Xue T, Ren M, Yao QL, Yang WT, Zhou XY. Concordance of the 21-gene assay between core needle biopsy and resection specimens in early breast cancer patients. Breast Cancer Res Treat 2021; 186:327-342. [PMID: 33439420 PMCID: PMC7804587 DOI: 10.1007/s10549-020-06075-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 12/23/2020] [Indexed: 12/31/2022]
Abstract
BACKGROUND Adjuvant therapy decisions may be partly based on the results of a multigene quantitative reverse transcription-polymerase chain reaction (RT-PCR)-based assay: the 21-gene recurrence score (RS) test of resection specimens. When necessary, core needle biopsy (CNB) may be considered as a surrogate. Here, we evaluated the concordance in gene expression according to results from RT-PCR-based RS testing between paired CNBs and resection specimens. METHODS CNBs and resection specimens from 50 breast cancer (BC) patients were tested to calculate RSs. First, we examined the concordance of the ER, PR and HER-2 status of tissue samples indicated by immunohistochemical (IHC) and RT-PCR analyses. Then, we compared the IHC findings of ER, PR, HER-2 and Ki-67 staining across paired samples. Ultimately, the RS and single-gene results for ER, PR, HER-2 and Ki-67 were explored between paired samples. RESULTS The concordance between IHC and RT-PCR was 100%, 80.0% and 100% for ER, PR and HER-2, respectively, in both resection specimens and CNBs. The concordance for IHC ER, PR, HER-2 and Ki-67 status was 100%, 94.0%, 52.0% and 82.0%, respectively, between paired samples. RS results from paired samples showed a strong correlation. The overall concordance in RS group classification between samples was 74%, 72% and 78% based on traditional cutoffs, TAILORx cutoffs and ASCO guidelines, respectively. ER, PR, HER-2 and Ki-67 were modestly- to- strongly correlated between paired samples according to the RT-PCR results. CONCLUSION A modest- to- strong correlation of ER, PR, HER-2 and Ki-67 gene expression and RS between CNBs and resection specimens was observed in the present study. The 21-gene RS test could be reliably performed on CNBs. ER, PR and HER-2 status showed remarkable concordance between the IHC and RT-PCR analyses. The concordance between paired samples was high for the IHC ER, PR and Ki-67 results and low for HER-2.
Collapse
Affiliation(s)
- Peng Qi
- Department of Pathology, Fudan University Shanghai Cancer Center, No. 270 Dong An Road, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.,Institute of Pathology, Fudan University, Shanghai, 200032, China
| | - Yu Yang
- Department of Pathology, Fudan University Shanghai Cancer Center, No. 270 Dong An Road, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.,Institute of Pathology, Fudan University, Shanghai, 200032, China
| | - Qian-Ming Bai
- Department of Pathology, Fudan University Shanghai Cancer Center, No. 270 Dong An Road, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.,Institute of Pathology, Fudan University, Shanghai, 200032, China
| | - Tian Xue
- Department of Pathology, Fudan University Shanghai Cancer Center, No. 270 Dong An Road, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.,Institute of Pathology, Fudan University, Shanghai, 200032, China
| | - Min Ren
- Department of Pathology, Fudan University Shanghai Cancer Center, No. 270 Dong An Road, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.,Institute of Pathology, Fudan University, Shanghai, 200032, China
| | - Qian-Lan Yao
- Department of Pathology, Fudan University Shanghai Cancer Center, No. 270 Dong An Road, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.,Institute of Pathology, Fudan University, Shanghai, 200032, China
| | - Wen-Tao Yang
- Department of Pathology, Fudan University Shanghai Cancer Center, No. 270 Dong An Road, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.,Institute of Pathology, Fudan University, Shanghai, 200032, China
| | - Xiao-Yan Zhou
- Department of Pathology, Fudan University Shanghai Cancer Center, No. 270 Dong An Road, Shanghai, 200032, China. .,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China. .,Institute of Pathology, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
36
|
McCart Reed AE, Kalinowski L, Simpson PT, Lakhani SR. Invasive lobular carcinoma of the breast: the increasing importance of this special subtype. Breast Cancer Res 2021; 23:6. [PMID: 33413533 PMCID: PMC7792208 DOI: 10.1186/s13058-020-01384-6] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 12/15/2020] [Indexed: 12/15/2022] Open
Abstract
Invasive lobular carcinoma (ILC) is the most common of the breast cancer special types, accounting for up to 15% of all breast cancer cases. ILCs are noted for their lack of E-cadherin function, which underpins their characteristic discohesive growth pattern, with cells arranged in single file and dispersed throughout the stroma. Typically, tumours are luminal in molecular subtype, being oestrogen and progesterone receptor positive, and HER2 negative. Since last reviewing the lobular literature (McCart Reed et al., Breast Cancer Res 17:12, 2015), there has been a considerable increase in research output focused on this tumour type, including studies into the pathology and management of disease, a high-resolution definition of the genomic landscape of tumours as well as the evolution of several potential therapeutic avenues. There abounds a huge amount of new data, which we will review herein.
Collapse
Affiliation(s)
- Amy E McCart Reed
- UQ Centre for Clinical Research, The University of Queensland, Herston, Brisbane, Australia.
- QIMR Berghofer Medical Research Institute, Herston, Brisbane, Australia.
| | - Lauren Kalinowski
- UQ Centre for Clinical Research, The University of Queensland, Herston, Brisbane, Australia
- Department of Histopathology, Sullivan Nicolaides Pathology, Bowen Hills, Brisbane, Australia
| | - Peter T Simpson
- UQ Centre for Clinical Research, The University of Queensland, Herston, Brisbane, Australia
- QIMR Berghofer Medical Research Institute, Herston, Brisbane, Australia
| | - Sunil R Lakhani
- UQ Centre for Clinical Research, The University of Queensland, Herston, Brisbane, Australia
- Pathology Queensland, Royal Brisbane and Women's Hospital, Herston, Brisbane, Australia
| |
Collapse
|
37
|
Hayward MK, Louise Jones J, Hall A, King L, Ironside AJ, Nelson AC, Shelley Hwang E, Weaver VM. Derivation of a nuclear heterogeneity image index to grade DCIS. Comput Struct Biotechnol J 2020; 18:4063-4070. [PMID: 33363702 PMCID: PMC7744935 DOI: 10.1016/j.csbj.2020.11.040] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/21/2020] [Accepted: 11/23/2020] [Indexed: 12/21/2022] Open
Abstract
Abnormalities in cell nuclear morphology are a hallmark of cancer. Histological assessment of cell nuclear morphology is frequently used by pathologists to grade ductal carcinoma in situ (DCIS). Objective methods that allow standardization and reproducibility of cell nuclear morphology assessment have potential to improve the criteria needed to predict DCIS progression and recurrence. Aggressive cancers are highly heterogeneous. We asked whether cell nuclear morphology heterogeneity could be incorporated into a metric to classify DCIS. We developed a nuclear heterogeneity image index to objectively, and quantitatively grade DCIS. A whole-tissue cell nuclear morphological analysis, that classified tumors by the worst ten percent in a duct-by-duct manner, identified nuclear size ranges associated with each DCIS grade. Digital image analysis further revealed increasing heterogeneity within ducts or between ducts in tissues of worsening DCIS grade. The findings illustrate how digital image analysis comprises a supplemental tool for pathologists to objectively classify DCIS and in the future, may provide a method to predict patient outcome through analysis of nuclear heterogeneity.
Collapse
Affiliation(s)
- Mary-Kate Hayward
- Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California San Francisco, San Francisco, CA, USA
| | - J. Louise Jones
- Center for Tumor Biology, Barts Cancer Institute, John Vane Science Building, Barts and the London School of Medicine and Dentistry, UK
| | - Allison Hall
- Department of Pathology, Duke University Medical Center, Durham, NC, USA
| | - Lorraine King
- Department of Surgery, Duke University Medical Center, Durham, NC, USA
| | | | - Andrew C. Nelson
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
| | - E. Shelley Hwang
- Department of Surgery, Duke University Medical Center, Durham, NC, USA
| | - Valerie M. Weaver
- Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California San Francisco, San Francisco, CA, USA
- Department of Bioengineering and Therapeutic Sciences and Department of Radiation Oncology, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, and The Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
38
|
Cansaran-Duman D, Tanman Ü, Yangın S, Atakol O. The comparison of miRNAs that respond to anti-breast cancer drugs and usnic acid for the treatment of breast cancer. Cytotechnology 2020; 72:10.1007/s10616-020-00430-7. [PMID: 33128199 PMCID: PMC7695759 DOI: 10.1007/s10616-020-00430-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 10/14/2020] [Indexed: 02/01/2023] Open
Abstract
This study was designed to compare usnic acid with anti-breast cancer drug molecules (A-BCDM) routinely used in the treatment of breast cancer. The miRNA information of 17 anti-breast cancer drug used in breast cancer treatment was obtained from the Small Molecule-miRNA Network-Based Inferance (SMIR-NBI) tool. We had been determined common and different expressed miRNAs between 17 A-BCDM & usnic acid and were classified according to the common miRNAs to reveal molecular similarity. As a result of the bioinformatic analyzes, 20 common miRNAs were determined between 17 A-BCDM and usnic acid. The common miRNAs were analyzed with bioinformatic tolls for determining pathways and targets. The most common miRNAs for 6 of 17 A-BCDM and usnic acid were determined as miR-374a-5p and miR-26a-5p. We compared the anti-proliferative effect of usnic acid and one of the 17 A-BCDM that tamoxifen on MDA-MB-231 triple negative breast cancer cell with real-time cell analysis system. The real time PCR assay was carried out with miR-26a-5p for evaluate to expression level of MDA-MB-231 breast cancer cell and MCF-12A non-cancerous epithelial breast cell. As a result of study, usnic acid as novel candidate drug molecule showed high similarity ratio with 5-Fluorouracil, Sulindac Sulfide, Curcumin and Cisplatin A-BCDM used in treatment of breast cancer. miR-26a-5p as common response miRNA of usnic acid and tamoxifen was showed a decreased level of expression by validated qRT-PCR assay. The obtained from study, in addition to 17 A-BCDM, usnic acid has also the potential to be used as a candidate molecule in the treatment of breast cancer. Moreover, miR-26a-5p might be used as a biomarker in the treatment of breast cancer but further analysis is required.
Collapse
Affiliation(s)
| | - Ümmügülsüm Tanman
- Ankara University, Biotechnology Institute, Keçiören, Ankara, Turkey
| | - Sevcan Yangın
- Ankara University, Biotechnology Institute, Keçiören, Ankara, Turkey
| | - Orhan Atakol
- Faculty of Science, Department of Chemistry, Ankara University, Tandoğan, Ankara, Turkey
| |
Collapse
|
39
|
Hayal TB, DoĞan A, ŞİŞlİ HB, Kiratli B, Şahİn F. Ubiquitin-specific protease 7 downregulation suppresses breast cancer in vitro. ACTA ACUST UNITED AC 2020; 44:145-157. [PMID: 32922122 PMCID: PMC7478133 DOI: 10.3906/biy-1912-83] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Because breast cancer is complicated at the pathological, histological, clinical, and molecular levels, identification of new genetic targets against carcinogenic pathways is required to generate clinically relevant treatment options. In the current study, ubiquitin-specific protease 7 (USP7), which regulates various cellular pathways including Mdm2, p53, and NF–κB, was selected as a potential gene editing strategy for breast cancer in vitro. Anticancer activity of USP7 gene suppression has been evaluated through cell proliferation, gene expression, cell cycle, sphere dissemination, and cell migration analysis. Here, siRNA and shRNA strategies and an allosteric small-molecule inhibitor of USP7 were used to define potential anticancer activity against MCF7 and T47D human breast cancer cell lines. Both blockage of deubiquitination by p5091 and knockdown of USP7 reduced cell proliferation, cell migration, colony formation, and sphere dissemination for both MCF7 and T47D breast cancer cell lines. Restriction of USP7 activity strongly enhanced apoptotic gene expression and reduced metastatic ability of breast cancer cell lines. This study describes one potential molecular target for the suppression of breast cancer proliferation and metastasis. Identification of USP7 as a promising gene editing candidate might open up the possibility of new molecular drug research in targeting the ubiquitination pathway in cancer.
Collapse
Affiliation(s)
- Taha Bartu Hayal
- Yeditepe University, Department of Genetics and Bioengineering, Faculty of Engineering, İstanbul Turkey
| | - Ayşegül DoĞan
- Yeditepe University, Department of Genetics and Bioengineering, Faculty of Engineering, İstanbul Turkey
| | - Hatice Burcu ŞİŞlİ
- Yeditepe University, Department of Genetics and Bioengineering, Faculty of Engineering, İstanbul Turkey
| | - Binnur Kiratli
- Yeditepe University, Department of Genetics and Bioengineering, Faculty of Engineering, İstanbul Turkey
| | - Fikrettin Şahİn
- Yeditepe University, Department of Genetics and Bioengineering, Faculty of Engineering, İstanbul Turkey
| |
Collapse
|
40
|
Sezgın G, Apaydın M, Etıt D, Atahan MK. Tumor size estimation of the breast cancer molecular subtypes using imaging techniques. Med Pharm Rep 2020; 93:253-259. [PMID: 32832890 PMCID: PMC7418834 DOI: 10.15386/mpr-1476] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 01/01/2020] [Accepted: 01/20/2020] [Indexed: 11/23/2022] Open
Abstract
Background and aim In medical practice the classification of breast cancer is most commonly based on the molecular subtypes, in order to predict the disease prognosis, avoid over-treatment, and provide individualized cancer management. Tumor size is a major determiner of treatment planning, acting on the decision-making process, whether to perform breast surgery or administer neoadjuvant chemotherapy. Imaging methods play a key role in determining the tumor size in breast cancers at the time of the diagnosis. We aimed to compare the radiologically determined tumor sizes with the corresponding pathologically determined tumor sizes of breast cancer at the time of the diagnosis, in correlation with the molecular subtypes. Methods Ninety-one patients with primary invasive breast cancer were evaluated. The main molecular subtypes were luminal A, luminal B, HER-2 positive, and triple-negative. The Bland-Altman plot was used for presenting the limits of agreement between the radiologically and the pathologically determined tumor sizes by the molecular subtypes. Results A significantly proportional underestimation was found for the luminal A subtype, especially for large tumors. The p-values for the magnetic resonance imaging, mammography, and ultrasonography were 0.020, 0.030, and <0.001, respectively. No statistically significant differences were observed among the radiologic modalities in determining the tumor size in the remaining molecular subtypes (p>0.05). Conclusion The radiologically determined tumor size was significantly smaller than the pathologically determined tumor size in the luminal A subtype of breast cancers when measured with all three imaging modalities. The differences were more prominent with ultrasonography and mammography. The underestimation rate increases as the tumor gets larger.
Collapse
Affiliation(s)
- Gulten Sezgın
- Department of Radiology, Izmir Katip Celebi University Ataturk Training and Research Hospital, Turkey
| | - Melda Apaydın
- Department of Radiology, Izmir Katip Celebi University Ataturk Training and Research Hospital, Turkey
| | - Demet Etıt
- Department of Pathology, Izmir Katip Celebi University Ataturk Training and Research Hospital, Turkey
| | - Murat Kemal Atahan
- Department of General Surgery, Izmir Katip Celebi University Ataturk Training and Research Hospital, Turkey
| |
Collapse
|
41
|
Potential of Using Cell-Free DNA and miRNA in Breast Milk to Screen Early Breast Cancer. BIOMED RESEARCH INTERNATIONAL 2020; 2020:8126176. [PMID: 32714986 PMCID: PMC7354639 DOI: 10.1155/2020/8126176] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 04/01/2020] [Accepted: 04/02/2020] [Indexed: 02/06/2023]
Abstract
Objective An ideal sample source is critical for more reliable and sensitive early detection of nucleic acid changes associated with breast cancer. Breast milk (BM) is a good noninvasive origin for genetic testing of early breast cancer, but cells in BM are easily disintegrated. So we investigate here whether cell-free nucleic acid (cfNA) exists in BM in a more stable form and whether the quality of BM cfNA is good enough for genetic testing. Methods A self-designed qRT-PCR method was used to measure the existence and abundance of cfDNA. Quality of cfDNA and cfRNA were detected by capillary electrophoresis. Whole genome bisulfite sequencing and miRNA sequencing were used to explore the sources of cfDNA and cell-free miRNA in BM. The copy number analysis and z-test based on whole genome sequencing data were used to determine the integrity of genetic information in BM cfNA. Results We found that cell-free DNA and miRNA exist in the studied breast milk samples in a stable form that can tolerate incubation of BM at room temperature for at least 7 days. These cell-free nucleic acids come mainly from breast-derived cells and contain genetic information as good integrity as in BM cells. We further listed some candidate miRNAs as potential biomarkers for research of early breast cancer screening by analysis of previous reports and our data. Conclusions Our results suggest that cfDNA and cell-free miRNA in BM might be new noninvasive sample sources for finding early alterations of nucleic acid associated with the initiation and progression of breast cancer.
Collapse
|
42
|
Harrison BT, Nakhlis F, Dillon DA, Soong TR, Garcia EP, Schnitt SJ, King TA. Genomic profiling of pleomorphic and florid lobular carcinoma in situ reveals highly recurrent ERBB2 and ERRB3 alterations. Mod Pathol 2020; 33:1287-1297. [PMID: 31932682 DOI: 10.1038/s41379-020-0459-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 12/23/2019] [Accepted: 01/01/2020] [Indexed: 11/09/2022]
Abstract
Pleomorphic LCIS (P-LCIS) and florid LCIS (F-LCIS) are morphologic variants distinguished from classic LCIS by marked nuclear pleomorphism and/or an expansile growth pattern with or without necrosis. Given the rarity of these LCIS variants, little data exist regarding their molecular pathogenesis, natural history, and optimal management. The purpose of this study was to genomically profile LCIS variants to gain further insight into their biology. Nineteen cases of pure LCIS variants (17 P-LCIS, 2 F-LCIS) diagnosed on core needle biopsy at our institution from 2006 to 2017 were included, five of which were upgraded to invasive cancer at excision. Macrodissected lesions were analyzed by a hybrid-capture next generation sequencing assay that surveyed exonic sequences of 447 genes for mutations and copy number variations (CNVs) and 191 regions across 60 genes for structural rearrangements. LCIS variants were all confirmed as E-cadherin negative by immunohistochemistry. Receptor profiles among the 17 P-LCIS cases included HR+/HER2- (nine cases), HR+/HER2+ (three cases), HR-/HER2+ (two cases), and HR-/HER2- (three cases). The two F-LCIS cases were HR+/HER2- and HR+/HER2+. All LCIS variants had genetic alterations consistent with a lobular phenotype including 1q gain (16 cases), 16q loss (18 cases), and CDH1 mutations (18 cases). Highly recurrent ERBB2 alterations were noted including mutations (13 cases) and amplifications (six cases). Other significant alterations included mutations in PIK3CA (six cases), RUNX1 (four cases), ERBB3 (four cases), and CBFB (three cases), as well as amplification of CCND1 (five cases). A TP53 mutation was identified in one case of HR-/HER2+ P-LCIS with signet ring cell features that lacked 1q gain and 16q loss. P-LCIS and F-LCIS contain genetic alterations characteristic of lobular neoplasia; however, these LCIS variants are distinguished from classical LCIS reported in the literature by their highly recurrent ERBB2 alterations.
Collapse
Affiliation(s)
- Beth T Harrison
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA.
| | - Faina Nakhlis
- Division of Breast Surgery, Brigham and Women's Hospital, Boston, MA, USA.,Breast Oncology Program, Dana-Farber/Brigham and Women's Cancer Center, Boston, MA, USA
| | - Deborah A Dillon
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA.,Breast Oncology Program, Dana-Farber/Brigham and Women's Cancer Center, Boston, MA, USA
| | - T Rinda Soong
- Department of Pathology, University of Washington Medical Center, Seattle, WA, USA
| | - Elizabeth P Garcia
- Center for Advanced Molecular Diagnostics, Brigham and Women's Hospital, Boston, MA, USA
| | - Stuart J Schnitt
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA.,Breast Oncology Program, Dana-Farber/Brigham and Women's Cancer Center, Boston, MA, USA
| | - Tari A King
- Division of Breast Surgery, Brigham and Women's Hospital, Boston, MA, USA.,Breast Oncology Program, Dana-Farber/Brigham and Women's Cancer Center, Boston, MA, USA
| |
Collapse
|
43
|
Kutasovic JR, McCart Reed AE, Sokolova A, Lakhani SR, Simpson PT. Morphologic and Genomic Heterogeneity in the Evolution and Progression of Breast Cancer. Cancers (Basel) 2020; 12:E848. [PMID: 32244556 PMCID: PMC7226487 DOI: 10.3390/cancers12040848] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 03/25/2020] [Accepted: 03/26/2020] [Indexed: 12/13/2022] Open
Abstract
: Breast cancer is a remarkably complex and diverse disease. Subtyping based on morphology, genomics, biomarkers and/or clinical parameters seeks to stratify optimal approaches for management, but it is clear that every breast cancer is fundamentally unique. Intra-tumour heterogeneity adds further complexity and impacts a patient's response to neoadjuvant or adjuvant therapy. Here, we review some established and more recent evidence related to the complex nature of breast cancer evolution. We describe morphologic and genomic diversity as it arises spontaneously during the early stages of tumour evolution, and also in the context of treatment where the changing subclonal architecture of a tumour is driven by the inherent adaptability of tumour cells to evolve and resist the selective pressures of therapy.
Collapse
Affiliation(s)
- Jamie R. Kutasovic
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Herston, Brisbane 4029, Australia; (J.R.K.); (A.E.M.R.); (A.S.); (S.R.L.)
- QIMR Berghofer Medical Research Institute, Herston 4006, Australia
| | - Amy E. McCart Reed
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Herston, Brisbane 4029, Australia; (J.R.K.); (A.E.M.R.); (A.S.); (S.R.L.)
- QIMR Berghofer Medical Research Institute, Herston 4006, Australia
| | - Anna Sokolova
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Herston, Brisbane 4029, Australia; (J.R.K.); (A.E.M.R.); (A.S.); (S.R.L.)
- Pathology Queensland, The Royal Brisbane & Women’s Hospital, Herston, Brisbane 4029, Australia
| | - Sunil R. Lakhani
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Herston, Brisbane 4029, Australia; (J.R.K.); (A.E.M.R.); (A.S.); (S.R.L.)
- Pathology Queensland, The Royal Brisbane & Women’s Hospital, Herston, Brisbane 4029, Australia
| | - Peter T. Simpson
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Herston, Brisbane 4029, Australia; (J.R.K.); (A.E.M.R.); (A.S.); (S.R.L.)
| |
Collapse
|
44
|
Alshaker H, Thrower H, Pchejetski D. Sphingosine Kinase 1 in Breast Cancer-A New Molecular Marker and a Therapy Target. Front Oncol 2020; 10:289. [PMID: 32266132 PMCID: PMC7098968 DOI: 10.3389/fonc.2020.00289] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 02/19/2020] [Indexed: 12/31/2022] Open
Abstract
It is now well-established that sphingosine kinase 1 (SK1) plays a significant role in breast cancer development, progression, and spread, whereas SK1 knockdown can reverse these processes. In breast cancer cells and tumors, SK1 was shown to interact with various pathways involved in cell survival and chemoresistance, such as nuclear factor-kappa B (NFκB), Notch, Ras/MAPK, PKC, and PI3K. SK1 is upregulated by estrogen signaling, which, in turn, confers cancer cells with resistance to tamoxifen. Sphingosine-1-phosphate (S1P) produced by SK1 has been linked to tumor invasion and metastasis. Both SK1 and S1P are closely linked to inflammation and adipokine signaling in breast cancer. In human tumors, high SK1 expression has been linked with poorer survival and prognosis. SK1 is upregulated in triple negative tumors and basal-like subtypes. It is often associated with high phosphorylation levels of ERK1/2, SFK, LYN, AKT, and NFκB. Higher tumor SK1 mRNA levels were correlated with poor response to chemotherapy. This review summarizes the up-to-date evidence and discusses the therapeutic potential for the SK1 inhibition in breast cancer, with emphasis on the mechanisms of chemoresistance and combination with other therapies such as gefitinib or docetaxel. We have outlined four key areas for future development, including tumor microenvironment, combination therapies, and nanomedicine. We conclude that SK1 may have a potential as a target for precision medicine, its high expression being a negative prognostic marker in ER-negative breast cancer, as well as a target for chemosensitization therapy.
Collapse
Affiliation(s)
- Heba Alshaker
- School of Medicine, University of East Anglia, Norwich, United Kingdom
| | - Hannah Thrower
- Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Dmitri Pchejetski
- School of Medicine, University of East Anglia, Norwich, United Kingdom
| |
Collapse
|
45
|
Kim WG, Cummings MC, Lakhani SR. Pitfalls and controversies in pathology impacting breast cancer management. Expert Rev Anticancer Ther 2020; 20:205-219. [PMID: 32174198 DOI: 10.1080/14737140.2020.1738222] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Introduction: Breast cancer is a heterogeneous disease, at morphological, molecular, and clinical levels and this has significant implications for the diagnosis and management of the disease. The introduction of breast screening, and the use of small tissue sampling for diagnosis, the recognition of new morphological and molecular subtypes, and the increasing use of neoadjuvant therapies have created challenges in pathological diagnosis and classification.Areas covered: Areas of potential difficulty include columnar cell lesions, particularly flat epithelial atypia, atypical ductal hyperplasia, lobular neoplasia and its variants, and a range of papillary lesions. Fibroepithelial, sclerosing, mucinous, and apocrine lesions are also considered. Established and newer prognostic and predictive markers, such as immune infiltrates, PD-1 and PD-L1 and gene expression assays are evaluated. The unique challenges of pathology assessment post-neoadjuvant systemic therapy are also explored.Expert opinion: Controversies in clinical management arise due to incomplete and sometimes conflicting data on clinicopathological associations, prognosis, and outcome. The review will address some of these challenges.
Collapse
Affiliation(s)
- Woo Gyeong Kim
- Department of Pathology, University of Inje College of Medicine, Busan, Korea.,University of Queensland Centre for Clinical Research, Brisbane, Australia
| | - Margaret C Cummings
- University of Queensland Centre for Clinical Research, Brisbane, Australia.,Department of Anatomical Pathology, Pathology Queensland, Brisbane, Australia
| | - Sunil R Lakhani
- University of Queensland Centre for Clinical Research, Brisbane, Australia.,Department of Anatomical Pathology, Pathology Queensland, Brisbane, Australia
| |
Collapse
|
46
|
Tay THC, Ng WY, Ong KW, Wong CY, Tan BKT, Yong WS, Madhukumar P, Tan VKM, Lim SZ, Sim Y. Impact of hormonal status on ductal carcinoma in situ of the breast: Outcome and prognostic factors. Breast J 2019; 26:937-945. [DOI: 10.1111/tbj.13738] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 12/04/2019] [Accepted: 12/05/2019] [Indexed: 12/12/2022]
Affiliation(s)
| | - Wai Yee Ng
- Division of Surgical Oncology National Cancer Centre Singapore Singapore City Singapore
| | - Kong Wee Ong
- Division of Surgical Oncology National Cancer Centre Singapore Singapore City Singapore
| | - Chow Yin Wong
- SingHealth Duke‐NUS Breast Centre Singapore General Hospital Singapore City Singapore
| | - Benita Kiat Tee Tan
- Division of Surgical Oncology National Cancer Centre Singapore Singapore City Singapore
- SingHealth Duke‐NUS Breast Centre Singapore General Hospital Singapore City Singapore
| | - Wei Sean Yong
- Division of Surgical Oncology National Cancer Centre Singapore Singapore City Singapore
- SingHealth Duke‐NUS Breast Centre Singapore General Hospital Singapore City Singapore
| | - Preetha Madhukumar
- Division of Surgical Oncology National Cancer Centre Singapore Singapore City Singapore
- SingHealth Duke‐NUS Breast Centre Singapore General Hospital Singapore City Singapore
| | - Veronique Kiak Mien Tan
- Division of Surgical Oncology National Cancer Centre Singapore Singapore City Singapore
- SingHealth Duke‐NUS Breast Centre Singapore General Hospital Singapore City Singapore
| | - Sue Zann Lim
- Division of Surgical Oncology National Cancer Centre Singapore Singapore City Singapore
- SingHealth Duke‐NUS Breast Centre Singapore General Hospital Singapore City Singapore
| | - Yirong Sim
- Division of Surgical Oncology National Cancer Centre Singapore Singapore City Singapore
- SingHealth Duke‐NUS Breast Centre Singapore General Hospital Singapore City Singapore
| |
Collapse
|
47
|
Markkanen E. Know Thy Model: Charting Molecular Homology in Stromal Reprogramming Between Canine and Human Mammary Tumors. Front Cell Dev Biol 2019; 7:348. [PMID: 31921858 PMCID: PMC6927989 DOI: 10.3389/fcell.2019.00348] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 12/03/2019] [Indexed: 12/24/2022] Open
Abstract
Spontaneous canine simple mammary tumors (CMTs) are often viewed as models of human breast cancer. Cancer-associated stroma (CAS) is central for initiation and progression of human cancer, and is likely to play a key role in canine tumors as well. Until recently, however, canine CAS in general, and in CMT in particular, lacked detailed characterization and it remained unclear how canine and human CAS compare. This void in knowledge regarding canine CAS and the resulting lack of unbiased cross-species analysis of molecular homologies and differences undermined the validity of the canine model for human disease. To assess stromal reprogramming in canine breast tumors, we have recently established a protocol to specifically isolate and analyze CAS and matched normal stroma from archival, formalin-fixed paraffin embedded (FFPE) clinical tumor samples using laser-capture microdissection followed by next-generation RNA-sequencing. Using this approach, we have analyzed stromal reprogramming in both malignant canine mammary carcinomas (mCAs) as well as benign canine mammary adenomas in a series of studies. Our results demonstrate strong stromal reprogramming in CMTs and identify high-grade molecular homology between human and canine CAS. Here, I aim to give a short background on the value of comparative oncology in general, and spontaneous CMT in particular. This will be followed by a concise review of the current knowledge of stromal reprogramming in both malignant canine mCA and benign adenoma. Finally, I will conclude with insights on highly conserved aspects of stromal reprogramming between CMT and human breast cancer that accentuate the relevance of CAS in CMT as a model for the human disease.
Collapse
Affiliation(s)
- Enni Markkanen
- Institute of Veterinary Pharmacology and Toxicology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| |
Collapse
|
48
|
Zakaria Z, Zulkifle MF, Wan Hasan WAN, Azhari AK, Abdul Raub SH, Eswaran J, Soundararajan M, Syed Husain SNA. Epidermal growth factor receptor ( EGFR) gene alteration and protein overexpression in Malaysian triple-negative breast cancer (TNBC) cohort. Onco Targets Ther 2019; 12:7749-7756. [PMID: 31571924 PMCID: PMC6759283 DOI: 10.2147/ott.s214611] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 07/18/2019] [Indexed: 12/24/2022] Open
Abstract
Background Epidermal growth factor receptor (EGFR) is a member of the ErbB family of tyrosine kinase receptor proteins that plays important roles in tumour cell survival and proliferation. EGFR has been reported to be overexpressed in up to 78% of triple-negative breast cancer (TNBC) cases suggesting it as a potential therapeutic target. The clinical trials of anti-EGFR agents in breast cancer showed low response rates. However, a subgroup of patients demonstrated response to EGFR inhibitors highlighting the necessity to stratify patients, who might benefit from effective combination therapy that could include anti EGFR-agents. Population variability in EGFR expression warrants systematic evaluation in specific populations. Purpose To study EGFR alterations and expressions in a multi ethnic Malaysian TNBC patient cohort to determine the possibility of using anti-EGFR combinatorial therapy for this population. Patients and methods In this study, we evaluated 58 cases of Malaysian TNBC patient samples for EGFR gene copy number alteration and EGFR protein overexpression using fluorescence in-situ hybridization (FISH) and immunohistochemistry (IHC) methods, respectively. Results EGFR protein overexpression was observed in about 30% while 15.5% displayed high EGFR copy number including 5.17% gene amplification and over 10% high polysomy. There is a positive correlation between EGFR protein overexpression and gene copy number and over expression of EGFR is observed in ten out of the 48 low copy number cases (20.9%) without gene amplification. Conclusion This study provides the first glimpse of EGFR alterations and expressions in a multi ethnic Malaysian TNBC patient cohort emphasising the need for the nationwide large scale EGFR expression evaluation in Malaysia.
Collapse
Affiliation(s)
- Zubaidah Zakaria
- Cancer Research Centre (CaRC), Institute for Medical Research (IMR), National Institutes of Health (NIH), Ministry of Health (MOH), Setia Alam, Shah Alam 40170, Selangor Darul Ehsan, Malaysia
| | - Muhamad Farid Zulkifle
- Cancer Research Centre (CaRC), Institute for Medical Research (IMR), National Institutes of Health (NIH), Ministry of Health (MOH), Setia Alam, Shah Alam 40170, Selangor Darul Ehsan, Malaysia.,Department of Pathology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre (UKMMC), Cheras, Kuala Lumpur 56000, Malaysia.,Nutrition, Metabolism and Cardiovascular Research Centre (NMCRC), Institute for Medical Research (IMR), National Institutes of Health (NIH), Ministry of Health (MOH), Setia Alam, 40170 Shah Alam, Selangor Darul Ehsan, Malaysia
| | - Wan Atiqah Najiah Wan Hasan
- Cancer Research Centre (CaRC), Institute for Medical Research (IMR), National Institutes of Health (NIH), Ministry of Health (MOH), Setia Alam, Shah Alam 40170, Selangor Darul Ehsan, Malaysia
| | - Azlah Kamilah Azhari
- Department of Pathology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre (UKMMC), Cheras, Kuala Lumpur 56000, Malaysia.,Reference Specialised Laboratory, Pantai Premier Pathology Sdn. Bhd., Kuala Lumpur 59100, Malaysia
| | - Sayyidi Hamzi Abdul Raub
- Department of Pathology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre (UKMMC), Cheras, Kuala Lumpur 56000, Malaysia.,Reference Specialised Laboratory, Pantai Premier Pathology Sdn. Bhd., Kuala Lumpur 59100, Malaysia
| | - Jeyanthy Eswaran
- Northern Institute for Cancer Research, Newcastle University, Newcastle-upon-Tyne, NE1 7RU, UK.,Newcastle University Medicine Malaysia, Gelang Patah, Johor 79200, Malaysia
| | - Meera Soundararajan
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle-upon-Tyne NE1 8ST, UK
| | - Sharifah Noor Akmal Syed Husain
- Department of Pathology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre (UKMMC), Cheras, Kuala Lumpur 56000, Malaysia.,Reference Specialised Laboratory, Pantai Premier Pathology Sdn. Bhd., Kuala Lumpur 59100, Malaysia
| |
Collapse
|
49
|
Shehata M, Grimm L, Ballantyne N, Lourenco A, Demello LR, Kilgore MR, Rahbar H. Ductal Carcinoma in Situ: Current Concepts in Biology, Imaging, and Treatment. JOURNAL OF BREAST IMAGING 2019; 1:166-176. [PMID: 31538141 DOI: 10.1093/jbi/wbz039] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Indexed: 12/27/2022]
Abstract
Ductal carcinoma in situ (DCIS) of the breast is a group of heterogeneous epithelial proliferations confined to the milk ducts that nearly always present in asymptomatic women on breast cancer screening. A stage 0, preinvasive breast cancer, increased detection of DCIS was initially hailed as a means to prevent invasive breast cancer through surgical treatment with adjuvant radiation and/or endocrine therapies. However, controversy in the medical community has emerged in the past two decades that a fraction of DCIS represents overdiagnosis, leading to unnecessary treatments and resulting morbidity. The imaging hallmarks of DCIS include linearly or segmentally distributed calcifications on mammography or nonmass enhancement on breast MRI. Imaging features have been shown to reflect the biological heterogeneity of DCIS lesions, with recent studies indicating MRI may identify a greater fraction of higher-grade lesions than mammography does. There is strong interest in the surgical, imaging, and oncology communities to better align DCIS management with biology, which has resulted in trials of active surveillance and therapy that is less aggressive. However, risk stratification of DCIS remains imperfect, which has limited the development of precision therapy approaches matched to DCIS aggressiveness. Accordingly, there are opportunities for breast imaging radiologists to assist the oncology community by leveraging advanced imaging techniques to identify appropriate patients for the less aggressive DCIS treatments.
Collapse
Affiliation(s)
- Mariam Shehata
- University of Washington School of Medicine, Department of Radiology, Seattle, WA
| | - Lars Grimm
- Duke University Medical School, Department of Radiology, Durham, NC
| | - Nancy Ballantyne
- Duke University Medical School, Department of Radiology, Durham, NC
| | - Ana Lourenco
- Brown University Medical School, Department of Radiology, Providence, RI
| | - Linda R Demello
- Brown University Medical School, Department of Radiology, Providence, RI
| | - Mark R Kilgore
- University of Washington School of Medicine, Department of Anatomic Pathology, Seattle, WA.,Seattle Cancer Care Alliance, Seattle, WA
| | - Habib Rahbar
- University of Washington School of Medicine, Department of Radiology, Seattle, WA.,Seattle Cancer Care Alliance, Seattle, WA
| |
Collapse
|
50
|
Graña-López L, Herranz M, Domínguez-Prado I, Argibay S, Villares Á, Vázquez-Caruncho M. Can dedicated breast PET help to reduce overdiagnosis and overtreatment by differentiating between indolent and potentially aggressive ductal carcinoma in situ? Eur Radiol 2019; 30:514-522. [DOI: 10.1007/s00330-019-06356-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 05/29/2019] [Accepted: 07/02/2019] [Indexed: 02/07/2023]
|