1
|
Leipp F, Vialaret J, Mohaupt P, Coppens S, Jaffuel A, Niehoff AC, Lehmann S, Hirtz C. Glial fibrillary acidic protein in Alzheimer's disease: a narrative review. Brain Commun 2024; 6:fcae396. [PMID: 39554381 PMCID: PMC11568389 DOI: 10.1093/braincomms/fcae396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/10/2024] [Accepted: 11/06/2024] [Indexed: 11/19/2024] Open
Abstract
Astrocytes are fundamental in neural functioning and homeostasis in the central nervous system. These cells respond to injuries and pathological conditions through astrogliosis, a reactive process associated with neurodegenerative diseases such as Alzheimer's disease. This process is thought to begin in the early stages of these conditions. Glial fibrillary acidic protein (GFAP), a type III intermediate filament protein predominantly expressed in astrocytes, has emerged as a key biomarker for monitoring this response. During astrogliosis, GFAP is released into biofluids, making it a candidate for non-invasive diagnosis and tracking of neurodegenerative diseases. Growing evidence positions GFAP as a biomarker for Alzheimer's disease with specificity and disease-correlation characteristics comparable to established clinical markers, such as Aβ peptides and phosphorylated tau protein. To improve diagnostic accuracy, particularly in the presence of confounders and comorbidities, incorporating a panel of biomarkers may be advantageous. This review will explore the potential of GFAP within such a panel, examining its role in early diagnosis, disease progression monitoring and its integration into clinical practice for Alzheimer's disease management.
Collapse
Affiliation(s)
- Florine Leipp
- Shimadzu France SAS France, Noisiel, France
- IRMB-PPC, INM, Univ Montpellier, CHU Montpellier, INSERM CNRS, Montpellier, France
| | - Jérôme Vialaret
- IRMB-PPC, INM, Univ Montpellier, CHU Montpellier, INSERM CNRS, Montpellier, France
| | - Pablo Mohaupt
- IRMB-PPC, INM, Univ Montpellier, CHU Montpellier, INSERM CNRS, Montpellier, France
| | - Salomé Coppens
- IRMB-PPC, INM, Univ Montpellier, CHU Montpellier, INSERM CNRS, Montpellier, France
| | | | | | - Sylvain Lehmann
- IRMB-PPC, INM, Univ Montpellier, CHU Montpellier, INSERM CNRS, Montpellier, France
| | - Christophe Hirtz
- IRMB-PPC, INM, Univ Montpellier, CHU Montpellier, INSERM CNRS, Montpellier, France
| |
Collapse
|
2
|
Sano T, Nagata T, Ebihara S, Yoshida-Tanaka K, Nakamura A, Sasaki A, Shimozawa A, Mochizuki H, Uchihara T, Hasegawa M, Yokota T. Effects of local reduction of endogenous α-synuclein using antisense oligonucleotides on the fibril-induced propagation of pathology through the neural network in wild-type mice. Acta Neuropathol Commun 2024; 12:75. [PMID: 38745295 PMCID: PMC11092238 DOI: 10.1186/s40478-024-01766-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 03/26/2024] [Indexed: 05/16/2024] Open
Abstract
In Parkinson's disease and other synucleinopathies, fibrillar forms of α-synuclein (aSyn) are hypothesized to structurally convert and pathologize endogenous aSyn, which then propagates through the neural connections, forming Lewy pathologies and ultimately causing neurodegeneration. Inoculation of mouse-derived aSyn preformed fibrils (PFFs) into the unilateral striatum of wild-type mice causes widespread aSyn pathologies in the brain through the neural network. Here, we used the local injection of antisense oligonucleotides (ASOs) against Snca mRNA to confine the area of endogenous aSyn protein reduction and not to affect the PFFs properties in this model. We then varied the timing and location of ASOs injection to examine their impact on the initiation and propagation of aSyn pathologies in the whole brain and the therapeutic effect using abnormally-phosphorylated aSyn (pSyn) as an indicator. By injecting ASOs before or 0-14 days after the PFFs were inoculated into the same site in the left striatum, the reduction in endogenous aSyn in the striatum leads to the prevention and inhibition of the regional spread of pSyn pathologies to the whole brain including the contralateral right hemisphere. ASO post-injection inhibited extension from neuritic pathologies to somatic ones. Moreover, injection of ASOs into the right striatum prevented the remote regional spread of pSyn pathologies from the left striatum where PFFs were inoculated and no ASO treatment was conducted. This indicated that the reduction in endogenous aSyn protein levels at the propagation destination site can attenuate pSyn pathologies, even if those at the propagation initiation site are not inhibited, which is consistent with the original concept of prion-like propagation that endogenous aSyn is indispensable for this regional spread. Our results demonstrate the importance of recruiting endogenous aSyn in this neural network propagation model and indicate a possible potential for ASO treatment in synucleinopathies.
Collapse
Affiliation(s)
- Tatsuhiko Sano
- Department of Neurology and Neurological Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-Ku, Tokyo, 113-8519, Japan
- Center for Brain Integration Research, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-Ku, Tokyo, 113-8519, Japan
| | - Tetsuya Nagata
- Department of Neurology and Neurological Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-Ku, Tokyo, 113-8519, Japan.
- Center for Brain Integration Research, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-Ku, Tokyo, 113-8519, Japan.
- NucleoTIDE and PepTIDE Drug Discovery Center, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-Ku, Tokyo, 113-8519, Japan.
| | - Satoe Ebihara
- Department of Neurology and Neurological Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-Ku, Tokyo, 113-8519, Japan
- Center for Brain Integration Research, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-Ku, Tokyo, 113-8519, Japan
| | - Kie Yoshida-Tanaka
- Department of Neurology and Neurological Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-Ku, Tokyo, 113-8519, Japan
- Center for Brain Integration Research, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-Ku, Tokyo, 113-8519, Japan
| | - Ayako Nakamura
- Department of Neurology and Neurological Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-Ku, Tokyo, 113-8519, Japan
- Center for Brain Integration Research, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-Ku, Tokyo, 113-8519, Japan
| | - Asuka Sasaki
- Department of Neurology and Neurological Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-Ku, Tokyo, 113-8519, Japan
- Center for Brain Integration Research, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-Ku, Tokyo, 113-8519, Japan
| | - Aki Shimozawa
- Department of Brain and Neurosciences, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-Ku, Tokyo, 156-0057, Japan
| | - Hideki Mochizuki
- Department of Neurology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, 565-0871, Japan
| | - Toshiki Uchihara
- Department of Neurology and Neurological Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-Ku, Tokyo, 113-8519, Japan
- Center for Brain Integration Research, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-Ku, Tokyo, 113-8519, Japan
| | - Masato Hasegawa
- Department of Brain and Neurosciences, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-Ku, Tokyo, 156-0057, Japan
| | - Takanori Yokota
- Department of Neurology and Neurological Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-Ku, Tokyo, 113-8519, Japan.
- Center for Brain Integration Research, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-Ku, Tokyo, 113-8519, Japan.
- NucleoTIDE and PepTIDE Drug Discovery Center, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-Ku, Tokyo, 113-8519, Japan.
| |
Collapse
|
3
|
Kandel R, Jung J, Neal S. Proteotoxic stress and the ubiquitin proteasome system. Semin Cell Dev Biol 2024; 156:107-120. [PMID: 37734998 PMCID: PMC10807858 DOI: 10.1016/j.semcdb.2023.08.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 08/01/2023] [Accepted: 08/20/2023] [Indexed: 09/23/2023]
Abstract
The ubiquitin proteasome system maintains protein homeostasis by regulating the breakdown of misfolded proteins, thereby preventing misfolded protein aggregates. The efficient elimination is vital for preventing damage to the cell by misfolded proteins, known as proteotoxic stress. Proteotoxic stress can lead to the collapse of protein homeostasis and can alter the function of the ubiquitin proteasome system. Conversely, impairment of the ubiquitin proteasome system can also cause proteotoxic stress and disrupt protein homeostasis. This review examines two impacts of proteotoxic stress, 1) disruptions to ubiquitin homeostasis (ubiquitin stress) and 2) disruptions to proteasome homeostasis (proteasome stress). Here, we provide a mechanistic description of the relationship between proteotoxic stress and the ubiquitin proteasome system. This relationship is illustrated by findings from several protein misfolding diseases, mainly neurodegenerative diseases, as well as from basic biology discoveries from yeast to mammals. In addition, we explore the importance of the ubiquitin proteasome system in endoplasmic reticulum quality control, and how proteotoxic stress at this organelle is alleviated. Finally, we highlight how cells utilize the ubiquitin proteasome system to adapt to proteotoxic stress and how the ubiquitin proteasome system can be genetically and pharmacologically manipulated to maintain protein homeostasis.
Collapse
Affiliation(s)
- Rachel Kandel
- School of Biological Sciences, Department of Cell and Developmental Biology, University of California San Diego, La Jolla, CA 92093, United States
| | - Jasmine Jung
- School of Biological Sciences, Department of Cell and Developmental Biology, University of California San Diego, La Jolla, CA 92093, United States
| | - Sonya Neal
- School of Biological Sciences, Department of Cell and Developmental Biology, University of California San Diego, La Jolla, CA 92093, United States; Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| |
Collapse
|
4
|
Zaffagnini G, Cheng S, Salzer MC, Pernaute B, Duran JM, Irimia M, Schuh M, Böke E. Mouse oocytes sequester aggregated proteins in degradative super-organelles. Cell 2024; 187:1109-1126.e21. [PMID: 38382525 DOI: 10.1016/j.cell.2024.01.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 12/04/2023] [Accepted: 01/19/2024] [Indexed: 02/23/2024]
Abstract
Oocytes are among the longest-lived cells in the body and need to preserve their cytoplasm to support proper embryonic development. Protein aggregation is a major threat for intracellular homeostasis in long-lived cells. How oocytes cope with protein aggregation during their extended life is unknown. Here, we find that mouse oocytes accumulate protein aggregates in specialized compartments that we named endolysosomal vesicular assemblies (ELVAs). Combining live-cell imaging, electron microscopy, and proteomics, we found that ELVAs are non-membrane-bound compartments composed of endolysosomes, autophagosomes, and proteasomes held together by a protein matrix formed by RUFY1. Functional assays revealed that in immature oocytes, ELVAs sequester aggregated proteins, including TDP-43, and degrade them upon oocyte maturation. Inhibiting degradative activity in ELVAs leads to the accumulation of protein aggregates in the embryo and is detrimental for embryo survival. Thus, ELVAs represent a strategy to safeguard protein homeostasis in long-lived cells.
Collapse
Affiliation(s)
- Gabriele Zaffagnini
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Shiya Cheng
- Department of Meiosis, Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany
| | - Marion C Salzer
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Barbara Pernaute
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Juan Manuel Duran
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Manuel Irimia
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain
| | - Melina Schuh
- Department of Meiosis, Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany; Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, 37077 Göttingen, Germany
| | - Elvan Böke
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain.
| |
Collapse
|
5
|
Pajares MA, Hernández-Gerez E, Pekny M, Pérez-Sala D. Alexander disease: the road ahead. Neural Regen Res 2023; 18:2156-2160. [PMID: 37056123 DOI: 10.4103/1673-5374.369097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2023] Open
Abstract
Alexander disease is a rare neurodegenerative disorder caused by mutations in the glial fibrillary acidic protein, a type III intermediate filament protein expressed in astrocytes. Both early (infantile or juvenile) and adult onsets of the disease are known and, in both cases, astrocytes present characteristic aggregates, named Rosenthal fibers. Mutations are spread along the glial fibrillary acidic protein sequence disrupting the typical filament network in a dominant manner. Although the presence of aggregates suggests a proteostasis problem of the mutant forms, this behavior is also observed when the expression of wild-type glial fibrillary acidic protein is increased. Additionally, several isoforms of glial fibrillary acidic protein have been described to date, while the impact of the mutations on their expression and proportion has not been exhaustively studied. Moreover, the posttranslational modification patterns and/or the protein-protein interaction networks of the glial fibrillary acidic protein mutants may be altered, leading to functional changes that may modify the morphology, positioning, and/or the function of several organelles, in turn, impairing astrocyte normal function and subsequently affecting neurons. In particular, mitochondrial function, redox balance and susceptibility to oxidative stress may contribute to the derangement of glial fibrillary acidic protein mutant-expressing astrocytes. To study the disease and to develop putative therapeutic strategies, several experimental models have been developed, a collection that is in constant growth. The fact that most cases of Alexander disease can be related to glial fibrillary acidic protein mutations, together with the availability of new and more relevant experimental models, holds promise for the design and assay of novel therapeutic strategies.
Collapse
Affiliation(s)
- María A Pajares
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas Margarita Salas, Madrid, Spain
| | - Elena Hernández-Gerez
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas Margarita Salas, Madrid, Spain
| | - Milos Pekny
- Laboratory of Astrocyte Biology and CNS Regeneration, Center for Brain Repair, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden; University of Newcastle, Newcastle, NSW, and the Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
| | - Dolores Pérez-Sala
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas Margarita Salas, Madrid, Spain
| |
Collapse
|
6
|
Tamvaka N, Manne S, Kondru N, Ross OA. Pick's Disease, Seeding an Answer to the Clinical Diagnosis Conundrum. Biomedicines 2023; 11:1646. [PMID: 37371741 DOI: 10.3390/biomedicines11061646] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 05/26/2023] [Accepted: 05/27/2023] [Indexed: 06/29/2023] Open
Abstract
Pick's disease (PiD) is a devastating neurodegenerative disease that is characterized by dementia, frontotemporal lobar degeneration, and the aggregation of 3R tau in pathognomonic inclusions known as Pick bodies. The term PiD has adopted many meanings since its conception in 1926, but it is currently used as a strictly neuropathological term, since PiD patients cannot be diagnosed during life. Due to its rarity, PiD remains significantly understudied, and subsequently, the etiology and pathomechanisms of the disease remain to be elucidated. The study of PiD and the preferential 3R tau accumulation that is unique to PiD is imperative in order to expand the current understanding of the disease and inform future studies and therapeutic development, since the lack of intervention strategies for tauopathies remains an unmet need. Yet, the lack of an antemortem diagnostic test for the disease has further complicated the study of PiD. The development of a clinical diagnostic assay for PiD will be a vital step in the study of the disease that will greatly contribute to therapeutic research, clinical trial design and patient recruitment and ultimately improve patient outcomes. Seed aggregation assays have shown great promise for becoming ante mortem clinical diagnostic tools for many proteinopathies, including tauopathies. Future research on adapting and optimizing current seed aggregation assays to successfully detect 3R tau pathogenic forms from PiD samples will be critical in establishing a 3R tau specific seed aggregation assay that can be used for clinical diagnosis and treatment evaluation.
Collapse
Affiliation(s)
- Nicole Tamvaka
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
- Mayo Graduate School, Neuroscience Track, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Sireesha Manne
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Naveen Kondru
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Owen A Ross
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
- Mayo Graduate School, Neuroscience Track, Mayo Clinic, Jacksonville, FL 32224, USA
- Department of Clinical Genomics, Mayo Clinic, Jacksonville, FL 32224, USA
- Department of Medicine, University College Dublin, D04 V1W8 Dublin, Ireland
- Department of Biology, University of North Florida, Jacksonville, FL 32224, USA
| |
Collapse
|
7
|
Zhou M, Fang R, Colson L, Donovan KA, Hunkeler M, Song Y, Zhang C, Chen S, Lee DH, Bradshaw GA, Eisert R, Ye Y, Kalocsay M, Goldberg A, Fischer ES, Lu Y. HUWE1 Amplifies Ubiquitin Modifications to Broadly Stimulate Clearance of Proteins and Aggregates. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.30.542866. [PMID: 37398461 PMCID: PMC10312588 DOI: 10.1101/2023.05.30.542866] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Selective breakdown of proteins and aggregates is crucial for maintaining normal cellular activities and is involved in the pathogenesis of diverse diseases. How the cell recognizes and tags these targets in different structural states for degradation by the proteasome and autophagy pathways has not been well understood. Here, we discovered that a HECT-family ubiquitin ligase HUWE1 is broadly required for the efficient degradation of soluble factors and for the clearance of protein aggregates/condensates. Underlying this capacity of HUWE1 is a novel Ubiquitin-Directed ubiquitin Ligase (UDL) activity which recognizes both soluble substrates and aggregates that carry a high density of ubiquitin chains and rapidly expand the ubiquitin modifications on these targets. Ubiquitin signal amplification by HUWE1 recruits the ubiquitin-dependent segregase p97/VCP to process these targets for subsequent degradation or clearance. HUWE1 controls the cytotoxicity of protein aggregates, mediates Targeted Protein Degradation and regulates cell-cycle transitions with its UDL activity.
Collapse
|
8
|
Delle Vedove A, Natarajan J, Zanni G, Eckenweiler M, Muiños-Bühl A, Storbeck M, Guillén Boixet J, Barresi S, Pizzi S, Hölker I, Körber F, Franzmann TM, Bertini ES, Kirschner J, Alberti S, Tartaglia M, Wirth B. CAPRIN1 P512L causes aberrant protein aggregation and associates with early-onset ataxia. Cell Mol Life Sci 2022; 79:526. [PMID: 36136249 PMCID: PMC9499908 DOI: 10.1007/s00018-022-04544-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/15/2022] [Accepted: 08/31/2022] [Indexed: 12/26/2022]
Abstract
CAPRIN1 is a ubiquitously expressed protein, abundant in the brain, where it regulates the transport and translation of mRNAs of genes involved in synaptic plasticity. Here we describe two unrelated children, who developed early-onset ataxia, dysarthria, cognitive decline and muscle weakness. Trio exome sequencing unraveled the identical de novo c.1535C > T (p.Pro512Leu) missense variant in CAPRIN1, affecting a highly conserved residue. In silico analyses predict an increased aggregation propensity of the mutated protein. Indeed, overexpressed CAPRIN1P512L forms insoluble ubiquitinated aggregates, sequestrating proteins associated with neurodegenerative disorders (ATXN2, GEMIN5, SNRNP200 and SNCA). Moreover, the CAPRIN1P512L mutation in isogenic iPSC-derived cortical neurons causes reduced neuronal activity and altered stress granule dynamics. Furthermore, nano-differential scanning fluorimetry reveals that CAPRIN1P512L aggregation is strongly enhanced by RNA in vitro. These findings associate the gain-of-function Pro512Leu mutation to early-onset ataxia and neurodegeneration, unveiling a critical residue of CAPRIN1 and a key role of RNA–protein interactions.
Collapse
Affiliation(s)
- Andrea Delle Vedove
- Institute of Human Genetics, University Hospital of Cologne, University Cologne, 50931, Cologne, Germany.,Center for Molecular Medicine Cologne, University of Cologne, 50931, Cologne, Germany.,Institute for Genetics, University of Cologne, 50674, Cologne, Germany
| | - Janani Natarajan
- Center for Molecular and Cellular Bioengineering, Biotechnology Center, Technische Universität Dresden, 01307, Dresden, Germany
| | - Ginevra Zanni
- Genetics and Rare Diseases Research Division and Unit of Muscular and Neurodegenerative Disorders - the Department of Neurosciences of the Bambino Gesù Childrens' Hospital, IRCCS, Rome, Italy
| | - Matthias Eckenweiler
- Department of Neuropediatrics and Muscle Disorders, Faculty of Medicine, Medical Center-University of Freiburg, University of Freiburg, 79106, Freiburg, Germany
| | - Anixa Muiños-Bühl
- Institute of Human Genetics, University Hospital of Cologne, University Cologne, 50931, Cologne, Germany.,Center for Molecular Medicine Cologne, University of Cologne, 50931, Cologne, Germany.,Institute for Genetics, University of Cologne, 50674, Cologne, Germany
| | - Markus Storbeck
- Institute of Human Genetics, University Hospital of Cologne, University Cologne, 50931, Cologne, Germany.,Center for Molecular Medicine Cologne, University of Cologne, 50931, Cologne, Germany.,Institute for Genetics, University of Cologne, 50674, Cologne, Germany
| | - Jordina Guillén Boixet
- Center for Molecular and Cellular Bioengineering, Biotechnology Center, Technische Universität Dresden, 01307, Dresden, Germany
| | - Sabina Barresi
- Genetics and Rare Diseases Research Division and Unit of Muscular and Neurodegenerative Disorders - the Department of Neurosciences of the Bambino Gesù Childrens' Hospital, IRCCS, Rome, Italy
| | - Simone Pizzi
- Genetics and Rare Diseases Research Division and Unit of Muscular and Neurodegenerative Disorders - the Department of Neurosciences of the Bambino Gesù Childrens' Hospital, IRCCS, Rome, Italy
| | - Irmgard Hölker
- Institute of Human Genetics, University Hospital of Cologne, University Cologne, 50931, Cologne, Germany.,Center for Molecular Medicine Cologne, University of Cologne, 50931, Cologne, Germany.,Institute for Genetics, University of Cologne, 50674, Cologne, Germany
| | - Friederike Körber
- Institute of Diagnostic and Interventional Radiology, 50937, Cologne, Germany
| | - Titus M Franzmann
- Center for Molecular and Cellular Bioengineering, Biotechnology Center, Technische Universität Dresden, 01307, Dresden, Germany
| | - Enrico S Bertini
- Genetics and Rare Diseases Research Division and Unit of Muscular and Neurodegenerative Disorders - the Department of Neurosciences of the Bambino Gesù Childrens' Hospital, IRCCS, Rome, Italy
| | - Janbernd Kirschner
- Department of Neuropediatrics and Muscle Disorders, Faculty of Medicine, Medical Center-University of Freiburg, University of Freiburg, 79106, Freiburg, Germany
| | - Simon Alberti
- Center for Molecular and Cellular Bioengineering, Biotechnology Center, Technische Universität Dresden, 01307, Dresden, Germany
| | - Marco Tartaglia
- Genetics and Rare Diseases Research Division and Unit of Muscular and Neurodegenerative Disorders - the Department of Neurosciences of the Bambino Gesù Childrens' Hospital, IRCCS, Rome, Italy
| | - Brunhilde Wirth
- Institute of Human Genetics, University Hospital of Cologne, University Cologne, 50931, Cologne, Germany. .,Center for Molecular Medicine Cologne, University of Cologne, 50931, Cologne, Germany. .,Institute for Genetics, University of Cologne, 50674, Cologne, Germany. .,Center for Rare Diseases, University Hospital of Cologne, 50931, Cologne, Germany.
| |
Collapse
|
9
|
Dao TP, Yang Y, Presti MF, Cosgrove MS, Hopkins JB, Ma W, Loh SN, Castañeda CA. Mechanistic insights into enhancement or inhibition of phase separation by different polyubiquitin chains. EMBO Rep 2022; 23:e55056. [PMID: 35762418 PMCID: PMC9346500 DOI: 10.15252/embr.202255056] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/06/2022] [Accepted: 06/08/2022] [Indexed: 12/03/2022] Open
Abstract
Ubiquitin‐binding shuttle UBQLN2 mediates crosstalk between proteasomal degradation and autophagy, likely via interactions with K48‐ and K63‐linked polyubiquitin chains, respectively. UBQLN2 comprises self‐associating regions that drive its homotypic liquid–liquid phase separation (LLPS). Specific interactions between one of these regions and ubiquitin inhibit UBQLN2 LLPS. Here, we show that, unlike ubiquitin, the effects of multivalent polyubiquitin chains on UBQLN2 LLPS are highly dependent on chain types. Specifically, K11‐Ub4 and K48‐Ub4 chains generally inhibit UBQLN2 LLPS, whereas K63‐Ub4, M1‐Ub4 chains, and a designed tetrameric ubiquitin construct significantly enhance LLPS. We demonstrate that these opposing effects stem from differences in chain conformations but not in affinities between chains and UBQLN2. Chains with extended conformations and increased accessibility to the ubiquitin‐binding surface promote UBQLN2 LLPS by enabling a switch between homotypic to partially heterotypic LLPS that is driven by both UBQLN2 self‐interactions and interactions between multiple UBQLN2 units with each polyubiquitin chain. Our study provides mechanistic insights into how the structural and conformational properties of polyubiquitin chains contribute to heterotypic LLPS with ubiquitin‐binding shuttles and adaptors.
Collapse
Affiliation(s)
- Thuy P Dao
- Departments of Biology and Chemistry Syracuse University Syracuse NY USA
| | - Yiran Yang
- Department of Chemistry Syracuse University Syracuse NY USA
| | - Maria F Presti
- Department of Biochemistry and Molecular Biology SUNY Upstate Medical University Syracuse NY USA
| | - Michael S Cosgrove
- Department of Biochemistry and Molecular Biology SUNY Upstate Medical University Syracuse NY USA
| | - Jesse B Hopkins
- The Biophysics Collaborative Access Team (BioCAT), Department of Biological Sciences Illinois Institute of Technology Chicago IL USA
| | - Weikang Ma
- The Biophysics Collaborative Access Team (BioCAT), Department of Biological Sciences Illinois Institute of Technology Chicago IL USA
| | - Stewart N Loh
- Department of Biochemistry and Molecular Biology SUNY Upstate Medical University Syracuse NY USA
| | - Carlos A Castañeda
- Departments of Biology and Chemistry Syracuse University Syracuse NY USA
- Interdisciplinary Neuroscience Program Syracuse University Syracuse NY USA
| |
Collapse
|
10
|
Choong CJ, Mochizuki H. Neuropathology of α-synuclein in Parkinson's disease. Neuropathology 2022; 42:93-103. [PMID: 35362115 DOI: 10.1111/neup.12812] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 02/24/2022] [Accepted: 02/28/2022] [Indexed: 01/21/2023]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by progressive movement disability accompanied by non-motor symptoms. The neuropathology hallmark of PD is the loss of dopaminergic neurons predominantly in the substantia nigra pars compacta and the presence of intracellular inclusions termed Lewy bodies (LBs), which are mainly composed of α-synuclein (αSyn). Detailed staging based on the distribution and progression pattern of αSyn pathology in the postmortem brains of PD patients revealed correlation with the clinical phenotypes but not invariably. Cumulative evidence from cell and animal studies has implied that αSyn propagation contributes to the anatomical spread of αSyn pathology in the brain. Here, we recount the studies over the past two centuries on the anatomopathological foundations of PD documented. We also review studies on the structural analysis of αSyn and LBs, Braak staging of αSyn pathology, the cell-to-cell propagation of αSyn as well as αSyn fibril polymorphisms, which underlie the phenotypic differences in synucleinopathies.
Collapse
Affiliation(s)
- Chi-Jing Choong
- Department of Neurology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Hideki Mochizuki
- Department of Neurology, Osaka University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
11
|
Simon C, Soga T, Okano HJ, Parhar I. α-Synuclein-mediated neurodegeneration in Dementia with Lewy bodies: the pathobiology of a paradox. Cell Biosci 2021; 11:196. [PMID: 34798911 PMCID: PMC8605528 DOI: 10.1186/s13578-021-00709-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 11/05/2021] [Indexed: 11/16/2022] Open
Abstract
Dementia with Lewy bodies (DLB) is epitomized by the pathognomonic manifestation of α-synuclein-laden Lewy bodies within selectively vulnerable neurons in the brain. By virtue of prion-like inheritance, the α-synuclein protein inexorably undergoes extensive conformational metamorphoses and culminate in the form of fibrillar polymorphs, instigating calamitous damage to the brain's neuropsychological networks. This epiphenomenon is nebulous, however, by lingering uncertainty over the quasi "pathogenic" behavior of α-synuclein conformers in DLB pathobiology. Despite numerous attempts, a monolithic "α-synuclein" paradigm that is able to untangle the enigma enshrouding the clinicopathological spectrum of DLB has failed to emanate. In this article, we review conceptual frameworks of α-synuclein dependent cell-autonomous and non-autonomous mechanisms that are likely to facilitate the transneuronal spread of degeneration through the neuraxis. In particular, we describe how the progressive demise of susceptible neurons may evolve from cellular derangements perpetrated by α-synuclein misfolding and aggregation. Where pertinent, we show how these bona fide mechanisms may mutually accentuate α-synuclein-mediated neurodegeneration in the DLB brain.
Collapse
Affiliation(s)
- Christopher Simon
- Brain Research Institute, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia
| | - Tomoko Soga
- Brain Research Institute, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia
| | - Hirotaka James Okano
- Division of Regenerative Medicine, Research Center for Medical Sciences, The Jikei University School of Medicine, Tokyo, Japan
| | - Ishwar Parhar
- Brain Research Institute, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia
| |
Collapse
|
12
|
Hommen F, Bilican S, Vilchez D. Protein clearance strategies for disease intervention. J Neural Transm (Vienna) 2021; 129:141-172. [PMID: 34689261 PMCID: PMC8541819 DOI: 10.1007/s00702-021-02431-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 10/10/2021] [Indexed: 02/06/2023]
Abstract
Protein homeostasis, or proteostasis, is essential for cell function and viability. Unwanted, damaged, misfolded and aggregated proteins are degraded by the ubiquitin–proteasome system (UPS) and the autophagy-lysosome pathway. Growing evidence indicates that alterations in these major proteolytic mechanisms lead to a demise in proteostasis, contributing to the onset and development of distinct diseases. Indeed, dysregulation of the UPS or autophagy is linked to several neurodegenerative, infectious and inflammatory disorders as well as cancer. Thus, modulation of protein clearance pathways is a promising approach for therapeutics. In this review, we discuss recent findings and open questions on how targeting proteolytic mechanisms could be applied for disease intervention.
Collapse
Affiliation(s)
- Franziska Hommen
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Joseph Stelzmann Strasse 26, 50931, Cologne, Germany
| | - Saygın Bilican
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Joseph Stelzmann Strasse 26, 50931, Cologne, Germany
| | - David Vilchez
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Joseph Stelzmann Strasse 26, 50931, Cologne, Germany. .,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany. .,Faculty of Medicine, University Hospital Cologne, Cologne, Germany.
| |
Collapse
|
13
|
Park JS, Ma H, Roh YS. Ubiquitin pathways regulate the pathogenesis of chronic liver disease. Biochem Pharmacol 2021; 193:114764. [PMID: 34529948 DOI: 10.1016/j.bcp.2021.114764] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/05/2021] [Accepted: 09/08/2021] [Indexed: 02/07/2023]
Abstract
Chronic liver disease (CLD) is considered the leading cause of global mortality. In westernized countries, increased consumption of alcohol and overeating foods with high fat/ high glucose promote progression of CLD such as alcoholic liver disease (ALD) and non-alcoholic liver disease (NAFLD). Accumulating evidence and research suggest that ubiquitin, a 75 amino acid protein, plays crucial role in the pathogenesis of CLD through dynamic post-translational modifications (PTMs) exerting diverse cellular outcomes such as protein degradation through ubiquitin-proteasome system (UPS) and autophagy, and regulation of signal transduction. In this review, we present the function of ubiquitination and latest findings on diverse mechanism of PTMs, UPS and autophagy which significantly contribute to the pathogenesis of alcoholic liver disease (ALD), non-alcoholic fatty liver disease (NAFLD), cirrhosis, and HCC. Despite its high prevalence, morbidity, and mortality, there are only few FDA approved drugs that could be administered to CLD patients. The goal of this review is to present a variety of pathways and therapeutic targets involving ubiquitination in the pathogenesis of CLD. Further, this review summarizes collective views of pharmaceutical inhibition or activation of recent drugs targeting UPS and autophagy system to highlight potential targets and new approaches to treat CLD.
Collapse
Affiliation(s)
- Jeong-Su Park
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju 28160, South Korea
| | - Hwan Ma
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju 28160, South Korea
| | - Yoon-Seok Roh
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju 28160, South Korea.
| |
Collapse
|
14
|
Tachibana M, Tsukamoto K, Takahashi M, Tsutsumi Y. Undifferentiated Pleomorphic Sarcoma With Hyaline Globules (Thanatosomes). Cureus 2021; 13:e15789. [PMID: 34168936 PMCID: PMC8215858 DOI: 10.7759/cureus.15789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/21/2021] [Indexed: 11/30/2022] Open
Abstract
Hyaline globules (HGs) or thanatosomes belong to a well-defined microscopic phenomenon common to any cell type, representing eosinophilic and round-shaped intracytoplasmic inclusions as a result of altered cellular metabolism. We experienced a case of undifferentiated pleomorphic sarcoma (UPS) of the left thigh, immunoreactive diffusely for CD99 and p16INK4a and focally for alpha-smooth muscle actin. HGs were multifocally clustered in the cytoplasm of the tumor cells. An ultrastructural study using a formalin-fixed, paraffin-embedded block was performed to visualize HGs in the UPS cells. Light microscopically, multifocally clustered HGs were PAS-positive with diastase-resistance and fuchsinophilic in Masson's trichrome staining. HGs were immunoreactive for cleaved caspase-3, but negative for ubiquitin. Ultrastructurally, apoptotic tumor cells contained clusters of small-sized electron-dense globules. Granular material was often deposited in the globule matrix. The formation of the HGs is supposedly related to an apoptotic process of the tumor cells. Though a nonspecific and minor microscopic finding, HGs in soft tissue sarcomas may represent a useful histologic marker of enhanced cell turnover and/or ischemic injury. This is the third report describing HGs in UPS.
Collapse
Affiliation(s)
- Mitsuhiro Tachibana
- Department of Diagnostic Pathology, Shimada City General Medical Center, Shimada, JPN
| | - Kei Tsukamoto
- Department of Diagnostic Radiology, Shimada City General Medical Center, Shimada, JPN
| | - Mitsuru Takahashi
- Department of Orthopaedic Surgery, Shizuoka Cancer Center Hospital and Research Institute, Suntou, JPN
| | - Yutaka Tsutsumi
- Diagnostic Pathology Clinic, Pathos Tsutsumi, Inazawa, JPN
- Department of Diagnostic Pathology, Shimada City General Medical Center, Shimada, JPN
| |
Collapse
|
15
|
Gries M, Christmann A, Schulte S, Weyland M, Rommel S, Martin M, Baller M, Röth R, Schmitteckert S, Unger M, Liu Y, Sommer F, Mühlhaus T, Schroda M, Timmermans JP, Pintelon I, Rappold GA, Britschgi M, Lashuel H, Menger MD, Laschke MW, Niesler B, Schäfer KH. Parkinson mice show functional and molecular changes in the gut long before motoric disease onset. Mol Neurodegener 2021; 16:34. [PMID: 34078425 PMCID: PMC8170976 DOI: 10.1186/s13024-021-00439-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 03/03/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND There is increasing evidence that Parkinson's disease (PD) might start in the gut, thus involving and compromising also the enteric nervous system (ENS). At the clinical onset of the disease the majority of dopaminergic neurons in the midbrain is already destroyed, so that the lack of early biomarkers for the disease represents a major challenge for developing timely treatment interventions. Here, we use a transgenic A30P-α-synuclein-overexpressing PD mouse model to identify appropriate candidate markers in the gut before hallmark symptoms begin to manifest. METHODS Based on a gait analysis and striatal dopamine levels, we defined 2-month-old A30P mice as pre-symptomatic (psA30P), since they are not showing any motoric impairments of the skeletal neuromuscular system and no reduced dopamine levels, but an intestinal α-synuclein pathology. Mice at this particular age were further used to analyze functional and molecular alterations in both, the gastrointestinal tract and the ENS, to identify early pathological changes. We examined the gastrointestinal motility, the molecular composition of the ENS, as well as the expression of regulating miRNAs. Moreover, we applied A30P-α-synuclein challenges in vitro to simulate PD in the ENS. RESULTS A retarded gut motility and early molecular dysregulations were found in the myenteric plexus of psA30P mice. We found that i.e. neurofilament light chain, vesicle-associated membrane protein 2 and calbindin 2, together with the miRNAs that regulate them, are significantly altered in the psA30P, thus representing potential biomarkers for early PD. Many of the dysregulated miRNAs found in the psA30P mice are reported to be changed in PD patients as well, either in blood, cerebrospinal fluid or brain tissue. Interestingly, the in vitro approaches delivered similar changes in the ENS cultures as seen in the transgenic animals, thus confirming the data from the mouse model. CONCLUSIONS These findings provide an interesting and novel approach for the identification of appropriate biomarkers in men.
Collapse
Affiliation(s)
- Manuela Gries
- Department of Informatics and Microsystems and Technology, University of Applied Science Kaiserslautern, Working Group Enteric Nervous System, 66482, Zweibrücken, Germany
| | - Anne Christmann
- Department of Informatics and Microsystems and Technology, University of Applied Science Kaiserslautern, Working Group Enteric Nervous System, 66482, Zweibrücken, Germany
| | - Steven Schulte
- Department of Informatics and Microsystems and Technology, University of Applied Science Kaiserslautern, Working Group Enteric Nervous System, 66482, Zweibrücken, Germany
| | - Maximilian Weyland
- Department of Informatics and Microsystems and Technology, University of Applied Science Kaiserslautern, Working Group Enteric Nervous System, 66482, Zweibrücken, Germany
| | - Stephanie Rommel
- Department of Informatics and Microsystems and Technology, University of Applied Science Kaiserslautern, Working Group Enteric Nervous System, 66482, Zweibrücken, Germany
| | - Monika Martin
- Department of Informatics and Microsystems and Technology, University of Applied Science Kaiserslautern, Working Group Enteric Nervous System, 66482, Zweibrücken, Germany
| | - Marko Baller
- Department of Informatics and Microsystems and Technology, University of Applied Science Kaiserslautern, Working Group Enteric Nervous System, 66482, Zweibrücken, Germany
| | - Ralph Röth
- Department of Human Molecular Genetics, University of Heidelberg, 69120, Heidelberg, Germany
| | - Stefanie Schmitteckert
- Department of Human Molecular Genetics, University of Heidelberg, 69120, Heidelberg, Germany
| | - Marcus Unger
- Department of Neurology, Saarland University, 66421, Homburg, Germany
| | - Yang Liu
- Department of Neurology, Saarland University, 66421, Homburg, Germany
| | - Frederik Sommer
- Molecular Biotechnology and Systems Biology, University of Kaiserslautern, 67663, Kaiserslautern, Germany
| | - Timo Mühlhaus
- Computational Systems Biology, University of Kaiserslautern, 67663, Kaiserslautern, Germany
| | - Michael Schroda
- Molecular Biotechnology and Systems Biology, University of Kaiserslautern, 67663, Kaiserslautern, Germany
| | - Jean-Pierre Timmermans
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, 2610, Antwerp, Belgium
| | - Isabel Pintelon
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, 2610, Antwerp, Belgium
| | - Gudrun A Rappold
- Department of Human Molecular Genetics, University of Heidelberg, 69120, Heidelberg, Germany
- Interdisciplinary Center of Neuroscience, 69120, Heidelberg, Germany
| | - Markus Britschgi
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases Discovery and Translational Medicine Area, Neuroscience Discovery, Roche Innovation Center Basel, 4070, Basel, Switzerland
| | - Hilal Lashuel
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Brain Mind Institute, École Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland
| | - Michael D Menger
- Institute for Clinical & Experimental Surgery, Faculty of Medicine, Saarland University, 66421, Homburg, Germany
| | - Matthias W Laschke
- Institute for Clinical & Experimental Surgery, Faculty of Medicine, Saarland University, 66421, Homburg, Germany
| | - Beate Niesler
- Department of Human Molecular Genetics, University of Heidelberg, 69120, Heidelberg, Germany
| | - Karl-Herbert Schäfer
- Department of Informatics and Microsystems and Technology, University of Applied Science Kaiserslautern, Working Group Enteric Nervous System, 66482, Zweibrücken, Germany.
- Department of Pediatric Surgery, Medical Faculty Mannheim, University of Heidelberg, 68167, Mannheim, Germany.
| |
Collapse
|
16
|
El-Kadiry AEH, Merhi Y. The Role of the Proteasome in Platelet Function. Int J Mol Sci 2021; 22:3999. [PMID: 33924425 PMCID: PMC8069084 DOI: 10.3390/ijms22083999] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/06/2021] [Accepted: 04/08/2021] [Indexed: 02/06/2023] Open
Abstract
Platelets are megakaryocyte-derived acellular fragments prepped to maintain primary hemostasis and thrombosis by preserving vascular integrity. Although they lack nuclei, platelets harbor functional genomic mediators that bolster platelet activity in a signal-specific manner by performing limited de novo protein synthesis. Furthermore, despite their limited protein synthesis, platelets are equipped with multiple protein degradation mechanisms, such as the proteasome. In nucleated cells, the functions of the proteasome are well established and primarily include proteostasis among a myriad of other signaling processes. However, the role of proteasome-mediated protein degradation in platelets remains elusive. In this review article, we recapitulate the developing literature on the functions of the proteasome in platelets, discussing its emerging regulatory role in platelet viability and function and highlighting how its functional coupling with the transcription factor NF-κB constitutes a novel potential therapeutic target in atherothrombotic diseases.
Collapse
Affiliation(s)
- Abed El-Hakim El-Kadiry
- Laboratory of Thrombosis and Hemostasis, Montreal Heart Institute, Research Centre, Montreal, QC H1T 1C8, Canada;
- Biomedical Sciences Program, Faculty of Medicine, Université de Montréal, Montreal, QC H3T 1J4, Canada
| | - Yahye Merhi
- Laboratory of Thrombosis and Hemostasis, Montreal Heart Institute, Research Centre, Montreal, QC H1T 1C8, Canada;
- Biomedical Sciences Program, Faculty of Medicine, Université de Montréal, Montreal, QC H3T 1J4, Canada
| |
Collapse
|
17
|
PolyQ-expanded proteins impair cellular proteostasis of ataxin-3 through sequestering the co-chaperone HSJ1 into aggregates. Sci Rep 2021; 11:7815. [PMID: 33837238 PMCID: PMC8035147 DOI: 10.1038/s41598-021-87382-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 03/26/2021] [Indexed: 12/13/2022] Open
Abstract
Polyglutamine (polyQ) expansion of proteins can trigger protein misfolding and amyloid-like aggregation, which thus lead to severe cytotoxicities and even the respective neurodegenerative diseases. However, why polyQ aggregation is toxic to cells is not fully elucidated. Here, we took the fragments of polyQ-expanded (PQE) ataxin-7 (Atx7) and huntingtin (Htt) as models to investigate the effect of polyQ aggregates on the cellular proteostasis of endogenous ataxin-3 (Atx3), a protein that frequently appears in diverse inclusion bodies. We found that PQE Atx7 and Htt impair the cellular proteostasis of Atx3 by reducing its soluble as well as total Atx3 level but enhancing formation of the aggregates. Expression of these polyQ proteins promotes proteasomal degradation of endogenous Atx3 and accumulation of its aggregated form. Then we verified that the co-chaperone HSJ1 is an essential factor that orchestrates the balance of cellular proteostasis of Atx3; and further discovered that the polyQ proteins can sequester HSJ1 into aggregates or inclusions in a UIM domain-dependent manner. Thereby, the impairment of Atx3 proteostasis may be attributed to the sequestration and functional loss of cellular HSJ1. This study deciphers a potential mechanism underlying how PQE protein triggers proteinopathies, and also provides additional evidence in supporting the hijacking hypothesis that sequestration of cellular interacting partners by protein aggregates leads to cytotoxicity or neurodegeneration.
Collapse
|
18
|
Kawabe H, Stegmüller J. The role of E3 ubiquitin ligases in synapse function in the healthy and diseased brain. Mol Cell Neurosci 2021; 112:103602. [DOI: 10.1016/j.mcn.2021.103602] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 01/06/2021] [Accepted: 02/02/2021] [Indexed: 02/08/2023] Open
|
19
|
Pinto MJ, Tomé D, Almeida RD. The Ubiquitinated Axon: Local Control of Axon Development and Function by Ubiquitin. J Neurosci 2021; 41:2796-2813. [PMID: 33789876 PMCID: PMC8018891 DOI: 10.1523/jneurosci.2251-20.2021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 01/15/2021] [Accepted: 01/22/2021] [Indexed: 02/01/2023] Open
Abstract
Ubiquitin tagging sets protein fate. With a wide range of possible patterns and reversibility, ubiquitination can assume many shapes to meet specific demands of a particular cell across time and space. In neurons, unique cells with functionally distinct axons and dendrites harboring dynamic synapses, the ubiquitin code is exploited at the height of its power. Indeed, wide expression of ubiquitination and proteasome machinery at synapses, a diverse brain ubiquitome, and the existence of ubiquitin-related neurodevelopmental diseases support a fundamental role of ubiquitin signaling in the developing and mature brain. While special attention has been given to dendritic ubiquitin-dependent control, how axonal biology is governed by this small but versatile molecule has been considerably less discussed. Herein, we set out to explore the ubiquitin-mediated spatiotemporal control of an axon's lifetime: from its differentiation and growth through presynaptic formation, function, and pruning.
Collapse
Affiliation(s)
- Maria J Pinto
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, 3004-504, Portugal
| | - Diogo Tomé
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, 3004-504, Portugal
- Institute of Biomedicine, Department of Medical Sciences, University of Aveiro, Aveiro, 3810-193, Portugal
| | - Ramiro D Almeida
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, 3004-504, Portugal
- Institute of Biomedicine, Department of Medical Sciences, University of Aveiro, Aveiro, 3810-193, Portugal
| |
Collapse
|
20
|
A transition to degeneration triggered by oxidative stress in degenerative disorders. Mol Psychiatry 2021; 26:736-746. [PMID: 33159186 PMCID: PMC7914161 DOI: 10.1038/s41380-020-00943-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 10/15/2020] [Accepted: 10/26/2020] [Indexed: 12/14/2022]
Abstract
Although the activities of many signaling pathways are dysregulated during the progression of neurodegenerative and muscle degeneration disorders, the precise sequence of cellular events leading to degeneration has not been fully elucidated. Two kinases of particular interest, the growth-promoting Tor kinase and the energy sensor AMPK, appear to show reciprocal changes in activity during degeneration, with increased Tor activity and decreased AMPK activity reported. These changes in activity have been predicted to cause degeneration by attenuating autophagy, leading to the accumulation of unfolded protein aggregates and dysfunctional mitochondria, the consequent increased production of reactive oxygen species (ROS), and ultimately oxidative damage. Here we propose that this increased ROS production not only causes oxidative damage but also ultimately induces an oxidative stress response that reactivates the redox-sensitive AMPK and activates the redox-sensitive stress kinase JNK. Activation of these kinases reactivates autophagy. Because at this late stage, cells have become filled with dysfunctional mitochondria and protein aggregates, which are autophagy targets, this autophagy reactivation induces degeneration. The mechanism proposed here emphasizes that the process of degeneration is dynamic, that dysregulated signaling pathways change over time and can transition from deleterious to beneficial and vice versa as degeneration progresses.
Collapse
|
21
|
Highet B, Vikas Anekal P, Ryan B, Murray H, Coppieters N, Victor Dieriks B, Singh-Bains MK, Mehrabi NF, Faull RLM, Dragunow M, Curtis MA. fISHing with immunohistochemistry for housekeeping gene changes in Alzheimer's disease using an automated quantitative analysis workflow. J Neurochem 2021; 157:1270-1283. [PMID: 33368239 DOI: 10.1111/jnc.15283] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 11/12/2020] [Accepted: 12/21/2020] [Indexed: 12/28/2022]
Abstract
In situ hybridization (ISH) is a powerful tool that can be used to localize mRNA expression in tissue samples. Combining ISH with immunohistochemistry (IHC) to determine cell type provides cellular context of mRNA expression, which cannot be achieved with gene microarray or polymerase chain reaction. To study mRNA and protein expression on the same section we investigated the use of RNAscope® ISH in combination with fluorescent IHC on paraffin-embedded human brain tissue. We first developed a high-throughput, automated image analysis workflow for quantifying RNA puncta across the total cell population and within neurons identified by NeuN+ immunoreactivity. We then applied this automated analysis to tissue microarray (TMA) sections of middle temporal gyrus tissue (MTG) from neurologically normal and Alzheimer's Disease (AD) cases to determine the suitability of three commonly used housekeeping genes: ubiquitin C (UBC), peptidyl-prolyl cis-trans isomerase B (PPIB) and DNA-directed RNA polymerase II subunit RPB1 (POLR2A). Overall, we saw a significant decrease in total and neuronal UBC expression in AD cases compared to normal cases. Total expression results were validated with RT-qPCR using fresh frozen tissue from 5 normal and 5 AD cases. We conclude that this technique combined with our novel automated analysis pipeline provides a suitable platform to study changes in gene expression in diseased human brain tissue with cellular and anatomical context. Furthermore, our results suggest that UBC is not a suitable housekeeping gene in the study of post-mortem AD brain tissue.
Collapse
Affiliation(s)
- Blake Highet
- Department of Anatomy and Medical Imaging, Faculty of Medical and Health Science, University of Auckland, Auckland, New Zealand.,Centre for Brain Research, Faculty of Medical and Health Science, University of Auckland, Auckland, New Zealand
| | - Praju Vikas Anekal
- Biomedical Imaging Research Unit, Faculty of Medical and Health Science, University of Auckland, Auckland, New Zealand
| | - Brigid Ryan
- Department of Anatomy and Medical Imaging, Faculty of Medical and Health Science, University of Auckland, Auckland, New Zealand.,Centre for Brain Research, Faculty of Medical and Health Science, University of Auckland, Auckland, New Zealand
| | - Helen Murray
- Department of Anatomy and Medical Imaging, Faculty of Medical and Health Science, University of Auckland, Auckland, New Zealand.,Centre for Brain Research, Faculty of Medical and Health Science, University of Auckland, Auckland, New Zealand
| | - Natacha Coppieters
- Laboratory of Nervous System Disorders and Therapy, GIGA-Neuroscience, University of Liège, Liège, Belgium
| | - Birger Victor Dieriks
- Department of Anatomy and Medical Imaging, Faculty of Medical and Health Science, University of Auckland, Auckland, New Zealand.,Centre for Brain Research, Faculty of Medical and Health Science, University of Auckland, Auckland, New Zealand
| | - Malvindar K Singh-Bains
- Department of Anatomy and Medical Imaging, Faculty of Medical and Health Science, University of Auckland, Auckland, New Zealand.,Centre for Brain Research, Faculty of Medical and Health Science, University of Auckland, Auckland, New Zealand
| | - Nasim F Mehrabi
- Centre for Brain Research, Faculty of Medical and Health Science, University of Auckland, Auckland, New Zealand.,Department of Pharmacology, Faculty of Medical and Health Science, University of Auckland, Auckland, New Zealand
| | - Richard L M Faull
- Department of Anatomy and Medical Imaging, Faculty of Medical and Health Science, University of Auckland, Auckland, New Zealand.,Centre for Brain Research, Faculty of Medical and Health Science, University of Auckland, Auckland, New Zealand
| | - Michael Dragunow
- Centre for Brain Research, Faculty of Medical and Health Science, University of Auckland, Auckland, New Zealand.,Department of Pharmacology, Faculty of Medical and Health Science, University of Auckland, Auckland, New Zealand
| | - Maurice A Curtis
- Department of Anatomy and Medical Imaging, Faculty of Medical and Health Science, University of Auckland, Auckland, New Zealand.,Centre for Brain Research, Faculty of Medical and Health Science, University of Auckland, Auckland, New Zealand
| |
Collapse
|
22
|
Reverse engineering Lewy bodies: how far have we come and how far can we go? Nat Rev Neurosci 2021; 22:111-131. [PMID: 33432241 DOI: 10.1038/s41583-020-00416-6] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/23/2020] [Indexed: 12/19/2022]
Abstract
Lewy bodies (LBs) are α-synuclein (α-syn)-rich intracellular inclusions that are an important pathological hallmark of Parkinson disease and several other neurodegenerative diseases. Increasing evidence suggests that the aggregation of α-syn has a central role in LB formation and is one of the key processes that drive neurodegeneration and pathology progression in Parkinson disease. However, little is known about the mechanisms underlying the formation of LBs, their biochemical composition and ultrastructural properties, how they evolve and spread with disease progression, and their role in neurodegeneration. In this Review, we discuss current knowledge of α-syn pathology, including the biochemical, structural and morphological features of LBs observed in different brain regions. We also review the most used cellular and animal models of α-syn aggregation and pathology spreading in relation to the extent to which they reproduce key features of authentic LBs. Finally, we provide important insights into molecular and cellular determinants of LB formation and spreading, and highlight the critical need for more detailed and systematic characterization of α-syn pathology, at both the biochemical and structural levels. This would advance our understanding of Parkinson disease and other neurodegenerative diseases and allow the development of more-reliable disease models and novel effective therapeutic strategies.
Collapse
|
23
|
Schmidt MF, Gan ZY, Komander D, Dewson G. Ubiquitin signalling in neurodegeneration: mechanisms and therapeutic opportunities. Cell Death Differ 2021; 28:570-590. [PMID: 33414510 PMCID: PMC7862249 DOI: 10.1038/s41418-020-00706-7] [Citation(s) in RCA: 221] [Impact Index Per Article: 55.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 12/01/2020] [Accepted: 12/01/2020] [Indexed: 02/06/2023] Open
Abstract
Neurodegenerative diseases are characterised by progressive damage to the nervous system including the selective loss of vulnerable populations of neurons leading to motor symptoms and cognitive decline. Despite millions of people being affected worldwide, there are still no drugs that block the neurodegenerative process to stop or slow disease progression. Neuronal death in these diseases is often linked to the misfolded proteins that aggregate within the brain (proteinopathies) as a result of disease-related gene mutations or abnormal protein homoeostasis. There are two major degradation pathways to rid a cell of unwanted or misfolded proteins to prevent their accumulation and to maintain the health of a cell: the ubiquitin–proteasome system and the autophagy–lysosomal pathway. Both of these degradative pathways depend on the modification of targets with ubiquitin. Aging is the primary risk factor of most neurodegenerative diseases including Alzheimer’s disease, Parkinson’s disease and amyotrophic lateral sclerosis. With aging there is a general reduction in proteasomal degradation and autophagy, and a consequent increase of potentially neurotoxic protein aggregates of β-amyloid, tau, α-synuclein, SOD1 and TDP-43. An often over-looked yet major component of these aggregates is ubiquitin, implicating these protein aggregates as either an adaptive response to toxic misfolded proteins or as evidence of dysregulated ubiquitin-mediated degradation driving toxic aggregation. In addition, non-degradative ubiquitin signalling is critical for homoeostatic mechanisms fundamental for neuronal function and survival, including mitochondrial homoeostasis, receptor trafficking and DNA damage responses, whilst also playing a role in inflammatory processes. This review will discuss the current understanding of the role of ubiquitin-dependent processes in the progressive loss of neurons and the emergence of ubiquitin signalling as a target for the development of much needed new drugs to treat neurodegenerative disease. ![]()
Collapse
Affiliation(s)
- Marlene F Schmidt
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Melbourne, VIC, 3052, Australia.,Department of Medical Biology, University of Melbourne, Royal Parade, Melbourne, VIC, 3052, Australia
| | - Zhong Yan Gan
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Melbourne, VIC, 3052, Australia.,Department of Medical Biology, University of Melbourne, Royal Parade, Melbourne, VIC, 3052, Australia
| | - David Komander
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Melbourne, VIC, 3052, Australia.,Department of Medical Biology, University of Melbourne, Royal Parade, Melbourne, VIC, 3052, Australia
| | - Grant Dewson
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Melbourne, VIC, 3052, Australia. .,Department of Medical Biology, University of Melbourne, Royal Parade, Melbourne, VIC, 3052, Australia.
| |
Collapse
|
24
|
Račková L, Csekes E. Proteasome Biology: Chemistry and Bioengineering Insights. Polymers (Basel) 2020; 12:E2909. [PMID: 33291646 PMCID: PMC7761984 DOI: 10.3390/polym12122909] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/22/2020] [Accepted: 11/23/2020] [Indexed: 12/12/2022] Open
Abstract
Proteasomal degradation provides the crucial machinery for maintaining cellular proteostasis. The biological origins of modulation or impairment of the function of proteasomal complexes may include changes in gene expression of their subunits, ubiquitin mutation, or indirect mechanisms arising from the overall impairment of proteostasis. However, changes in the physico-chemical characteristics of the cellular environment might also meaningfully contribute to altered performance. This review summarizes the effects of physicochemical factors in the cell, such as pH, temperature fluctuations, and reactions with the products of oxidative metabolism, on the function of the proteasome. Furthermore, evidence of the direct interaction of proteasomal complexes with protein aggregates is compared against the knowledge obtained from immobilization biotechnologies. In this regard, factors such as the structures of the natural polymeric scaffolds in the cells, their content of reactive groups or the sequestration of metal ions, and processes at the interface, are discussed here with regard to their influences on proteasomal function.
Collapse
Affiliation(s)
- Lucia Račková
- Centre of Experimental Medicine, Institute of Experimental Pharmacology and Toxicology, Slovak Academy of Sciences, Dúbravská cesta 9, 841 04 Bratislava, Slovakia;
| | | |
Collapse
|
25
|
Dao TP, Castañeda CA. Ubiquitin-Modulated Phase Separation of Shuttle Proteins: Does Condensate Formation Promote Protein Degradation? Bioessays 2020; 42:e2000036. [PMID: 32881044 PMCID: PMC7737676 DOI: 10.1002/bies.202000036] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 07/29/2020] [Indexed: 12/14/2022]
Abstract
Liquid-liquid phase separation (LLPS) has recently emerged as a possible mechanism that enables ubiquitin-binding shuttle proteins to facilitate the degradation of ubiquitinated substrates via distinct protein quality control (PQC) pathways. Shuttle protein LLPS is modulated by multivalent interactions among their various domains as well as heterotypic interactions with polyubiquitin chains. Here, the properties of three different shuttle proteins (hHR23B, p62, and UBQLN2) are closely examined, unifying principles for the molecular determinants of their LLPS are identified, and how LLPS is connected to their functions is discussed. Evidence supporting LLPS of other shuttle proteins is also found. In this review, it is proposed that shuttle protein LLPS leads to spatiotemporal regulation of PQC activities by mediating the recruitment of PQC machinery (including proteasomes or autophagic components) to biomolecular condensates, assembly/disassembly of condensates, selective enrichment of client proteins, and extraction of ubiquitinated proteins from condensates in cells.
Collapse
Affiliation(s)
- Thuy P Dao
- Departments of Biology and Chemistry, Syracuse University, Syracuse, NY, 13244, USA
| | - Carlos A Castañeda
- Departments of Biology and Chemistry, Syracuse University, Syracuse, NY, 13244, USA
- Bioinspired Institute, Syracuse University, Syracuse, NY, 13244, USA
- Interdisciplinary Neuroscience Program, Syracuse University, Syracuse, NY, 13244, USA
| |
Collapse
|
26
|
Nakayama Y, Tsuji K, Ayaki T, Mori M, Tokunaga F, Ito H. Linear Polyubiquitin Chain Modification of TDP-43-Positive Neuronal Cytoplasmic Inclusions in Amyotrophic Lateral Sclerosis. J Neuropathol Exp Neurol 2020; 79:256-265. [PMID: 31951008 DOI: 10.1093/jnen/nlz135] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 11/06/2019] [Accepted: 12/09/2019] [Indexed: 12/14/2022] Open
Abstract
Neuronal cytoplasmic inclusions (NCIs) containing TAR DNA-binding protein of 43 kDa (TDP-43) are pathological hallmarks of amyotrophic lateral sclerosis (ALS) and are known to be ubiquitinated. Eight linkage types of polyubiquitin chains have been reported, each type of chain exerting different intracellular actions. The linkage type of polyubiquitin chain involved in the formation of NCIs in sporadic ALS (sALS), however, has not yet been elucidated. We performed immunohistochemical study of the spinal cords of 12 patients with sALS and on those of 6 control subjects. Virtually all ubiquitinated NCIs were immunolabeled with lysine 48-linked polyubiquitin chain (K48-Ub). Although the majority of NCIs were triple-immunoreactive for K48-Ub, linear polyubiquitin chain (L-Ub), and lysine 63-linked polyubiquitin chain (K63-Ub), thin parts of K48-Ub-immunopositive NCIs were not labeled for K63-Ub or L-Ub. We also detected HOIP and SHARPIN, components of linear ubiquitin chain assembly complex, colocalizing with L-Ub on NCIs. Moreover, the immunosignal of optineurin, an autophagy receptor working with L-Ub, and that of activated NF-κB p65, were observed to be colocalizing with L-Ub on certain parts of NCIs. The L-Ub modification of TDP-43-positive NCIs may function as an inducer of autophagic clearance of NCIs, neuroinflammation, and neurodegeneration in sALS.
Collapse
Affiliation(s)
- Yoshiaki Nakayama
- From the Department of Neurology, Wakayama Medical University, Wakayama, Japan
| | - Kazumi Tsuji
- From the Department of Neurology, Wakayama Medical University, Wakayama, Japan
| | - Takashi Ayaki
- Department of Neurology, Faculty of Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Megumi Mori
- From the Department of Neurology, Wakayama Medical University, Wakayama, Japan
| | - Fuminori Tokunaga
- Department of Pathobiochemistry, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Hidefumi Ito
- From the Department of Neurology, Wakayama Medical University, Wakayama, Japan
| |
Collapse
|
27
|
Pytte J, Anderton RS, Flynn LL, Theunissen F, Jiang L, Pitout I, James I, Mastaglia FL, Saunders AM, Bedlack R, Siddique T, Siddique N, Akkari PA. Association of a structural variant within the SQSTM1 gene with amyotrophic lateral sclerosis. Neurol Genet 2020; 6:e406. [PMID: 32185242 PMCID: PMC7061286 DOI: 10.1212/nxg.0000000000000406] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 01/23/2020] [Indexed: 11/15/2022]
Abstract
OBJECTIVE As structural variations may underpin susceptibility to complex neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS), the objective of this study was to investigate a structural variant (SV) within sequestosome 1 (SQSTM1). METHODS A candidate insertion/deletion variant within intron 5 of the SQSTM1 gene was identified using a previously established SV evaluation algorithm and chosen according to its subsequent theoretical effect on gene expression. The variant was systematically assessed through PCR, polyacrylamide gel fractionation, Sanger sequencing, and reverse transcriptase PCR. RESULTS A reliable and robust assay confirmed the polymorphic nature of this variant and that the variant may influence SQSTM1 transcript levels. In a North American cohort of patients with familial ALS (fALS) and sporadic ALS (sALS) (n = 403) and age-matched healthy controls (n = 562), we subsequently showed that the SQSTM1 variant is associated with fALS (p = 0.0036), particularly in familial superoxide dismutase 1 mutation positive patients (p = 0.0005), but not with patients with sALS (p = 0.97). CONCLUSIONS This disease association highlights the importance and implications of further investigation into SVs that may provide new targets for cohort stratification and therapeutic development.
Collapse
Affiliation(s)
- Julia Pytte
- University of Western Australia (J.P., R.S.A., L.L.F., F.T., L.J., F.L.M., P.A.A.), Centre for Neuromuscular and Neurological Disorders, Crawley; Perron Institute for Neurological and Translational Science (J.P., R.S.A., L.L.F., F.T., L.J., I.P., F.L.M., P.A.A.), Nedlands; University of Notre Dame Australia (R.S.A.), School of Health Sciences; University of Notre Dame Australia (R.S.A.), Institute for Health Research, Fremantle; Murdoch University (L.L.F., I.P., P.A.A.), Centre for Molecular Medicine and Innovative Therapeutics; Murdoch University, Institute for Immunology and Infectious Diseases (I.J.), Western Australia, Australia; Department of Neurology (R.B.), Duke University School of Medicine, Durham, NC; Zinfandel Pharmaceuticals (A.M.S.), Inc.; Duke University (R.B.), ALS Clinic, Durham, NC; and Departments of Neurology, Pathology and Cell and Molecular Biology (T.S., N.S.), Northwestern University Feinberg School of Medicine, the Les Turner ALS Center and the Northwestern University Interdepartmental Neuroscience Program, Chicago, IL
| | - Ryan S Anderton
- University of Western Australia (J.P., R.S.A., L.L.F., F.T., L.J., F.L.M., P.A.A.), Centre for Neuromuscular and Neurological Disorders, Crawley; Perron Institute for Neurological and Translational Science (J.P., R.S.A., L.L.F., F.T., L.J., I.P., F.L.M., P.A.A.), Nedlands; University of Notre Dame Australia (R.S.A.), School of Health Sciences; University of Notre Dame Australia (R.S.A.), Institute for Health Research, Fremantle; Murdoch University (L.L.F., I.P., P.A.A.), Centre for Molecular Medicine and Innovative Therapeutics; Murdoch University, Institute for Immunology and Infectious Diseases (I.J.), Western Australia, Australia; Department of Neurology (R.B.), Duke University School of Medicine, Durham, NC; Zinfandel Pharmaceuticals (A.M.S.), Inc.; Duke University (R.B.), ALS Clinic, Durham, NC; and Departments of Neurology, Pathology and Cell and Molecular Biology (T.S., N.S.), Northwestern University Feinberg School of Medicine, the Les Turner ALS Center and the Northwestern University Interdepartmental Neuroscience Program, Chicago, IL
| | - Loren L Flynn
- University of Western Australia (J.P., R.S.A., L.L.F., F.T., L.J., F.L.M., P.A.A.), Centre for Neuromuscular and Neurological Disorders, Crawley; Perron Institute for Neurological and Translational Science (J.P., R.S.A., L.L.F., F.T., L.J., I.P., F.L.M., P.A.A.), Nedlands; University of Notre Dame Australia (R.S.A.), School of Health Sciences; University of Notre Dame Australia (R.S.A.), Institute for Health Research, Fremantle; Murdoch University (L.L.F., I.P., P.A.A.), Centre for Molecular Medicine and Innovative Therapeutics; Murdoch University, Institute for Immunology and Infectious Diseases (I.J.), Western Australia, Australia; Department of Neurology (R.B.), Duke University School of Medicine, Durham, NC; Zinfandel Pharmaceuticals (A.M.S.), Inc.; Duke University (R.B.), ALS Clinic, Durham, NC; and Departments of Neurology, Pathology and Cell and Molecular Biology (T.S., N.S.), Northwestern University Feinberg School of Medicine, the Les Turner ALS Center and the Northwestern University Interdepartmental Neuroscience Program, Chicago, IL
| | - Frances Theunissen
- University of Western Australia (J.P., R.S.A., L.L.F., F.T., L.J., F.L.M., P.A.A.), Centre for Neuromuscular and Neurological Disorders, Crawley; Perron Institute for Neurological and Translational Science (J.P., R.S.A., L.L.F., F.T., L.J., I.P., F.L.M., P.A.A.), Nedlands; University of Notre Dame Australia (R.S.A.), School of Health Sciences; University of Notre Dame Australia (R.S.A.), Institute for Health Research, Fremantle; Murdoch University (L.L.F., I.P., P.A.A.), Centre for Molecular Medicine and Innovative Therapeutics; Murdoch University, Institute for Immunology and Infectious Diseases (I.J.), Western Australia, Australia; Department of Neurology (R.B.), Duke University School of Medicine, Durham, NC; Zinfandel Pharmaceuticals (A.M.S.), Inc.; Duke University (R.B.), ALS Clinic, Durham, NC; and Departments of Neurology, Pathology and Cell and Molecular Biology (T.S., N.S.), Northwestern University Feinberg School of Medicine, the Les Turner ALS Center and the Northwestern University Interdepartmental Neuroscience Program, Chicago, IL
| | - Leanne Jiang
- University of Western Australia (J.P., R.S.A., L.L.F., F.T., L.J., F.L.M., P.A.A.), Centre for Neuromuscular and Neurological Disorders, Crawley; Perron Institute for Neurological and Translational Science (J.P., R.S.A., L.L.F., F.T., L.J., I.P., F.L.M., P.A.A.), Nedlands; University of Notre Dame Australia (R.S.A.), School of Health Sciences; University of Notre Dame Australia (R.S.A.), Institute for Health Research, Fremantle; Murdoch University (L.L.F., I.P., P.A.A.), Centre for Molecular Medicine and Innovative Therapeutics; Murdoch University, Institute for Immunology and Infectious Diseases (I.J.), Western Australia, Australia; Department of Neurology (R.B.), Duke University School of Medicine, Durham, NC; Zinfandel Pharmaceuticals (A.M.S.), Inc.; Duke University (R.B.), ALS Clinic, Durham, NC; and Departments of Neurology, Pathology and Cell and Molecular Biology (T.S., N.S.), Northwestern University Feinberg School of Medicine, the Les Turner ALS Center and the Northwestern University Interdepartmental Neuroscience Program, Chicago, IL
| | - Ianthe Pitout
- University of Western Australia (J.P., R.S.A., L.L.F., F.T., L.J., F.L.M., P.A.A.), Centre for Neuromuscular and Neurological Disorders, Crawley; Perron Institute for Neurological and Translational Science (J.P., R.S.A., L.L.F., F.T., L.J., I.P., F.L.M., P.A.A.), Nedlands; University of Notre Dame Australia (R.S.A.), School of Health Sciences; University of Notre Dame Australia (R.S.A.), Institute for Health Research, Fremantle; Murdoch University (L.L.F., I.P., P.A.A.), Centre for Molecular Medicine and Innovative Therapeutics; Murdoch University, Institute for Immunology and Infectious Diseases (I.J.), Western Australia, Australia; Department of Neurology (R.B.), Duke University School of Medicine, Durham, NC; Zinfandel Pharmaceuticals (A.M.S.), Inc.; Duke University (R.B.), ALS Clinic, Durham, NC; and Departments of Neurology, Pathology and Cell and Molecular Biology (T.S., N.S.), Northwestern University Feinberg School of Medicine, the Les Turner ALS Center and the Northwestern University Interdepartmental Neuroscience Program, Chicago, IL
| | - Ian James
- University of Western Australia (J.P., R.S.A., L.L.F., F.T., L.J., F.L.M., P.A.A.), Centre for Neuromuscular and Neurological Disorders, Crawley; Perron Institute for Neurological and Translational Science (J.P., R.S.A., L.L.F., F.T., L.J., I.P., F.L.M., P.A.A.), Nedlands; University of Notre Dame Australia (R.S.A.), School of Health Sciences; University of Notre Dame Australia (R.S.A.), Institute for Health Research, Fremantle; Murdoch University (L.L.F., I.P., P.A.A.), Centre for Molecular Medicine and Innovative Therapeutics; Murdoch University, Institute for Immunology and Infectious Diseases (I.J.), Western Australia, Australia; Department of Neurology (R.B.), Duke University School of Medicine, Durham, NC; Zinfandel Pharmaceuticals (A.M.S.), Inc.; Duke University (R.B.), ALS Clinic, Durham, NC; and Departments of Neurology, Pathology and Cell and Molecular Biology (T.S., N.S.), Northwestern University Feinberg School of Medicine, the Les Turner ALS Center and the Northwestern University Interdepartmental Neuroscience Program, Chicago, IL
| | - Frank L Mastaglia
- University of Western Australia (J.P., R.S.A., L.L.F., F.T., L.J., F.L.M., P.A.A.), Centre for Neuromuscular and Neurological Disorders, Crawley; Perron Institute for Neurological and Translational Science (J.P., R.S.A., L.L.F., F.T., L.J., I.P., F.L.M., P.A.A.), Nedlands; University of Notre Dame Australia (R.S.A.), School of Health Sciences; University of Notre Dame Australia (R.S.A.), Institute for Health Research, Fremantle; Murdoch University (L.L.F., I.P., P.A.A.), Centre for Molecular Medicine and Innovative Therapeutics; Murdoch University, Institute for Immunology and Infectious Diseases (I.J.), Western Australia, Australia; Department of Neurology (R.B.), Duke University School of Medicine, Durham, NC; Zinfandel Pharmaceuticals (A.M.S.), Inc.; Duke University (R.B.), ALS Clinic, Durham, NC; and Departments of Neurology, Pathology and Cell and Molecular Biology (T.S., N.S.), Northwestern University Feinberg School of Medicine, the Les Turner ALS Center and the Northwestern University Interdepartmental Neuroscience Program, Chicago, IL
| | - Ann M Saunders
- University of Western Australia (J.P., R.S.A., L.L.F., F.T., L.J., F.L.M., P.A.A.), Centre for Neuromuscular and Neurological Disorders, Crawley; Perron Institute for Neurological and Translational Science (J.P., R.S.A., L.L.F., F.T., L.J., I.P., F.L.M., P.A.A.), Nedlands; University of Notre Dame Australia (R.S.A.), School of Health Sciences; University of Notre Dame Australia (R.S.A.), Institute for Health Research, Fremantle; Murdoch University (L.L.F., I.P., P.A.A.), Centre for Molecular Medicine and Innovative Therapeutics; Murdoch University, Institute for Immunology and Infectious Diseases (I.J.), Western Australia, Australia; Department of Neurology (R.B.), Duke University School of Medicine, Durham, NC; Zinfandel Pharmaceuticals (A.M.S.), Inc.; Duke University (R.B.), ALS Clinic, Durham, NC; and Departments of Neurology, Pathology and Cell and Molecular Biology (T.S., N.S.), Northwestern University Feinberg School of Medicine, the Les Turner ALS Center and the Northwestern University Interdepartmental Neuroscience Program, Chicago, IL
| | - Richard Bedlack
- University of Western Australia (J.P., R.S.A., L.L.F., F.T., L.J., F.L.M., P.A.A.), Centre for Neuromuscular and Neurological Disorders, Crawley; Perron Institute for Neurological and Translational Science (J.P., R.S.A., L.L.F., F.T., L.J., I.P., F.L.M., P.A.A.), Nedlands; University of Notre Dame Australia (R.S.A.), School of Health Sciences; University of Notre Dame Australia (R.S.A.), Institute for Health Research, Fremantle; Murdoch University (L.L.F., I.P., P.A.A.), Centre for Molecular Medicine and Innovative Therapeutics; Murdoch University, Institute for Immunology and Infectious Diseases (I.J.), Western Australia, Australia; Department of Neurology (R.B.), Duke University School of Medicine, Durham, NC; Zinfandel Pharmaceuticals (A.M.S.), Inc.; Duke University (R.B.), ALS Clinic, Durham, NC; and Departments of Neurology, Pathology and Cell and Molecular Biology (T.S., N.S.), Northwestern University Feinberg School of Medicine, the Les Turner ALS Center and the Northwestern University Interdepartmental Neuroscience Program, Chicago, IL
| | - Teepu Siddique
- University of Western Australia (J.P., R.S.A., L.L.F., F.T., L.J., F.L.M., P.A.A.), Centre for Neuromuscular and Neurological Disorders, Crawley; Perron Institute for Neurological and Translational Science (J.P., R.S.A., L.L.F., F.T., L.J., I.P., F.L.M., P.A.A.), Nedlands; University of Notre Dame Australia (R.S.A.), School of Health Sciences; University of Notre Dame Australia (R.S.A.), Institute for Health Research, Fremantle; Murdoch University (L.L.F., I.P., P.A.A.), Centre for Molecular Medicine and Innovative Therapeutics; Murdoch University, Institute for Immunology and Infectious Diseases (I.J.), Western Australia, Australia; Department of Neurology (R.B.), Duke University School of Medicine, Durham, NC; Zinfandel Pharmaceuticals (A.M.S.), Inc.; Duke University (R.B.), ALS Clinic, Durham, NC; and Departments of Neurology, Pathology and Cell and Molecular Biology (T.S., N.S.), Northwestern University Feinberg School of Medicine, the Les Turner ALS Center and the Northwestern University Interdepartmental Neuroscience Program, Chicago, IL
| | - Nailah Siddique
- University of Western Australia (J.P., R.S.A., L.L.F., F.T., L.J., F.L.M., P.A.A.), Centre for Neuromuscular and Neurological Disorders, Crawley; Perron Institute for Neurological and Translational Science (J.P., R.S.A., L.L.F., F.T., L.J., I.P., F.L.M., P.A.A.), Nedlands; University of Notre Dame Australia (R.S.A.), School of Health Sciences; University of Notre Dame Australia (R.S.A.), Institute for Health Research, Fremantle; Murdoch University (L.L.F., I.P., P.A.A.), Centre for Molecular Medicine and Innovative Therapeutics; Murdoch University, Institute for Immunology and Infectious Diseases (I.J.), Western Australia, Australia; Department of Neurology (R.B.), Duke University School of Medicine, Durham, NC; Zinfandel Pharmaceuticals (A.M.S.), Inc.; Duke University (R.B.), ALS Clinic, Durham, NC; and Departments of Neurology, Pathology and Cell and Molecular Biology (T.S., N.S.), Northwestern University Feinberg School of Medicine, the Les Turner ALS Center and the Northwestern University Interdepartmental Neuroscience Program, Chicago, IL
| | - P Anthony Akkari
- University of Western Australia (J.P., R.S.A., L.L.F., F.T., L.J., F.L.M., P.A.A.), Centre for Neuromuscular and Neurological Disorders, Crawley; Perron Institute for Neurological and Translational Science (J.P., R.S.A., L.L.F., F.T., L.J., I.P., F.L.M., P.A.A.), Nedlands; University of Notre Dame Australia (R.S.A.), School of Health Sciences; University of Notre Dame Australia (R.S.A.), Institute for Health Research, Fremantle; Murdoch University (L.L.F., I.P., P.A.A.), Centre for Molecular Medicine and Innovative Therapeutics; Murdoch University, Institute for Immunology and Infectious Diseases (I.J.), Western Australia, Australia; Department of Neurology (R.B.), Duke University School of Medicine, Durham, NC; Zinfandel Pharmaceuticals (A.M.S.), Inc.; Duke University (R.B.), ALS Clinic, Durham, NC; and Departments of Neurology, Pathology and Cell and Molecular Biology (T.S., N.S.), Northwestern University Feinberg School of Medicine, the Les Turner ALS Center and the Northwestern University Interdepartmental Neuroscience Program, Chicago, IL
| |
Collapse
|
28
|
Das S, Ramakrishna S, Kim KS. Critical Roles of Deubiquitinating Enzymes in the Nervous System and Neurodegenerative Disorders. Mol Cells 2020; 43:203-214. [PMID: 32133826 PMCID: PMC7103888 DOI: 10.14348/molcells.2020.2289] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 01/10/2020] [Accepted: 02/02/2020] [Indexed: 12/15/2022] Open
Abstract
Post-translational modifications play major roles in the stability, function, and localization of target proteins involved in the nervous system. The ubiquitin-proteasome pathway uses small ubiquitin molecules to degrade neuronal proteins. Deubiquitinating enzymes (DUBs) reverse this degradation and thereby control neuronal cell fate, synaptic plasticity,axonal growth, and proper function of the nervous system.Moreover, mutations or downregulation of certain DUBshave been found in several neurodegenerative diseases, as well as gliomas and neuroblastomas. Based on emerging findings, DUBs represent an important target for therapeutic intervention in various neurological disorders. Here, we summarize advances in our understanding of the roles of DUBs related to neurobiology.
Collapse
Affiliation(s)
- Soumyadip Das
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Korea
| | - Suresh Ramakrishna
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Korea
- College of Medicine, Hanyang University, Seoul 04763, Korea
| | - Kye-Seong Kim
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Korea
- College of Medicine, Hanyang University, Seoul 04763, Korea
| |
Collapse
|
29
|
Brás IC, Dominguez-Meijide A, Gerhardt E, Koss D, Lázaro DF, Santos PI, Vasili E, Xylaki M, Outeiro TF. Synucleinopathies: Where we are and where we need to go. J Neurochem 2020; 153:433-454. [PMID: 31957016 DOI: 10.1111/jnc.14965] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 01/07/2020] [Accepted: 01/08/2020] [Indexed: 12/24/2022]
Abstract
Synucleinopathies are a group of disorders characterized by the accumulation of inclusions rich in the a-synuclein (aSyn) protein. This group of disorders includes Parkinson's disease, dementia with Lewy bodies (DLB), multiple systems atrophy, and pure autonomic failure (PAF). In addition, genetic alterations (point mutations and multiplications) in the gene encoding for aSyn (SNCA) are associated with familial forms of Parkinson's disease, the most common synucleinopathy. The Synuclein Meetings are a series that has been taking place every 2 years for about 12 years. The Synuclein Meetings bring together leading experts in the field of Synuclein and related human conditions with the goal of discussing and advancing the research. In 2019, the Synuclein meeting took place in Ofir, a city in the outskirts of Porto, Portugal. The meeting, entitled "Synuclein Meeting 2019: Where we are and where we need to go", brought together >300 scientists studying both clinical and molecular aspects of synucleinopathies. The meeting covered a many of the open questions in the field, in a format that prompted open discussions between the participants, and underscored the need for additional research that, hopefully, will lead to future therapies for a group of as of yet incurable disorders. Here, we provide a summary of the topics discussed in each session and highlight what we know, what we do not know, and what progress needs to be made in order to enable the field to continue to advance. We are confident this systematic assessment of where we stand will be useful to steer the field and contribute to filling knowledge gaps that may form the foundations for future therapeutic strategies, which is where we need to go.
Collapse
Affiliation(s)
- Inês Caldeira Brás
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany
| | - Antonio Dominguez-Meijide
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany.,Laboratory of Neuroanatomy and Experimental Neurology, Department of Morphological Sciences, CIMUS, Faculty of Medicine, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Ellen Gerhardt
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany
| | - David Koss
- Institute of Neuroscience, The Medical School, Newcastle University, Newcastle upon Tyne, UK
| | - Diana F Lázaro
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany
| | - Patrícia I Santos
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany
| | - Eftychia Vasili
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany
| | - Mary Xylaki
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany
| | - Tiago Fleming Outeiro
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany.,Institute of Neuroscience, The Medical School, Newcastle University, Newcastle upon Tyne, UK.,Max Planck Institute for Experimental Medicine, Göttingen, Germany
| |
Collapse
|
30
|
Insights into the pathogenesis of multiple system atrophy: focus on glial cytoplasmic inclusions. Transl Neurodegener 2020; 9:7. [PMID: 32095235 PMCID: PMC7025408 DOI: 10.1186/s40035-020-0185-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 01/31/2020] [Indexed: 12/15/2022] Open
Abstract
Multiple system atrophy (MSA) is a debilitating and fatal neurodegenerative disorder. The disease severity warrants urgent development of disease-modifying therapy, but the disease pathogenesis is still enigmatic. Neurodegeneration in MSA brains is preceded by the emergence of glial cytoplasmic inclusions (GCIs), which are insoluble α-synuclein accumulations within oligodendrocytes (OLGs). Thus, preventive strategies against GCI formation may suppress disease progression. However, although numerous studies have tried to elucidate the molecular pathogenesis of GCI formation, difficulty remains in understanding the pathological interaction between the two pivotal aspects of GCIs; α-synuclein and OLGs. The difficulty originates from several enigmas: 1) what triggers the initial generation and possible propagation of pathogenic α-synuclein species? 2) what contributes to OLG-specific accumulation of α-synuclein, which is abundantly expressed in neurons but not in OLGs? and 3) how are OLGs and other glial cells affected and contribute to neurodegeneration? The primary pathogenesis of GCIs may involve myelin dysfunction and dyshomeostasis of the oligodendroglial cellular environment such as autophagy and iron metabolism. We have previously reported that oligodendrocyte precursor cells are more prone to develop intracellular inclusions in the presence of extracellular fibrillary α-synuclein. This finding implies a possibility that the propagation of GCI pathology in MSA brains is mediated through the internalization of pathological α-synuclein into oligodendrocyte precursor cells. In this review, in order to discuss the pathogenesis of GCIs, we will focus on the composition of neuronal and oligodendroglial inclusions in synucleinopathies. Furthermore, we will introduce some hypotheses on how α-synuclein pathology spreads among OLGs in MSA brains, in the light of our data from the experiments with primary oligodendrocyte lineage cell culture. While various reports have focused on the mysterious source of α-synuclein in GCIs, insights into the mechanism which regulates the uptake of pathological α-synuclein into oligodendroglial cells may yield the development of the disease-modifying therapy for MSA. The interaction between glial cells and α-synuclein is also highlighted with previous studies of post-mortem human brains, cultured cells, and animal models, which provide comprehensive insight into GCIs and the MSA pathomechanisms.
Collapse
|
31
|
Pathways of protein synthesis and degradation in PD pathogenesis. PROGRESS IN BRAIN RESEARCH 2020; 252:217-270. [PMID: 32247365 DOI: 10.1016/bs.pbr.2020.01.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Since the discovery of protein aggregates in the brains of individuals with Parkinson's disease (PD) in the early 20th century, the scientific community has been interested in the role of dysfunctional protein metabolism in PD etiology. Recent advances in the field have implicated defective protein handling underlying PD through genetic, in vitro, and in vivo studies incorporating many disease models alongside neuropathological evidence. Here, we discuss the existing body of research focused on understanding cellular pathways of protein synthesis and degradation, and how aberrations in either system could engender PD pathology with special attention to α-synuclein-related consequences. We consider transcription, translation, and post-translational modification to constitute protein synthesis, and protein degradation to encompass proteasome-, lysosome- and endoplasmic reticulum-dependent mechanisms. Novel findings connecting each of these steps in protein metabolism to development of PD indicate that deregulation of protein production and turnover remains an exciting area in PD research.
Collapse
|
32
|
The Ubiquitin System in Alzheimer's Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1233:195-221. [PMID: 32274758 DOI: 10.1007/978-3-030-38266-7_8] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Alzheimer's disease (AD) is the most common form of dementia, most prevalent in the elderly population and has a significant impact on individuals and their family as well as the health care system and the economy. While the number of patients affected by various forms of dementia including AD is on the increase, there is currently no cure. Although genome-wide association studies have identified genetic markers for familial AD, the molecular mechanisms underlying the initiation and development of both familial and sporadic AD remain poorly understood. Most neurodegenerative diseases and in particular those associated with dementia have been defined as proteinopathies due to the presence of intra- and/or extracellular protein aggregates in the brain of affected individuals. Although loss of proteostasis in AD has been known for decades, it is only in recent years that we have come to appreciate the role of ubiquitin-dependent mechanisms in brain homeostasis and in brain diseases. Ubiquitin is a highly versatile post-translational modification which regulates many aspects of protein fate and function, including protein degradation by the Ubiquitin-Proteasome System (UPS), autophagy-mediated removal of damaged organelles and proteins, lysosomal turnover of membrane proteins and of extracellular molecules brought inside the cell through endocytosis. Amyloid-β (Aβ) fragments as well as hyperphosphorylation of Tau are hallmarks of AD, and these are found in extracellular plaques and intracellular fibrils in the brain of individuals with AD, respectively. Yet, whether it is the oligomeric or the soluble species of Aβ and Tau that mediate toxicity is still unclear. These proteins impact on mitochondrial energy metabolism, inflammation, as well as a number of housekeeping processes including protein degradation through the UPS and autophagy. In this chapter, we will discuss the role of ubiquitin in neuronal homeostasis as well as in AD; summarise crosstalks between the enzymes that regulate protein ubiquitination and the toxic proteins Tau and Aβ; highlight emerging molecular mechanisms in AD as well as future strategies which aim to exploit the ubiquitin system as a source for next-generation therapeutics.
Collapse
|
33
|
Oral and intravenous transmission of α-synuclein fibrils to mice. Acta Neuropathol 2019; 138:515-533. [PMID: 31230104 PMCID: PMC6778172 DOI: 10.1007/s00401-019-02037-5] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 06/11/2019] [Accepted: 06/17/2019] [Indexed: 12/15/2022]
Abstract
Parkinson’s disease and related disorders are neuropathologically characterized by cellular deposits of misfolded and aggregated α-synuclein in the CNS. Disease-associated α-synuclein adopts a conformation that causes it to form oligomers and fibrils, which have reduced solubility, become hyperphosphorylated, and contribute to the spatiotemporal spreading of pathology in the CNS. The infectious properties of disease-associated α-synuclein, e.g., by which peripheral route and with which efficiency it can be transmitted, are not fully understood. Here, we investigated the potential of α-synuclein fibrils to induce neurological disease in TgM83+/− mice expressing the A53T mutant of human α-synuclein after oral or intravenous challenge and compared it to intraperitoneal and intracerebral challenge. Oral challenge with 50 µg of α-synuclein fibrils caused neurological disease in two out of eight mice in 220 days and 350 days, and challenge with 500 µg in four out of eight mice in 384 ± 131 days, respectively. Intravenous challenge with 50 µg of α-synuclein fibrils led to disease in 208 ± 20 days in 10 out of 10 mice and was in duration comparable to intraperitoneal challenge with 50 µg of α-synuclein fibrils, which caused disease in 10 out of 10 mice in 202 ± 35 days. Ten out of 10 mice that were each intracerebrally challenged with 10 µg or 50 µg of α-synuclein fibrils developed disease in 156 ± 20 days and 133 ± 4 days, respectively. The CNS of diseased mice displayed aggregates of sarkosyl-insoluble and phosphorylated α-synuclein, which colocalized with ubiquitin and p62 and were accompanied by gliosis indicative of neuroinflammation. In contrast, none of the control mice that were challenged with bovine serum albumin via the same routes developed any neurological disease or neuropathology. These findings are important, because they show that α-synuclein fibrils can neuroinvade the CNS after a single oral or intravenous challenge and cause neuropathology and disease.
Collapse
|
34
|
Rayner SL, Morsch M, Molloy MP, Shi B, Chung R, Lee A. Using proteomics to identify ubiquitin ligase-substrate pairs: how novel methods may unveil therapeutic targets for neurodegenerative diseases. Cell Mol Life Sci 2019; 76:2499-2510. [PMID: 30919022 PMCID: PMC11105231 DOI: 10.1007/s00018-019-03082-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 03/14/2019] [Accepted: 03/20/2019] [Indexed: 12/13/2022]
Abstract
Ubiquitin ligases play an integral role in fine-tuning signaling cascades necessary for normal cell function. Aberrant regulation of ubiquitin ligases has been implicated in several neurodegenerative diseases, generally, due to mutations within the E3 ligase itself. Several proteomic-based methods have recently emerged to facilitate the rapid identification of ligase-substrate pairs-a previously challenging feat due to the transient nature of ligase-substrate interactions. These novel methods complement standard immunoprecipitations (IPs) and include proximity-dependent biotin identification (BioID), ubiquitin ligase-substrate trapping, tandem ubiquitin-binding entities (TUBEs), and a molecular trapping unit known as the NEDDylator. The implementation of these techniques is expected to facilitate the rapid identification of novel substrates of E3 ubiquitin ligases, a process that is likely to enhance our understanding of neurodegenerative diseases and highlight novel therapeutic targets for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Stephanie L Rayner
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, 2 Technology Place, Macquarie Park, Sydney, NSW, 2109, Australia
| | - Marco Morsch
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, 2 Technology Place, Macquarie Park, Sydney, NSW, 2109, Australia
| | - Mark P Molloy
- Faculty of Medicine and Health, Sydney School of Medicine, Royal North Shore Hospital, Pacific Hwy, St Leonards, Sydney, NSW, 2065, Australia
| | - Bingyang Shi
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, 2 Technology Place, Macquarie Park, Sydney, NSW, 2109, Australia
| | - Roger Chung
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, 2 Technology Place, Macquarie Park, Sydney, NSW, 2109, Australia
| | - Albert Lee
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, 2 Technology Place, Macquarie Park, Sydney, NSW, 2109, Australia.
| |
Collapse
|
35
|
Identification of linear polyubiquitin chain immunoreactivity in tau pathology of Alzheimer’s disease. Neurosci Lett 2019; 703:53-57. [DOI: 10.1016/j.neulet.2019.03.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 03/04/2019] [Accepted: 03/12/2019] [Indexed: 11/22/2022]
|
36
|
Krejciova Z, Carlson GA, Giles K, Prusiner SB. Replication of multiple system atrophy prions in primary astrocyte cultures from transgenic mice expressing human α-synuclein. Acta Neuropathol Commun 2019; 7:81. [PMID: 31109379 PMCID: PMC6526619 DOI: 10.1186/s40478-019-0703-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 03/16/2019] [Indexed: 12/20/2022] Open
Abstract
Glial cytoplasmic inclusions (GCIs) containing aggregated and hyperphosphorylated α-synuclein are the signature neuropathological hallmark of multiple system atrophy (MSA). Native α-synuclein can adopt a prion conformation that self-propagates and spreads throughout the brain ultimately resulting in neurodegeneration. A growing body of evidence argues that, in addition to oligodendrocytes, astrocytes contain α-synuclein inclusions in MSA and other α-synucleinopathies at advanced stages of disease. To study the role of astrocytes in MSA, we added MSA brain homogenate to primary cultures of astrocytes from transgenic (Tg) mouse lines expressing human α-synuclein. Astrocytes from four Tg lines, expressing either wild-type or mutant (A53T or A30P) human α-synuclein, propagated and accumulated α-synuclein prions. Furthermore, we found that MSA-infected astrocytes formed two morphologically distinct α-synuclein inclusions: filamentous and granular. Both types of cytoplasmic inclusions shared several features characteristic of α-synuclein inclusions in synucleinopathies: hyperphosphorylation preceded by aggregation, ubiquitination, thioflavin S–positivity, and co-localization with p62. Our findings demonstrate that human α-synuclein forms distinct inclusion morphologies and propagates within cultured Tg astrocytes exposed to MSA prions, indicating that α-synuclein expression determines the tropism of inclusion formation in certain cells. Thus, our work may prove useful in elucidating the role of astrocytes in the pathogenic mechanisms that feature in neurodegeneration caused by MSA prions.
Collapse
|
37
|
Soe K, Beard H, Neumann D, Trim PJ, Duplock S, Snel MF, Hopwood JJ, Hemsley KM. Early disease course is unaltered in mucopolysaccharidosis type IIIA (MPS IIIA) mice lacking α-synuclein. Neuropathol Appl Neurobiol 2019; 45:715-731. [PMID: 30907009 DOI: 10.1111/nan.12548] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 03/19/2019] [Indexed: 11/26/2022]
Abstract
BACKGROUND Sanfilippo syndrome (mucopolysaccharidosis type IIIA; MPS IIIA) is an inherited paediatric-onset neurodegenerative disorder caused by the lysosomal deficiency of sulphamidase with subsequent accumulation of heparan sulphate. The pathological mechanisms responsible for clinical disease are unknown; however, intraneuronal accumulation of aggregation-prone proteins such as α-synuclein, phosphorylated tau and amyloid precursor protein suggests inefficient intracellular trafficking and lysosomal degradation. AIM To investigate the contribution the accumulating α-synuclein plays in early symptom emergence that is, impaired cognition, reduced anxiety and motor deficits, first detectable between 3-5 months of age. METHODS We have crossed congenic MPS IIIA mice with α-synuclein-deficient (Sncatm1Rosl /J) mice and evaluated phenotype and brain disease lesions. RESULTS In a battery of behavioural tests performed on mice aged 12-22 weeks, we were unable to differentiate α-synuclein-deficient MPS IIIA mice from those with one or both copies of the α-synuclein gene; all three affected genotypes were significantly impaired in test performance when compared to wild-type littermates. Histological studies revealed that the rate, location and nature of deposition of other proteinaceous lesions, the disruption to endolysosomal protein expression and the inflammatory response seen in the brain of α-synuclein-deficient MPS IIIA mice reflected that seen in MPS IIIA mice homo- or heterozygous for α-synuclein. CONCLUSION Deletion and/or deficiency of α-synuclein does not influence clinical and neuropathological disease progression in murine MPS IIIA, demonstrating that in and of itself, this protein does not initiate the cognitive and motor symptoms that occur in the first 5 months of life in MPS IIIA mice.
Collapse
Affiliation(s)
- K Soe
- Hopwood Centre for Neurobiology (HCN), South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, Australia.,Department of Paediatrics, University of Adelaide, Adelaide, SA, Australia
| | - H Beard
- Hopwood Centre for Neurobiology (HCN), South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, Australia
| | - D Neumann
- Hopwood Centre for Neurobiology (HCN), South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, Australia
| | - P J Trim
- Hopwood Centre for Neurobiology (HCN), South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, Australia.,Department of Paediatrics, University of Adelaide, Adelaide, SA, Australia
| | - S Duplock
- Hopwood Centre for Neurobiology (HCN), South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, Australia
| | - M F Snel
- Hopwood Centre for Neurobiology (HCN), South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, Australia.,Department of Paediatrics, University of Adelaide, Adelaide, SA, Australia
| | - J J Hopwood
- Hopwood Centre for Neurobiology (HCN), South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, Australia.,Department of Paediatrics, University of Adelaide, Adelaide, SA, Australia
| | - K M Hemsley
- Hopwood Centre for Neurobiology (HCN), South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, Australia.,Department of Paediatrics, University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
38
|
Bellia F, Lanza V, García-Viñuales S, Ahmed IMM, Pietropaolo A, Iacobucci C, Malgieri G, D'Abrosca G, Fattorusso R, Nicoletti VG, Sbardella D, Tundo GR, Coletta M, Pirone L, Pedone E, Calcagno D, Grasso G, Milardi D. Ubiquitin binds the amyloid β peptide and interferes with its clearance pathways. Chem Sci 2019; 10:2732-2742. [PMID: 30996991 PMCID: PMC6419943 DOI: 10.1039/c8sc03394c] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 01/09/2019] [Indexed: 12/22/2022] Open
Abstract
Several lines of evidence point to a compromised proteostasis associated with a reduction of the Ubiquitin Proteasome System (UPS) activity in patients affected by Alzheimer's Disease (AD) and suggest that the amyloid β peptide (Aβ) is an important player in the game. Inspired also by many reports, underlining the presence of ubiquitin (Ub) in the amyloid plaques of AD brains, here we set out to test whether Ub may bind the Aβ peptide and have any effect on its clearance pathways. By using an integrated array of MALDI-TOF/UPLC-HRMS, fluorescence, NMR, SPR, Microscale Thermophoresis (MST) and molecular dynamics studies, we consistently demonstrated that Aβ40 binds Ub with a 1 : 1 stoichiometry and K d in the high micromolar range. In particular, we show that the N-terminal domain of the Aβ peptide (through residues D1, E3 and R5) interacts with the C-terminal tail of Ub (involving residues K63 and E64), inducing the central region of Aβ (14HQKLVFFAEDVGSNK28) to adopt a mixed α-helix/β-turn structure. ELISA assays, carried out in neuroblastoma cell lysates, suggest that Aβ competitively binds Ub also in the presence of the entire pool of cytosolic Ub binding proteins. Ub-bound Aβ has a lower tendency to aggregate into amyloid-like fibrils and is more slowly degraded by the Insulin Degrading Enzyme (IDE). Finally, we observe that the water soluble fragment Aβ1-16 significantly inhibits Ub chain growth reactions. These results evidence how the non-covalent interaction between Aβ peptides and Ub may have relevant effects on the regulation of the upstream events of the UPS and pave the way to future in vivo studies addressing the role played by Aβ peptide in the malfunction of proteome maintenance occurring in AD.
Collapse
Affiliation(s)
- F Bellia
- Consiglio Nazionale delle Ricerche , Istituto di Biostrutture e Bioimmagini , Via P. Gaifami 18 , 95126 Catania , Italy .
| | - V Lanza
- Consiglio Nazionale delle Ricerche , Istituto di Biostrutture e Bioimmagini , Via P. Gaifami 18 , 95126 Catania , Italy .
| | - S García-Viñuales
- Consiglio Nazionale delle Ricerche , Istituto di Biostrutture e Bioimmagini , Via P. Gaifami 18 , 95126 Catania , Italy .
| | - I M M Ahmed
- Consiglio Nazionale delle Ricerche , Istituto di Biostrutture e Bioimmagini , Via P. Gaifami 18 , 95126 Catania , Italy .
| | - A Pietropaolo
- Dipartimento di Scienze della Salute , Università degli Studi Magna Graecia di Catanzaro , Viale Europa , 88100 , Catanzaro , Italy
| | - C Iacobucci
- Department of Pharmaceutical Chemistry & Bioanalytics , Institute of Pharmacy , Martin Luther University Halle-Wittenberg , 06120 Halle/Saale , Germany
| | - G Malgieri
- Department of Environmental , Biological and Pharmaceutical Sciences and Technologies , University of Campania "Luigi Vanvitelli" , Via Vivaldi 43 , 81100 Caserta , Italy
| | - G D'Abrosca
- Department of Environmental , Biological and Pharmaceutical Sciences and Technologies , University of Campania "Luigi Vanvitelli" , Via Vivaldi 43 , 81100 Caserta , Italy
| | - R Fattorusso
- Department of Environmental , Biological and Pharmaceutical Sciences and Technologies , University of Campania "Luigi Vanvitelli" , Via Vivaldi 43 , 81100 Caserta , Italy
| | - V G Nicoletti
- Dipartimento di Scienze Biomediche e Biotecnologiche (BIOMETEC) , sez. Biochimica medica , Università di Catania , Via Santa Sofia 97 , 95124 Catania , Italy
| | - D Sbardella
- Dipartimento di Scienze Cliniche e Medicina Traslazionale , Università di Roma Tor Vergata , Via Montpellier 1 , 00133 , Roma , Italy
| | - G R Tundo
- Dipartimento di Scienze Cliniche e Medicina Traslazionale , Università di Roma Tor Vergata , Via Montpellier 1 , 00133 , Roma , Italy
| | - M Coletta
- Dipartimento di Scienze Cliniche e Medicina Traslazionale , Università di Roma Tor Vergata , Via Montpellier 1 , 00133 , Roma , Italy
| | - L Pirone
- Consiglio Nazionale delle Ricerche , Istituto di Biostrutture e Bioimmagini , Via Mezzocannone, 16 , Naples I-80134 , Italy
| | - E Pedone
- Consiglio Nazionale delle Ricerche , Istituto di Biostrutture e Bioimmagini , Via Mezzocannone, 16 , Naples I-80134 , Italy
| | - D Calcagno
- Dipartimento di Scienze Chimiche , Università di Catania , V.le Andrea Doria 6 , 95125 Catania , Italy .
| | - G Grasso
- Dipartimento di Scienze Chimiche , Università di Catania , V.le Andrea Doria 6 , 95125 Catania , Italy .
| | - D Milardi
- Consiglio Nazionale delle Ricerche , Istituto di Biostrutture e Bioimmagini , Via P. Gaifami 18 , 95126 Catania , Italy .
| |
Collapse
|
39
|
Nanodelivery of cerebrolysin reduces pathophysiology of Parkinson's disease. PROGRESS IN BRAIN RESEARCH 2019; 245:201-246. [DOI: 10.1016/bs.pbr.2019.03.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
40
|
Breger LS, Fuzzati Armentero MT. Genetically engineered animal models of Parkinson's disease: From worm to rodent. Eur J Neurosci 2018; 49:533-560. [PMID: 30552719 DOI: 10.1111/ejn.14300] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 11/13/2018] [Accepted: 11/16/2018] [Indexed: 12/26/2022]
Abstract
Parkinson's disease (PD) is a progressive neurological disorder characterised by aberrant accumulation of insoluble proteins, including alpha-synuclein, and a loss of dopaminergic neurons in the substantia nigra. The extended neurodegeneration leads to a drop of striatal dopamine levels responsible for disabling motor and non-motor impairments. Although the causes of the disease remain unclear, it is well accepted among the scientific community that the disorder may also have a genetic component. For that reason, the number of genetically engineered animal models has greatly increased over the past two decades, ranging from invertebrates to more complex organisms such as mice and rats. This trend is growing as new genetic variants associated with the disease are discovered. The EU Joint Programme - Neurodegenerative Disease Research (JPND) has promoted the creation of an online database aiming at summarising the different features of experimental models of Parkinson's disease. This review discusses available genetic models of PD and the extent to which they adequately mirror the human pathology and reflects on future development and uses of genetically engineered experimental models for the study of PD.
Collapse
Affiliation(s)
- Ludivine S Breger
- Institut des Maladies Neurodégénératives, CNRS UMR 5293, Centre Broca Nouvelle Aquitaine, Université de Bordeaux, Bordeaux cedex, France
| | | |
Collapse
|
41
|
Tofaris GK, Buckley NJ. Convergent molecular defects underpin diverse neurodegenerative diseases. J Neurol Neurosurg Psychiatry 2018; 89:962-969. [PMID: 29459380 DOI: 10.1136/jnnp-2017-316988] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 01/24/2018] [Accepted: 02/01/2018] [Indexed: 12/12/2022]
Abstract
In our ageing population, neurodegenerative disorders carry an enormous personal, societal and economic burden. Although neurodegenerative diseases are often thought of as clinicopathological entities, increasing evidence suggests a considerable overlap in the molecular underpinnings of their pathogenesis. Such overlapping biological processes include the handling of misfolded proteins, defective organelle trafficking, RNA processing, synaptic health and neuroinflammation. Collectively but in different proportions, these biological processes in neurons or non-neuronal cells lead to regionally distinct patterns of neuronal vulnerability and progression of pathology that could explain the disease symptomology. With the advent of patient-derived cellular models and novel genetic manipulation tools, we are now able to interrogate this commonality despite the cellular complexity of the brain in order to develop novel therapeutic strategies to prevent or arrest neurodegeneration. Here, we describe broadly these concepts and their relevance across neurodegenerative diseases.
Collapse
Affiliation(s)
- George K Tofaris
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Noel J Buckley
- Department of Psychiatry, University of Oxford, Oxford, UK
| |
Collapse
|
42
|
Pawlak A, Rejmak-Kozicka E, Gil KE, Ziemba A, Kaczmarek L, Gil RJ. Patterns of desmin expression in idiopathic dilated cardiomyopathy are related to the desmin mRNA and ubiquitin expression. J Investig Med 2018; 67:11-19. [PMID: 30097466 DOI: 10.1136/jim-2017-000707] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/09/2018] [Indexed: 12/28/2022]
Abstract
Desmin expression depends on desmin messenger RNA (mRNA) and ubiquitin proteasome system. This process is poorly understood in dilated cardiomyopathy. The aim of the study was to investigate whether changes of desmin mRNA and ubiquitin expression correlate with types of desmin expression in cardiomyocytes. Endomyocardial biopsy was performed in 60 patients (85% men, mean age 46±14 years) with heart failure (HF; left ventricular ejection fraction <45%). Desmin and ubiquitin expression were analysed in histological sections by immunohistochemistry and in Western blot. Desmin mRNA expression was determined by fluorescent in situ hybridization methods. In patients with weak/even desmin expression, weak/even expression of ubiquitin in the cytosol and low desmin mRNA expression in the cytosol and nuclei of cardiomyocytes were observed. Expression of ubiquitin and desmin mRNA increased along with the progression of desmin cytoskeleton remodeling. Desmin mRNA and ubiquitin were weakly expressed/absent in cardiomyocytes with low/lack of desmin expression. Variations in desmin mRNA, desmin and ubiquitin expression were associated with gradual changes in myocardial structure and clinical parameters. To conclude, changes in ubiquitin and desmin mRNA expression are related to patterns of desmin expression. An increase in the expression of ubiquitin and desmin mRNA may be a protective feature against unfavorable cell remodeling. This may reduce the adverse effects of cytoskeleton damage in the early stages of HF. Low/lack ubiquitin and/or desmin mRNA expression may be markers of end-stage HF.
Collapse
Affiliation(s)
- Agnieszka Pawlak
- Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland.,Department of Invasive Cardiology, Central Clinical Hospital of the Ministry of Interior, Warsaw, Poland
| | - Emilia Rejmak-Kozicka
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Katarzyna Elżbieta Gil
- Department of Invasive Cardiology, Central Clinical Hospital of the Ministry of Interior, Warsaw, Poland
| | - Andrzej Ziemba
- Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Leszek Kaczmarek
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Robert Julian Gil
- Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland.,Department of Invasive Cardiology, Central Clinical Hospital of the Ministry of Interior, Warsaw, Poland
| |
Collapse
|
43
|
Farrawell NE, Lambert-Smith I, Mitchell K, McKenna J, McAlary L, Ciryam P, Vine KL, Saunders DN, Yerbury JJ. SOD1 A4V aggregation alters ubiquitin homeostasis in a cell model of ALS. J Cell Sci 2018; 131:jcs.209122. [PMID: 29748379 DOI: 10.1242/jcs.209122] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 05/01/2018] [Indexed: 12/11/2022] Open
Abstract
A hallmark of amyotrophic lateral sclerosis (ALS) pathology is the accumulation of ubiquitylated protein inclusions within motor neurons. Recent studies suggest the sequestration of ubiquitin (Ub) into inclusions reduces the availability of free Ub, which is essential for cellular function and survival. However, the dynamics of the Ub landscape in ALS have not yet been described. Here, we show that Ub homeostasis is altered in a cell model of ALS induced by expressing mutant SOD1 (SOD1A4V). By monitoring the distribution of Ub in cells expressing SOD1A4V, we show that Ub is present at the earliest stages of SOD1A4V aggregation, and that cells containing SOD1A4V aggregates have greater ubiquitin-proteasome system (UPS) dysfunction. Furthermore, SOD1A4V aggregation is associated with the redistribution of Ub and depletion of the free Ub pool. Ubiquitomics analysis indicates that expression of SOD1A4V is associated with a shift of Ub to a pool of supersaturated proteins, including those associated with oxidative phosphorylation and metabolism, corresponding with altered mitochondrial morphology and function. Taken together, these results suggest that misfolded SOD1 contributes to UPS dysfunction and that Ub homeostasis is an important target for monitoring pathological changes in ALS.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Natalie E Farrawell
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia 2522.,Molecular Horizons and School of Chemistry & Molecular Bioscience, University of Wollongong, NSW, Australia 2522
| | - Isabella Lambert-Smith
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia 2522.,Molecular Horizons and School of Chemistry & Molecular Bioscience, University of Wollongong, NSW, Australia 2522
| | - Kristen Mitchell
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia 2522.,Molecular Horizons and School of Chemistry & Molecular Bioscience, University of Wollongong, NSW, Australia 2522
| | - Jessie McKenna
- School of Medical Sciences, Faculty of Medicine, UNSW Australia 2052
| | - Luke McAlary
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia 2522.,Molecular Horizons and School of Chemistry & Molecular Bioscience, University of Wollongong, NSW, Australia 2522.,Department of Physics & Astronomy, University of British Columbia, Vancouver, British Columbia, Canada V6T 2B5
| | - Prajwal Ciryam
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK.,Department of Molecular Biosciences, Rice Institute for Biomedical Research, Northwestern University, Evanston, IL 60208-3500, USA.,Department of Neurology, Columbia University College of Physicians & Surgeons, New York, NY 10032-3784, USA
| | - Kara L Vine
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia 2522.,Molecular Horizons and School of Chemistry & Molecular Bioscience, University of Wollongong, NSW, Australia 2522
| | - Darren N Saunders
- School of Medical Sciences, Faculty of Medicine, UNSW Australia 2052
| | - Justin J Yerbury
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia 2522 .,Molecular Horizons and School of Chemistry & Molecular Bioscience, University of Wollongong, NSW, Australia 2522
| |
Collapse
|
44
|
Chartier S, Duyckaerts C. Is Lewy pathology in the human nervous system chiefly an indicator of neuronal protection or of toxicity? Cell Tissue Res 2018; 373:149-160. [PMID: 29869713 DOI: 10.1007/s00441-018-2854-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 05/04/2018] [Indexed: 11/30/2022]
Abstract
Misfolded α-synuclein accumulates in histological inclusions constituting "Lewy pathology" found in idiopathic Parkinson disease, Parkinson disease dementia and dementia with Lewy body. The mechanism inducing α-synuclein misfolding is still unknown. The misfolded molecules form oligomers that organize into fibrils. α-Synuclein fibrils, in vitro, are capable of initiating an auto-replicating process, transforming normal molecules into misfolded molecules that aggregate. Fibrils can cross the neuronal membrane and recruit α-synuclein molecules in connected neurons. Such properties of seeding and propagation, shared with prion proteins, belong to "tissular propagons". Lewy bodies isolate harmful species from the cytoplasm and have been thought to be protective. In PRKN gene mutations, however, the absence of Lewy bodies is not associated with a more aggressive course. In idiopathic Parkinson disease, the proportion of neurons with Lewy bodies in the substantia nigra remains stable despite the progression of neuronal loss. This stable proportion suggests that Lewy bodies are eliminated at the rate at which neurons are lost because Lewy bodies cause, or invariably accompany, neuronal loss. Experimentally, cellular death selectively occurs in inclusion-bearing neurons. This set of data indicates that α-synuclein misfolding is the essential mechanism causing the lesions of Parkinson disease and dementia with Lewy body. Lewy pathology is a direct and visible evidence of α-synuclein misfolding and, as such, is an accurate marker for assessing the presence of α-synuclein misfolding even if the inclusions themselves may not be as directly causative as the molecules they accumulate.
Collapse
Affiliation(s)
- Suzanne Chartier
- Escourolle Neuropathology Department, Groupe Hospitalier Pitié-Salpêtrière-Charles Foix, 47 Boulevard de l'Hopital, 75651, Paris Cedex 13, France
| | - Charles Duyckaerts
- Escourolle Neuropathology Department, Groupe Hospitalier Pitié-Salpêtrière-Charles Foix, 47 Boulevard de l'Hopital, 75651, Paris Cedex 13, France.
- Alzheimer-Prions Team, Brain and Spinal Cord Institute (ICM), Paris, France.
| |
Collapse
|
45
|
Geiszler PC, Ugun-Klusek A, Lawler K, Pardon MC, Yuchun D, Bai L, Daykin CA, Auer DP, Bedford L. Dynamic metabolic patterns tracking neurodegeneration and gliosis following 26S proteasome dysfunction in mouse forebrain neurons. Sci Rep 2018; 8:4833. [PMID: 29555943 PMCID: PMC5859111 DOI: 10.1038/s41598-018-23155-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 03/02/2018] [Indexed: 01/23/2023] Open
Abstract
Metabolite profiling is an important tool that may better capture the multiple features of neurodegeneration. With the considerable parallels between mouse and human metabolism, the use of metabolomics in mouse models with neurodegenerative pathology provides mechanistic insight and ready translation into aspects of human disease. Using 400 MHz nuclear magnetic resonance spectroscopy we have carried out a temporal region-specific investigation of the metabolome of neuron-specific 26S proteasome knockout mice characterised by progressive neurodegeneration and Lewy-like inclusion formation in the forebrain. An early significant decrease in N-acetyl aspartate revealed evidence of neuronal dysfunction before cell death that may be associated with changes in brain neuroenergetics, underpinning the use of this metabolite to track neuronal health. Importantly, we show early and extensive activation of astrocytes and microglia in response to targeted neuronal dysfunction in this context, but only late changes in myo-inositol; the best established glial cell marker in magnetic resonance spectroscopy studies, supporting recent evidence that additional early neuroinflammatory markers are needed. Our results extend the limited understanding of metabolite changes associated with gliosis and provide evidence that changes in glutamate homeostasis and lactate may correlate with astrocyte activation and have biomarker potential for tracking neuroinflammation.
Collapse
Affiliation(s)
- Philippine C Geiszler
- Division of Clinical Neuroscience, School of Medicine, University of Nottingham, Nottingham, UK.,School of Pharmacy, University of Nottingham, Nottingham, UK
| | - Aslihan Ugun-Klusek
- School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - Karen Lawler
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | | | - Ding Yuchun
- School of Computing, University of Newcastle, Newcastle, UK
| | - Li Bai
- School of Computer Sciences, University of Nottingham, Nottingham, UK
| | - Clare A Daykin
- School of Pharmacy, University of Nottingham, Nottingham, UK.,Metaboconsult UK, Heanor, Derbyshire, UK
| | - Dorothee P Auer
- Division of Clinical Neuroscience, School of Medicine, University of Nottingham, Nottingham, UK. .,Sir Peter Mansfield Imaging Centre, School of Medicine, University of Nottingham, Nottingham, UK.
| | - Lynn Bedford
- School of Life Sciences, University of Nottingham, Nottingham, UK.
| |
Collapse
|
46
|
Lillethorup TP, Glud AN, Alstrup AKO, Mikkelsen TW, Nielsen EH, Zaer H, Doudet DJ, Brooks DJ, Sørensen JCH, Orlowski D, Landau AM. Nigrostriatal proteasome inhibition impairs dopamine neurotransmission and motor function in minipigs. Exp Neurol 2018; 303:142-152. [PMID: 29428213 DOI: 10.1016/j.expneurol.2018.02.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 01/29/2018] [Accepted: 02/06/2018] [Indexed: 01/09/2023]
Abstract
Parkinson's disease (PD) is characterized by degeneration of dopaminergic neurons in the substantia nigra leading to slowness and stiffness of limb movement with rest tremor. Using ubiquitin proteasome system inhibitors, rodent models have shown nigrostriatal degeneration and motor impairment. We translated this model to the Göttingen minipig by administering lactacystin into the medial forebrain bundle (MFB). Minipigs underwent positron emission tomography (PET) imaging with (+)-α-[11C]dihydrotetrabenazine ([11C]DTBZ), a marker of vesicular monoamine transporter 2 availability, at baseline and three weeks after the unilateral administration of 100 μg lactacystin into the MFB. Compared to their baseline values, minipigs injected with lactacystin showed on average a 36% decrease in ipsilateral striatal binding potential corresponding to impaired presynaptic dopamine terminals. Behaviourally, minipigs displayed asymmetrical motor disability with spontaneous rotations in one of the animals. Immunoreactivity for tyrosine hydroxylase (TH) and HLA-DR-positive microglia confirmed asymmetrical reduction in nigral TH-positive neurons with an inflammatory response in the lactacystin-injected minipigs. In conclusion, direct injection of lactacystin into the MFB of minipigs provides a model of PD with reduced dopamine neurotransmission, TH-positive neuron reduction, microglial activation and behavioural deficits. This large animal model could be useful in studies of symptomatic and neuroprotective therapies with translatability to human PD.
Collapse
Affiliation(s)
- Thea P Lillethorup
- Department of Nuclear Medicine and PET Center, Institute of Clinical Medicine, Aarhus University and Hospital, Denmark
| | - Andreas N Glud
- Center for Experimental Neuroscience (CENSE), Department of Neurosurgery, Institute of Clinical Medicine, Aarhus University, Denmark
| | - Aage K O Alstrup
- Department of Nuclear Medicine and PET Center, Institute of Clinical Medicine, Aarhus University and Hospital, Denmark
| | - Trine W Mikkelsen
- Center for Experimental Neuroscience (CENSE), Department of Neurosurgery, Institute of Clinical Medicine, Aarhus University, Denmark
| | - Erik H Nielsen
- Department of Nuclear Medicine and PET Center, Institute of Clinical Medicine, Aarhus University and Hospital, Denmark
| | - Hamed Zaer
- Center for Experimental Neuroscience (CENSE), Department of Neurosurgery, Institute of Clinical Medicine, Aarhus University, Denmark
| | - Doris J Doudet
- Department of Medicine/Neurology, University of British Columbia, Vancouver, BC, Canada
| | - David J Brooks
- Department of Nuclear Medicine and PET Center, Institute of Clinical Medicine, Aarhus University and Hospital, Denmark; Division of Neuroscience, Department of Medicine, Imperial College London, UK; Division of Neuroscience, Newcastle University, UK
| | - Jens Christian H Sørensen
- Center for Experimental Neuroscience (CENSE), Department of Neurosurgery, Institute of Clinical Medicine, Aarhus University, Denmark
| | - Dariusz Orlowski
- Center for Experimental Neuroscience (CENSE), Department of Neurosurgery, Institute of Clinical Medicine, Aarhus University, Denmark
| | - Anne M Landau
- Department of Nuclear Medicine and PET Center, Institute of Clinical Medicine, Aarhus University and Hospital, Denmark; Translational Neuropsychiatry Unit, Institute of Clinical Medicine, Aarhus University, Denmark.
| |
Collapse
|
47
|
Yang H, Yue HW, He WT, Hong JY, Jiang LL, Hu HY. PolyQ-expanded huntingtin and ataxin-3 sequester ubiquitin adaptors hHR23B and UBQLN2 into aggregates via conjugated ubiquitin. FASEB J 2018; 32:2923-2933. [PMID: 29401586 DOI: 10.1096/fj.201700801rr] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The components of ubiquitin (Ub)-proteasome system, such as Ub, Ub adaptors, or proteasome subunits, are commonly accumulated with the aggregated proteins in inclusions, but how protein aggregates sequester Ub-related proteins remains elusive. Using N-terminal huntingtin (Htt-N552) and ataxin (Atx)-3 as model proteins, we investigated the molecular mechanism underlying sequestration of Ub adaptors by polyQ-expanded proteins. We found that polyQ-expanded Htt-N552 and Atx-3 sequester endogenous Ub adaptors, human RAD23 homolog B (hHR23B) and ubiquilin (UBQLN)-2, into inclusions. This sequestration effect is dependent on the UBA domains of Ub adaptors and the conjugated Ub of the aggregated proteins. Moreover, polyQ-expanded Htt-N552 and Atx-3 reduce the protein level of xeroderma pigmentosum group C (XPC) by sequestration of hHR23B, suggesting that this process may cut down the available quantity of hHR23B and thus affect its normal function in stabilizing XPC. Our findings demonstrate that polyQ-expanded proteins sequester Ub adaptors or other Ub-related proteins into aggregates or inclusions through ubiquitination of the pathogenic proteins. This study may also provide a common mechanism for the formation of Ub-positive inclusions in cells.-Yang, H., Yue, H.-W., He, W.-T., Hong, J.-Y., Jiang, L.-L., Hu, H.-Y. PolyQ-expanded huntingtin and ataxin-3 sequester ubiquitin adaptors hHR23B and UBQLN2 into aggregates via conjugated ubiquitin.
Collapse
Affiliation(s)
- Hui Yang
- State Key Laboratory of Molecular Biology, Chinese Academy of Sciences (CAS) Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology (SIBCB), University of CAS, Shanghai, China.,State Key Laboratory of Genetic Engineering, School of Life Sciences, Collaborative Innovation Center of Genetics and Development, Fudan University, Shanghai, China
| | - Hong-Wei Yue
- State Key Laboratory of Molecular Biology, Chinese Academy of Sciences (CAS) Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology (SIBCB), University of CAS, Shanghai, China
| | - Wen-Tian He
- State Key Laboratory of Molecular Biology, Chinese Academy of Sciences (CAS) Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology (SIBCB), University of CAS, Shanghai, China
| | - Jun-Ye Hong
- State Key Laboratory of Molecular Biology, Chinese Academy of Sciences (CAS) Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology (SIBCB), University of CAS, Shanghai, China
| | - Lei-Lei Jiang
- State Key Laboratory of Molecular Biology, Chinese Academy of Sciences (CAS) Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology (SIBCB), University of CAS, Shanghai, China
| | - Hong-Yu Hu
- State Key Laboratory of Molecular Biology, Chinese Academy of Sciences (CAS) Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology (SIBCB), University of CAS, Shanghai, China
| |
Collapse
|
48
|
Woerman AL, Kazmi SA, Patel S, Freyman Y, Oehler A, Aoyagi A, Mordes DA, Halliday GM, Middleton LT, Gentleman SM, Olson SH, Prusiner SB. MSA prions exhibit remarkable stability and resistance to inactivation. Acta Neuropathol 2018; 135:49-63. [PMID: 28849371 DOI: 10.1007/s00401-017-1762-2] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 08/01/2017] [Accepted: 08/02/2017] [Indexed: 01/23/2023]
Abstract
In multiple system atrophy (MSA), progressive neurodegeneration results from the protein α-synuclein misfolding into a self-templating prion conformation that spreads throughout the brain. MSA prions are transmissible to transgenic (Tg) mice expressing mutated human α-synuclein (TgM83+/-), inducing neurological disease following intracranial inoculation with brain homogenate from deceased patient samples. Noting the similarities between α-synuclein prions and PrP scrapie (PrPSc) prions responsible for Creutzfeldt-Jakob disease (CJD), we investigated MSA transmission under conditions known to result in PrPSc transmission. When peripherally exposed to MSA via the peritoneal cavity, hind leg muscle, and tongue, TgM83+/- mice developed neurological signs accompanied by α-synuclein prions in the brain. Iatrogenic CJD, resulting from PrPSc prion adherence to surgical steel instruments, has been investigated by incubating steel sutures in contaminated brain homogenate before implantation into mouse brain. Mice studied using this model for MSA developed disease, whereas wire incubated in control homogenate had no effect on the animals. Notably, formalin fixation did not inactivate α-synuclein prions. Formalin-fixed MSA patient samples also transmitted disease to TgM83+/- mice, even after incubating in fixative for 244 months. Finally, at least 10% sarkosyl was found to be the concentration necessary to partially inactivate MSA prions. These results demonstrate the robustness of α-synuclein prions to denaturation. Moreover, they establish the parallel characteristics between PrPSc and α-synuclein prions, arguing that clinicians should exercise caution when working with materials that might contain α-synuclein prions to prevent disease.
Collapse
|
49
|
Joseph S, Schulz JB, Stegmüller J. Mechanistic contributions of FBXO7 to Parkinson disease. J Neurochem 2017; 144:118-127. [DOI: 10.1111/jnc.14253] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 10/20/2017] [Accepted: 11/06/2017] [Indexed: 12/21/2022]
Affiliation(s)
- Sabitha Joseph
- Department of Neurology; RWTH University Hospital; Aachen Germany
| | - Jörg Bernhard Schulz
- Department of Neurology; RWTH University Hospital; Aachen Germany
- Jülich Aachen Research Alliance (JARA) - JARA-Institute Molecular Neuroscience and Neuroimaging; FZ Jülich and RWTH University; Aachen Germany
| | | |
Collapse
|
50
|
Klaips CL, Jayaraj GG, Hartl FU. Pathways of cellular proteostasis in aging and disease. J Cell Biol 2017; 217:51-63. [PMID: 29127110 PMCID: PMC5748993 DOI: 10.1083/jcb.201709072] [Citation(s) in RCA: 534] [Impact Index Per Article: 66.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 10/17/2017] [Accepted: 10/18/2017] [Indexed: 12/19/2022] Open
Abstract
Ensuring cellular protein homeostasis, or proteostasis, requires precise control of protein synthesis, folding, conformational maintenance, and degradation. A complex and adaptive proteostasis network coordinates these processes with molecular chaperones of different classes and their regulators functioning as major players. This network serves to ensure that cells have the proteins they need while minimizing misfolding or aggregation events that are hallmarks of age-associated proteinopathies, including neurodegenerative disorders such as Alzheimer's and Parkinson's diseases. It is now clear that the capacity of cells to maintain proteostasis undergoes a decline during aging, rendering the organism susceptible to these pathologies. Here we discuss the major proteostasis pathways in light of recent research suggesting that their age-dependent failure can both contribute to and result from disease. We consider different strategies to modulate proteostasis capacity, which may help develop urgently needed therapies for neurodegeneration and other age-dependent pathologies.
Collapse
Affiliation(s)
- Courtney L Klaips
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Martinsried, Germany
| | | | - F Ulrich Hartl
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Martinsried, Germany
| |
Collapse
|