1
|
Qu H, Liu Q, Zheng D, Ni Y, Xiao X. A Comprehensive Bibliometric Analysis of Orchitis Research from 1980 to 2023. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1469:207-243. [PMID: 40301259 DOI: 10.1007/978-3-031-82990-1_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/01/2025]
Abstract
Orchitis, an inflammation of the testes, presents significant implications for male fertility and has been a focal area of scientific inquiry over the past four decades. This study employs a comprehensive bibliometric analysis to assess the progression of global research on orchitis from 1980 to 2023. Drawing from a dataset of 1586 publications indexed in the Web of Science Core Collection, we uncover emerging patterns, collaborations, and pivotal works that have shaped the field. The United States, China, and Germany emerge as leading contributors, while the Journal of Urology stands out as a primary publishing avenue. The results highlight the increasing recognition of autoimmune responses, alongside infectious agents, as key contributors to orchitis. Moreover, molecules such as TNF-α, IL-6, and IFN-γ are identified as central to the disease's pathology. The dynamic interplay of testosterone and regulatory T cells is underscored as a determinant of the testicular immune milieu. Notably, disruptions in the blood-testis barrier (BTB) and germ cell apoptosis emerge as pivotal consequences of the condition. This analysis underscores the expansive and multidisciplinary nature of orchitis research, revealing a consistent growth in collaborative endeavors. In summary, our findings catalog the evolution of orchitis research, providing a consolidated perspective on past achievements and signposting future research avenues. Such insights are instrumental for researchers aiming to navigate the complexities of orchitis and its multifaceted impact on male reproductive health.
Collapse
Affiliation(s)
- Haoyang Qu
- Center for Reproductive Health, School of Pharmaceutical Sciences, Hangzhou Medical College (Zhejiang Academy of Medical Sciences), Hangzhou, China
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, China
| | - Qiubei Liu
- Center for Reproductive Health, School of Pharmaceutical Sciences, Hangzhou Medical College (Zhejiang Academy of Medical Sciences), Hangzhou, China
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, China
| | - Dongwang Zheng
- Center for Reproductive Health, School of Pharmaceutical Sciences, Hangzhou Medical College (Zhejiang Academy of Medical Sciences), Hangzhou, China
| | - Ya Ni
- Center for Reproductive Health, School of Pharmaceutical Sciences, Hangzhou Medical College (Zhejiang Academy of Medical Sciences), Hangzhou, China
- Zhejiang Provincial Laboratory of Experimental Animal's and Nonclinical Laboratory Studies, Hangzhou Medical College, Hangzhou, China
| | - Xiang Xiao
- Center for Reproductive Health, School of Pharmaceutical Sciences, Hangzhou Medical College (Zhejiang Academy of Medical Sciences), Hangzhou, China.
- Zhejiang Provincial Laboratory of Experimental Animal's and Nonclinical Laboratory Studies, Hangzhou Medical College, Hangzhou, China.
- Engineering Research Center of Novel Vaccine of Zhejiang Province, Hangzhou Medical College, Hangzhou, China.
| |
Collapse
|
2
|
Mukherjee AG, Gopalakrishnan AV. Anti-sperm Antibodies as an Increasing Threat to Male Fertility: Immunological Insights, Diagnostic and Therapeutic Strategies. Reprod Sci 2024; 31:3303-3322. [PMID: 38831152 DOI: 10.1007/s43032-024-01610-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 05/29/2024] [Indexed: 06/05/2024]
Abstract
It is a fact that sperm possess antigenic properties. Substantial scientific research suggests that specific antibodies that attach to sperm antigens can induce infertility in both humans and other species. Antisperm antibodies (ASA) represent a significant etiology of infertility in humans, leading to immunoinfertility. The association between ASA and infertility is multifaceted. The observation of sperm agglutination, although not conclusive for the diagnosis of immunological infertility, may suggest the presence of ASA. Nevertheless, ASA may also manifest in the lack of any sperm agglutination. Managing ASA from an andrological perspective depends on the underlying cause and the specific approaches healthcare professionals adopt. The precise etiology of male infertility resulting from ASA remains unclear. Current research has examined the impact of ASA and its prevalence among infertile males to understand the relationship between ASA and changes in semen parameters. However, the findings have been inconclusive. Numerous techniques have been documented for the management of immunoinfertility. This review examines the importance of ASA in the context of infertility, encompassing the postulated mechanisms underlying the development of ASA, the various assays employed for detecting them, and the available treatments.
Collapse
Affiliation(s)
- Anirban Goutam Mukherjee
- Department of Biomedical Sciences, School of Bio-Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Bio-Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
3
|
Fernandes SG, Ferreira LGA, Benham AM, Avellar MCW. Epididymal mRNA expression profiles for the protein disulfide isomerase gene family: Modulation by development and androgens. Andrology 2024. [PMID: 39087751 DOI: 10.1111/andr.13700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/25/2024] [Accepted: 07/02/2024] [Indexed: 08/02/2024]
Abstract
BACKGROUND The endoplasmic reticulum (ER) is the central hub for protein quality control, where the protein disulfide isomerases (PDIs), encoded by at least 21 genes, play a pivotal role. These multifunctional proteins contribute to disulfide bond formation, proper folding, and protein modifications, and may act as hormone-binding proteins (e.g., steroids), influencing hormone biology. The interplay between ER proteostasis, PDIs, and epididymis-a crucial site for sperm maturation-remains largely understudied. OBJECTIVES This study characterizes transcriptional signatures of Pdi genes in the epididymis. MATERIAL AND METHODS Transcriptional profiles of selected Pdi genes were assessed in adult Wistar rat tissues, and epididymis under different experimental conditions (developmental stages, surgical castration, and efferent ductules ligation [EDL]). In silico bioinformatic analyses identified expression trends of this gene family in human epididymal segments. RESULTS P4hb, Pdia3, Pdia5, Pdia6, Erp44, Erp29, and Casq1 transcripts were detected in both reproductive and non-reproductive tissues, while Casq2 exhibited higher abundance in vas deferens, prostate, and heart. Pdilt, highly expressed in testis, and Pdia2, highly expressed in heart, showed minimal mRNA levels in the epididymis. In the mesonephric duct, epididymal embryonic precursor, P4hb, Pdia3, Pdia5, Pdia6, and Erp29 mRNAs were found at gestational day (GD) 17.5. Except for Erp29, which remained stable, these Pdi transcript levels increased from GD17.5 to GD20.5, when epididymal morphogenesis occurs, and were maintained to varying degrees in the epididymis during postnatal development. Surgical castration downregulated P4hb, Pdia3, Pdia5, Pdia6, Pdilt and Erp29 transcripts, an effect reversed by testosterone replacement. Conversely, transcript levels remained unaffected by EDL, except P4hb, which was reduced in caput epididymis. All 21 PDI genes exhibited diverse transcriptional profiles across the human epididymis. DISCUSSION AND CONCLUSION The findings lay the foundations to explore Pdi genes in epididymal biology. As a considerable proportion of male infertility cases are idiopathic, targeting hormonal regulation of protein quality control in epididymis represents a route to address male infertility and advance therapeutic interventions in this domain.
Collapse
Affiliation(s)
- Samuel G Fernandes
- Laboratory of Molecular, Endocrine and Reproductive Pharmacology, Department of Pharmacology, Universidade Federal de São Paulo - Escola Paulista de Medicina, São Paulo, Brazil
| | - Lucas G A Ferreira
- Laboratory of Molecular, Endocrine and Reproductive Pharmacology, Department of Pharmacology, Universidade Federal de São Paulo - Escola Paulista de Medicina, São Paulo, Brazil
| | - Adam M Benham
- Department of Biosciences, Durham University, Durham, UK
| | - Maria Christina W Avellar
- Laboratory of Molecular, Endocrine and Reproductive Pharmacology, Department of Pharmacology, Universidade Federal de São Paulo - Escola Paulista de Medicina, São Paulo, Brazil
| |
Collapse
|
4
|
Chen K, Luo M, Lv Y, Luo Z, Yang H. Undervalued and novel roles of heterogeneous nuclear ribonucleoproteins in autoimmune diseases: Resurgence as potential biomarkers and targets. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1806. [PMID: 37365887 DOI: 10.1002/wrna.1806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 06/28/2023]
Abstract
Autoimmune diseases are mainly characterized by the abnormal autoreactivity due to the loss of tolerance to specific autoantigens, though multiple pathways associated with the homeostasis of immune responses are involved in initiating or aggravating the conditions. The heterogeneous nuclear ribonucleoproteins (hnRNPs) are a major category of RNA-binding proteins ubiquitously expressed in a multitude of cells and have attracted great attentions especially with their distinctive roles in nucleic acid metabolisms and the pathogenesis in diseases like neurodegenerative disorders and cancers. Nevertheless, the interplay between hnRNPs and autoimmune disorders has not been fully elucidated. Virtually various family members of hnRNPs are increasingly identified as immune players and are pertinent to all kinds of immune-related processes including immune system development and innate or adaptive immune responses. Specifically, hnRNPs have been extensively recognized as autoantigens within and even beyond a myriad of autoimmune diseases, yet their diagnostic and prognostic values are seemingly underestimated. Molecular mimicry, epitope spreading and bystander activation may represent major putative mechanisms underlying the presence of autoantibodies to hnRNPs. Besides, hnRNPs play critical parts in regulating linchpin genes expressions that control genetic susceptibility, disease-linked functional pathways, or immune responses by interacting with other components particularly like microRNAs and long non-coding RNAs, thereby contributing to inflammation and autoimmunity as well as specific disease phenotypes. Therefore, comprehensive unraveling of the roles of hnRNPs is conducive to establishing potential biomarkers and developing better intervention strategies by targeting these hnRNPs in the corresponding disorders. This article is categorized under: RNA in Disease and Development > RNA in Disease RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications.
Collapse
Affiliation(s)
- Kangzhi Chen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Mengchuan Luo
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Yuanzhi Lv
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Zhaohui Luo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Clinical Research Center for Epileptic Disease of Hunan Province, Central South University, Changsha, China
| | - Huan Yang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
5
|
Nagahori K, Kuramasu M, Kawata S, Yakura T, Li Z, Hirai S, Qu N, Itoh M. GIT1 is an untolerized autoantigen involved in immunologic disturbance of spermatogenesis. Histochem Cell Biol 2022; 157:309-319. [DOI: 10.1007/s00418-021-02061-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/28/2021] [Indexed: 12/14/2022]
|
6
|
Ethyl pyruvate, a versatile protector in inflammation and autoimmunity. Inflamm Res 2022; 71:169-182. [PMID: 34999919 PMCID: PMC8742706 DOI: 10.1007/s00011-021-01529-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/26/2021] [Accepted: 11/27/2021] [Indexed: 12/18/2022] Open
Abstract
Ethyl pyruvate (EP) has potent influence on redox processes, cellular metabolism, and inflammation. It has been intensively studied in numerous animal models of systemic and organ-specific disorders whose pathogenesis involves a strong immune component. Here, basic chemical and biological properties of EP are discussed, with an emphasis on its redox and metabolic activity. Further, its influence on myeloid and T cells is considered, as well as on intracellular signaling beyond its effect on immune cells. Also, the effects of EP on animal models of chronic inflammatory and autoimmune disorders are presented. Finally, a possibility to apply EP as a treatment for such diseases in humans is discussed. Scientific papers cited in this review were identified using the PubMed search engine that relies on the MEDLINE database. The reference list covers the most important findings in the field in the past twenty years.
Collapse
|
7
|
Shibahara H, Chen Y, Honda H, Wakimoto Y, Fukui A, Hasegawa A. Sex difference in anti-sperm antibodies. Reprod Med Biol 2022; 21:e12477. [PMID: 35814191 PMCID: PMC9255895 DOI: 10.1002/rmb2.12477] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/23/2022] [Accepted: 05/30/2022] [Indexed: 12/04/2022] Open
Abstract
Background Some diseases have sex differences. There have been no reports on the relationship between anti-sperm antibodies (ASA) and sex differences. Methods ASA are detected by sperm-immobilization test using patients' sera in women. In men, the ASA testing is generally performed by direct-immunobead test. Main findings Sperm-immobilizing antibodies in women inhibit sperm migration in their genital tract and exert inhibitory effects on fertilization. ASA bound to sperm surface in men also show inhibitory effect on sperm passage through cervical mucus. The fertilization rate of IVF significantly decreased when sperm were coated with higher numbers of ASA. For women with the antibodies, it is important to assess individual patients' SI50 titers. In patients with continuously high SI50 titers, pregnancy can be obtained only by IVF. For men with abnormal fertilizing ability by ASA, it is necessary to select intracytoplasmic sperm injection. Production of sperm-immobilizing antibodies is likely to occur in women with particular HLA after exposure to sperm. The risk factors for ASA production in men are still controversial. Conclusion Attention to sex differences in specimens, test methods and the diagnosis of ASA should be paid. For patients with ASA, treatment strategies have been established by considering sex difference for each.
Collapse
Affiliation(s)
- Hiroaki Shibahara
- Department of Obstetrics and GynecologySchool of Medicine, Hyogo Medical UniversityNishinomiyaJapan
| | - Yuekun Chen
- Department of Obstetrics and GynecologySchool of Medicine, Hyogo Medical UniversityNishinomiyaJapan
| | - Haruka Honda
- Department of Obstetrics and GynecologySchool of Medicine, Hyogo Medical UniversityNishinomiyaJapan
| | - Yu Wakimoto
- Department of Obstetrics and GynecologySchool of Medicine, Hyogo Medical UniversityNishinomiyaJapan
| | - Atsushi Fukui
- Department of Obstetrics and GynecologySchool of Medicine, Hyogo Medical UniversityNishinomiyaJapan
| | - Akiko Hasegawa
- Department of Obstetrics and GynecologySchool of Medicine, Hyogo Medical UniversityNishinomiyaJapan
| |
Collapse
|
8
|
Bryan ER, Redgrove KA, Mooney AR, Mihalas BP, Sutherland JM, Carey AJ, Armitage CW, Trim LK, Kollipara A, Mulvey PBM, Palframan E, Trollope G, Bogoevski K, McLachlan R, McLaughlin EA, Beagley KW. Chronic testicular Chlamydia muridarum infection impairs mouse fertility and offspring development†. Biol Reprod 2021; 102:888-901. [PMID: 31965142 PMCID: PMC7124966 DOI: 10.1093/biolre/ioz229] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 11/28/2019] [Accepted: 01/12/2020] [Indexed: 12/26/2022] Open
Abstract
With approximately 131 million new genital tract infections occurring each year, Chlamydia is the most common sexually transmitted bacterial pathogen worldwide. Male and female infections occur at similar rates and both cause serious pathological sequelae. Despite this, the impact of chlamydial infection on male fertility has long been debated, and the effects of paternal chlamydial infection on offspring development are unknown. Using a male mouse chronic infection model, we show that chlamydial infection persists in the testes, adversely affecting the testicular environment. Infection increased leukocyte infiltration, disrupted the blood:testis barrier and reduced spermiogenic cell numbers and seminiferous tubule volume. Sperm from infected mice had decreased motility, increased abnormal morphology, decreased zona-binding capacity, and increased DNA damage. Serum anti-sperm antibodies were also increased. When both acutely and chronically infected male mice were bred with healthy female mice, 16.7% of pups displayed developmental abnormalities. Female offspring of chronically infected sires had smaller reproductive tracts than offspring of noninfected sires. The male pups of infected sires displayed delayed testicular development, with abnormalities in sperm vitality, motility, and sperm-oocyte binding evident at sexual maturity. These data suggest that chronic testicular Chlamydia infection can contribute to male infertility, which may have an intergenerational impact on sperm quality.
Collapse
Affiliation(s)
- Emily R Bryan
- School of Biomedical Sciences and Institute of Health & Biomedical Innovation, Queensland University of Technology, Herston, Queensland, Australia
| | - Kate A Redgrove
- School of Environmental and Life Sciences, Faculty of Science, The University of Newcastle, University Drive, Callaghan, New South Wales, Australia
| | - Alison R Mooney
- School of Biomedical Sciences and Institute of Health & Biomedical Innovation, Queensland University of Technology, Herston, Queensland, Australia
| | - Bettina P Mihalas
- School of Environmental and Life Sciences, Faculty of Science, The University of Newcastle, University Drive, Callaghan, New South Wales, Australia
| | - Jessie M Sutherland
- School of Environmental and Life Sciences, Faculty of Science, The University of Newcastle, University Drive, Callaghan, New South Wales, Australia
| | - Alison J Carey
- School of Biomedical Sciences and Institute of Health & Biomedical Innovation, Queensland University of Technology, Herston, Queensland, Australia
| | - Charles W Armitage
- School of Biomedical Sciences and Institute of Health & Biomedical Innovation, Queensland University of Technology, Herston, Queensland, Australia.,Peter Goher Department of Immunobiology, King's College London, London, United Kingdom
| | - Logan K Trim
- School of Biomedical Sciences and Institute of Health & Biomedical Innovation, Queensland University of Technology, Herston, Queensland, Australia
| | - Avinash Kollipara
- School of Biomedical Sciences and Institute of Health & Biomedical Innovation, Queensland University of Technology, Herston, Queensland, Australia
| | - Peter B M Mulvey
- School of Biomedical Sciences and Institute of Health & Biomedical Innovation, Queensland University of Technology, Herston, Queensland, Australia
| | - Ella Palframan
- School of Biomedical Sciences and Institute of Health & Biomedical Innovation, Queensland University of Technology, Herston, Queensland, Australia
| | - Gemma Trollope
- School of Biomedical Sciences and Institute of Health & Biomedical Innovation, Queensland University of Technology, Herston, Queensland, Australia
| | - Kristofor Bogoevski
- Scientific Services, Histology Services, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Robert McLachlan
- Department of Obstetrics and Gynaecology, Hudson Institute of Medical Research, Monash Medical Centre, Monash University, Clayton, Victoria, Australia
| | - Eileen A McLaughlin
- School of Environmental and Life Sciences, Faculty of Science, The University of Newcastle, University Drive, Callaghan, New South Wales, Australia.,School of Science, Western Sydney University, Richmond, New South Wales, Australia.,School of Life Sciences, The University of Auckland, Auckland, New Zealand
| | - Kenneth W Beagley
- School of Biomedical Sciences and Institute of Health & Biomedical Innovation, Queensland University of Technology, Herston, Queensland, Australia
| |
Collapse
|
9
|
Unraveling the Balance between Genes, Microbes, Lifestyle and the Environment to Improve Healthy Reproduction. Genes (Basel) 2021; 12:genes12040605. [PMID: 33924000 PMCID: PMC8073673 DOI: 10.3390/genes12040605] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/08/2021] [Accepted: 04/17/2021] [Indexed: 12/16/2022] Open
Abstract
Humans’ health is the result of a complex and balanced interplay between genetic factors, environmental stimuli, lifestyle habits, and the microbiota composition. The knowledge about their single contributions, as well as the complex network linking each to the others, is pivotal to understand the mechanisms underlying the onset of many diseases and can provide key information for their prevention, diagnosis and therapy. This applies also to reproduction. Reproduction, involving almost 10% of our genetic code, is one of the most critical human’s functions and is a key element to assess the well-being of a population. The last decades revealed a progressive decline of reproductive outcomes worldwide. As a consequence, there is a growing interest in unveiling the role of the different factors involved in human reproduction and great efforts have been carried out to improve its outcomes. As for many other diseases, it is now clear that the interplay between the underlying genetics, our commensal microbiome, the lifestyle habits and the environment we live in can either exacerbate the outcome or mitigate the adverse effects. Here, we aim to analyze how each of these factors contribute to reproduction highlighting their individual contribution and providing supporting evidence of how to modify their impact and overall contribution to a healthy reproductive status.
Collapse
|
10
|
Nagahori K, Hirai S, Hatayama N, Kuramasu M, Omotehara T, Kawata S, Li Z, Miyaso H, Ogawa Y, Qu N, Terayama H, Hayashi S, Yi SQ, Naito M, Itoh M. Heat shock protein A4L is a potent autoantigen for testicular autoimmunity in mice. J Reprod Immunol 2021; 145:103318. [PMID: 33894646 DOI: 10.1016/j.jri.2021.103318] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 03/19/2021] [Accepted: 03/24/2021] [Indexed: 01/12/2023]
Abstract
Experimental autoimmune orchitis (EAO) may be used as a model to investigate immunological infertility in men. Murine EAO is induced via immunization with auto-immunogenic antigens (AIAgs) from testicular germ cells (TGCs). CD4 + T cells play a crucial role in EAO induction. However, whether AIAgs induce an immune response remains unclear. We aimed to identify self-antigens that induce EAO by screening a phage display library of random TGC peptides using IgG from EAO-induced A/J mice. Twenty TGC-specific AIAgs were detected, and G protein-coupled receptor kinase 2 interacting protein-1 (GIT1) and heat shock protein A4L (HSPA4L) were identified as candidate AIAgs that induce EAO. Immunization with GIT1 or HSPA4L, emulsified in complete Freund's adjuvant, resulted in 66 % or 100 % incidence of EAO, respectively, indicating that HSPA4L is a most potent AIAg that induces EAO in mice. These findings may expectedly help improve the diagnostic procedures and treatment of immunological infertility in men.
Collapse
Affiliation(s)
- Kenta Nagahori
- Department of Anatomy, School of Medicine, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo, 160-8402, Japan.
| | - Shuichi Hirai
- Department of Anatomy, School of Medicine, Aichi Medical University, 1-1 Yazakokarimata, Nagakute, Aichi, 480-1195, Japan.
| | - Naoyuki Hatayama
- Department of Anatomy, School of Medicine, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo, 160-8402, Japan; Department of Anatomy, School of Medicine, Aichi Medical University, 1-1 Yazakokarimata, Nagakute, Aichi, 480-1195, Japan.
| | - Miyuki Kuramasu
- Department of Anatomy, School of Medicine, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo, 160-8402, Japan.
| | - Takuya Omotehara
- Department of Anatomy, School of Medicine, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo, 160-8402, Japan.
| | - Shinichi Kawata
- Department of Anatomy, School of Medicine, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo, 160-8402, Japan.
| | - Zhonglian Li
- Department of Anatomy, School of Medicine, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo, 160-8402, Japan.
| | - Hidenobu Miyaso
- Department of Anatomy, School of Medicine, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo, 160-8402, Japan.
| | - Yuki Ogawa
- Department of Anatomy, School of Medicine, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo, 160-8402, Japan.
| | - Ning Qu
- Department of Anatomy, School of Medicine, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo, 160-8402, Japan; Department of Anatomy, Division of Basic Medical Science, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, Japan.
| | - Hayato Terayama
- Department of Anatomy, School of Medicine, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo, 160-8402, Japan; Department of Anatomy, Division of Basic Medical Science, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, Japan.
| | - Shogo Hayashi
- Department of Anatomy, Division of Basic Medical Science, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, Japan.
| | - Shuang-Qin Yi
- Department of Anatomy, School of Medicine, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo, 160-8402, Japan; Department of Frontier Health Sciences, Graduate School of Human Health Sciences, Tokyo Metropolitan University, 7-2-10 Higashiogu, Arakawa-ku, Tokyo, 116-8551, Japan.
| | - Munekazu Naito
- Department of Anatomy, School of Medicine, Aichi Medical University, 1-1 Yazakokarimata, Nagakute, Aichi, 480-1195, Japan.
| | - Masahiro Itoh
- Department of Anatomy, School of Medicine, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo, 160-8402, Japan.
| |
Collapse
|
11
|
Noguchi J, Ikeda M, Kikuchi K, Dang-Nguyen TQ, Kasashima M, Tatematsu KI, Sezutsu H, Furusawa T. Successful activation of rat T lymphocytes by sperm specific antigens in vitro. J Reprod Dev 2020; 66:599-605. [PMID: 33012735 PMCID: PMC7768165 DOI: 10.1262/jrd.2020-106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Autoimmune orchitis is a condition related to cellular immunity. A disease model involving transfer of T lymphocytes activated by known antigens would be useful for defining pathogenical molecules. Since no method for activating rat T cells using specific antigens is available, we started the study to develop the method. T cells were collected from draining lymph nodes of immunized rats, then co-cultured with syngeneic splenocytes as antigen-presenting cells (APC) in antigen-supplemented medium (= stimulation). The cells were then incubated in medium without antigens and APC (= resting). Repetitive stimulation and resting increased the number of the T cells more than 100-fold. The antigen-specific activation was demonstrated by cell proliferation assay and ELISA assay for interferon gamma. Flow cytometry revealed that > 95% of the cells expressed tumor necrosis factor alpha, a cytokine responsible for autoimmune orchitis. The present method will provide a new procedure to evaluate antigenicity of sperm molecules.
Collapse
Affiliation(s)
- Junko Noguchi
- Division of Animal Sciences, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Ibaraki 305-8634, Japan
| | - Mitsumi Ikeda
- Division of Animal Sciences, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Ibaraki 305-8634, Japan
| | - Kazuhiro Kikuchi
- Division of Animal Sciences, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Ibaraki 305-8634, Japan
| | - Thanh Quang Dang-Nguyen
- Division of Animal Sciences, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Ibaraki 305-8634, Japan
| | - Megumi Kasashima
- Division of Biotechnology, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Ibaraki 305-8634, Japan
| | - Ken-Ichiro Tatematsu
- Division of Biotechnology, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Ibaraki 305-8634, Japan
| | - Hideki Sezutsu
- Division of Biotechnology, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Ibaraki 305-8634, Japan
| | - Tadashi Furusawa
- Division of Animal Sciences, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Ibaraki 305-8634, Japan
| |
Collapse
|
12
|
Lustig L, Guazzone VA, Theas MS, Pleuger C, Jacobo P, Pérez CV, Meinhardt A, Fijak M. Pathomechanisms of Autoimmune Based Testicular Inflammation. Front Immunol 2020; 11:583135. [PMID: 33101310 PMCID: PMC7546798 DOI: 10.3389/fimmu.2020.583135] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 08/28/2020] [Indexed: 12/30/2022] Open
Abstract
Infection and inflammation of the male reproductive tract are relevant causes of infertility. Inflammatory damage occurs in the special immunosuppressive microenvironment of the testis, a hallmark termed testicular immune privilege, which allows tolerance to neo-antigens from developing germ cells appearing at puberty, long after the establishment of systemic immune tolerance. Experimental autoimmune orchitis (EAO) is a well-established rodent model of chronic testicular inflammation and organ specific autoimmunity that offers a valuable in vivo tool to investigate the pathological and molecular mechanisms leading to the breakdown of the testicular immune privilege. The disease is characterized by the infiltration of the interstitium by immune cells (mainly macrophages, dendritic cells, and T cells), formation of autoantibodies against testicular antigens, production of pro-inflammatory mediators such as NO, MCP1, TNFα, IL6, or activins and dysregulation of steroidogenesis with reduced levels of serum testosterone. EAO leads to sloughing of germ cells, atrophic seminiferous tubules and fibrotic remodeling, parameters all found similarly to changes in human biopsies from infertile patients with inflammatory infiltrates. Interestingly, testosterone supplementation during the course of EAO leads to expansion of the regulatory T cell population and inhibition of disease development. Knowledge of EAO pathogenesis aims to contribute to a better understanding of human testicular autoimmune disease as an essential prerequisite for improved diagnosis and treatment.
Collapse
Affiliation(s)
- Livia Lustig
- Departamento de Biología Celular e Histología/Unidad Académica II, Facultad de Medicina, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina.,Instituto de Investigaciones Biomédicas (INBIOMED), Consejo Nacional de Investigaciones Científicas y Tècnicas (CONICET), Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
| | - Vanesa A Guazzone
- Departamento de Biología Celular e Histología/Unidad Académica II, Facultad de Medicina, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina.,Instituto de Investigaciones Biomédicas (INBIOMED), Consejo Nacional de Investigaciones Científicas y Tècnicas (CONICET), Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
| | - María S Theas
- Departamento de Biología Celular e Histología/Unidad Académica II, Facultad de Medicina, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina.,Instituto de Investigaciones Biomédicas (INBIOMED), Consejo Nacional de Investigaciones Científicas y Tècnicas (CONICET), Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
| | - Christiane Pleuger
- Department of Anatomy and Cell Biology, Justus-Liebig University Giessen, Giessen, Germany.,Hessian Centre of Reproductive Medicine, Justus-Liebig University Giessen, Giessen, Germany
| | - Patricia Jacobo
- Departamento de Biología Celular e Histología/Unidad Académica II, Facultad de Medicina, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina.,Instituto de Investigaciones Biomédicas (INBIOMED), Consejo Nacional de Investigaciones Científicas y Tècnicas (CONICET), Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
| | - Cecilia V Pérez
- Instituto de Investigaciones Biomédicas (INBIOMED), Consejo Nacional de Investigaciones Científicas y Tècnicas (CONICET), Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
| | - Andreas Meinhardt
- Department of Anatomy and Cell Biology, Justus-Liebig University Giessen, Giessen, Germany.,Hessian Centre of Reproductive Medicine, Justus-Liebig University Giessen, Giessen, Germany
| | - Monika Fijak
- Department of Anatomy and Cell Biology, Justus-Liebig University Giessen, Giessen, Germany.,Hessian Centre of Reproductive Medicine, Justus-Liebig University Giessen, Giessen, Germany
| |
Collapse
|
13
|
Bryan ER, Kim J, Beagley KW, Carey AJ. Testicular inflammation and infertility: Could chlamydial infections be contributing? Am J Reprod Immunol 2020; 84:e13286. [DOI: 10.1111/aji.13286] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/05/2020] [Accepted: 06/05/2020] [Indexed: 12/12/2022] Open
Affiliation(s)
- Emily R. Bryan
- School of Biomedical Sciences Institute of Health and Biomedical Innovation Queensland University of Technology Brisbane Qld Australia
| | - Jay Kim
- School of Biomedical Sciences Institute of Health and Biomedical Innovation Queensland University of Technology Brisbane Qld Australia
| | - Kenneth W. Beagley
- School of Biomedical Sciences Institute of Health and Biomedical Innovation Queensland University of Technology Brisbane Qld Australia
| | - Alison J. Carey
- School of Biomedical Sciences Institute of Health and Biomedical Innovation Queensland University of Technology Brisbane Qld Australia
| |
Collapse
|
14
|
Herrera-Uribe J, Jiménez-Marín Á, Lacasta A, Monteagudo PL, Pina-Pedrero S, Rodríguez F, Moreno Á, Garrido JJ. Comparative proteomic analysis reveals different responses in porcine lymph nodes to virulent and attenuated homologous African swine fever virus strains. Vet Res 2018; 49:90. [PMID: 30208957 PMCID: PMC6134756 DOI: 10.1186/s13567-018-0585-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 07/05/2018] [Indexed: 01/07/2023] Open
Abstract
African swine fever (ASF) is a pathology of pigs against which there is no treatment or vaccine. Understanding the equilibrium between innate and adaptive protective responses and immune pathology might contribute to the development of strategies against ASFV. Here we compare, using a proteomic approach, the course of the in vivo infection caused by two homologous strains: the virulent E75 and the attenuated E75CV1. Our results show a progressive loss of proteins by day 7 post-infection (pi) with E75, reflecting tissue destruction. Many signal pathways were affected by both infections but in different ways and extensions. Cytoskeletal remodelling and clathrin-endocytosis were affected by both isolates, while a greater number of proteins involved on inflammatory and immunological pathways were altered by E75CV1. 14-3-3 mediated signalling, related to immunity and apoptosis, was inhibited by both isolates. The implication of the Rho GTPases by E75CV1 throughout infection is also evident. Early events reflected the lack of E75 recognition by the immune system, an evasion strategy acquired by the virulent strains, and significant changes at 7 days post-infection (dpi), coinciding with the peak of infection and the time of death. The protein signature at day 31 pi with E75CV1 seems to reflect events observed at 1 dpi, including the upregulation of proteosomal subunits and molecules described as autoantigens (vimentin, HSPB1, enolase and lymphocyte cytosolic protein 1), which allow the speculation that auto-antibodies could contribute to chronic ASFV infections. Therefore, the use of proteomics could help understand ASFV pathogenesis and immune protection, opening new avenues for future research.
Collapse
Affiliation(s)
- Júber Herrera-Uribe
- Grupo de Genómica y Mejora Animal, Departamento de Genética, Facultad de Veterinaria, Universidad de Córdoba, Córdoba, Spain
| | - Ángeles Jiménez-Marín
- Grupo de Genómica y Mejora Animal, Departamento de Genética, Facultad de Veterinaria, Universidad de Córdoba, Córdoba, Spain
| | - Anna Lacasta
- International Livestock Research Intitute (ILRI), Nairobi, 00100, Kenya.,Centre de Recerca En Sanitat Animal (CReSA), Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Campus UAB, Bellaterra, 08193, Barcelona, Spain
| | - Paula L Monteagudo
- Centre de Recerca En Sanitat Animal (CReSA), Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Campus UAB, Bellaterra, 08193, Barcelona, Spain
| | - Sonia Pina-Pedrero
- Centre de Recerca En Sanitat Animal (CReSA), Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Campus UAB, Bellaterra, 08193, Barcelona, Spain
| | - Fernando Rodríguez
- Centre de Recerca En Sanitat Animal (CReSA), Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Campus UAB, Bellaterra, 08193, Barcelona, Spain
| | - Ángela Moreno
- Grupo de Genómica y Mejora Animal, Departamento de Genética, Facultad de Veterinaria, Universidad de Córdoba, Córdoba, Spain.,Instituto de Agricultura Sostenible, Campus Alameda del Obispo, 14080 CSIC, Córdoba, Spain
| | - Juan J Garrido
- Grupo de Genómica y Mejora Animal, Departamento de Genética, Facultad de Veterinaria, Universidad de Córdoba, Córdoba, Spain.
| |
Collapse
|
15
|
Fijak M, Pilatz A, Hedger MP, Nicolas N, Bhushan S, Michel V, Tung KSK, Schuppe HC, Meinhardt A. Infectious, inflammatory and 'autoimmune' male factor infertility: how do rodent models inform clinical practice? Hum Reprod Update 2018; 24:416-441. [PMID: 29648649 PMCID: PMC6016649 DOI: 10.1093/humupd/dmy009] [Citation(s) in RCA: 156] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 03/02/2018] [Accepted: 03/10/2018] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Infection and inflammation of the reproductive tract are significant causes of male factor infertility. Ascending infections caused by sexually transmitted bacteria or urinary tract pathogens represent the most frequent aetiology of epididymo-orchitis, but viral, haematogenous dissemination is also a contributory factor. Limitations in adequate diagnosis and therapy reflect an obvious need for further understanding of human epididymal and testicular immunopathologies and their contribution to infertility. A major obstacle for advancing our knowledge is the limited access to suitable tissue samples. Similarly, the key events in the inflammatory or autoimmune pathologies affecting human male fertility are poorly amenable to close examination. Moreover, the disease processes generally have occurred long before the patient attends the clinic for fertility assessment. In this regard, data obtained from experimental animal models and respective comparative analyses have shown promise to overcome these restrictions in humans. OBJECTIVE AND RATIONALE This narrative review will focus on male fertility disturbances caused by infection and inflammation, and the usefulness of the most frequently applied animal models to study these conditions. SEARCH METHODS An extensive search in Medline database was performed without restrictions until January 2018 using the following search terms: 'infection' and/or 'inflammation' and 'testis' and/or 'epididymis', 'infection' and/or 'inflammation' and 'male genital tract', 'male infertility', 'orchitis', 'epididymitis', 'experimental autoimmune' and 'orchitis' or 'epididymitis' or 'epididymo-orchitis', antisperm antibodies', 'vasectomy'. In addition to that, reference lists of primary and review articles were reviewed for additional publications independently by each author. Selected articles were verified by each two separate authors and discrepancies discussed within the team. OUTCOMES There is clear evidence that models mimicking testicular and/or epididymal inflammation and infection have been instructive in a better understanding of the mechanisms of disease initiation and progression. In this regard, rodent models of acute bacterial epididymitis best reflect the clinical situation in terms of mimicking the infection pathway, pathogens selected and the damage, such as fibrotic transformation, observed. Similarly, animal models of acute testicular and epididymal inflammation using lipopolysaccharides show impairment of reproduction, endocrine function and histological tissue architecture, also seen in men. Autoimmune responses can be studied in models of experimental autoimmune orchitis (EAO) and vasectomy. In particular, the early stages of EAO development showing inflammatory responses in the form of peritubular lymphocytic infiltrates, thickening of the lamina propria of affected tubules, production of autoantibodies against testicular antigens or secretion of pro-inflammatory mediators, replicate observations in testicular sperm extraction samples of patients with 'mixed atrophy' of spermatogenesis. Vasectomy, in the form of sperm antibodies and chronic inflammation, can also be studied in animal models, providing valuable insights into the human response. WIDER IMPLICATIONS This is the first comprehensive review of rodent models of both infectious and autoimmune disease of testis/epididymis, and their clinical implications, i.e. their importance in understanding male infertility related to infectious and non-infectious/autoimmune disease of the reproductive organs.
Collapse
Affiliation(s)
- Monika Fijak
- Institute of Anatomy and Cell Biology, Unit of Reproductive Biology, Aulweg 123, Giessen, Germany
| | - Adrian Pilatz
- Clinic of Urology, Pediatric Urology and Andrology, Justus-Liebig University of Giessen, Germany
| | - Mark P Hedger
- Hudson Institute of Medical Research, 27-31 Wright Street, Clayton, Victoria, Australia
| | - Nour Nicolas
- Institute of Anatomy and Cell Biology, Unit of Reproductive Biology, Aulweg 123, Giessen, Germany
- Hudson Institute of Medical Research, 27-31 Wright Street, Clayton, Victoria, Australia
| | - Sudhanshu Bhushan
- Institute of Anatomy and Cell Biology, Unit of Reproductive Biology, Aulweg 123, Giessen, Germany
| | - Vera Michel
- Institute of Anatomy and Cell Biology, Unit of Reproductive Biology, Aulweg 123, Giessen, Germany
| | - Kenneth S K Tung
- Departments of Pathology and Microbiology, Beirne Carter Center for Immunology Research, University of Virginia, 345 Crispell Drive, Charlottesville, VA, USA
| | - Hans-Christian Schuppe
- Clinic of Urology, Pediatric Urology and Andrology, Justus-Liebig University of Giessen, Germany
| | - Andreas Meinhardt
- Institute of Anatomy and Cell Biology, Unit of Reproductive Biology, Aulweg 123, Giessen, Germany
- Hudson Institute of Medical Research, 27-31 Wright Street, Clayton, Victoria, Australia
| |
Collapse
|
16
|
Aslani F, Sebastian T, Keidel M, Fröhlich S, Elsässer HP, Schuppe HC, Klug J, Mahavadi P, Fijak M, Bergmann M, Meinhardt A, Bhushan S. Resistance to apoptosis and autophagy leads to enhanced survival in Sertoli cells. Mol Hum Reprod 2018; 23:370-380. [PMID: 28379541 DOI: 10.1093/molehr/gax022] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 03/31/2017] [Indexed: 12/13/2022] Open
Abstract
STUDY QUESTION What is the underlying mechanism of Sertoli cell (SC) resistance to cell death? SUMMARY ANSWER High expression of prosurvival B-cell lymphoma-2 (BCL2) proteins and inhibition of apoptosis and autophagy prolongs SC survival upon exposure to stress stimuli. WHAT IS KNOWN ALREADY In human and in experimental models of orchitis, tolerogenic SC survive stress conditions, while germ cells undergo massive apoptosis. In general, non-dividing highly differentiated cells tend to resist stress conditions for a longer time by favoring activation of prosurvival mechanisms and inhibition of cell death pathways. STUDY DESIGN, SIZE, DURATION In this cross sectional study, conditions stimulating apoptosis and autophagy were used to induce cell death in primary rat SC. Primary rat peritubular cells (PTC) and immortalized rat 93RS2 SC were used as controls. Each cell isolation was counted as one experiment (n = 1), and each experiment was repeated three to six times. PARTICIPANTS/MATERIALS, SETTING, METHODS Testis biopsy samples from infertile or subfertile patients and testis samples from rats with experimental autoimmune orchitis were used for immunohistological analysis. Primary SC were isolated from 19-day-old male Wistar rats. To maintain cell purity, cells were cultured in serum-free medium for apoptosis experiments and in medium supplemented with 1% serum for autophagy analyses. To induce apoptosis, cells were stimulated with staurosporine, borrelidin, cisplatin and etoposide for 4 or 24 h. Caspase three activation was examined by immunoblotting and enzymatic activity assay. Mitochondrial membrane potential was measured using tetramethylrhodamine methyl ester followed by flow cytometric analysis. Cytochrome c release was monitored by immunofluorescence. Cell viability was determined using the methylthiazole tetrazolium assay. To monitor autophagy flux, cells were deprived of nutrients using Hank's balanced salt solution for 1, 2 and 3 h. Formation of autophagosomes was analyzed by using immunoblotting, immunofluorescence labeling and ultrastructural analyses. Relative mRNA levels of genes involved in the regulation of apoptosis and autophagy were evaluated. Extracellular high mobility group box protein one was measured as a marker of necrosis using ELISA. MAIN RESULTS AND THE ROLE OF CHANCE SC survive the inflammatory conditions in vivo in human testis and in experimental autoimmune orchitis. Treatment with apoptosis inducing chemotherapeutics did not cause caspase three activation in isolated rat SC. Moreover, mitochondrial membrane potential and mitochondrial localization of cytochrome c were not changed by treatment with staurosporine, suggesting a premitochondrial blockade of apoptosis in SC. Expression levels of prosurvival BCL2 family members were significantly higher in SC compared to PTC at both mRNA and protein levels. Furthermore, after nutrient starvation, autophagy signaling was initiated in SC as observed by decreased levels of phosphorylated UNC- 51-like kinase -1 (ULK1). However, levels of light chain 3 II (LC3 II) and sequestosome1 (SQSTM1) remained unchanged, indicating blockade of the autophagy flux. Lysosomal activity was intact in SC as shown by accumulation of LC3 II following administration of lysosomal protease inhibitors, indicating that inhibition of autophagy flux occurs at a preceding stage. LARGE SCALE DATA N/A. LIMITATIONS, REASONS FOR CAUTION In this study, we have used primary SC from prepubertal rats. Caution should be taken when translating our results to adult animals, where crosstalk with other testicular cells and hormonal factors may also play a role in regulating survival of SC. WIDER IMPLICATIONS OF THE FINDINGS Our results suggest that inhibition of autophagy and apoptosis following exposure to extrinsic stress stimuli promotes SC survival, and is a possible mechanism to explain the robustness of SC in response to stress. Cell death resistance in SC is crucial for the recovery of spermatogenesis after chemotherapy treatment in cancer patients. Additionally, understanding the molecular mechanisms of SC survival unravels valuable target proteins, such as BCL2, that may be manipulated therapeutically to control cell viability depending on the context of the disease. STUDY FUNDING AND COMPETING INTEREST(S) This study was funded by the Deutsche Forschungsgemeinschaft (DFG) Grant BH93/1-1, and by the International Research Training Group between Justus Liebig University of Giessen and Monash University, Melbourne (GRK 1871/1) funded by the DFG and Monash University. The support of the Medical Faculty of Justus-Liebig University of Giessen is gratefully acknowledged. The authors declare no conflict of interest.
Collapse
Affiliation(s)
- Ferial Aslani
- Department of Anatomy and Cell Biology, Justus-Liebig University, Aulweg 123, Giessen 35392, Germany
| | - Tim Sebastian
- Department of Anatomy and Cell Biology, Justus-Liebig University, Aulweg 123, Giessen 35392, Germany
| | - Miguel Keidel
- Department of Anatomy and Cell Biology, Justus-Liebig University, Aulweg 123, Giessen 35392, Germany
| | - Suada Fröhlich
- Department of Anatomy and Cell Biology, Justus-Liebig University, Aulweg 123, Giessen 35392, Germany
| | - Hans-Peter Elsässer
- Department of Cell Biology and Cytopathology, Philipps University of Marburg, Germany
| | - Hans-Christian Schuppe
- Department of Urology, Pediatric Urology and Andrology, Justus-Liebig University, Giessen, Germany
| | - Jörg Klug
- Department of Anatomy and Cell Biology, Justus-Liebig University, Aulweg 123, Giessen 35392, Germany
| | - Poornima Mahavadi
- Department of Internal Medicine, Justus-Liebig University, Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Monika Fijak
- Department of Anatomy and Cell Biology, Justus-Liebig University, Aulweg 123, Giessen 35392, Germany
| | - Martin Bergmann
- Institute of Veterinary Anatomy, Histology, and Embryology, Justus-Liebig-University, Giessen, Germany
| | - Andreas Meinhardt
- Department of Anatomy and Cell Biology, Justus-Liebig University, Aulweg 123, Giessen 35392, Germany
| | - Sudhanshu Bhushan
- Department of Anatomy and Cell Biology, Justus-Liebig University, Aulweg 123, Giessen 35392, Germany
| |
Collapse
|
17
|
Lei T, Moos S, Klug J, Aslani F, Bhushan S, Wahle E, Fröhlich S, Meinhardt A, Fijak M. Galectin-1 enhances TNFα-induced inflammatory responses in Sertoli cells through activation of MAPK signalling. Sci Rep 2018; 8:3741. [PMID: 29487346 PMCID: PMC5829165 DOI: 10.1038/s41598-018-22135-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 02/19/2018] [Indexed: 01/21/2023] Open
Abstract
Galectin-1 (Gal-1) is a pleiotropic lectin involved in the modulation of immune responses. Using a model of rat experimental autoimmune orchitis (EAO), we investigated the role of Gal-1 in testicular inflammation. EAO is characterized by leukocytic infiltrates in the interstitium, damage of spermatogenesis and production of inflammatory mediators like TNFα and MCP1 causing infertility. In normal rat testis Gal-1 was mainly expressed in Sertoli cells and germ cells. In the inflamed testis, Gal-1 expression was significantly downregulated most likely due to germ cell loss. Analyses of lectin binding and expression of glucosaminyl- and sialyltransferases indicated that the glycan composition on the cell surface of Sertoli and peritubular cells becomes less favourable for Gal-1 binding under inflammatory conditions. In primary Sertoli cells Gal-1 expression was found to be upregulated after TNFα challenge. Pretreatment with Gal-1 synergistically and specifically enhanced TNFα-induced expression of MCP1, IL-1α, IL-6 and TNFα in Sertoli cells. Combined stimulation of Sertoli cells with Gal-1 and TNFα enhanced the phosphorylation of MAP kinases as compared to TNFα or Gal-1 alone. Taken together, our data show that Gal-1 modulates inflammatory responses in Sertoli cells by enhancing the pro-inflammatory activity of TNFα via stimulation of MAPK signalling.
Collapse
Affiliation(s)
- Tao Lei
- Department of Anatomy and Cell Biology, Justus-Liebig University, Giessen, Germany
| | - Sven Moos
- Department of Anatomy and Cell Biology, Justus-Liebig University, Giessen, Germany
| | - Jörg Klug
- Department of Anatomy and Cell Biology, Justus-Liebig University, Giessen, Germany
| | - Ferial Aslani
- Department of Anatomy and Cell Biology, Justus-Liebig University, Giessen, Germany
| | - Sudhanshu Bhushan
- Department of Anatomy and Cell Biology, Justus-Liebig University, Giessen, Germany
| | - Eva Wahle
- Department of Anatomy and Cell Biology, Justus-Liebig University, Giessen, Germany
| | - Suada Fröhlich
- Department of Anatomy and Cell Biology, Justus-Liebig University, Giessen, Germany
| | - Andreas Meinhardt
- Department of Anatomy and Cell Biology, Justus-Liebig University, Giessen, Germany
| | - Monika Fijak
- Department of Anatomy and Cell Biology, Justus-Liebig University, Giessen, Germany.
| |
Collapse
|
18
|
Nicolas N, Muir JA, Hayward S, Chen JL, Stanton PG, Gregorevic P, de Kretser DM, Loveland KL, Bhushan S, Meinhardt A, Fijak M, Hedger MP. Induction of experimental autoimmune orchitis in mice: responses to elevated circulating levels of the activin-binding protein, follistatin. Reproduction 2017; 154:293-305. [PMID: 28667125 DOI: 10.1530/rep-17-0010] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 06/22/2017] [Accepted: 06/30/2017] [Indexed: 12/20/2022]
Abstract
Experimental autoimmune orchitis (EAO) is a rodent model of chronic testicular inflammation that mimics the pathology observed in some types of human infertility. In a previous study, testicular expression of the inflammatory/immunoregulatory cytokine, activin A, was elevated in adult mice during the onset of EAO, indicating a potential role in the regulation of the disease. Consequently, we examined the development of EAO in mice with elevated levels of follistatin, an endogenous activin antagonist, as a potential therapeutic approach to testicular inflammation. Prior to EAO induction, mice received a single intramuscular injection of a non-replicative recombinant adeno-associated viral vector carrying a gene cassette of the circulating form of follistatin, FST315 (FST group). Serum follistatin levels were increased 5-fold in the FST group compared with the control empty vector (EV) group at 30 and 50 days of EAO, but intra-testicular levels of follistatin or activin A were not significantly altered. Induction of EAO was reduced, but not prevented, with mild-to-severe damage in 75% of the EV group and 40% of the FST group, at 50 days following immunisation with testicular homogenate. However, the EAO damage score (based on disruption of the blood-testis barrier, apoptosis, testicular damage and fibrosis) and extent of intratesticular inflammation (expression of inflammatory mediators) were directly proportional to the levels of activin A measured in the testis at 50 days. These data implicate activin A in the progression of EAO, thereby providing a potential therapeutic target; however, elevating circulating follistatin levels were not sufficient to prevent EAO development.
Collapse
Affiliation(s)
- Nour Nicolas
- Department of Anatomy and Cell Biology, Justus Liebig University, Giessen, Germany.,Hudson Institute of Medical Research, Clayton, Australia
| | - Julie A Muir
- Hudson Institute of Medical Research, Clayton, Australia
| | - Susan Hayward
- Hudson Institute of Medical Research, Clayton, Australia
| | - Justin L Chen
- Hudson Institute of Medical Research, Clayton, Australia.,Baker IDI Heart and Diabetes Institute, Melbourne, Australia
| | | | - Paul Gregorevic
- Baker IDI Heart and Diabetes Institute, Melbourne, Australia
| | - David M de Kretser
- Hudson Institute of Medical Research, Clayton, Australia.,Department of Anatomy and Developmental Biology, Monash University, Melbourne, Australia
| | - Kate L Loveland
- Hudson Institute of Medical Research, Clayton, Australia.,School of Clinical Sciences, Monash University, Melbourne, Australia
| | - Sudhanshu Bhushan
- Department of Anatomy and Cell Biology, Justus Liebig University, Giessen, Germany
| | - Andreas Meinhardt
- Department of Anatomy and Cell Biology, Justus Liebig University, Giessen, Germany.,Hudson Institute of Medical Research, Clayton, Australia
| | - Monika Fijak
- Department of Anatomy and Cell Biology, Justus Liebig University, Giessen, Germany
| | - Mark P Hedger
- Hudson Institute of Medical Research, Clayton, Australia.,Department of Anatomy and Developmental Biology, Monash University, Melbourne, Australia
| |
Collapse
|
19
|
Testicular activin and follistatin levels are elevated during the course of experimental autoimmune epididymo-orchitis in mice. Sci Rep 2017; 7:42391. [PMID: 28205525 PMCID: PMC5304336 DOI: 10.1038/srep42391] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 01/10/2017] [Indexed: 12/26/2022] Open
Abstract
Experimental autoimmune epididymo-orchitis (EAEO) is a model of chronic inflammation, induced by immunisation with testicular antigens, which reproduces the pathology of some types of human infertility. Activins A and B regulate spermatogenesis and steroidogenesis, but are also pro-inflammatory, pro-fibrotic cytokines. Expression of the activins and their endogenous antagonists, inhibin and follistatin, was examined in murine EAEO. Adult untreated and adjuvant-treated control mice showed no pathology. All mice immunised with testis antigens developed EAEO by 50 days, characterised by loss of germ cells, immune cell infiltration and fibrosis in the testis, similar to biopsies from human inflamed testis. An increase of total CD45+ leukocytes, comprising CD3+ T cells, CD4 + CD8− and CD4 + CD25+ T cells, and a novel population of CD4 + CD8+ double positive T cells was also detected in EAEO testes. This was accompanied by increased expression of TNF, MCP-1 and IL-10. Activin A and B and follistatin protein levels were elevated in EAEO testes, with peak activin expression during the active phase of the disease, whereas mRNA expression of the inhibin B subunits (Inha and Inhbb) and activin receptor subunits (Acvr1b and Acvr2b) were downregulated. These data suggest that activin–follistatin regulation may play a role during the development of EAEO.
Collapse
|
20
|
Terayama H, Hirai S, Naito M, Qu N, Katagiri C, Nagahori K, Hayashi S, Sasaki H, Moriya S, Hiramoto M, Miyazawa K, Hatayama N, Li ZL, Sakabe K, Matsushita M, Itoh M. Specific autoantigens identified by sera obtained from mice that are immunized with testicular germ cells alone. Sci Rep 2016; 6:35599. [PMID: 27752123 PMCID: PMC5067510 DOI: 10.1038/srep35599] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 10/04/2016] [Indexed: 02/08/2023] Open
Abstract
There are various autoimmunogenic antigens (AIs) in testicular germ cells (TGCs) recognized as foreign by the body's immune system. However, there is little information of TGC-specific AIs being available. The aim of this study is to identify TGC-specific AIs. We have previously established that immunization using viable syngeneic TGC can also induce murine experimental autoimmune orchitis (EAO) without using any adjuvant. This study is to identify TGC-specific AIs by TGC liquid chromatography-tandem mass spectrometry analysis, followed by two-dimensional gel electrophoresis that reacted with serum IgG from EAO mice. In this study, we identified 11 TGC-specific AIs that reacted with serum from EAO mice. Real-time RT-PCR analysis showed that the mRNA expressions of seven TGC-specific AIs were significantly higher in only mature testis compared to other organs. Moreover, the recombinant proteins of identified 10 (except unnamed protein) TGC-specific AIs were created by using human embryonic kidney 293 (HEK293) cells and these antigencities were reconfirmed by Western blot using EAO serum reaction. These results indicated Atp6v1a, Hsc70t, Fbp1 and Dazap1 were candidates for TGC-specific AIs. Identification of these AIs will facilitate new approaches for understanding infertility and cancer pathogenesis and may provide a basis for the development of novel therapies.
Collapse
Affiliation(s)
- Hayato Terayama
- Department of Anatomy, Division of Basic Medical Science, Tokai University School of Medicine, Kanagawa, Japan.,Department of Anatomy, Tokyo Medical University, Tokyo, Japan
| | - Shuichi Hirai
- Department of Anatomy, Tokyo Medical University, Tokyo, Japan.,Department of Anatomy, Aichi Medical University, Aichi, Japan
| | - Munekazu Naito
- Department of Anatomy, Tokyo Medical University, Tokyo, Japan.,Department of Anatomy, Aichi Medical University, Aichi, Japan
| | - Ning Qu
- Department of Anatomy, Tokyo Medical University, Tokyo, Japan
| | - Chiaki Katagiri
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Kenta Nagahori
- Department of Anatomy, Tokyo Medical University, Tokyo, Japan
| | - Shogo Hayashi
- Department of Anatomy, Tokyo Medical University, Tokyo, Japan
| | - Hiraku Sasaki
- Department of Health Science, School of Health and Sports Science, Juntendo University, Chiba, Japan
| | - Shota Moriya
- Department of Biochemistry, Tokyo Medical University, Tokyo, Japan
| | - Masaki Hiramoto
- Department of Biochemistry, Tokyo Medical University, Tokyo, Japan
| | - Keisuke Miyazawa
- Department of Biochemistry, Tokyo Medical University, Tokyo, Japan
| | - Naoyuki Hatayama
- Department of Anatomy, Tokyo Medical University, Tokyo, Japan.,Department of Anatomy, Aichi Medical University, Aichi, Japan
| | - Zhong-Lian Li
- Department of Anatomy, Tokyo Medical University, Tokyo, Japan
| | - Kou Sakabe
- Department of Anatomy, Division of Basic Medical Science, Tokai University School of Medicine, Kanagawa, Japan
| | - Masayuki Matsushita
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Masahiro Itoh
- Department of Anatomy, Tokyo Medical University, Tokyo, Japan
| |
Collapse
|
21
|
Swegen A, Aitken RJ. Prospects for immunocontraception in feral horse population control: exploring novel targets for an equine fertility vaccine. Reprod Fertil Dev 2016; 28:853-863. [DOI: 10.1071/rd14280] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 10/11/2014] [Indexed: 12/12/2022] Open
Abstract
Feral horses populate vast land areas and often induce significant ecological and economic damage throughout the landscape. Non-lethal population control methods are considered favourable in light of animal welfare, social and ethical considerations; however, no single effective, safe and species-specific contraceptive agent is currently available for use in free-ranging wild and feral horses. This review explores aspects of equine reproductive physiology that may provide avenues for the development of specific and long-lasting immunocontraceptive vaccines and some of the novel strategies that may be employed to facilitate appropriate antigen discovery in future research. Potential antigen targets pertaining to spermatozoa, the ovary and oocyte, as well as the early conceptus and its associated factors, are reviewed in the context of their suitability for immunocontraceptive vaccine development.
Collapse
|
22
|
|
23
|
Aslani F, Schuppe HC, Guazzone VA, Bhushan S, Wahle E, Lochnit G, Lustig L, Meinhardt A, Fijak M. Targeting high mobility group box protein 1 ameliorates testicular inflammation in experimental autoimmune orchitis. Hum Reprod 2014; 30:417-31. [PMID: 25452436 DOI: 10.1093/humrep/deu320] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
STUDY QUESTION Does high mobility group box protein 1 (HMGB1) regulate inflammatory reactions in a rat model of experimental autoimmune orchitis (EAO)? SUMMARY ANSWER HMGB1 appears to be involved in regulating inflammatory reactions in testes, as HMGB1 is translocated from testicular cells during the course of EAO and blocking its action by ethyl pyruvate (EP) reduces disease progression and spermatogenic damage. WHAT IS KNOWN ALREADY Despite its immune privileged status, the human testis is prone to inflammatory lesions associated with male factor infertility. Accumulating evidence shows that HMGB1 plays an important role in onset and progression of autoimmune diseases. STUDY DESIGN, SIZE, DURATION This is a cross sectional and longitudinal study involving Wistar male rats immunized with testicular homogenates to induce EAO 50 (EAO50; n = 10) and 80 (EAO80; n = 10) days after first immunization. Control adjuvant animals received saline instead of testicular homogenate (n = 16). Untreated animals (n = 10) were also studied. An interventional study was performed to block the action of HMGB1 starting 20 days after first immunization in EAO animals and respective controls (n = 17). Rats were treated i.p. with EP and the effect of EP treatment on testicular pathogenesis was evaluated 30 days later. Moreover, human testicular biopsies from infertile men with focal lymphocytic infiltrates (n = 7) and sections with intact spermatogenesis (n = 6) were probed with antibodies against HMGB1. PARTICIPANTS/MATERIALS, SETTING, METHODS Testicular RNA and protein extracts from EAO animals, EAO animals treated with EP and relevant controls were used for analysis of cytokine expression by real-time RT-PCR and enzyme-linked immunosorbent assay. HMGB1 was co-localized on rat testicular cross sections with antibodies against testicular macrophages (TM), peritubular cells (PTC) and Sertoli cells (SC). Interaction of HMGB1 and its receptors (RAGE, TLR4) as well signaling pathways after HMGB1 stimulation were studied in isolated TM, PTC and SC by proximity ligation assay and western blot, respectively. Furthermore, HMGB1 immunofluorescence on human testicular biopsies was performed. MAIN RESULTS AND THE ROLE OF CHANCE HMGB1 was translocated from the nuclei in EAO testes and testes of infertile men with impaired spermatogenesis and lymphocytic infiltrates. Elevated HMGB1 levels were observed during late phase of EAO. In testicular somatic cells HMGB1 receptors Toll-like receptor 4 (TLR4) and receptor for advanced glycation end products (RAGE) were differentially expressed: HMGB1-TLR4 binding was predominant in TM, while HMGB1-RAGE interaction was prevalent in SC and PTC. In support, HMGB1 triggered extracellular signal regulated kinase (ERK)1/2 and cyclic adenosine monophosphate (cAMP) response element-binding protein (CREB) activation in SC and PTC, while TM responded to HMGB1 stimulation with p38 mitogen-activated protein kinase (MAPK) and p65 nuclear factor Kappa B (NF-ĸB) phosphorylation followed by increased tumor necrosis factor α (TNF-α) and interleukin 6 (IL-6) mRNA levels. In vivo treatment of EAO animals with EP 20 days after induction of disease revealed beneficial effects, as documented by reduced disease progression and spermatogenic damage, lower macrophage numbers, as well as decreased concentrations of HMGB1 and IL-6 in the testis compared with EAO controls. LIMITATIONS, REASONS FOR CAUTION The ability of HMGB1 to bind to a wide range of receptors makes it difficult to prevent its action by blockade of a specific receptor; therefore we applied EP, a drug preventing HMGB1 release from cells. Due to its mode of action EP decreases also the secretion of some other pro-inflammatory cytokines. Using isolated primary cells imposes limitations for cell transfection studies. As a compromise between purity and yield primary cells need to be isolated from animals of different age, which has to be considered when comparing their responses. WIDER IMPLICATIONS OF THE FINDINGS HMGB1 could be a promising target in attenuating testicular damage caused by inflammatory reactions.
Collapse
Affiliation(s)
- Ferial Aslani
- Department of Anatomy and Cell Biology, Justus-Liebig-University of Giessen, 35392 Giessen, Germany
| | - Hans-Christian Schuppe
- Department of Urology, Pediatric Urology and Andrology, Justus-Liebig-University of Giessen, 35392 Giessen, Germany
| | - Vanesa A Guazzone
- Instituto de Investigaciones Biomédicas UBA-CONICET, Facultad de Medicina, Universidad de Buenos Aires, C1121 ABG, Buenos Aires, Argentina
| | - Sudhanshu Bhushan
- Department of Anatomy and Cell Biology, Justus-Liebig-University of Giessen, 35392 Giessen, Germany
| | - Eva Wahle
- Department of Anatomy and Cell Biology, Justus-Liebig-University of Giessen, 35392 Giessen, Germany
| | - Günter Lochnit
- Institute of Biochemistry, Faculty of Medicine, Justus-Liebig University of Giessen, 35392 Giessen, Germany
| | - Livia Lustig
- Instituto de Investigaciones Biomédicas UBA-CONICET, Facultad de Medicina, Universidad de Buenos Aires, C1121 ABG, Buenos Aires, Argentina
| | - Andreas Meinhardt
- Department of Anatomy and Cell Biology, Justus-Liebig-University of Giessen, 35392 Giessen, Germany
| | - Monika Fijak
- Department of Anatomy and Cell Biology, Justus-Liebig-University of Giessen, 35392 Giessen, Germany
| |
Collapse
|
24
|
Redgrove KA, McLaughlin EA. The Role of the Immune Response in Chlamydia trachomatis Infection of the Male Genital Tract: A Double-Edged Sword. Front Immunol 2014; 5:534. [PMID: 25386180 PMCID: PMC4209867 DOI: 10.3389/fimmu.2014.00534] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 10/09/2014] [Indexed: 01/16/2023] Open
Abstract
Chlamydia trachomatis (CT) is the most prevalent bacterial sexually transmitted infection in the world, with more than 100 million cases reported annually. While there have been extensive studies into the adverse effects that CT infection has on the female genital tract, and on the subsequent ability of these women to conceive, studies into the consequences on male fertility have been limited and controversial. This is in part due to the asymptomatic nature of the infection, where it is estimated that 50% of men with Chlamydia fail to show any symptoms. It is accepted, however, that acute and/or persistent CT infection is the causative agent for conditions such as urethritis, epididymitis, epididymo-orchitis, and potentially prostatitis. As with most infections, the immune system plays a fundamental role in the body’s attempts to eradicate the infection. The first and most important immune response to Chlamydia infection is a local one, whereby immune cells such as leukocytes are recruited to the site of infections, and subsequently secrete pro-inflammatory cytokines and chemokines such as interferon gamma. Immune cells also work to initiate and potentiate chronic inflammation through the production of reactive oxygen species (ROS), and the release of molecules with degradative properties including defensins, elastase, collagenase, cathespins, and lysozyme. This long-term inflammation can lead to cell proliferation (a possible precursor to cancer), tissue remodeling, and scarring, as well as being linked to the onset of autoimmune responses in genetically disposed individuals. This review will focus on the ability of the immune system to recognize and clear acute and persistent chlamydial infections in the male genital tract, and on the paradoxical damage that chronic inflammation resulting from the infection can cause on the reproductive health of the individual.
Collapse
Affiliation(s)
- Kate A Redgrove
- Priority Research Centre in Reproductive Biology and Chemical Biology, University of Newcastle , Callaghan, NSW , Australia ; School of Environmental and Life Science, University of Newcastle , Callaghan, NSW , Australia
| | - Eileen A McLaughlin
- Priority Research Centre in Reproductive Biology and Chemical Biology, University of Newcastle , Callaghan, NSW , Australia ; School of Environmental and Life Science, University of Newcastle , Callaghan, NSW , Australia
| |
Collapse
|
25
|
Fijak M, Zeller T, Huys T, Klug J, Wahle E, Linder M, Haidl G, Allam JP, Pilatz A, Weidner W, Schuppe HC, Meinhardt A. Autoantibodies against protein disulfide isomerase ER-60 are a diagnostic marker for low-grade testicular inflammation. Hum Reprod 2014; 29:2382-92. [DOI: 10.1093/humrep/deu226] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
26
|
Silva C, Cocuzza M, Carvalho J, Bonfá E. Diagnosis and classification of autoimmune orchitis. Autoimmun Rev 2014; 13:431-4. [DOI: 10.1016/j.autrev.2014.01.024] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/13/2013] [Indexed: 10/25/2022]
|
27
|
Arck P, Solano ME, Walecki M, Meinhardt A. The immune privilege of testis and gravid uterus: same difference? Mol Cell Endocrinol 2014; 382:509-520. [PMID: 24076096 DOI: 10.1016/j.mce.2013.09.022] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 08/30/2013] [Accepted: 09/17/2013] [Indexed: 12/25/2022]
Abstract
The fetus in the gravid uterus and the developing spermatogenic cells in the adult testis both comprise special challenges for the host immune system. Protection of the neoantigens of the fetus and male germ cells from immune attack, defined as immune privilege, is fundamental for the propagation of species. Immune privilege is not simply the absence of leukocytes, but involves immune and non-immune cells acting synergistically together at multiple levels to create a unique tolerogenic environment. A number of the pathways are shared by the testis and gravid uterus. Amongst them steroid hormones, namely testosterone in the male and progesterone in the female, seem to function as key molecules that govern the local production of immunoregulatory factors which finally control the overall immune environment.
Collapse
Affiliation(s)
- Petra Arck
- Laboratory for Experimental Feto-Maternal Medicine, Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg, 20246 Hamburg, Germany
| | - María Emilia Solano
- Laboratory for Experimental Feto-Maternal Medicine, Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg, 20246 Hamburg, Germany
| | - Magdalena Walecki
- Department of Anatomy and Cell Biology, Justus-Liebig-University of Giessen, 35385 Giessen, Germany
| | - Andreas Meinhardt
- Department of Anatomy and Cell Biology, Justus-Liebig-University of Giessen, 35385 Giessen, Germany.
| |
Collapse
|
28
|
Characterisation of macaque testicular leucocyte populations and T-lymphocyte immunity. J Reprod Immunol 2013; 100:146-56. [DOI: 10.1016/j.jri.2013.09.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 08/29/2013] [Accepted: 09/03/2013] [Indexed: 11/21/2022]
|
29
|
Hirai S, Naito M, Terayama H, Hatayama N, Qu N, Musha M, Itoh M. Serum Autoantibodies in Mice Immunized with Syngeneic Testicular Germ Cells Alone. Am J Reprod Immunol 2013; 70:509-17. [DOI: 10.1111/aji.12145] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2013] [Accepted: 06/04/2013] [Indexed: 11/28/2022] Open
Affiliation(s)
- Shuichi Hirai
- Department of Anatomy; Tokyo Medical University; Shinjuku-ku Tokyo Japan
| | - Munekazu Naito
- Department of Anatomy; Tokyo Medical University; Shinjuku-ku Tokyo Japan
| | - Hayato Terayama
- Department of Anatomy; Tokyo Medical University; Shinjuku-ku Tokyo Japan
| | - Naoyuki Hatayama
- Department of Anatomy; Tokyo Medical University; Shinjuku-ku Tokyo Japan
| | - Ning Qu
- Department of Anatomy; Tokyo Medical University; Shinjuku-ku Tokyo Japan
| | | | - Masahiro Itoh
- Department of Anatomy; Tokyo Medical University; Shinjuku-ku Tokyo Japan
| |
Collapse
|
30
|
Veith C, Schmitt S, Veit F, Dahal BK, Wilhelm J, Klepetko W, Marta G, Seeger W, Schermuly RT, Grimminger F, Ghofrani HA, Fink L, Weissmann N, Kwapiszewska G. Cofilin, a hypoxia-regulated protein in murine lungs identified by 2DE: Role of the cytoskeletal protein cofilin in pulmonary hypertension. Proteomics 2013; 13:75-88. [DOI: 10.1002/pmic.201200206] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2012] [Revised: 10/08/2012] [Accepted: 10/29/2012] [Indexed: 01/18/2023]
Affiliation(s)
- Christine Veith
- Universities of Giessen and Marburg Lung Center (UGMLC); Giessen Germany
| | - Sigrid Schmitt
- Department of Biochemistry; University of Giessen; Giessen Germany
| | - Florian Veit
- Universities of Giessen and Marburg Lung Center (UGMLC); Giessen Germany
| | - Bhola Kumar Dahal
- Universities of Giessen and Marburg Lung Center (UGMLC); Giessen Germany
| | - Jochen Wilhelm
- Universities of Giessen and Marburg Lung Center (UGMLC); Giessen Germany
| | - Walter Klepetko
- Department of Cardiac Surgery; University of Vienna; Vienna Austria
| | - Gabriel Marta
- Department of Cardiac Surgery; University of Vienna; Vienna Austria
| | - Werner Seeger
- Universities of Giessen and Marburg Lung Center (UGMLC); Giessen Germany
| | | | | | | | - Ludger Fink
- Universities of Giessen and Marburg Lung Center (UGMLC); Giessen Germany
| | - Norbert Weissmann
- Universities of Giessen and Marburg Lung Center (UGMLC); Giessen Germany
| | - Grazyna Kwapiszewska
- Universities of Giessen and Marburg Lung Center (UGMLC); Giessen Germany
- Ludwig Boltzmann Institute for Lung Vascular Research; Graz Austria
| |
Collapse
|
31
|
Musha M, Hirai S, Naito M, Terayama H, Qu N, Hatayama N, Itoh M. The effects of adjuvants on autoimmune responses against testicular antigens in mice. J Reprod Dev 2012; 59:139-44. [PMID: 23257732 PMCID: PMC3934194 DOI: 10.1262/jrd.2012-121] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Experimental autoimmune orchitis (EAO) is a model of immunologic male infertility and
pathologically characterized by lymphocytic inflammation, which causes breakdown of the
testicular immune privilege with spermatogenic disturbance. Generally, murine EAO is
induced by immunization with testicular homogenate (TH) from the testes of donor mice +
complete Freund's adjuvant (CFA) + Bordetella pertussigens (BP), and it
has been considered that treatment with these two adjuvants is required to enhance the
immune response against testicular antigens. However, there remains a possibility that CFA
and BP may affect autoimmune responses against the testicular antigens without TH. In the
present study, we examined this possibility using real-time RT-PCR, Western blotting and
immunohistochemical staining. The results demonstrated that immunization with TH in
combination with CFA and BP evoked more severe EAO than that with only TH. Real-time
RT-PCR analyses revealed that Fas mRNA expression in TH+CFA+BP-induced EAO was
significantly higher than that in TH-induced EAO. Interestingly, IL-6 mRNA expression
dramatically increased in TH+CFA+BP-induced EAO; however, no apparent change in IL-6 mRNA
expression occurred in TH-induced EAO. It was also noted that treatment with CFA and BP
alone augmented autoimmune reactions against some testicular autoantigens. These results
indicates that these adjuvants are helpful in evoking severe EAO, and treatment with the
adjuvants alone can evoke autoimmune reactions against some testicular autoantigens
despite the use of no TH.
Collapse
|
32
|
Bousette N, Gramolini AO, Kislinger T. Proteomics-based investigations of animal models of disease. Proteomics Clin Appl 2012; 2:638-53. [PMID: 21136864 DOI: 10.1002/prca.200780043] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Cells contain a large yet, constant genome, which contains all the coding information necessary to sustain cellular physiology. However, proteins are the end products of genes, and hence dictate the phenotype of cells and tissues. Therefore, proteomics can provide key information for the elucidation of physiological and pathophysiological mechanisms by identifying the protein profile from cells and tissues. The relatively novel techniques used for the study of proteomics thus have the potential to improve diagnostic, prognostic, as well as therapeutic avenues. In this review, we first discuss the benefits of animal models over the use of human samples for the proteomic analysis of human disease. Next, we aim to demonstrate the potential of proteomics in the elucidation of disease mechanisms that may not be possible by other conventional technologies. Following this, we describe the use of proteomics for the analysis of PTM and protein interactions in animal models and their relevance to the study of human disease. Finally, we discuss the development of clinical biomarkers for the early diagnosis of disease via proteomic analysis of animal models. We also discuss the development of standard proteomes and relate how this data will benefit future proteomic research. A comprehensive review of all animal models used in conjunction with proteomics is beyond the scope of this manuscript. Therefore, we aimed to cover a large breadth of topics, which together, demonstrate the potential of proteomics as a powerful tool in biomedical research.
Collapse
Affiliation(s)
- Nicolas Bousette
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada; Heart and Stroke/Richard Lewar Centre of Cardiovascular Excellence, Toronto, Ontario, Canada
| | | | | |
Collapse
|
33
|
Li N, Wang T, Han D. Structural, cellular and molecular aspects of immune privilege in the testis. Front Immunol 2012; 3:152. [PMID: 22701457 PMCID: PMC3371599 DOI: 10.3389/fimmu.2012.00152] [Citation(s) in RCA: 139] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Accepted: 05/23/2012] [Indexed: 11/17/2022] Open
Abstract
The testis presents a special immunological environment, considering its property of immune privilege that tolerates allo- and auto-antigens. Testicular immune privilege was once believed to be mainly based on the sequestration of antigens from the immune system by the blood–testis barrier in the seminiferous epithelium. Substantial evidence supports the view that the combination of physical structure, testicular cells, and cytokines controls immune responses in the testis to preserve the structural and functional integrity of testicular immune privilege. Both systemic immune tolerance and local immunosuppression help maintain the immune privilege status. Constitutive expression of anti-inflammatory factors in testicular cells is critical for local immunosuppression. However, the testis locally generates an efficient innate immune system against pathogens. Disruption of these mechanisms may lead to orchitis and impair fertility. This review article highlights the current understanding of structural, cellular, and molecular mechanisms underlying the unique immune environment of the testis, particularly its immune privilege status.
Collapse
Affiliation(s)
- Nan Li
- Department of Cell Biology, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | | | | |
Collapse
|
34
|
Carp HJ, Selmi C, Shoenfeld Y. The autoimmune bases of infertility and pregnancy loss. J Autoimmun 2012; 38:J266-74. [PMID: 22284905 DOI: 10.1016/j.jaut.2011.11.016] [Citation(s) in RCA: 161] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2011] [Revised: 11/28/2011] [Accepted: 11/28/2011] [Indexed: 11/26/2022]
|
35
|
García L, Veiga MF, Lustig L, Vazquez-Levin MH, Veaute C. DNA Immunization Against Proacrosin Impairs Fertility in Male Mice. Am J Reprod Immunol 2012; 68:56-67. [DOI: 10.1111/j.1600-0897.2012.01127.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Accepted: 02/19/2012] [Indexed: 11/28/2022] Open
Affiliation(s)
- Lucila García
- Facultad de Bioquímica y Ciencias Biológicas; Universidad Nacional del Litoral; Ciudad Universitaria; Santa Fe; Argentina
| | - María F. Veiga
- Instituto de Biología y Medicina Experimental (IBYME); National Research Council of Argentina (CONICET); Buenos Aires; Argentina
| | - Livia Lustig
- Instituto de Investigaciones en Reproducción; Facultad de Medicina; Universidad de Buenos Aires; Buenos Aires; Argentina
| | - Mónica H. Vazquez-Levin
- Instituto de Biología y Medicina Experimental (IBYME); National Research Council of Argentina (CONICET); Buenos Aires; Argentina
| | - Carolina Veaute
- Facultad de Bioquímica y Ciencias Biológicas; Universidad Nacional del Litoral; Ciudad Universitaria; Santa Fe; Argentina
| |
Collapse
|
36
|
Silva CA, Cocuzza M, Borba EF, Bonfá E. Cutting-Edge Issues in Autoimmune Orchitis. Clin Rev Allergy Immunol 2011; 42:256-63. [DOI: 10.1007/s12016-011-8281-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
37
|
Fijak M, Schneider E, Klug J, Bhushan S, Hackstein H, Schuler G, Wygrecka M, Gromoll J, Meinhardt A. Testosterone replacement effectively inhibits the development of experimental autoimmune orchitis in rats: evidence for a direct role of testosterone on regulatory T cell expansion. THE JOURNAL OF IMMUNOLOGY 2011; 186:5162-72. [PMID: 21441459 DOI: 10.4049/jimmunol.1001958] [Citation(s) in RCA: 143] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Despite the immune-privileged status of the male genital tract, infection and inflammation of the male genital tract are important etiological factors in male infertility. A common observation in clinical and experimental orchitis as well as in systemic infection and inflammation are decreased levels of testosterone. Emerging data point to an immunosuppressive role of testosterone. In our study, we substituted testosterone levels in experimental autoimmune orchitis (EAO) in rat by s.c. testosterone implants. EAO development was reduced to 17% when animals were treated with low-dose testosterone implants (3 cm long, EAO+T3) and to 33% when rats were supplied with high-dose testosterone implants (24 cm, EAO+T24) compared with 80% of animals developing disease in the EAO control group. In the testis, testosterone replacement in EAO animals prevented the accumulation of macrophages and significantly reduced the number of CD4(+) T cells with a strong concomitant increase in the number of regulatory T cells (CD4(+)CD25(+)Foxp3(+)) compared with EAO control. In vitro testosterone treatment of naive T cells led to an expansion of the regulatory T cell subset with suppressive activity and ameliorated MCP-1-stimulated chemotaxis of T lymphocytes in a Transwell assay. Moreover, expression of proinflammatory mediators such as MCP-1, TNF-α, and IL-6 in the testis and secretion of Th1 cytokines such as IFN-γ and IL-2 by mononuclear cells isolated from testicular draining lymph nodes were decreased in the EAO+T3 and EAO+T24 groups. Thus, our study shows an immunomodulatory and protective effect of testosterone substitution in the pathogenesis of EAO and suggests androgens as a new factor in the differentiation of regulatory T cells.
Collapse
Affiliation(s)
- Monika Fijak
- Department of Anatomy and Cell Biology, Justus-Liebig-University Giessen, 35385 Giessen, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Meinhardt A, Hedger MP. Immunological, paracrine and endocrine aspects of testicular immune privilege. Mol Cell Endocrinol 2011; 335:60-8. [PMID: 20363290 DOI: 10.1016/j.mce.2010.03.022] [Citation(s) in RCA: 167] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2009] [Accepted: 03/26/2010] [Indexed: 02/06/2023]
Abstract
Protection of the spermatogenic cells from the host immune response is fundamental to male fertility. Significantly, this protection extends to the tolerance of foreign tissue grafts placed within the testicular environment, a phenomenon that is called 'immune privilege'. This privilege of the testis appears to involve several levels of immune control, encompassing the normal mechanisms of immune tolerance, antigen sequestration behind the blood-testis barrier, reduced immune activation, localised immunosuppression and antigen-specific immunoregulation. Central to these regulatory processes are the somatic cells of the testis, particularly the Sertoli cells, and testicular secretions, including androgens, cytokines, peptides and bioactive lipids. Failure of these protective mechanisms, which may be precipitated by trauma, inflammation or infection, or as the consequence of genetic factors, can lead to androgen deficiency, infertility and autoimmunity.
Collapse
Affiliation(s)
- Andreas Meinhardt
- Department of Anatomy and Cell Biology, Justus-Liebig-University of Giessen, Aulweg 123, 35385 Giessen, Germany.
| | | |
Collapse
|
39
|
|
40
|
Calvel P, Rolland AD, Jégou B, Pineau C. Testicular postgenomics: targeting the regulation of spermatogenesis. Philos Trans R Soc Lond B Biol Sci 2010; 365:1481-500. [PMID: 20403865 DOI: 10.1098/rstb.2009.0294] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Sperm are, arguably, the most differentiated cells produced within the body of any given species. This is owing to the fact that spermatogenesis is an intricate and highly specialized process evolved to suit the individual particularities of each sexual species. Despite a vast diversity in method, the aim of spermatogenesis is always the same, the idealized transmission of genetic patrimony. Towards this goal certain requirements must always be met, such as a relative twofold reduction in ploidy, repackaging of the chromatin for transport and specialized enhancements for cell motility, recognition and fusion. In the past 20 years, the study of molecular networks coordinating male germ cell development, particularly in mammals, has become more and more facilitated thanks to large-scale analyses of genome expression. Such postgenomic endeavors have generated landscapes of data for both fundamental and clinical reproductive biology. Continuous, large-scale integration analyses of these datasets are undertaken which provide access to very precise information on a myriad of biomolecules. This review presents commonly used transcriptomic and proteomic workflows applied to various testicular germ cell studies. We will also provide a general overview of the technical possibilities available to reproductive genomic biologists, noting the advantages and drawbacks of each technique.
Collapse
Affiliation(s)
- Pierre Calvel
- Inserm, U625, IFR 140, University of Rennes I, Campus de Beaulieu, Rennes 35042, France
| | | | | | | |
Collapse
|
41
|
Guazzone VA, Hollwegs S, Mardirosian M, Jacobo P, Hackstein H, Wygrecka M, Schneider E, Meinhardt A, Lustig L, Fijak M. Characterization of dendritic cells in testicular draining lymph nodes in a rat model of experimental autoimmune orchitis. ACTA ACUST UNITED AC 2010; 34:276-89. [DOI: 10.1111/j.1365-2605.2010.01082.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
42
|
Fierabracci A, Saura F. Identification of a common autoantigenic epitope of protein disulfide isomerase, golgin-160 and voltage-gated potassium channel in type 1 diabetes. Diabetes Res Clin Pract 2010; 88:e14-e16. [PMID: 20170975 DOI: 10.1016/j.diabres.2010.01.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2009] [Accepted: 01/14/2010] [Indexed: 11/24/2022]
Abstract
A common epitope of proteins golgin-160, voltage-gated potassium channel and disulfide isomerase was identified by screening with autoantibodies of a type 1 diabetic (T1D) patient a lambdaUni-Zap cDNA library from human diabetic islets. The significance of the identified autoantigens to the disease pathogenesis remains to be elucidated.
Collapse
Affiliation(s)
- Alessandra Fierabracci
- Autoimmunity and Organ Regeneration Laboratory, Children's Hospital Bambino Gesù, Research Institute (IRCCS), Piazza S. Onofrio 4, 00165 Rome, Italy.
| | | |
Collapse
|
43
|
Martínez-Prado E, Camejo Bermúdez MI. Expression of IL-6, IL-8, TNF-alpha, IL-10, HSP-60, anti-HSP-60 antibodies, and anti-sperm antibodies, in semen of men with leukocytes and/or bacteria. Am J Reprod Immunol 2010; 63:233-43. [PMID: 20055787 DOI: 10.1111/j.1600-0897.2009.00786.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
PROBLEM Different cellular and biochemical markers have been proposed as indicators of infection-inflammation of male genital tract. METHOD OF STUDY Semen samples from 80 men attending an andrologic clinic were evaluated to determine the presence of leukocyte, bacteria, antibodies against Chlamydia trachomatis, levels of IL-6, IL-8, IL-10, and TNF-alpha, HSP-60, anti-HSP-60 antibodies, and anti-sperm antibodies. RESULTS Leukocytes in semen significantly correlated with an increase in IL-6, IL-8, and TNF-alpha. The simultaneous presence of pathogens and leukocytes was associated with high levels of IL-8 and TNF-alpha, whereas IL-6 was more associated with the presence of leukocytes. Anti-HSP-60 antibodies positively correlated with IL-6 and IL-8. The presence of anti-sperm antibodies highly associated with an increase in anti-HSP-60 antibodies. CONCLUSIONS The type of cytokines present in the semen will depend on the single or simultaneous presence of leukocytes and/or pathogens. Chronic male genital tract infections could be associated with the development of anti-HSP-60 antibodies and anti-sperm antibodies.
Collapse
Affiliation(s)
- Elizabeth Martínez-Prado
- Departamento de Biología de Organismos, Universidad Simón Bolívar, Baruta, Estado Miranda, Venezuela
| | | |
Collapse
|
44
|
Abstract
A large body of evidence points to the existence of a close, dynamic relationship between the immune system and the male reproductive tract, which has important implications for our understanding of both systems. The testis and the male reproductive tract provide an environment that protects the otherwise highly immunogenic spermatogenic cells and sperm from immunological attack. At the same time, secretions of the testis, including androgens, influence the development and mature functions of the immune system. Activation of the immune system has negative effects on both androgen and sperm production, so that systemic or local infection and inflammation compromise male fertility. The mechanisms underlying these interactions have begun to receive the attention from reproductive biologists and immunologists that they deserve, but many crucial details remain to be uncovered. A complete picture of male reproductive tract function and its response to toxic agents is contingent upon continued exploration of these interactions and the mechanisms involved.
Collapse
Key Words
- cytokines
- immunity
- immunoregulation
- inflammation
- leydig cell
- lymphocytes
- macrophages
- nitric oxide
- prostanoids
- seminal plasma
- sertoli cell
- sperm
- spermatogenesis
- steroidogenesis
- toll-like receptors
- 16:0a-lpc, 1-palmitoyl-sn-glycero-3-phosphocholine
- 18:1a-lpc, 1-oleoyl-sn-glycero-3-phosphocholine
- 18:2a-lpc, 1-linoleoyl-sn-glycero-3-phosphocholine
- 20:4a-lpc, 1-arachidonyl-sn-glycero-3-phosphocholine
- aid, acquired immune deviation
- aire, autoimmune regulator
- ap1, activated protein 1
- apc, antigen-presenting cell
- bambi, bmp and activin membrane-bound inhibitor
- bmp, bone morphogenetic protein
- cox, cyclooxygenase
- crry, complement receptor-related protein
- ctl, cytotoxic t lymphocyte
- eao, experimental autoimmune orchitis
- eds, ethane dimethane sulfonate
- enos, endothelial nos
- fadd, fas-associated death domain protein
- fasl, fas ligand
- fsh, follicle-stimulating hormone
- gc, glucocorticoid
- hcg, human chorionic gonadotropin
- hla, human leukocyte antigen
- hmgb1, high mobility group box chromosomal protein 1
- ice, il1 converting enzyme
- ifn, interferon
- ifnar, ifnα receptor
- il, interleukin
- il1r, interleukin 1 receptor
- il1ra, il1 receptor antagonist
- inos, inducible nitric oxide synthase
- irf, interferon regulatory factor
- jak/stat, janus kinase/signal transducers and activators of transcription
- jnk, jun n-terminal kinase
- lh, luteinizing hormone
- lpc, lysoglycerophosphatidylcholine
- lps, lipopolysaccharide
- map, mitogen-activated protein
- mhc, major histocompatibility complex
- mif, macrophage migration inhibitory factor
- myd88, myeloid differentiation primary response protein 88
- nfκb, nuclear factor kappa b
- nk, cell natural killer cell
- nkt cell, natural killer t cell
- nlr, nod-like receptor
- nnos, neuronal nos
- nod, nucleotide binding oligomerization domain
- p450c17, 17α-hydroxylase/c17-c20 lyase
- p450scc, cholesterol side-chain cleavage complex
- paf, platelet-activating factor
- pamp, pathogen-associated molecular pattern
- pc, phosphocholine
- pg, prostaglandin
- pges, pge synthase
- pgi, prostacyclin
- pla2, phospholipase a2
- pmn, polymorphonuclear phagocyte
- pparγ, peroxisome proliferator-activated receptor γ
- rig, retinoic acid-inducible gene
- rlh, rig-like helicase
- ros, reactive oxygen species
- star, steroidogenic acute regulatory
- tcr, t cell receptor
- tgf, transforming growth factor
- th cell, helper t cell
- tir, toll/il1r
- tlr, toll-like receptor
- tnf, tumor necrosis factor
- tnfr, tnf receptor
- tr1, t regulatory 1
- tradd, tnfr-associated death domain protein
- traf, tumor necrosis factor receptor-associated factor
- treg, regulatory t cell
- trif, tir domain-containing adaptor protein inducing interferon β
- tx, thromboxane
- txas, thromboxane a synthase
Collapse
|
45
|
Abstract
The testis is an immunological privileged tissue as evidenced by its ability to support grafts with minimal rejection. Immune privilege is essential for the tolerance of neo-antigens from developing germ cells that appear after the constitution of self-tolerance, but imposes the paradoxical task of also providing efficient protection against pathogens and tumor cells. It is becoming increasingly clear that immune privilege cannot be attributed to a single factor such as the sequestration of neo-antigens from the immune system behind the blood-testis barrier, but is based on a complex multifaceted interplay between cells and factors that are essential for the reproductive function of the testis and the testicular immune system. This review summarizes the evidence that has accumulated regarding the role of Sertoli cells, androgens, and selected population of leukocytes in the maintenance of immune privilege and its perturbation in testicular inflammatory sub- and infertility.
Collapse
|
46
|
Cauwe B, Martens E, Proost P, Opdenakker G. Multidimensional degradomics identifies systemic autoantigens and intracellular matrix proteins as novel gelatinase B/MMP-9 substrates. Integr Biol (Camb) 2009; 1:404-26. [PMID: 20023747 DOI: 10.1039/b904701h] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The action radius of matrix metalloproteinases or MMPs is not restricted to massive extracellular matrix (ECM) degradation, it extends to the proteolysis of numerous secreted and membrane-bound proteins. Although many instances exist in which cells disintegrate, often in conjunction with induction of MMPs, the intracellular MMP substrate repertoire or degradome remains relatively unexplored. We started an unbiased exploration of the proteolytic modification of intracellular proteins by MMPs, using gelatinase B/MMP-9 as a model enzyme. To this end, multidimensional degradomics technology was developed by the integration of broadly available biotechniques. In this way, 100-200 MMP-9 candidate substrates were isolated, of which 69 were identified. Integration of these results with the known biological functions of the substrates revealed many novel MMP-9 substrates from the intracellular matrix (ICM), such as actin, tubulin, gelsolin, moesin, ezrin, Arp2/3 complex subunits, filamin B and stathmin. About 2/3 of the identified candidates were autoantigens described in multiple autoimmune conditions and in cancer (e.g. annexin I, nucleolin, citrate synthase, HMGB1, alpha-enolase, histidyl-tRNA synthetase, HSP27, HSC70, HSP90, snRNP D3). These findings led to the insight that MMPs and other proteases may have novel (immuno)regulatory properties by the clearance of toxic and immunogenic burdens of abundant ICM proteins released after extensive necrosis. In line with the extracellular processing of organ-specific autoantigens, proteolysis might also assist in the generation of immunodominant 'neo-epitopes' from systemic autoantigens. The study of proteolysis of ICM molecules, autoantigens, alarmins and other crucial intracellular molecules may result in the discovery of novel roles for proteolytic modification.
Collapse
Affiliation(s)
- Bénédicte Cauwe
- Department of Microbiology and Immunology, Laboratory of Immunobiology, Rega Institute for Medical Research, University of Leuven, Minderbroedersstraat 10, Leuven, Belgium
| | | | | | | |
Collapse
|
47
|
Van den Bergh K, Hooijkaas H, Blockmans D, Westhovens R, Op De Beéck K, Verschueren P, Dufour D, van de Merwe JP, Fijak M, Klug J, Michiels G, Devogelaere B, De Smedt H, Derua R, Waelkens E, Blanckaert N, Bossuyt X. Heterogeneous Nuclear Ribonucleoprotein H1, a Novel Nuclear Autoantigen. Clin Chem 2009; 55:946-54. [DOI: 10.1373/clinchem.2008.115626] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Abstract
Background: Serum samples from patients with autoimmune connective tissue diseases that show a finely speckled antinuclear antibody (ANA) on indirect immune-fluorescence often have antibodies against unknown nuclear target antigens. To search for such autoantigens we applied a proteomic approach using sera from patients with a high ANA titer (≥640) and finely speckled fluorescence but in whom no antibodies to extractable nuclear antigens (ENA) could be identified.
Methods: Using an immunoproteomics approach we identified heterogeneous nuclear ribonucleoprotein H1 (hnRNP H1) as a novel nuclear target of autoantibody response.
Results: Recombinant rat hnRNP H1 reacted in Western blot analyses with 48% of 93 sera from patients with primary Sjögren syndrome and with 5.2% of 153 sera from patients with other connective tissue diseases (diseased controls). For comparison, the diagnostic sensitivity and specificity of anti–Sjögren syndrome A (SSA) antibodies for primary Sjögren syndrome in the same patient cohort were 88.2% and 76.3%, respectively. Interestingly, 5 of 11 primary Sjögren syndrome patients with no anti-SSA or anti-SSB antibodies had anti–hnRNP H1 antibodies. Anti–hnRNP H1 antibodies were preabsorbed by hnRNP H1, as demonstrated by indirect immunofluorescence. In an evaluation of the presence of anti–hnRNP H1 antibodies in 188 consecutive samples submitted to the clinical laboratory with positive ANA (titer ≥160), anti–hnRNP H1 antibodies were found in 3 of 7 (2 primary and 5 secondary) Sjögren syndrome patients and in 8.3% of the diseased controls.
Conclusions: HnRNP H1 is a newly discovered autoantigen that could become an additional diagnostic marker.
Collapse
Affiliation(s)
| | - Herbert Hooijkaas
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam, the Netherlands
| | | | | | | | | | - Diana Dufour
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam, the Netherlands
| | - Joop P van de Merwe
- Department of Immunology and Department of Internal Medicine, Erasmus Medical Center Rotterdam, the Netherlands
| | - Monika Fijak
- Department of Anatomy and Cell Biology, Justus-Liebig-University of Giessen, Germany
| | - Jörg Klug
- Department of Anatomy and Cell Biology, Justus-Liebig-University of Giessen, Germany
| | - Georges Michiels
- Laboratory Medicine, Immunology, University Hospitals Leuven, Belgium
| | - Benoit Devogelaere
- Department of Molecular Cell Biology (Laboratory of Molecular and Cellular Signalling), Catholic University of Leuven, Belgium
| | - Humbert De Smedt
- Department of Molecular Cell Biology (Laboratory of Molecular and Cellular Signalling), Catholic University of Leuven, Belgium
| | - Rita Derua
- Department of Molecular Cell Biology (Laboratory of Protein Phosphorylation and Proteomics) and Biomacs, Catholic University of Leuven, Belgium
| | - Etienne Waelkens
- Department of Molecular Cell Biology (Laboratory of Protein Phosphorylation and Proteomics) and Biomacs, Catholic University of Leuven, Belgium
| | | | - Xavier Bossuyt
- Laboratory Medicine, Immunology, University Hospitals Leuven, Belgium
| |
Collapse
|
48
|
Testicular Development and Spermatogenesis: Harvesting the Postgenomics Bounty. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2009; 636:16-41. [DOI: 10.1007/978-0-387-09597-4_2] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
49
|
Schaaf H, Streckbein P, Obert M, Goertz B, Christophis P, Howaldt HP, Traupe H. High resolution imaging of craniofacial bone specimens by flat-panel volumetric computed tomography. J Craniomaxillofac Surg 2008; 36:234-8. [DOI: 10.1016/j.jcms.2008.02.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
50
|
Xia Q, Lu F, Yan HP, Wang HX, Feng X, Zhao Y, Liu BY, Wang J, Li P, Xue Y, Hu MR, Qian L, Guo N, Yang SC, Li MY, Ma YF, Li BA, Zhang XM, Shen BF. Autoantibody profiling of Chinese patients with autoimmune hepatitis using immunoproteomic analysis. J Proteome Res 2008; 7:1963-70. [PMID: 18355017 DOI: 10.1021/pr700861s] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
In the present study, immunoproteomic analysis was utilized to systemically characterize global autoantibody profiles in autoimmune hepatitis (AIH). Sera from 21 patients with AIH and 15 healthy controls were analyzed for the antibody reactivity against the protein antigens of HepG2, a human hepatoma cell line. The lysates of HepG2 cells were separated by two-dimensional electrophoresis and then immunoblotted with each serum sample. Matrix-assisted laser desorption/ionization mass spectrometry or/and nanoelectrospray ionization MS/MS were then used to identify antigens, among which a bifunctional enzyme in mitochondrial, fumarate hydratase (FH), was further analyzed by ELISA using recombinant FH as a coating antigen. A total of 18 immunoreactive spots were identified as 13 proteins, 8 of which have not been reported in AIH. Immune reactivity to FH was detected in 66.67% of patients with AIH, 19.35% of patients with primary biliary cirrhosis (PBC), 12.31% of patients with chronic hepatitis B (CHB), 6.35% of patients with chronic hepatitis C (CHC), 11.32% of patients with systemic lupus erythematosus (SLE), and 3.57% of normal individuals. The differences of prevalence between AIH patients and healthy controls as well as other diseases were of statistical significance (P<0.001). These data demonstrate the serological heterogeneity in AIH and suggest the diversity of the mechanisms underlying AIH. FH, recognized mainly in AIH rather than in viral hepatitis and other autoimmune diseases, may have utility in improved diagnosis of AIH.
Collapse
Affiliation(s)
- Qing Xia
- Department of Molecular Immunology, Institute of Basic Medical Sciences, Taiping Road 27, Beijing 100850, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|