1
|
Foussard N, Bourguignon C, Grouthier V, Caradu C, Chapouly C, Gadeau AP, Couffinhal T, Renault MA. ICAM1 blockade improves ischemic muscle reperfusion in diabetic mice. Cardiovasc Diabetol 2025; 24:20. [PMID: 39827135 PMCID: PMC11742775 DOI: 10.1186/s12933-025-02573-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 01/01/2025] [Indexed: 01/22/2025] Open
Abstract
BACKGROUND Chronic Limb-Threatening Ischemia (CLTI) represents the most advanced stage of Peripheral Artery Disease (PAD) and is associated with dire prognosis, characterized by a substantial risk of limb amputation and diminished life expectancy. Despite significant advancements in therapeutic interventions, the underlying mechanisms precipitating the progression of PAD to CLTI remain elusive. METHODS Considering diabetes is one of the main risk factors contributing to PAD exacerbation into CLTI, we compared hind limb ischemia recovery in HFD STZ vs. non-HFD STZ mice to identify new mechanisms responsible for the exacerbation of PAD. RESULTS We used three different mouse models of diabetes and found that blood flow recovery in HFD STZ mice is altered only from day 14 post-surgery. Consistent with this kinetics, we found that angiogenesis and myogenesis which typically occur between day five and day 14 post-surgery are not impaired in mice in which diabetes was induced by a high fat diet and streptozotocin injections (HFD STZ mice). On the contrary, we found that capillary functionality e.i. acquisition of functional intercellular junctions and immune quiescence is impaired in HFD + STZ mice. Notably, 28 days after hind limb ischemia surgery, HFD + STZ mice display significantly increased capillary permeability to IgG and significantly increased levels of ICAM1. This was associated with an increased macrophage infiltration and an impaired myocyte differentiation. Importantly, we used ICAM1-blocking antibodies to demonstrate that increased ICAM1 expression in HFD + STZ mice decreases white blood cell circulation velocity within the microcirculation, which impairs its perfusion. Notably anti-ICAM1 therapy did diminish macrophage infiltration and oxidative stress but not myopathy suggesting that myopathy characterized by small myocytes expressing higher level of MYH2 could be responsible for microangiopathy. CONCLUSION ICAM1 expression by the microvasculature impairs ischemic muscle reperfusion in HFD + STZ mice. Importantly, the increase in blood flow between day 14 and day 90 post-HLI surgery is not associated with an increased capillary density but with an improved functionality of capillaries.
Collapse
MESH Headings
- Animals
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Experimental/drug therapy
- Diabetes Mellitus, Experimental/complications
- Diabetes Mellitus, Experimental/physiopathology
- Muscle, Skeletal/blood supply
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/drug effects
- Intercellular Adhesion Molecule-1/metabolism
- Intercellular Adhesion Molecule-1/immunology
- Mice, Inbred C57BL
- Male
- Hindlimb
- Neovascularization, Physiologic/drug effects
- Regional Blood Flow
- Peripheral Arterial Disease/metabolism
- Peripheral Arterial Disease/physiopathology
- Peripheral Arterial Disease/prevention & control
- Time Factors
- Reperfusion Injury/metabolism
- Reperfusion Injury/prevention & control
- Reperfusion Injury/physiopathology
- Mice
- Muscle Development/drug effects
- Ischemia/metabolism
- Ischemia/physiopathology
- Diet, High-Fat
- Chronic Limb-Threatening Ischemia/metabolism
- Chronic Limb-Threatening Ischemia/physiopathology
- Chronic Limb-Threatening Ischemia/prevention & control
Collapse
Affiliation(s)
- Ninon Foussard
- Univ. Bordeaux, Inserm, Biology of Cardiovascular Diseases, U1034, CHU de Bordeaux, 1, Avenue de Magellan, Entrée par l'Hôpital Haut-Lévêque, 33604, Pessac, France
| | - Célia Bourguignon
- Univ. Bordeaux, Inserm, Biology of Cardiovascular Diseases, U1034, CHU de Bordeaux, 1, Avenue de Magellan, Entrée par l'Hôpital Haut-Lévêque, 33604, Pessac, France
| | - Virginie Grouthier
- Univ. Bordeaux, Inserm, Biology of Cardiovascular Diseases, U1034, CHU de Bordeaux, 1, Avenue de Magellan, Entrée par l'Hôpital Haut-Lévêque, 33604, Pessac, France
| | - Caroline Caradu
- Bordeaux University Hospital, Department of Vascular Surgery, 33000, Bordeaux, France
| | - Candice Chapouly
- Univ. Bordeaux, Inserm, Biology of Cardiovascular Diseases, U1034, CHU de Bordeaux, 1, Avenue de Magellan, Entrée par l'Hôpital Haut-Lévêque, 33604, Pessac, France
| | - Alain-Pierre Gadeau
- Univ. Bordeaux, Inserm, Biology of Cardiovascular Diseases, U1034, CHU de Bordeaux, 1, Avenue de Magellan, Entrée par l'Hôpital Haut-Lévêque, 33604, Pessac, France
| | - Thierry Couffinhal
- Univ. Bordeaux, Inserm, Biology of Cardiovascular Diseases, U1034, CHU de Bordeaux, 1, Avenue de Magellan, Entrée par l'Hôpital Haut-Lévêque, 33604, Pessac, France
| | - Marie-Ange Renault
- Univ. Bordeaux, Inserm, Biology of Cardiovascular Diseases, U1034, CHU de Bordeaux, 1, Avenue de Magellan, Entrée par l'Hôpital Haut-Lévêque, 33604, Pessac, France.
| |
Collapse
|
2
|
Liu B, Yang H, Song YS, Sorenson CM, Sheibani N. Thrombospondin-1 in vascular development, vascular function, and vascular disease. Semin Cell Dev Biol 2024; 155:32-44. [PMID: 37507331 PMCID: PMC10811293 DOI: 10.1016/j.semcdb.2023.07.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023]
Abstract
Angiogenesis is vital to developmental, regenerative and repair processes. It is normally regulated by a balanced production of pro- and anti-angiogenic factors. Alterations in this balance under pathological conditions are generally mediated through up-regulation of pro-angiogenic and/or downregulation of anti-angiogenic factors, leading to growth of new and abnormal blood vessels. The pathological manifestation of many diseases including cancer, ocular and vascular diseases are dependent on the growth of these new and abnormal blood vessels. Thrompospondin-1 (TSP1) was the first endogenous angiogenesis inhibitor identified and its anti-angiogenic and anti-inflammatory activities have been the subject of many studies. Studies examining the role TSP1 plays in pathogenesis of various ocular diseases and vascular dysfunctions are limited. Here we will discuss the recent studies focused on delineating the role TSP1 plays in ocular vascular development and homeostasis, and pathophysiology of various ocular and vascular diseases with a significant clinical relevance to human health.
Collapse
Affiliation(s)
- Bo Liu
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA.
| | - Huan Yang
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Yong-Seok Song
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Christine M Sorenson
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Nader Sheibani
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA; Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA.
| |
Collapse
|
3
|
Lin Y, Ma HY, Wang Y, He J, Liu HJ. Identification of Potential Core Genes for the Rupture of Intracranial Aneurysms by a Bioinformatics Analysis. Front Genet 2022; 13:875007. [PMID: 35432454 PMCID: PMC9006073 DOI: 10.3389/fgene.2022.875007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 03/14/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Previous studies, using autopsy and angiography, have shown that 3.6–6% of the population have intracranial aneurysms, and the rupture of aneurysm can lead to brain dysfunction or even death in patients. Methods: To explore potential preventional target genes for the ruptured of aneurysm, we analyze three gene expression datasets (GSE13353, GSE15629 and GSE54083) derived from the GEO database. We confirm DEGs associated with the unrupture of aneurysms by R package. DAVID version provides functional classification and annotation analyses of associated genes, including GO and KEGG pathway. PPI of these DEGs is analyzed based on the string database and visualized by Cytoscape software. DEGs are verified by qRT-PCR using samples isolated from the patients. Results: 249 overlapping DEGs, including 96 up-regulated genes and 153 down-regulated genes are screened using the Venn diagram webtool. The GO term and KEGG pathways analysis results indicate that these DEGs are mainly enriched in protein phosphorylation, apoptotic process and inflammatory response in the BP term and focal adhesion, thyroid hormone signaling pathway, ErbB signaling pathway, cytokine-cytokine receptor interaction and some disease processes in the KEGG pathways. 6 candidates are confirmed by Cytoscape software and qRT-PCR, including APP, JUN, GSK3B, ErbB2, PPBP and THBS1. Conclusions: Our data and previous studies show that ErbB2 and THBS1 are crucial to prevent aneurysm rupture, while APP, JUN, GSK3B and PPBP performs the opposite role, and further experiments are needed to verify these findings.
Collapse
|
4
|
Yao M, Ganguly S, Shin JHS, Elbayoumi T. Efficient Ex Vivo Screening of Agents Targeting Thrombospondin1-Induced Vascular Dysfunction Using a Digital Multiwire Myograph System. Methods Protoc 2021; 4:mps4040074. [PMID: 34698263 PMCID: PMC8544428 DOI: 10.3390/mps4040074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 10/01/2021] [Accepted: 10/05/2021] [Indexed: 11/16/2022] Open
Abstract
Homeostasis of vascular tone is intricately and delicately maintained systemically and locally, by autonomic nerves and hormones in the blood and by intimal vasoactive substances, respectively. The balance can be acutely or chronically interrupted secondary to many alterations, especially under pathological conditions. Excessive matricellular glycoprotein thrombospondin 1 (TSP1) levels in circulation have been found to play an important role in ischemia-reperfusion injuries of different organs, by acutely suppressing vasorelaxation and chronically remodeling vascular bed. Our laboratory has been interested in identifying new drug moieties, which can selectively and effectively counteract TSP1-induced vascular dysfunction, in order to address associated clinical complications. Preliminary studies using computational docking and molecular models revealed potential drug candidates for further evaluation via vascular functional bioassay to prove the antagonism using an ex vivo vascular model. Herein, we described an efficient screening method for the identification of active drug candidates, by adapting a multiwire myograph system to perform a protocol with different treatments, in the presence of pathological levels of TSP1. We discussed the promising pharmacological evaluation results and suggested suitable modification for versatile applications. We also described the necessity of pre-determination of optimal resting tension to obtain the maximal response, if the experimental test model is different from those with determined optimal resting tension.
Collapse
Affiliation(s)
- Molly Yao
- Department of Pharmaceutical Sciences, College of Pharmacy-Glendale, Midwestern University, Cholla Hall 216, 19555 N. 59th Ave., Glendale, AZ 85308, USA;
- College of Graduate Studies, Midwestern University, Science Hall, 19555 N. 59th Ave., Glendale, AZ 85308, USA
- Correspondence: (M.Y.); (T.E.)
| | - Samayita Ganguly
- Department of Pharmaceutical Sciences, College of Pharmacy-Glendale, Midwestern University, Cholla Hall 216, 19555 N. 59th Ave., Glendale, AZ 85308, USA;
| | - Jane Hae Soo Shin
- Arizona College of Osteopathic Medicine, Midwestern University, Glendale Hall, 19555 N. 59th Ave., Glendale, AZ 85308, USA;
| | - Tamer Elbayoumi
- Department of Pharmaceutical Sciences, College of Pharmacy-Glendale, Midwestern University, Cholla Hall 216, 19555 N. 59th Ave., Glendale, AZ 85308, USA;
- College of Graduate Studies, Midwestern University, Science Hall, 19555 N. 59th Ave., Glendale, AZ 85308, USA
- Correspondence: (M.Y.); (T.E.)
| |
Collapse
|
5
|
Novel Pharmaceutical Strategy for Selective Abrogation of TSP1-Induced Vascular Dysfunction by Decoy Recombinant CD47 Soluble Receptor in Prophylaxis and Treatment Models. Biomedicines 2021; 9:biomedicines9060642. [PMID: 34205047 PMCID: PMC8228143 DOI: 10.3390/biomedicines9060642] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/26/2021] [Accepted: 05/31/2021] [Indexed: 12/20/2022] Open
Abstract
Elevated thrombospondin 1 (TSP1) is a prevalent factor, via cognate receptor CD47, in the pathogenesis of cardiovascular conditions, including ischemia-reperfusion injury (IRI) and pulmonary arterial hypertension (PAH). Moreover, TSP1/CD47 interaction has been found to be associated with platelet hyperaggregability and impaired nitric oxide response, exacerbating progression in IRI and PAH. Pathological TSP1 in circulation arises as a target of our novel therapeutic approach. Our “proof-of-concept” pharmacological strategy relies on recombinant human CD47 peptide (rh-CD47p) as a decoy receptor protein (DRP) to specifically bind TSP1 and neutralize TSP1-impaired vasorelaxation, strongly implicated in IRI and PAH. The binding of rh-CD47p and TSP1 was first verified as the primary mechanism via Western blotting and further quantified with modified ELISA, which also revealed a linear molar dose-dependent interaction. Ex vivo, pretreatment protocol with rh-CD47p (rh-CD47p added prior to TSP1 incubation) demonstrated a prophylactic effect against TSP1-impairment of endothelium-dependent vasodilation. Post-treatment set-up (TSP1 incubation prior to rh-CD47p addition), mimicking pre-existing excessive TSP1 in PAH, reversed TSP1-inhibited vasodilation back to control level. Dose titration identified an effective molar dose range (approx. ≥1:3 of tTSP1:rh-CD47p) for prevention of/recovery from TSP1-induced vascular dysfunction. Our results indicate the great potential for proposed novel decoy rh-CD47p-therapy to abrogate TSP1-associated cardiovascular complications, such as PAH.
Collapse
|
6
|
Yang H, Zhou T, Sorenson CM, Sheibani N, Liu B. Myeloid-Derived TSP1 (Thrombospondin-1) Contributes to Abdominal Aortic Aneurysm Through Suppressing Tissue Inhibitor of Metalloproteinases-1. Arterioscler Thromb Vasc Biol 2020; 40:e350-e366. [PMID: 33028100 PMCID: PMC7686278 DOI: 10.1161/atvbaha.120.314913] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
OBJECTIVE Abdominal aortic aneurysm is characterized by the progressive loss of aortic integrity and accumulation of inflammatory cells primarily macrophages. We previously reported that global deletion of matricellular protein TSP1 (thrombospondin-1) protects mice from aneurysm formation. The objective of the current study is to investigate the cellular and molecular mechanisms underlying TSP1's action in aneurysm. Approach and Results: Using RNA fluorescent in situ hybridization, we identified macrophages being the major source of TSP1 in human and mouse aneurysmal tissues, accounting for over 70% of cells that actively expressed Thbs1 mRNA. Lack of TSP1 in macrophages decreased solution-based gelatinase activities by elevating TIMP1 (tissue inhibitor of metalloproteinases-1) without affecting the major MMPs (matrix metalloproteinases). Knocking down Timp1 restored the ability of Thbs1-/- macrophages to invade matrix. Finally, we generated Thbs1flox/flox mice and crossed them with Lyz2-cre mice. In the CaCl2-induced model of abdominal aortic aneurysm, lacking TSP1 in myeloid cells was sufficient to protect mice from aneurysm by reducing macrophage accumulation and preserving aortic integrity. CONCLUSIONS TSP1 contributes to aneurysm pathogenesis, at least in part, by suppressing TIMP1 expression, which subsequently enables inflammatory macrophages to infiltrate vascular tissues.
Collapse
MESH Headings
- Animals
- Aorta, Abdominal/metabolism
- Aorta, Abdominal/pathology
- Aortic Aneurysm, Abdominal/genetics
- Aortic Aneurysm, Abdominal/metabolism
- Aortic Aneurysm, Abdominal/pathology
- Cells, Cultured
- Dilatation, Pathologic
- Disease Models, Animal
- Down-Regulation
- Humans
- Macrophages/metabolism
- Macrophages/pathology
- Male
- Matrix Metalloproteinases/metabolism
- Mice, Inbred C57BL
- Mice, Knockout, ApoE
- Signal Transduction
- Thrombospondin 1/deficiency
- Thrombospondin 1/genetics
- Thrombospondin 1/metabolism
- Tissue Inhibitor of Metalloproteinase-1/genetics
- Tissue Inhibitor of Metalloproteinase-1/metabolism
Collapse
Affiliation(s)
- Huan Yang
- Department of Surgery,School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705
| | - Ting Zhou
- Department of Surgery,School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705
| | - Christine M. Sorenson
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI 53705
| | - Nader Sheibani
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI 53705
| | - Bo Liu
- Department of Surgery,School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705
- Department of Cellular and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705
| |
Collapse
|
7
|
Isenberg JS, Roberts DD. Thrombospondin-1 in maladaptive aging responses: a concept whose time has come. Am J Physiol Cell Physiol 2020; 319:C45-C63. [PMID: 32374675 DOI: 10.1152/ajpcell.00089.2020] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Numerous age-dependent alterations at the molecular, cellular, tissue and organ systems levels underlie the pathophysiology of aging. Herein, the focus is upon the secreted protein thrombospondin-1 (TSP1) as a promoter of aging and age-related diseases. TSP1 has several physiological functions in youth, including promoting neural synapse formation, mediating responses to ischemic and genotoxic stress, minimizing hemorrhage, limiting angiogenesis, and supporting wound healing. These acute functions of TSP1 generally require only transient expression of the protein. However, accumulating basic and clinical data reinforce the view that chronic diseases of aging are associated with accumulation of TSP1 in the extracellular matrix, which is a significant maladaptive contributor to the aging process. Identification of the relevant cell types that chronically produce and respond to TSP1 and the molecular mechanisms that mediate the resulting maladaptive responses could direct the development of therapeutic agents to delay or revert age-associated maladies.
Collapse
Affiliation(s)
| | - David D Roberts
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
8
|
Matrix mechanotransduction mediated by thrombospondin-1/integrin/YAP in the vascular remodeling. Proc Natl Acad Sci U S A 2020; 117:9896-9905. [PMID: 32321834 DOI: 10.1073/pnas.1919702117] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The extracellular matrix (ECM) initiates mechanical cues that activate intracellular signaling through matrix-cell interactions. In blood vessels, additional mechanical cues derived from the pulsatile blood flow and pressure play a pivotal role in homeostasis and disease development. Currently, the nature of the cues from the ECM and their interaction with the mechanical microenvironment in large blood vessels to maintain the integrity of the vessel wall are not fully understood. Here, we identified the matricellular protein thrombospondin-1 (Thbs1) as an extracellular mediator of matrix mechanotransduction that acts via integrin αvβ1 to establish focal adhesions and promotes nuclear shuttling of Yes-associated protein (YAP) in response to high strain of cyclic stretch. Thbs1-mediated YAP activation depends on the small GTPase Rap2 and Hippo pathway and is not influenced by alteration of actin fibers. Deletion of Thbs1 in mice inhibited Thbs1/integrin β1/YAP signaling, leading to maladaptive remodeling of the aorta in response to pressure overload and inhibition of neointima formation upon carotid artery ligation, exerting context-dependent effects on the vessel wall. We thus propose a mechanism of matrix mechanotransduction centered on Thbs1, connecting mechanical stimuli to YAP signaling during vascular remodeling in vivo.
Collapse
|
9
|
Yamashiro Y, Thang BQ, Shin SJ, Lino CA, Nakamura T, Kim J, Sugiyama K, Tokunaga C, Sakamoto H, Osaka M, Davis EC, Wagenseil JE, Hiramatsu Y, Yanagisawa H. Role of Thrombospondin-1 in Mechanotransduction and Development of Thoracic Aortic Aneurysm in Mouse and Humans. Circ Res 2018; 123:660-672. [PMID: 30355232 PMCID: PMC6211815 DOI: 10.1161/circresaha.118.313105] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 08/06/2018] [Indexed: 02/07/2023]
Abstract
RATIONALE Abnormal mechanosensing of smooth muscle cells (SMCs) resulting from the defective elastin-contractile units has been suggested to drive the formation of thoracic aortic aneurysms; however, the precise molecular mechanism has not been elucidated. OBJECTIVE The aim of this study was to identify the crucial mediator(s) involved in abnormal mechanosensing and propagation of biochemical signals during the aneurysm formation and to establish a basis for a novel therapeutic strategy. METHODS AND RESULTS We used a mouse model of postnatal ascending aortic aneurysms ( Fbln4SMKO; termed SMKO [SMC-specific knockout]), in which deletion of Fbln4 (fibulin-4) leads to disruption of the elastin-contractile units caused by a loss of elastic lamina-SMC connections. In this mouse, upregulation of Egr1 (early growth response 1) and angiotensin-converting enzyme leads to activation of Ang II (angiotensin II) signaling. Here, we showed that the matricellular protein, Thbs1 (thrombospondin-1), was highly upregulated in SMKO ascending aortas and in human thoracic aortic aneurysms. Thbs1 was induced by mechanical stretch and Ang II in SMCs, for which Egr1 was required, and reduction of Fbln4 sensitized the cells to these stimuli and led to higher expression of Egr1 and Thbs1. Deletion of Thbs1 in SMKO mice prevented the aneurysm formation in ≈80% of DKO (SMKO;Thbs1 knockout) animals and suppressed Ssh1 (slingshot-1) and cofilin dephosphorylation, leading to the formation of normal actin filaments. Furthermore, elastic lamina-SMC connections were restored in DKO aortas, and mechanical testing showed that structural and material properties of DKO aortas were markedly improved. CONCLUSIONS Thbs1 is a critical component of mechanotransduction, as well as a modulator of elastic fiber organization. Maladaptive upregulation of Thbs1 results in disruption of elastin-contractile units and dysregulation of actin cytoskeletal remodeling, contributing to the development of ascending aortic aneurysms in vivo. Thbs1 may serve as a potential therapeutic target for treating thoracic aortic aneurysms.
Collapse
MESH Headings
- Actin Cytoskeleton/metabolism
- Actin Cytoskeleton/pathology
- Aged
- Aged, 80 and over
- Animals
- Aorta, Thoracic/metabolism
- Aorta, Thoracic/pathology
- Aortic Aneurysm, Thoracic/genetics
- Aortic Aneurysm, Thoracic/metabolism
- Aortic Aneurysm, Thoracic/pathology
- Aortic Aneurysm, Thoracic/prevention & control
- Cells, Cultured
- Cofilin 2/metabolism
- Dilatation, Pathologic
- Disease Models, Animal
- Early Growth Response Protein 1/metabolism
- Elastic Tissue/metabolism
- Elastic Tissue/pathology
- Elastin/metabolism
- Extracellular Matrix Proteins/deficiency
- Extracellular Matrix Proteins/genetics
- Female
- Humans
- Male
- Mechanotransduction, Cellular
- Mice, Knockout
- Middle Aged
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Phosphoprotein Phosphatases/metabolism
- Phosphorylation
- Pressoreceptors/metabolism
- Rats
- Stress, Mechanical
- Thrombospondin 1/deficiency
- Thrombospondin 1/genetics
- Thrombospondin 1/metabolism
- Vascular Remodeling
Collapse
Affiliation(s)
- Yoshito Yamashiro
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance, University of Tsukuba, Ibaraki 305-8577, Japan
| | - Bui Quoc Thang
- Cardiovascular Surgery, University of Tsukuba, Ibaraki 305-8577, Japan
| | - Seung Jae Shin
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance, University of Tsukuba, Ibaraki 305-8577, Japan
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Ibaraki, 305-8577, Japan
| | - Caroline Antunes Lino
- Anatomy, University of Sao Paulo, Institute of Biomedical Sciences, Sao Paulo, SP 05508-900, Brazil
| | | | - Jungsil Kim
- Mechanical Engineering and Materials Science, Washington University, St. Louis, MO 63130, USA
| | - Kaori Sugiyama
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance, University of Tsukuba, Ibaraki 305-8577, Japan
- Ph.D. Program in Human Biology, School of Integrative and Global Majors, University of Tsukuba, Ibaraki, 305-8577, Japan
| | - Chiho Tokunaga
- Cardiovascular Surgery, University of Tsukuba, Ibaraki 305-8577, Japan
| | - Hiroaki Sakamoto
- Cardiovascular Surgery, University of Tsukuba, Ibaraki 305-8577, Japan
| | - Motoo Osaka
- Cardiovascular Surgery, University of Tsukuba, Ibaraki 305-8577, Japan
| | - Elaine C. Davis
- Anatomy and Cell Biology, McGill University, Montreal, Quebec H3A0C7, Canada
| | - Jessica E. Wagenseil
- Mechanical Engineering and Materials Science, Washington University, St. Louis, MO 63130, USA
| | - Yuji Hiramatsu
- Cardiovascular Surgery, University of Tsukuba, Ibaraki 305-8577, Japan
| | - Hiromi Yanagisawa
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance, University of Tsukuba, Ibaraki 305-8577, Japan
- Faculty of Medicine, University of Tsukuba, Ibaraki 305-8577, Japan
| |
Collapse
|
10
|
Rogers NM, Ghimire K, Calzada MJ, Isenberg JS. Matricellular protein thrombospondin-1 in pulmonary hypertension: multiple pathways to disease. Cardiovasc Res 2018; 113:858-868. [PMID: 28472457 DOI: 10.1093/cvr/cvx094] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 05/03/2017] [Indexed: 12/24/2022] Open
Abstract
Matricellular proteins are secreted molecules that have affinities for both extracellular matrix and cell surface receptors. Through interaction with structural proteins and the cells that maintain the matrix these proteins can alter matrix strength. Matricellular proteins exert control on cell activity primarily through engagement of membrane receptors that mediate outside-in signaling. An example of this group is thrombospondin-1 (TSP1), first identified as a component of the secreted product of activated platelets. As a result, TSP1 was initially studied in relation to coagulation, growth factor signaling and angiogenesis. More recently, TSP1 has been found to alter the effects of the gaseous transmitter nitric oxide (NO). This latter capacity has provided motivation to study TSP1 in diseases associated with loss of NO signaling as observed in cardiovascular disease and pulmonary hypertension (PH). PH is characterized by progressive changes in the pulmonary vasculature leading to increased resistance to blood flow and subsequent right heart failure. Studies have linked TSP1 to pre-clinical animal models of PH and more recently to clinical PH. This review will provide analysis of the vascular and non-vascular effects of TSP1 that contribute to PH, the experimental and translational studies that support a role for TSP1 in disease promotion and frame the relevance of these findings to therapeutic strategies.
Collapse
Affiliation(s)
- Natasha M Rogers
- Medicine, Westmead Clinical School, University of Sydney, Sydney, New South Wales 2145, Australia
| | - Kedar Ghimire
- Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Maria J Calzada
- Department of Medicine, Universidad Autónoma of Madrid, Diego de León, Hospital Universitario of the Princesa, 62?28006 Madrid, Spain
| | - Jeffrey S Isenberg
- Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA.,Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| |
Collapse
|
11
|
Zhao C, Isenberg JS, Popel AS. Human expression patterns: qualitative and quantitative analysis of thrombospondin-1 under physiological and pathological conditions. J Cell Mol Med 2018; 22:2086-2097. [PMID: 29441713 PMCID: PMC5867078 DOI: 10.1111/jcmm.13565] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 01/07/2018] [Indexed: 12/12/2022] Open
Abstract
Thrombospondin-1 (TSP-1), a matricellular protein and one of the first endogenous anti-angiogenic molecules identified, has long been considered a potent modulator of human diseases. While the therapeutic effect of TSP-1 to suppress cancer was investigated in both research and clinical settings, the mechanisms of how TSP-1 is regulated in cancer remain elusive, and the scientific answers to the question of whether TSP-1 expressions can be utilized as diagnostic or prognostic marker for patients with cancer are largely inconsistent. Moreover, TSP-1 plays crucial functions in angiogenesis, inflammation and tissue remodelling, which are essential biological processes in the progression of many cardiovascular diseases, and therefore, its dysregulated expressions in such conditions may have therapeutic significance. Herein, we critically analysed the literature pertaining to TSP-1 expression in circulating blood and pathological tissues in various types of cancer as well as cardiovascular and inflammation-related diseases in humans. We compare the secretion rates of TSP-1 by different cancer and non-cancer cells and discuss the potential connection between the expression changes of TSP-1 and vascular endothelial growth factor (VEGF) observed in patients with cancer. Moreover, the pattern and emerging significance of TSP-1 profiles in cardiovascular disease, such as peripheral arterial disease, diabetes and other related non-cancer disorders, are highlighted. The analysis of published TSP-1 data presented in this review may have implications for the future exploration of novel TSP-1-based treatment strategies for cancer and cardiovascular-related diseases.
Collapse
Affiliation(s)
- Chen Zhao
- Department of Biomedical EngineeringSchool of MedicineJohns Hopkins UniversityBaltimoreMDUSA
| | - Jeffrey S. Isenberg
- Division of Pulmonary, Allergy and Critical CareDepartment of MedicineHeart, Lung, Blood and Vascular Medicine InstituteUniversity of Pittsburgh School of MedicinePittsburghPAUSA
| | - Aleksander S. Popel
- Department of Biomedical EngineeringSchool of MedicineJohns Hopkins UniversityBaltimoreMDUSA
| |
Collapse
|
12
|
Ahn MY, Ham SA, Yoo T, Lee WJ, Hwang JS, Paek KS, Lim DS, Han SG, Lee CH, Seo HG. Ligand-Activated Peroxisome Proliferator-Activated Receptor δ Attenuates Vascular Oxidative Stress by Inhibiting Thrombospondin-1 Expression. J Vasc Res 2018; 55:75-86. [PMID: 29408825 DOI: 10.1159/000486570] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 12/29/2017] [Indexed: 11/19/2022] Open
Abstract
Thrombospondin-1 (TSP-1) is implicated in vascular diseases associated with oxidative stress, such as abdominal aortic aneurysms, ischemia-reperfusion injury, and atherosclerosis. However, the regulatory mechanisms underlying TSP-1 expression are not fully elucidated. In this study, we found that peroxisome proliferator-activated receptor δ (PPARδ) inhibited oxidative stress-induced TSP-1 expression and migration in vascular smooth muscle cells (VSMCs). Activation of PPARδ by GW501516, a specific ligand for PPARδ, significantly attenuated hydrogen peroxide (H2O2)-induced expression of TSP-1 in VSMCs. Small interfering RNA-mediated knockdown of PPARδ and treatment with GSK0660, a selective PPARδ antagonist, reversed the effect of GW501516 on H2O2-induced expression of TSP-1, suggesting that PPARδ is associated with GW501516 activity. Furthermore, JNK (c-Jun N-terminal kinase), but not p38 and ERK (extracellular signal-regulated kinase), mediated PPARδ-dependent inhibition of TSP-1 expression in VSMCs exposed to H2O2. GW501516- activated PPARδ also reduced the H2O2-induced generation of reactive oxygen species, concomitant with inhibition of VSMC migration. In particular, TSP-1 contributed to the action of PPARδ in the regulation of H2O2-induced interleukin-1β expression. These results suggest that PPARδ-modulated downregulation of TSP-1 is associated with reduced cellular oxidative stress, thereby inhibiting H2O2-induced pheno-typic changes in vascular cells.
Collapse
Affiliation(s)
- Min Young Ahn
- Sanghuh College of Life Sciences, Konkuk University, Seoul, Republic of Korea
| | - Sun Ah Ham
- Sanghuh College of Life Sciences, Konkuk University, Seoul, Republic of Korea
| | - Taesik Yoo
- Sanghuh College of Life Sciences, Konkuk University, Seoul, Republic of Korea
| | - Won Jin Lee
- Sanghuh College of Life Sciences, Konkuk University, Seoul, Republic of Korea
| | - Jung Seok Hwang
- Sanghuh College of Life Sciences, Konkuk University, Seoul, Republic of Korea
| | - Kyung Shin Paek
- Department of Nursing, Semyung University, Jechon, Republic of Korea
| | - Dae-Seog Lim
- Department of Biotechnology, CHA University, Seongnam, Republic of Korea
| | - Sung Gu Han
- Sanghuh College of Life Sciences, Konkuk University, Seoul, Republic of Korea
| | - Chi-Ho Lee
- Sanghuh College of Life Sciences, Konkuk University, Seoul, Republic of Korea
| | - Han Geuk Seo
- Sanghuh College of Life Sciences, Konkuk University, Seoul, Republic of Korea
| |
Collapse
|
13
|
Roberts DD, Kaur S, Isenberg JS. Regulation of Cellular Redox Signaling by Matricellular Proteins in Vascular Biology, Immunology, and Cancer. Antioxid Redox Signal 2017; 27:874-911. [PMID: 28712304 PMCID: PMC5653149 DOI: 10.1089/ars.2017.7140] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 07/11/2017] [Accepted: 07/13/2017] [Indexed: 12/15/2022]
Abstract
SIGNIFICANCE In contrast to structural elements of the extracellular matrix, matricellular proteins appear transiently during development and injury responses, but their sustained expression can contribute to chronic disease. Through interactions with other matrix components and specific cell surface receptors, matricellular proteins regulate multiple signaling pathways, including those mediated by reactive oxygen and nitrogen species and H2S. Dysregulation of matricellular proteins contributes to the pathogenesis of vascular diseases and cancer. Defining the molecular mechanisms and receptors involved is revealing new therapeutic opportunities. Recent Advances: Thrombospondin-1 (TSP1) regulates NO, H2S, and superoxide production and signaling in several cell types. The TSP1 receptor CD47 plays a central role in inhibition of NO signaling, but other TSP1 receptors also modulate redox signaling. The matricellular protein CCN1 engages some of the same receptors to regulate redox signaling, and ADAMTS1 regulates NO signaling in Marfan syndrome. In addition to mediating matricellular protein signaling, redox signaling is emerging as an important pathway that controls the expression of several matricellular proteins. CRITICAL ISSUES Redox signaling remains unexplored for many matricellular proteins. Their interactions with multiple cellular receptors remains an obstacle to defining signaling mechanisms, but improved transgenic models could overcome this barrier. FUTURE DIRECTIONS Therapeutics targeting the TSP1 receptor CD47 may have beneficial effects for treating cardiovascular disease and cancer and have recently entered clinical trials. Biomarkers are needed to assess their effects on redox signaling in patients and to evaluate how these contribute to their therapeutic efficacy and potential side effects. Antioxid. Redox Signal. 27, 874-911.
Collapse
Affiliation(s)
- David D. Roberts
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Sukhbir Kaur
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Jeffrey S. Isenberg
- Division of Pulmonary, Allergy and Critical Care, Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
14
|
Kim CW, Pokutta-Paskaleva A, Kumar S, Timmins LH, Morris AD, Kang DW, Dalal S, Chadid T, Kuo KM, Raykin J, Li H, Yanagisawa H, Gleason RL, Jo H, Brewster LP. Disturbed Flow Promotes Arterial Stiffening Through Thrombospondin-1. Circulation 2017; 136:1217-1232. [PMID: 28778947 DOI: 10.1161/circulationaha.116.026361] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 07/26/2017] [Indexed: 12/18/2022]
Abstract
BACKGROUND Arterial stiffness and wall shear stress are powerful determinants of cardiovascular health, and arterial stiffness is associated with increased cardiovascular mortality. Low and oscillatory wall shear stress, termed disturbed flow (d-flow), promotes atherosclerotic arterial remodeling, but the relationship between d-flow and arterial stiffness is not well understood. The objective of this study was to define the role of d-flow on arterial stiffening and discover the relevant signaling pathways by which d-flow stiffens arteries. METHODS D-flow was induced in the carotid arteries of young and old mice of both sexes. Arterial stiffness was quantified ex vivo with cylindrical biaxial mechanical testing and in vivo from duplex ultrasound and compared with unmanipulated carotid arteries from 80-week-old mice. Gene expression and pathway analysis was performed on endothelial cell-enriched RNA and validated by immunohistochemistry. In vitro testing of signaling pathways was performed under oscillatory and laminar wall shear stress conditions. Human arteries from regions of d-flow and stable flow were tested ex vivo to validate critical results from the animal model. RESULTS D-flow induced arterial stiffening through collagen deposition after partial carotid ligation, and the degree of stiffening was similar to that of unmanipulated carotid arteries from 80-week-old mice. Intimal gene pathway analyses identified transforming growth factor-β pathways as having a prominent role in this stiffened arterial response, but this was attributable to thrombospondin-1 (TSP-1) stimulation of profibrotic genes and not changes to transforming growth factor-β. In vitro and in vivo testing under d-flow conditions identified a possible role for TSP-1 activation of transforming growth factor-β in the upregulation of these genes. TSP-1 knockout animals had significantly less arterial stiffening in response to d-flow than wild-type carotid arteries. Human arteries exposed to d-flow had similar increases TSP-1 and collagen gene expression as seen in our model. CONCLUSIONS TSP-1 has a critical role in shear-mediated arterial stiffening that is mediated in part through TSP-1's activation of the profibrotic signaling pathways of transforming growth factor-β. Molecular targets in this pathway may lead to novel therapies to limit arterial stiffening and the progression of disease in arteries exposed to d-flow.
Collapse
Affiliation(s)
- Chan Woo Kim
- From Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta (C.W.K., A.P.-P., S.K., D.-W.K., J.R., R.L.G., H.J., L.P.B.); Department of Microbiology, College of Medicine, Inha University, Incheon, Republic of Korea (C.W.K.); Department of Surgery, Emory University, Atlanta, GA (A.P.-P., A.D.M., T.C., K.M.K., H.L., L.P.B.); Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA (L.H.T.); Department of Bioengineering, University of Utah, Salt Lake City (L.H.T.); Mercer University School of Medicine, Macon, GA (S.D.); Life Science Center, Tsukuba Advanced Research Alliance, University of Tsukuba, Ibaraki, Japan (H.Y.); George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta (R.L.G.); Surgical and Research Services, Atlanta VA Medical Center, Decatur, GA (L.P.B.); and Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta (L.P.B.)
| | - Anastassia Pokutta-Paskaleva
- From Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta (C.W.K., A.P.-P., S.K., D.-W.K., J.R., R.L.G., H.J., L.P.B.); Department of Microbiology, College of Medicine, Inha University, Incheon, Republic of Korea (C.W.K.); Department of Surgery, Emory University, Atlanta, GA (A.P.-P., A.D.M., T.C., K.M.K., H.L., L.P.B.); Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA (L.H.T.); Department of Bioengineering, University of Utah, Salt Lake City (L.H.T.); Mercer University School of Medicine, Macon, GA (S.D.); Life Science Center, Tsukuba Advanced Research Alliance, University of Tsukuba, Ibaraki, Japan (H.Y.); George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta (R.L.G.); Surgical and Research Services, Atlanta VA Medical Center, Decatur, GA (L.P.B.); and Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta (L.P.B.)
| | - Sandeep Kumar
- From Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta (C.W.K., A.P.-P., S.K., D.-W.K., J.R., R.L.G., H.J., L.P.B.); Department of Microbiology, College of Medicine, Inha University, Incheon, Republic of Korea (C.W.K.); Department of Surgery, Emory University, Atlanta, GA (A.P.-P., A.D.M., T.C., K.M.K., H.L., L.P.B.); Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA (L.H.T.); Department of Bioengineering, University of Utah, Salt Lake City (L.H.T.); Mercer University School of Medicine, Macon, GA (S.D.); Life Science Center, Tsukuba Advanced Research Alliance, University of Tsukuba, Ibaraki, Japan (H.Y.); George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta (R.L.G.); Surgical and Research Services, Atlanta VA Medical Center, Decatur, GA (L.P.B.); and Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta (L.P.B.)
| | - Lucas H Timmins
- From Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta (C.W.K., A.P.-P., S.K., D.-W.K., J.R., R.L.G., H.J., L.P.B.); Department of Microbiology, College of Medicine, Inha University, Incheon, Republic of Korea (C.W.K.); Department of Surgery, Emory University, Atlanta, GA (A.P.-P., A.D.M., T.C., K.M.K., H.L., L.P.B.); Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA (L.H.T.); Department of Bioengineering, University of Utah, Salt Lake City (L.H.T.); Mercer University School of Medicine, Macon, GA (S.D.); Life Science Center, Tsukuba Advanced Research Alliance, University of Tsukuba, Ibaraki, Japan (H.Y.); George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta (R.L.G.); Surgical and Research Services, Atlanta VA Medical Center, Decatur, GA (L.P.B.); and Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta (L.P.B.)
| | - Andrew D Morris
- From Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta (C.W.K., A.P.-P., S.K., D.-W.K., J.R., R.L.G., H.J., L.P.B.); Department of Microbiology, College of Medicine, Inha University, Incheon, Republic of Korea (C.W.K.); Department of Surgery, Emory University, Atlanta, GA (A.P.-P., A.D.M., T.C., K.M.K., H.L., L.P.B.); Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA (L.H.T.); Department of Bioengineering, University of Utah, Salt Lake City (L.H.T.); Mercer University School of Medicine, Macon, GA (S.D.); Life Science Center, Tsukuba Advanced Research Alliance, University of Tsukuba, Ibaraki, Japan (H.Y.); George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta (R.L.G.); Surgical and Research Services, Atlanta VA Medical Center, Decatur, GA (L.P.B.); and Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta (L.P.B.)
| | - Dong-Won Kang
- From Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta (C.W.K., A.P.-P., S.K., D.-W.K., J.R., R.L.G., H.J., L.P.B.); Department of Microbiology, College of Medicine, Inha University, Incheon, Republic of Korea (C.W.K.); Department of Surgery, Emory University, Atlanta, GA (A.P.-P., A.D.M., T.C., K.M.K., H.L., L.P.B.); Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA (L.H.T.); Department of Bioengineering, University of Utah, Salt Lake City (L.H.T.); Mercer University School of Medicine, Macon, GA (S.D.); Life Science Center, Tsukuba Advanced Research Alliance, University of Tsukuba, Ibaraki, Japan (H.Y.); George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta (R.L.G.); Surgical and Research Services, Atlanta VA Medical Center, Decatur, GA (L.P.B.); and Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta (L.P.B.)
| | - Sidd Dalal
- From Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta (C.W.K., A.P.-P., S.K., D.-W.K., J.R., R.L.G., H.J., L.P.B.); Department of Microbiology, College of Medicine, Inha University, Incheon, Republic of Korea (C.W.K.); Department of Surgery, Emory University, Atlanta, GA (A.P.-P., A.D.M., T.C., K.M.K., H.L., L.P.B.); Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA (L.H.T.); Department of Bioengineering, University of Utah, Salt Lake City (L.H.T.); Mercer University School of Medicine, Macon, GA (S.D.); Life Science Center, Tsukuba Advanced Research Alliance, University of Tsukuba, Ibaraki, Japan (H.Y.); George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta (R.L.G.); Surgical and Research Services, Atlanta VA Medical Center, Decatur, GA (L.P.B.); and Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta (L.P.B.)
| | - Tatiana Chadid
- From Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta (C.W.K., A.P.-P., S.K., D.-W.K., J.R., R.L.G., H.J., L.P.B.); Department of Microbiology, College of Medicine, Inha University, Incheon, Republic of Korea (C.W.K.); Department of Surgery, Emory University, Atlanta, GA (A.P.-P., A.D.M., T.C., K.M.K., H.L., L.P.B.); Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA (L.H.T.); Department of Bioengineering, University of Utah, Salt Lake City (L.H.T.); Mercer University School of Medicine, Macon, GA (S.D.); Life Science Center, Tsukuba Advanced Research Alliance, University of Tsukuba, Ibaraki, Japan (H.Y.); George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta (R.L.G.); Surgical and Research Services, Atlanta VA Medical Center, Decatur, GA (L.P.B.); and Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta (L.P.B.)
| | - Katie M Kuo
- From Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta (C.W.K., A.P.-P., S.K., D.-W.K., J.R., R.L.G., H.J., L.P.B.); Department of Microbiology, College of Medicine, Inha University, Incheon, Republic of Korea (C.W.K.); Department of Surgery, Emory University, Atlanta, GA (A.P.-P., A.D.M., T.C., K.M.K., H.L., L.P.B.); Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA (L.H.T.); Department of Bioengineering, University of Utah, Salt Lake City (L.H.T.); Mercer University School of Medicine, Macon, GA (S.D.); Life Science Center, Tsukuba Advanced Research Alliance, University of Tsukuba, Ibaraki, Japan (H.Y.); George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta (R.L.G.); Surgical and Research Services, Atlanta VA Medical Center, Decatur, GA (L.P.B.); and Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta (L.P.B.)
| | - Julia Raykin
- From Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta (C.W.K., A.P.-P., S.K., D.-W.K., J.R., R.L.G., H.J., L.P.B.); Department of Microbiology, College of Medicine, Inha University, Incheon, Republic of Korea (C.W.K.); Department of Surgery, Emory University, Atlanta, GA (A.P.-P., A.D.M., T.C., K.M.K., H.L., L.P.B.); Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA (L.H.T.); Department of Bioengineering, University of Utah, Salt Lake City (L.H.T.); Mercer University School of Medicine, Macon, GA (S.D.); Life Science Center, Tsukuba Advanced Research Alliance, University of Tsukuba, Ibaraki, Japan (H.Y.); George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta (R.L.G.); Surgical and Research Services, Atlanta VA Medical Center, Decatur, GA (L.P.B.); and Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta (L.P.B.)
| | - Haiyan Li
- From Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta (C.W.K., A.P.-P., S.K., D.-W.K., J.R., R.L.G., H.J., L.P.B.); Department of Microbiology, College of Medicine, Inha University, Incheon, Republic of Korea (C.W.K.); Department of Surgery, Emory University, Atlanta, GA (A.P.-P., A.D.M., T.C., K.M.K., H.L., L.P.B.); Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA (L.H.T.); Department of Bioengineering, University of Utah, Salt Lake City (L.H.T.); Mercer University School of Medicine, Macon, GA (S.D.); Life Science Center, Tsukuba Advanced Research Alliance, University of Tsukuba, Ibaraki, Japan (H.Y.); George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta (R.L.G.); Surgical and Research Services, Atlanta VA Medical Center, Decatur, GA (L.P.B.); and Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta (L.P.B.)
| | - Hiromi Yanagisawa
- From Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta (C.W.K., A.P.-P., S.K., D.-W.K., J.R., R.L.G., H.J., L.P.B.); Department of Microbiology, College of Medicine, Inha University, Incheon, Republic of Korea (C.W.K.); Department of Surgery, Emory University, Atlanta, GA (A.P.-P., A.D.M., T.C., K.M.K., H.L., L.P.B.); Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA (L.H.T.); Department of Bioengineering, University of Utah, Salt Lake City (L.H.T.); Mercer University School of Medicine, Macon, GA (S.D.); Life Science Center, Tsukuba Advanced Research Alliance, University of Tsukuba, Ibaraki, Japan (H.Y.); George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta (R.L.G.); Surgical and Research Services, Atlanta VA Medical Center, Decatur, GA (L.P.B.); and Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta (L.P.B.)
| | - Rudolph L Gleason
- From Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta (C.W.K., A.P.-P., S.K., D.-W.K., J.R., R.L.G., H.J., L.P.B.); Department of Microbiology, College of Medicine, Inha University, Incheon, Republic of Korea (C.W.K.); Department of Surgery, Emory University, Atlanta, GA (A.P.-P., A.D.M., T.C., K.M.K., H.L., L.P.B.); Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA (L.H.T.); Department of Bioengineering, University of Utah, Salt Lake City (L.H.T.); Mercer University School of Medicine, Macon, GA (S.D.); Life Science Center, Tsukuba Advanced Research Alliance, University of Tsukuba, Ibaraki, Japan (H.Y.); George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta (R.L.G.); Surgical and Research Services, Atlanta VA Medical Center, Decatur, GA (L.P.B.); and Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta (L.P.B.)
| | - Hanjoong Jo
- From Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta (C.W.K., A.P.-P., S.K., D.-W.K., J.R., R.L.G., H.J., L.P.B.); Department of Microbiology, College of Medicine, Inha University, Incheon, Republic of Korea (C.W.K.); Department of Surgery, Emory University, Atlanta, GA (A.P.-P., A.D.M., T.C., K.M.K., H.L., L.P.B.); Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA (L.H.T.); Department of Bioengineering, University of Utah, Salt Lake City (L.H.T.); Mercer University School of Medicine, Macon, GA (S.D.); Life Science Center, Tsukuba Advanced Research Alliance, University of Tsukuba, Ibaraki, Japan (H.Y.); George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta (R.L.G.); Surgical and Research Services, Atlanta VA Medical Center, Decatur, GA (L.P.B.); and Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta (L.P.B.).
| | - Luke P Brewster
- From Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta (C.W.K., A.P.-P., S.K., D.-W.K., J.R., R.L.G., H.J., L.P.B.); Department of Microbiology, College of Medicine, Inha University, Incheon, Republic of Korea (C.W.K.); Department of Surgery, Emory University, Atlanta, GA (A.P.-P., A.D.M., T.C., K.M.K., H.L., L.P.B.); Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA (L.H.T.); Department of Bioengineering, University of Utah, Salt Lake City (L.H.T.); Mercer University School of Medicine, Macon, GA (S.D.); Life Science Center, Tsukuba Advanced Research Alliance, University of Tsukuba, Ibaraki, Japan (H.Y.); George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta (R.L.G.); Surgical and Research Services, Atlanta VA Medical Center, Decatur, GA (L.P.B.); and Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta (L.P.B.).
| |
Collapse
|
15
|
Baum O, Torchetti E, Malik C, Hoier B, Walker M, Walker PJ, Odriozola A, Graber F, Tschanz SA, Bangsbo J, Hoppeler H, Askew CD, Hellsten Y. Capillary ultrastructure and mitochondrial volume density in skeletal muscle in relation to reduced exercise capacity of patients with intermittent claudication. Am J Physiol Regul Integr Comp Physiol 2016; 310:R943-51. [DOI: 10.1152/ajpregu.00480.2015] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 03/17/2016] [Indexed: 01/26/2023]
Abstract
Intermittent claudication (IC) is the most commonly reported symptom of peripheral arterial disease (PAD). Impaired limb blood flow is a major casual factor of lower exercise tolerance in PAD but cannot entirely explain it. We hypothesized that IC is associated with structural changes of the capillary-mitochondria interface that could contribute to the reduction of exercise tolerance in IC patients. Capillary and mitochondrial morphometry were performed after light and transmission electron microscopy using vastus lateralis muscle biopsies of 14 IC patients and 10 age-matched controls, and peak power output (PPO) was determined for all participants using an incremental single-leg knee-extension protocol. Capillary density was lower (411 ± 90 mm−2 vs. 506 ± 95 mm−2; P ≤ 0.05) in the biopsies of the IC patients than in those of the controls. The basement membrane (BM) around capillaries was thicker (543 ± 82 nm vs. 423 ± 97 nm; P ≤ 0.01) and the volume density of mitochondria was lower (3.51 ± 0.56% vs. 4.60 ± 0.74%; P ≤ 0.01) in the IC patients than the controls. In the IC patients, a higher proportion of capillaries appeared with collapsed slit-like lumen and/or swollen endothelium. PPO was lower (18.5 ± 9.9 W vs. 33.5 ± 9.4 W; P ≤ 0.01) in the IC patients than the controls. We suggest that several structural alterations in skeletal muscle, either collectively or separately, contribute to the reduction of exercise tolerance in IC patients.
Collapse
Affiliation(s)
- Oliver Baum
- Institute of Physiology, CharitéCrossOver (CCO), Berlin, Germany
- Institute of Anatomy, University of Bern, Switzerland
| | | | - Corinna Malik
- Institute of Anatomy, University of Bern, Switzerland
| | - Birgitte Hoier
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Denmark
| | - Meegan Walker
- School of Health and Sport Sciences, University of the Sunshine Coast, Australia
| | - Philip J. Walker
- Discipline of Surgery, School of Medicine and Centre for Clinical Research, The University of Queensland, Australia; and
- National Health and Medical Research Council, Centre of Research Excellence for Peripheral Arterial Diseases, Australia
| | | | | | | | - Jens Bangsbo
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Denmark
| | - Hans Hoppeler
- Institute of Anatomy, University of Bern, Switzerland
| | - Christopher D. Askew
- School of Health and Sport Sciences, University of the Sunshine Coast, Australia
- National Health and Medical Research Council, Centre of Research Excellence for Peripheral Arterial Diseases, Australia
| | - Ylva Hellsten
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Denmark
| |
Collapse
|
16
|
Haas TL, Nwadozi E. Regulation of skeletal muscle capillary growth in exercise and disease. Appl Physiol Nutr Metab 2015; 40:1221-32. [PMID: 26554747 DOI: 10.1139/apnm-2015-0336] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Capillaries, which are the smallest and most abundant type of blood vessel, form the primary site of gas, nutrient, and waste transfer between the vascular and tissue compartments. Skeletal muscle exhibits the capacity to generate new capillaries (angiogenesis) as an adaptation to exercise training, thus ensuring that the heightened metabolic demand of the active muscle is matched by an improved capacity for distribution of gases, nutrients, and waste products. This review summarizes the current understanding of the regulation of skeletal muscle capillary growth. The multi-step process of angiogenesis is coordinated through the integration of a diverse array of signals associated with hypoxic, metabolic, hemodynamic, and mechanical stresses within the active muscle. The contributions of metabolic and mechanical factors to the modulation of key pro- and anti-angiogenic molecules are discussed within the context of responses to a single aerobic exercise bout and short-term and long-term training. Finally, the paradoxical lack of angiogenesis in peripheral artery disease and diabetes and the implications for disease progression and muscle health are discussed. Future studies that emphasize an integrated analysis of the mechanisms that control skeletal muscle capillary growth will enable development of targeted exercise programs that effectively promote angiogenesis in healthy individuals and in patient populations.
Collapse
Affiliation(s)
- Tara L Haas
- Angiogenesis Research Group, York University, Toronto, ON M3J 1P3, Canada
- Angiogenesis Research Group, York University, Toronto, ON M3J 1P3, Canada
| | - Emmanuel Nwadozi
- Angiogenesis Research Group, York University, Toronto, ON M3J 1P3, Canada
- Angiogenesis Research Group, York University, Toronto, ON M3J 1P3, Canada
| |
Collapse
|
17
|
Liu Z, Morgan S, Ren J, Wang Q, Annis DS, Mosher DF, Zhang J, Sorenson CM, Sheibani N, Liu B. Thrombospondin-1 (TSP1) contributes to the development of vascular inflammation by regulating monocytic cell motility in mouse models of abdominal aortic aneurysm. Circ Res 2015; 117:129-41. [PMID: 25940549 DOI: 10.1161/circresaha.117.305262] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 05/04/2015] [Indexed: 01/12/2023]
Abstract
RATIONALE Histological examination of abdominal aortic aneurysm (AAA) tissues demonstrates extracellular matrix destruction and infiltration of inflammatory cells. Previous work with mouse models of AAA has shown that anti-inflammatory strategies can effectively attenuate aneurysm formation. Thrombospondin-1 is a matricellular protein involved in the maintenance of vascular structure and homeostasis through the regulation of biological functions, such as cell proliferation, apoptosis, and adhesion. Expression levels of thrombospondin-1 correlate with vascular disease conditions. OBJECTIVE To use thrombospondin-1-deficient (Thbs1(-/-)) mice to test the hypothesis that thrombospondin-1 contributes to pathogenesis of AAAs. METHODS AND RESULTS Mouse experimental AAA was induced through perivascular treatment with calcium phosphate, intraluminal perfusion with porcine elastase, or systemic administration of angiotensin II. Induction of AAA increased thrombospondin-1 expression in aortas of C57BL/6 or apoE-/- mice. Compared with Thbs1(+/+) mice, Thbs1(-/-) mice developed significantly smaller aortic expansion when subjected to AAA inductions, which was associated with diminished infiltration of macrophages. Thbs1(-/-) monocytic cells had reduced adhesion and migratory capacity in vitro compared with wild-type counterparts. Adoptive transfer of Thbs1(+/+) monocytic cells or bone marrow reconstitution rescued aneurysm development in Thbs1(-/-) mice. CONCLUSIONS Thrombospondin-1 expression plays a significant role in regulation of migration and adhesion of mononuclear cells, contributing to vascular inflammation during AAA development.
Collapse
Affiliation(s)
- Zhenjie Liu
- From the Departments of Surgery (Z.L., S.M., J.R., Q.W., B.L.), Pathology and Laboratory Medicine (B.L.), Biomolecular Chemistry and Medicine (D.S.A., D.F.M.), McArdle Laboratory for Cancer Research (J.Z.), Pediatrics (C.M.S.), and Ophthalmology and Visual Sciences (N.S.), University of Wisconsin School of Medicine and Public Health, Madison; and Department of Vascular Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China (Z.L.)
| | - Stephanie Morgan
- From the Departments of Surgery (Z.L., S.M., J.R., Q.W., B.L.), Pathology and Laboratory Medicine (B.L.), Biomolecular Chemistry and Medicine (D.S.A., D.F.M.), McArdle Laboratory for Cancer Research (J.Z.), Pediatrics (C.M.S.), and Ophthalmology and Visual Sciences (N.S.), University of Wisconsin School of Medicine and Public Health, Madison; and Department of Vascular Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China (Z.L.)
| | - Jun Ren
- From the Departments of Surgery (Z.L., S.M., J.R., Q.W., B.L.), Pathology and Laboratory Medicine (B.L.), Biomolecular Chemistry and Medicine (D.S.A., D.F.M.), McArdle Laboratory for Cancer Research (J.Z.), Pediatrics (C.M.S.), and Ophthalmology and Visual Sciences (N.S.), University of Wisconsin School of Medicine and Public Health, Madison; and Department of Vascular Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China (Z.L.)
| | - Qiwei Wang
- From the Departments of Surgery (Z.L., S.M., J.R., Q.W., B.L.), Pathology and Laboratory Medicine (B.L.), Biomolecular Chemistry and Medicine (D.S.A., D.F.M.), McArdle Laboratory for Cancer Research (J.Z.), Pediatrics (C.M.S.), and Ophthalmology and Visual Sciences (N.S.), University of Wisconsin School of Medicine and Public Health, Madison; and Department of Vascular Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China (Z.L.)
| | - Douglas S Annis
- From the Departments of Surgery (Z.L., S.M., J.R., Q.W., B.L.), Pathology and Laboratory Medicine (B.L.), Biomolecular Chemistry and Medicine (D.S.A., D.F.M.), McArdle Laboratory for Cancer Research (J.Z.), Pediatrics (C.M.S.), and Ophthalmology and Visual Sciences (N.S.), University of Wisconsin School of Medicine and Public Health, Madison; and Department of Vascular Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China (Z.L.)
| | - Deane F Mosher
- From the Departments of Surgery (Z.L., S.M., J.R., Q.W., B.L.), Pathology and Laboratory Medicine (B.L.), Biomolecular Chemistry and Medicine (D.S.A., D.F.M.), McArdle Laboratory for Cancer Research (J.Z.), Pediatrics (C.M.S.), and Ophthalmology and Visual Sciences (N.S.), University of Wisconsin School of Medicine and Public Health, Madison; and Department of Vascular Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China (Z.L.)
| | - Jing Zhang
- From the Departments of Surgery (Z.L., S.M., J.R., Q.W., B.L.), Pathology and Laboratory Medicine (B.L.), Biomolecular Chemistry and Medicine (D.S.A., D.F.M.), McArdle Laboratory for Cancer Research (J.Z.), Pediatrics (C.M.S.), and Ophthalmology and Visual Sciences (N.S.), University of Wisconsin School of Medicine and Public Health, Madison; and Department of Vascular Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China (Z.L.)
| | - Christine M Sorenson
- From the Departments of Surgery (Z.L., S.M., J.R., Q.W., B.L.), Pathology and Laboratory Medicine (B.L.), Biomolecular Chemistry and Medicine (D.S.A., D.F.M.), McArdle Laboratory for Cancer Research (J.Z.), Pediatrics (C.M.S.), and Ophthalmology and Visual Sciences (N.S.), University of Wisconsin School of Medicine and Public Health, Madison; and Department of Vascular Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China (Z.L.)
| | - Nader Sheibani
- From the Departments of Surgery (Z.L., S.M., J.R., Q.W., B.L.), Pathology and Laboratory Medicine (B.L.), Biomolecular Chemistry and Medicine (D.S.A., D.F.M.), McArdle Laboratory for Cancer Research (J.Z.), Pediatrics (C.M.S.), and Ophthalmology and Visual Sciences (N.S.), University of Wisconsin School of Medicine and Public Health, Madison; and Department of Vascular Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China (Z.L.)
| | - Bo Liu
- From the Departments of Surgery (Z.L., S.M., J.R., Q.W., B.L.), Pathology and Laboratory Medicine (B.L.), Biomolecular Chemistry and Medicine (D.S.A., D.F.M.), McArdle Laboratory for Cancer Research (J.Z.), Pediatrics (C.M.S.), and Ophthalmology and Visual Sciences (N.S.), University of Wisconsin School of Medicine and Public Health, Madison; and Department of Vascular Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China (Z.L.).
| |
Collapse
|
18
|
Rogers NM, Seeger F, Garcin ED, Roberts DD, Isenberg JS. Regulation of soluble guanylate cyclase by matricellular thrombospondins: implications for blood flow. Front Physiol 2014; 5:134. [PMID: 24772092 PMCID: PMC3983488 DOI: 10.3389/fphys.2014.00134] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 03/18/2014] [Indexed: 01/16/2023] Open
Abstract
Nitric oxide (NO) maintains cardiovascular health by activating soluble guanylate cyclase (sGC) to increase cellular cGMP levels. Cardiovascular disease is characterized by decreased NO-sGC-cGMP signaling. Pharmacological activators and stimulators of sGC are being actively pursued as therapies for acute heart failure and pulmonary hypertension. Here we review molecular mechanisms that modulate sGC activity while emphasizing a novel biochemical pathway in which binding of the matricellular protein thrombospondin-1 (TSP1) to the cell surface receptor CD47 causes inhibition of sGC. We discuss the therapeutic implications of this pathway for blood flow, tissue perfusion, and cell survival under physiologic and disease conditions.
Collapse
Affiliation(s)
- Natasha M Rogers
- Department of Medicine, Vascular Medicine Institute, University of Pittsburgh School of Medicine Pittsburgh, PA, USA
| | - Franziska Seeger
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County Baltimore, MD, USA
| | - Elsa D Garcin
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County Baltimore, MD, USA
| | - David D Roberts
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, NIH Bethesda, MD, USA
| | - Jeffrey S Isenberg
- Department of Medicine, Vascular Medicine Institute, University of Pittsburgh School of Medicine Pittsburgh, PA, USA ; Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine Pittsburgh, PA, USA
| |
Collapse
|
19
|
Stenina-Adognravi O. Invoking the power of thrombospondins: regulation of thrombospondins expression. Matrix Biol 2014; 37:69-82. [PMID: 24582666 DOI: 10.1016/j.matbio.2014.02.001] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 02/05/2014] [Accepted: 02/08/2014] [Indexed: 12/21/2022]
Abstract
Increasing evidence suggests critical functions of thrombospondins (TSPs) in a variety of physiological and pathological processes. With the growing understanding of the importance of these matricellular proteins, the need to understand the mechanisms of regulation of their expression and potential approaches to modulate their levels is also increasing. The regulation of TSP expression is multi-leveled, cell- and tissue-specific, and very precise. However, the knowledge of mechanisms modulating the levels of TSPs is fragmented and incomplete. This review discusses the known mechanisms of regulation of TSP levels and the gaps in our knowledge that prevent us from developing strategies to modulate the expression of these physiologically important proteins.
Collapse
Affiliation(s)
- Olga Stenina-Adognravi
- Department of Molecular Cardiology, Cleveland Clinic, 9500 Euclid Ave NB50, Cleveland, OH 44195, United States.
| |
Collapse
|
20
|
Roudier E, Milkiewicz M, Birot O, Slopack D, Montelius A, Gustafsson T, Paik JH, DePinho RA, Casale GP, Pipinos II, Haas TL. Endothelial FoxO1 is an intrinsic regulator of thrombospondin 1 expression that restrains angiogenesis in ischemic muscle. Angiogenesis 2013; 16:759-72. [PMID: 23677673 DOI: 10.1007/s10456-013-9353-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Accepted: 05/03/2013] [Indexed: 10/26/2022]
Abstract
Peripheral artery disease (PAD) is characterized by chronic muscle ischemia. Compensatory angiogenesis is minimal within ischemic muscle despite an increase in angiogenic factors. This may occur due to the prevalence of angiostatic factors. Regulatory mechanisms that could evoke an angiostatic environment during ischemia are largely unknown. Forkhead box O (FoxO) transcription factors, known to repress endothelial cell proliferation in vitro, are potential candidates. Our goal was to determine whether FoxO proteins promote an angiostatic phenotype within ischemic muscle. FoxO1 and the angiostatic matrix protein thrombospondin 1 (THBS1) were elevated in ischemic muscle from PAD patients, or from mice post-femoral artery ligation. Mice with conditional endothelial cell-directed deletion of FoxO proteins (Mx1Cre (+), FoxO1,3,4 (L/L) , referred to as FoxOΔ) were used to assess the role of endothelial FoxO proteins within ischemic tissue. FoxO deletion abrogated the elevation of FoxO1 and THBS1 proteins, enhanced hindlimb blood flow recovery and improved neovascularization in murine ischemic muscle. Endothelial cell outgrowth from 3D explant cultures was more robust in muscles derived from FoxOΔ mice. FoxO1 overexpression induced THBS1 production, and a direct interaction of endogenous FoxO1 with the THBS1 promoter was detectable in primary endothelial cells. We provide evidence that FoxO1 directly regulates THBS1 within ischemic muscle. Altogether, these findings bring novel insight into the regulatory mechanisms underlying the repression of angiogenesis within peripheral ischemic tissues.
Collapse
Affiliation(s)
- Emilie Roudier
- Angiogenesis Research Group, Faculty of Health, York University, Rm. 341 Farquharson Building, 4700 Keele St., Toronto, ON, M3J 1P3, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Blanc‐Brude OP, Tedgui A. Feeding sugar to tumors: with a supplement of miR? J Am Heart Assoc 2013; 1:e006213. [PMID: 23316335 PMCID: PMC3540671 DOI: 10.1161/jaha.112.006213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Olivier P. Blanc‐Brude
- INSERM UMR‐S 970, Paris Cardiovascular Research Center – PARCC, Université Paris Descartes, Sorbonne Paris Cité, Paris, France (O.P.B.B., A.T.)
| | - Alain Tedgui
- INSERM UMR‐S 970, Paris Cardiovascular Research Center – PARCC, Université Paris Descartes, Sorbonne Paris Cité, Paris, France (O.P.B.B., A.T.)
- Correspondence to: Alain Tedgui, PhD, UMR‐S 970, Paris Cardiovascular Research Center—PARCC, 56 rue Leblanc, 75015 Paris, France. E‐mail
| |
Collapse
|
22
|
Csányi G, Yao M, Rodríguez AI, Al Ghouleh I, Sharifi-Sanjani M, Frazziano G, Huang X, Kelley EE, Isenberg JS, Pagano PJ. Thrombospondin-1 regulates blood flow via CD47 receptor-mediated activation of NADPH oxidase 1. Arterioscler Thromb Vasc Biol 2012; 32:2966-73. [PMID: 23087362 DOI: 10.1161/atvbaha.112.300031] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Although the matricellular protein thrombospondin-1 (TSP1) is highly expressed in the vessel wall in response to injury, its pathophysiological role in the development of vascular disease is poorly understood. This study was designed to test the hypothesis that TSP1 stimulates reactive oxygen species production in vascular smooth muscle cells and induces vascular dysfunction by promoting oxidative stress. METHODS AND RESULTS Nanomolar concentrations of TSP1 found in human vascular disease robustly stimulated superoxide (O(2)(•-)) levels in vascular smooth muscle cells at both cellular and tissue level as measured by cytochrome c and electron paramagnetic resonance. A peptide mimicking the C terminus of TSP1 known to specifically bind CD47 recapitulated this response. Transcriptional knockdown of CD47 and a monoclonal inhibitory CD47 antibody abrogated TSP1-triggered O(2)(•-) in vitro and ex vivo. TSP1 treatment of vascular smooth muscle cells activated phospholipase C and protein kinase C, resulting in phosphorylation of the NADPH oxidase organizer subunit p47(phox) and subsequent Nox1 activation, leading to impairment of arterial vasodilatation ex vivo. Further, we observed that blockade of CD47 and NADPH oxidase 1 gene silencing in vivo in rats improves TSP1-induced impairment of tissue blood flow after ischemia reperfusion. CONCLUSIONS Our data suggest a highly regulated process of reactive oxygen species stimulation and blood flow regulation promoted through a direct TSP1/CD47-mediated activation of Nox1. This is the first report, to our knowledge, of a matricellular protein acting as a ligand for NADPH oxidase activation and through specific engagement of integrin-associated protein CD47.
Collapse
Affiliation(s)
- Gábor Csányi
- Vascular Medicine Institute, Department of Pharmacology and Chemical Biology, University of Pittsburgh, PA 15261, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
Peripheral arterial disease (PAD) is a common vascular disease that reduces blood flow capacity to the legs of patients. PAD leads to exercise intolerance that can progress in severity to greatly limit mobility, and in advanced cases leads to frank ischemia with pain at rest. It is estimated that 12 to 15 million people in the United States are diagnosed with PAD, with a much larger population that is undiagnosed. The presence of PAD predicts a 50% to 1500% increase in morbidity and mortality, depending on severity. Treatment of patients with PAD is limited to modification of cardiovascular disease risk factors, pharmacological intervention, surgery, and exercise therapy. Extended exercise programs that involve walking approximately five times per week, at a significant intensity that requires frequent rest periods, are most significant. Preclinical studies and virtually all clinical trials demonstrate the benefits of exercise therapy, including improved walking tolerance, modified inflammatory/hemostatic markers, enhanced vasoresponsiveness, adaptations within the limb (angiogenesis, arteriogenesis, and mitochondrial synthesis) that enhance oxygen delivery and metabolic responses, potentially delayed progression of the disease, enhanced quality of life indices, and extended longevity. A synthesis is provided as to how these adaptations can develop in the context of our current state of knowledge and events known to be orchestrated by exercise. The benefits are so compelling that exercise prescription should be an essential option presented to patients with PAD in the absence of contraindications. Obviously, selecting for a lifestyle pattern that includes enhanced physical activity prior to the advance of PAD limitations is the most desirable and beneficial.
Collapse
Affiliation(s)
- Tara L Haas
- Angiogenesis Research Group, Muscle Health Research Centre, Faculty of Health, York University, Toronto, Ontario, Canada
| | | | | | | |
Collapse
|
24
|
Firlej V, Mathieu JRR, Gilbert C, Lemonnier L, Nakhlé J, Gallou-Kabani C, Guarmit B, Morin A, Prevarskaya N, Delongchamps NB, Cabon F. Thrombospondin-1 triggers cell migration and development of advanced prostate tumors. Cancer Res 2011; 71:7649-58. [PMID: 22037878 DOI: 10.1158/0008-5472.can-11-0833] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The antitumor effects of pharmacologic inhibitors of angiogenesis are hampered in patients by the rapid development of tumor resistance, notably through increased invasiveness and accelerated metastasis. Here, we reevaluated the role of the endogenous antiangiogenic thrombospondin 1 (TSP1) in prostate carcinomas in which angiogenesis is an active process. In xenografted tumors, we observed that TSP1 altogether inhibited angiogenesis and fostered tumor development. Our results show that TSP1 is a potent stimulator of prostate tumor cell migration. This effect required CD36, which also mediates TSP1 antiangiogenic activity, and was mimicked by an antiangiogenic TSP1-derived peptide. As suspected for pharmacologic inhibitors of angiogenesis, the TSP1 capacities to increase hypoxia and to trigger cell migration are thus inherently linked. Importantly, although antiangiogenic TSP1 increases hypoxia in vivo, our data show that, in turn, hypoxia induced TSP1, thus generating a vicious circle in prostate tumors. In radical prostatectomy specimens, we found TSP1 expression significantly associated with invasive tumors and with tumors which eventually recurred. TSP1 may thus help select patients at risk of prostate-specific antigen relapse. Together, the data suggest that intratumor disruption of the hypoxic cycle through TSP1 silencing will limit tumor invasion.
Collapse
|
25
|
Morgan-Rowe L, Nikitorowicz J, Shiwen X, Leask A, Tsui J, Abraham D, Stratton R. Thrombospondin 1 in hypoxia-conditioned media blocks the growth of human microvascular endothelial cells and is increased in systemic sclerosis tissues. FIBROGENESIS & TISSUE REPAIR 2011; 4:13. [PMID: 21635730 PMCID: PMC3130666 DOI: 10.1186/1755-1536-4-13] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2010] [Accepted: 06/02/2011] [Indexed: 11/22/2022]
Abstract
Background Systemic sclerosis (SSc) is a chronic inflammatory autoimmune disease characterised by vascular dysfunction and damage, excess collagen deposition and subsequent organ manifestations. Vasculopathy is an early feature of the disease which leads to a chronic hypoxic environment in the tissues. Paradoxically, there is a lack of angiogenesis. We hypothesised that this may in part be due to a nonphysiological, overriding upregulation in antiangiogenic factors produced by the hypoxic tissues. We considered thrombospondin 1 (TSP-1) as a candidate antiangiogenic factor. Results Conditioned media from human microvascular endothelial cells cultured in both normoxic and hypoxic environments were able to block endothelial cell proliferation, with the latter environment having a more profound effect. Filtration to remove > 100-kDa proteins or heparin-binding proteins from the conditioned media eliminated their antiproliferative effect. TSP-1 was expressed in high concentrations in the hypoxic media, as was vascular endothelial growth factor (VEGF). Depletion of TSP-1 from the media by immunoprecipitation reduced the antiproliferative effect. We then show that, in a dose-dependent fashion, recombinant TSP-1 blocks the proliferation of endothelial cells. Immunohistochemistry of skin biopsy material revealed that TSP-1 expression was significantly higher throughout the skin of patients with SSc compared with healthy controls. Conclusions Despite the environment of chronic tissue hypoxia in SSc, there is a paradoxical absence of angiogenesis. This is thought to be due in part to aberrant expression of antiangiogenic factors, including TSP-1. We have demonstrated that TSP-1 is released in high concentrations by hypoxic endothelial cells. The conditioned media from these cells is able to block proliferation and induce apoptosis in microvascular endothelial cells, an effect that is reduced when TSP-1 is immunoprecipitated out. Further, we have shown that recombinant TSP-1 is able to block proliferation and induce apoptosis at concentrations consistent with those found in the plasma of patients with SSc and that its effect occurs in the presence of elevated VEGF levels. Taken together, these data are consistent with a model wherein injured microvascular cells in SSc fail to repair because of dysregulated induction of TSP-1 in the hypoxic tissues.
Collapse
Affiliation(s)
- Luke Morgan-Rowe
- Centre for Rheumatology Research and Connective Tissue Diseases, The Royal Free Hospital Campus, University College London, Pond Street, London NW3 2QG, UK.
| | | | | | | | | | | | | |
Collapse
|
26
|
Sounni NE, Paye A, Host L, Noël A. MT-MMPS as Regulators of Vessel Stability Associated with Angiogenesis. Front Pharmacol 2011; 2:111. [PMID: 21687519 PMCID: PMC3108474 DOI: 10.3389/fphar.2011.00111] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Accepted: 04/27/2011] [Indexed: 12/14/2022] Open
Abstract
The development of vascular system depends on the coordinated activity of a number of distinct families of molecules including growth factors and their receptors, cell adhesion molecules, extracellular matrix (ECM) molecules, and proteolytic enzymes. Matrix metalloproteases (MMPs) are a family of ECM degrading enzymes required for both physiological and pathological angiogenesis. Increasing evidence, point to a direct role of membrane type-MMPs (MT-MMPs) in vascular system stabilization, maturation, and leakage. Our understanding of the nature of MT-MMP interaction with extracellular and cell surface molecules and their multiple roles in vessel walls and perivascular stroma may provide new insights into mechanisms underlying vascular cell–ECM interactions and cell fate decisions in pathological conditions. Regulation of vascular leakage by MT-MMP interactions with the ECM could also lead to novel targeting opportunities for drug delivery in tumor. This review will shed lights on the emerging roles of MT1-MMP and MT4-MMP in vascular system alterations associated with cancer progression.
Collapse
Affiliation(s)
- Nor Eddine Sounni
- Laboratory of Tumor and Developmental Biology, Groupe Interdisciplinaire de Génoprotéomique Appliquée-Cancer, University of Liege Liège, Belgium
| | | | | | | |
Collapse
|
27
|
Avouac J, Clemessy M, Distler JH, Gasc JM, Ruiz B, Vacher-Lavenu MC, Wipff J, Kahan A, Boileau C, Corvol P, Allanore Y. Enhanced expression of ephrins and thrombospondins in the dermis of patients with early diffuse systemic sclerosis: potential contribution to perturbed angiogenesis and fibrosis. Rheumatology (Oxford) 2011; 50:1494-504. [DOI: 10.1093/rheumatology/keq448] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
28
|
Smadja DM, d'Audigier C, Bièche I, Evrard S, Mauge L, Dias JV, Labreuche J, Laurendeau I, Marsac B, Dizier B, Wagner-Ballon O, Boisson-Vidal C, Morandi V, Duong-Van-Huyen JP, Bruneval P, Dignat-George F, Emmerich J, Gaussem P. Thrombospondin-1 is a plasmatic marker of peripheral arterial disease that modulates endothelial progenitor cell angiogenic properties. Arterioscler Thromb Vasc Biol 2010; 31:551-9. [PMID: 21148423 DOI: 10.1161/atvbaha.110.220624] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
OBJECTIVE We examined whether plasma levels of angiogenic factors are altered in plasma of patients with peripheral arterial disease (PAD) and whether these factors affect endothelial progenitor cell-induced angiogenesis. METHODS AND RESULTS Plasma was collected from 184 patients with PAD and 330 age-matched healthy controls. Vascular endothelial growth factor and placental growth factor concentrations did not differ between the groups, whereas we found a linear correlation between PAD disease and thrombospondin (TSP)-1 plasma level. TSP-1 was expressed in newly formed vessels in PAD patients having received local injections of bone marrow mononuclear cells. To analyze the functional role of TSP-1 during neoangiogenesis, we used a Matrigel-plug assay and showed that vascularization of implanted Matrigel-plugs was increased in TSP-1(-/-) mice. Moreover, injections of TSP-1 in C57Bl6/J mice after hindlimb ischemia induced a significant decrease of blood flow recovery. To investigate the effects of TSP-1 on human endothelial colony-forming cell (ECFC) angiogenic potential, recombinant human TSP-1 and a small interfering RNA were used. In vitro, TSP-1 N-terminal part significantly enhanced ECFC adhesion, whereas recombinant human TSP-1 had a negative effect on ECFC angiogenic potential. This effect, mediated by CD47 binding, modulated stromal cell-derived factor 1/CXC chemokine receptor 4 pathway. CONCLUSIONS TSP-1 is a potential biomarker of PAD and ECFC-induced angiogenesis, suggesting that TSP-1 modulation might improve local tissue ischemia in this setting. ( CLINICAL TRIAL REGISTRATION NCT00377897.).
Collapse
|
29
|
Kurihara H, Harita Y, Ichimura K, Hattori S, Sakai T. SIRP-alpha-CD47 system functions as an intercellular signal in the renal glomerulus. Am J Physiol Renal Physiol 2010; 299:F517-27. [PMID: 20554646 DOI: 10.1152/ajprenal.00571.2009] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The renal glomerulus consists of endothelial cells, podocytes, and mesangial cells. These cells cooperate with each other for glomerular filtration; however, the intercellular signaling molecules between glomerular cells are not fully determined. Tyrosine phosphorylation of slit diaphragm molecules is a key to the detection of the signal to podocytes from other cells. Although src kinase is involved in this event, the molecules working for dephosphorylation remain unclear. We demonstrate that signal-inhibitory regulatory protein (SIRP)-alpha, which recruits a broadly distributed tyrosine dephosphorylase SHP-2 to the plasma membrane, is located in podocytes. SIRP-alpha is a type I transmembrane glycoprotein, which has three immunoglobulin-like domains in the extracellular region and two SH2 binding motifs in the cytoplasm. This molecule functions as a scaffold for many proteins, especially the SHP-2 molecule. SIRP-alpha is concentrated in the slit diaphragm region of normal podocytes. CD47, a ligand for SIRP-alpha, is also expressed in the glomerulus. CD47 is located along the plasma membrane of mesangial cells, but not on podocytes. CD47 is markedly decreased during mesangiolysis, but increased in mesangial cells in the restoration stage. SIRP-alpha is heavily tyrosine phosphorylated under normal conditions; however, tyrosine phosphorylation of SIRP-alpha was markedly decreased during mesangiolysis induced by Thy1.1 monoclonal antibody injection. It is known that the cytoplasmic domain of SIPR-alpha is dephosphorylated when CD47 binds to the extracellular domain of SIRP-alpha. The data suggest that the CD47-SIRP-alpha interaction may be functionally important in cell-cell communication in the diseased glomerulus.
Collapse
Affiliation(s)
- Hidetake Kurihara
- Department of Anatomy, Juntendo University School of Medicine, Tokyo, Japan.
| | | | | | | | | |
Collapse
|
30
|
Miller TW, Isenberg JS, Roberts DD. Thrombospondin-1 is an inhibitor of pharmacological activation of soluble guanylate cyclase. Br J Pharmacol 2010; 159:1542-7. [PMID: 20233213 DOI: 10.1111/j.1476-5381.2009.00631.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND AND PURPOSE Soluble guanylate cyclase (sGC) is the signal transduction enzyme most responsible for mediating the effects of nitric oxide (NO). Recently, NO-independent small molecule activators of sGC have been developed that have promising clinical activities. We have shown that the secreted matrix protein thrombospondin-1 (TSP-1) binds to CD47 and potently inhibits NO stimulation of sGC in endothelial and vascular smooth muscle cells (VSMCs) and platelets. Here we show that TSP-1 signalling via CD47 inhibits sGC activation by NO-independent sGC activating small molecules. EXPERIMENTAL APPROACH Vascular smooth muscle cells and washed human platelets were pretreated with TSP-1 (2.2 nM) in the presence of haeme-dependent sGC activators (YC-1, BAY 41-2272), and a haeme-independent activator (meso-porphyrin IX), and cGMP levels were measured. The effect of sGC activators on platelet aggregation and contraction of VSMC embedded in collagen gels was also assayed in the presence and absence of TSP-1. KEY RESULTS Thrombospondin-1 inhibited sGC activator-dependent increase in cGMP in VSMC and platelets. TSP-1 pretreatment also inhibited the ability of these agents to delay thrombin-induced platelet aggregation. TSP-1 pretreatment reduced the ability of sGC activating agents to abrogate VSMC contraction in vitro. CONCLUSIONS AND IMPLICATIONS This work demonstrates that TSP-1 is a universal inhibitor of sGC, blocking both haeme-dependent and haeme-independent activation. These data coupled with the reported increases in TSP-1 with age, diabetes, ischaemia/reperfusion, and atherosclerosis implies that the therapeutic potential of all drugs that activate sGC could be compromised in disease states where TSP-1/CD47 signalling is elevated.
Collapse
Affiliation(s)
- Thomas W Miller
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
31
|
Iliescu R, Fernandez SR, Kelsen S, Maric C, Chade AR. Role of renal microcirculation in experimental renovascular disease. Nephrol Dial Transplant 2009; 25:1079-87. [PMID: 19934087 DOI: 10.1093/ndt/gfp605] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Renal artery stenosis (RAS) causes renal injury partly via microvascular (MV) endothelial dysfunction and damage. Vascular endothelial growth factor (VEGF) is crucial for preservation of microvasculature and promotes vascular proliferation and endothelial repair. We have previously shown that MV rarefaction is associated with decreased VEGF in the kidney exposed to chronic RAS, accompanied by deteriorated renal function and fibrosis. We hypothesized that preserving the renal microcirculation in the stenotic kidney will halt the progression of renal damage. METHODS Unilateral RAS was induced in 16 pigs. In eight, VEGF (0.05 micrograms/kg) was infused intra-renally at the onset of RAS. After 6 weeks, single-kidney haemodynamics and function were assessed using in vivo multi-detector computed tomography (CT). Renal microvessels, angiogenic pathways and morphology were investigated ex vivo using micro-CT, real-time PCR and histology. RESULTS Blood pressure and degree of RAS was similar in RAS and RAS + VEGF pigs. Single-kidney renal blood flow (RBF) and glomerular filtration rate (GFR) were reduced in RAS compared to Normal (221.1 +/- 46.5 and 29.9 +/- 3.8 vs. 522.5 +/- 60.9 and 49.3 +/- 3.4 mL/min, respectively, P < 0.05), accompanied by decreased cortical MV density and increased renal fibrosis. Pre-emptive administration of VEGF preserved MV architecture, attenuated fibrosis and normalized RBF and GFR (510.8 +/- 50.9 and 39.9.1 +/- 4.1 mL/min, P = not significant vs. Normal). CONCLUSIONS This study underscores the importance of the renal microcirculation in renovascular disease. Intra-renal administration of VEGF preserved renal MV architecture and function of the stenotic kidney, which in turn preserved renal haemodynamics and function and decreased renal fibrosis. These observations suggest that preventing renal MV loss may be a potential target for therapeutic approaches for patients with chronic renovascular disease.
Collapse
Affiliation(s)
- Radu Iliescu
- The Department of Physiology and Biophysics, Center for Excellence in Cardiovascular-Renal Research, University of Mississippi Medical Center, Jackson, MS, USA
| | | | | | | | | |
Collapse
|
32
|
Mwaikambo BR, Yang C, Chemtob S, Hardy P. Hypoxia up-regulates CD36 expression and function via hypoxia-inducible factor-1- and phosphatidylinositol 3-kinase-dependent mechanisms. J Biol Chem 2009; 284:26695-707. [PMID: 19640849 DOI: 10.1074/jbc.m109.033480] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Neovascular and degenerative diseases of the eye are leading causes of impaired vision and blindness in the world. Hypoxia or reduced oxygen tension is considered central to the pathogenesis of these disorders. Although the CD36 scavenger receptor features prominently in ocular homeostasis and pathology, little is known regarding its modulation by hypoxia. Herein we investigated the role and regulation of CD36 by hypoxia and by the major hypoxia effector, hypoxia-inducible factor (HIF)-1. In vivo, hypoxia markedly induced CD36 mRNA in corneal and retinal tissue. Subsequent experiments on human retinal pigment epithelial cells revealed that hypoxia time-dependently increased CD36 mRNA, protein, and surface expression; these responses were reliant upon reactive oxygen species production. As an important novel finding, we demonstrate that hypoxic stimulation of CD36 is mediated by HIF-1; HIF-1alpha down-regulation abolished CD36 induction by both hypoxia and cobalt chloride. Sequence analysis of the human CD36 promoter region revealed a functional HIF-1 binding site. A luciferase reporter construct containing this promoter fragment was activated by hypoxia, whereas mutation at the HIF-1 consensus site decreased promoter activation. Specific binding of HIF-1 to this putative site in hypoxic cells was detected by a chromatin immunoprecipitation assay. Interestingly, inhibition of the phosphatidylinositol 3-kinase pathway blocked the hypoxia-dependent induction of CD36 expression and promoter activity. Functional ramifications of CD36 hypoxic accumulation were evinced by CD36-dependent increases in scavenging and anti-angiogenic activities. Together, our findings indicate a novel mechanism by which hypoxia induces CD36 expression via activation of HIF-1 and the phosphatidylinositol 3-kinase pathway.
Collapse
Affiliation(s)
- Bupe R Mwaikambo
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | | | | | | |
Collapse
|
33
|
Liu A, Mosher DF, Murphy-Ullrich JE, Goldblum SE. The counteradhesive proteins, thrombospondin 1 and SPARC/osteonectin, open the tyrosine phosphorylation-responsive paracellular pathway in pulmonary vascular endothelia. Microvasc Res 2009; 77:13-20. [PMID: 18952113 PMCID: PMC3022346 DOI: 10.1016/j.mvr.2008.08.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2008] [Accepted: 08/28/2008] [Indexed: 11/30/2022]
Abstract
Counteradhesive proteins are a group of genetically and structurally distinct multidomain proteins that have been grouped together for their ability to inhibit cell-substrate interactions. Three counteradhesive proteins that influence endothelial cell behavior include thrombospondin (TSP)1, (SPARC) (Secreted Protein Acidic and Rich in Cysteine), also known as osteonectin, and tenascin. More recently, these proteins have been shown to regulate not only cell-matrix interactions but cell-cell interactions as well. TSP1 increases tyrosine phosphorylation of components of the cell-cell adherens junctions or zonula adherens (ZA) and opens the paracellular pathway in human lung microvascular endothelia. The epidermal growth factor (EGF)-repeats of TSP1 activate the (EGF) receptor (EGFR) and ErbB2, and these two receptor protein tyrosine kinases (PTK)s participate in ZA protein tyrosine phosphorylation and barrier disruption in response to the TSP1 stimulus. For the barrier response to TSP1, EGFR/ErbB2 activation is necessary but insufficient. Protein tyrosine phosphatase (PTP)mu counter-regulates phosphorylation of selected tyrosine residues within the cytoplasmic domain of EGFR. Although tenascin, like TSP1, also contains EGF-like repeats and is known to activate EGFR, whether it also opens the paracellular pathway is unknown. In addition to TSP1, tenascin, and the other TSP family members, there are numerous other proteins that also contain EGF-like repeats and participate in hemostasis, wound healing, and tissue remodeling. EGFR not only responds to direct binding of EGF motif-containing ligands but can also be transactivated by a wide range of diverse stimuli. In fact, several established mediators of increased vascular permeability and/or lung injury, including thrombin, tumor necrosis factor-alpha, platelet-activating factor, bradykinin, angiopoietin, and H(2)O(2), transactivate EGFR. It is conceivable that EGFR serves a pivotal signaling role in a final common pathway for the pulmonary response to selected injurious stimuli. SPARC/Osteonectin also increases tyrosine phosphorylation of ZA proteins and opens the endothelial paracellular pathway in a PTK-dependent manner. The expression of the counteradhesive proteins is increased in response to a wide range of injurious stimuli. It is likely that these same molecules participate in the host response to acute lung injury and are operative during the barrier response within the pulmonary microvasculature.
Collapse
Affiliation(s)
- Anguo Liu
- University of Maryland School of Medicine, Mucosal Biology Research Center, Baltimore, MD 21201, USA
| | | | | | | |
Collapse
|
34
|
Bréchot N, Gomez E, Bignon M, Khallou-Laschet J, Dussiot M, Cazes A, Alanio-Bréchot C, Durand M, Philippe J, Silvestre JS, Van Rooijen N, Corvol P, Nicoletti A, Chazaud B, Germain S. Modulation of macrophage activation state protects tissue from necrosis during critical limb ischemia in thrombospondin-1-deficient mice. PLoS One 2008; 3:e3950. [PMID: 19079608 PMCID: PMC2597179 DOI: 10.1371/journal.pone.0003950] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2008] [Accepted: 11/17/2008] [Indexed: 01/01/2023] Open
Abstract
Background Macrophages, key regulators of healing/regeneration processes, strongly infiltrate ischemic tissues from patients suffering from critical limb ischemia (CLI). However pro-inflammatory markers correlate with disease progression and risk of amputation, suggesting that modulating macrophage activation state might be beneficial. We previously reported that thrombospondin-1 (TSP-1) is highly expressed in ischemic tissues during CLI in humans. TSP-1 is a matricellular protein that displays well-known angiostatic properties in cancer, and regulates inflammation in vivo and macrophages properties in vitro. We therefore sought to investigate its function in a mouse model of CLI. Methods and Findings Using a genetic model of tsp-1−/− mice subjected to femoral artery excision, we report that tsp-1−/− mice were clinically and histologically protected from necrosis compared to controls. Tissue protection was associated with increased postischemic angiogenesis and muscle regeneration. We next showed that macrophages present in ischemic tissues exhibited distinct phenotypes in tsp-1−/− and wt mice. A strong reduction of necrotic myofibers phagocytosis was observed in tsp-1−/− mice. We next demonstrated that phagocytosis of muscle cell debris is a potent pro-inflammatory signal for macrophages in vitro. Consistently with these findings, macrophages that infiltrated ischemic tissues exhibited a reduced postischemic pro-inflammatory activation state in tsp-1−/− mice, characterized by a reduced Ly-6C expression and a less pro-inflammatory cytokine expression profile. Finally, we showed that monocyte depletion reversed clinical and histological protection from necrosis observed in tsp-1−/− mice, thereby demonstrating that macrophages mediated tissue protection in these mice. Conclusion This study defines targeting postischemic macrophage activation state as a new potential therapeutic approach to protect tissues from necrosis and promote tissue repair during CLI. Furthermore, our data suggest that phagocytosis plays a crucial role in promoting a deleterious intra-tissular pro-inflammatory macrophage activation state during critical injuries. Finally, our results describe TSP-1 as a new relevant physiological target during critical leg ischemia.
Collapse
Affiliation(s)
- Nicolas Bréchot
- INSERM, U833, Paris, France
- Laboratoire Angiogenèse Embryonnaire et Pathologique, Collège de France, Paris, France
| | - Elisa Gomez
- INSERM, U833, Paris, France
- Laboratoire Angiogenèse Embryonnaire et Pathologique, Collège de France, Paris, France
| | - Marine Bignon
- INSERM, U833, Paris, France
- Laboratoire Angiogenèse Embryonnaire et Pathologique, Collège de France, Paris, France
| | - Jamila Khallou-Laschet
- INSERM, U872, Paris, France
- Centre de recherche des Cordeliers, Université Pierre et Marie Curie, Paris, France
| | - Michael Dussiot
- INSERM, U872, Paris, France
- Centre de recherche des Cordeliers, Université Pierre et Marie Curie, Paris, France
| | - Aurélie Cazes
- INSERM, U833, Paris, France
- Laboratoire Angiogenèse Embryonnaire et Pathologique, Collège de France, Paris, France
| | | | - Mélanie Durand
- INSERM, U833, Paris, France
- Laboratoire Angiogenèse Embryonnaire et Pathologique, Collège de France, Paris, France
| | - Josette Philippe
- INSERM, U833, Paris, France
- Laboratoire Angiogenèse Embryonnaire et Pathologique, Collège de France, Paris, France
| | - Jean-Sébastien Silvestre
- INSERM, U689, Paris, France
- Centre de Recherche Cardiovasculaire de Lariboisière, Université Denis Diderot, Paris, France
| | - Nico Van Rooijen
- Department of Molecular Cell Biology, Free University Medical Center, Amsterdam, The Netherlands
| | - Pierre Corvol
- INSERM, U833, Paris, France
- Laboratoire Angiogenèse Embryonnaire et Pathologique, Collège de France, Paris, France
| | - Antonino Nicoletti
- INSERM, U872, Paris, France
- Centre de recherche des Cordeliers, Université Pierre et Marie Curie, Paris, France
| | - Bénédicte Chazaud
- INSERM, U 567, CNRS UMR 8104, Paris, France
- Institut Cochin, Université Paris 5, Paris, France
| | - Stéphane Germain
- INSERM, U833, Paris, France
- Laboratoire Angiogenèse Embryonnaire et Pathologique, Collège de France, Paris, France
- Service d'Hématologie Biologique A, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
- * E-mail:
| |
Collapse
|
35
|
Gene silencing of CD47 and antibody ligation of thrombospondin-1 enhance ischemic tissue survival in a porcine model: implications for human disease. Ann Surg 2008; 247:860-8. [PMID: 18438125 DOI: 10.1097/sla.0b013e31816c4006] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
BACKGROUND Insufficient tissue perfusion underlies many acute and chronic diseases. Tissue perfusion in turn requires adequate blood flow, determined in large part by the relative state of relaxation or constriction of arterial vessels. Nitric oxide (NO) produced by vascular cells modulates blood flow and tissue perfusion by relaxing and dilating arteries. Recently, we reported that the secreted protein thrombospondin-1 (TSP1), through its cell surface receptor CD47, limits the ability of NO to relax and dilate blood vessels and thus decreases tissue perfusion. In the present study, we tested the hypothesis that blocking TSP1-CD47 signaling increases ischemic tissue survival in random cutaneous porcine flaps. METHODS Random cutaneous flaps 2 x 10 cm2 were raised in white hairless Yucatan miniature pigs and were treated with a monoclonal antibody to TSP1, an antisense morpholino oligonucleotide to CD47 or control agents and tissue survival assessed. Primary vascular smooth muscle cell cultured from Yucatan pigs were also treated with the same agents +/- and an NO donor (DEA/NO) and cGMP quantified. RESULTS Antibody blockade of TSP1 or morpholino suppression of CD47 dramatically enhanced survival of random tissue flaps. These responses correlated with increased blood vessel patency and tissue blood flow on vessel injection studies. NO-stimulated cGMP flux in Yucatan vascular smooth muscle cell was abrogated after antibody or morpholino treatment. CONCLUSION Antibody ligation of TSP1 or antisense morpholino knock down of CD47 greatly increased tissue survival to ischemia. Given the similarity between porcine and human soft tissues these results suggest significant therapeutic potential for people.
Collapse
|
36
|
Abstract
CD47, originally named integrin-associated protein, is a receptor for thrombospondin-1. A number of important roles for CD47 have been defined in regulating the migration, proliferation, and survival of vascular cells, and in regulation of innate and adaptive immunity. The recent discovery that thrombospondin-1 acts via CD47 to inhibit nitric oxide signaling throughout the vascular system has given new importance and perhaps a unifying mechanism of action to these enigmatic proteins. Here we trace the development of this exciting new paradigm for CD47 function in vascular physiology.
Collapse
Affiliation(s)
- Jeff S Isenberg
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | | | | |
Collapse
|
37
|
Isenberg JS, Frazier WA, Roberts DD. Thrombospondin-1: a physiological regulator of nitric oxide signaling. Cell Mol Life Sci 2008; 65:728-42. [PMID: 18193160 PMCID: PMC2562780 DOI: 10.1007/s00018-007-7488-x] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Thrombospondin-1 is a secreted protein that modulates vascular cell behavior via several cell surface receptors. In vitro, nanomolar concentrations of thrombospondin-1 are required to alter endothelial and vascular smooth muscle cell adhesion, proliferation, motility, and survival. Yet, much lower levels of thrombospondin-1 are clearly functional in vivo. This discrepancy was explained with the discovery that the potency of thrombospondin-1 increases more than 100-fold in the presence of physiological levels of nitric oxide (NO). Thrombospondin-1 binding to CD47 inhibits NO signaling by preventing cGMP synthesis and activation of its target cGMP-dependent protein kinase. This potent antagonism of NO signaling allows thrombospondin-1 to acutely constrict blood vessels, accelerate platelet aggregation, and if sustained, inhibit angiogenic responses. Acute antagonism of NO signaling by thrombospondin-1 is important for hemostasis but becomes detrimental for tissue survival of ischemic injuries. New therapeutic approaches targeting thrombospondin-1 or CD47 can improve recovery from ischemic injuries and overcome a deficit in NO-responsiveness in aging. (Part of a Multi-author Review).
Collapse
Affiliation(s)
- J. S. Isenberg
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Building 10, Room 2A33, 10 Center Dr MSC1500, Bethesda, Maryland 20892 USA
| | - W. A. Frazier
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110 USA
| | - D. D. Roberts
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Building 10, Room 2A33, 10 Center Dr MSC1500, Bethesda, Maryland 20892 USA
| |
Collapse
|
38
|
Isenberg JS, Hyodo F, Pappan LK, Abu-Asab M, Tsokos M, Krishna MC, Frazier WA, Roberts DD. Blocking thrombospondin-1/CD47 signaling alleviates deleterious effects of aging on tissue responses to ischemia. Arterioscler Thromb Vasc Biol 2007; 27:2582-8. [PMID: 17916772 DOI: 10.1161/atvbaha.107.155390] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Decreased blood flow secondary to peripheral vascular disease underlies a significant number of chronic diseases that account for the majority of morbidity and mortality among the elderly. Blood vessel diameter and blood flow are limited by the matricellular protein thrombospondin-1 (TSP1) through its ability to block responses to the endogenous vasodilator nitric oxide (NO). In this study we investigate the role TSP1 plays in regulating blood flow in the presence of advanced age and atherosclerotic vascular disease. METHODS AND RESULTS Mice lacking TSP1 or CD47 show minimal loss of their resistance to ischemic injury with age and increased preservation of tissue perfusion immediately after injury. Treatment of WT and apolipoprotein E-null mice using therapeutic agents that decrease CD47 or enhance NO levels reverses the deleterious effects of age- and diet-induced vasculopathy and results in significantly increased tissue survival in models of ischemia. CONCLUSIONS With increasing age and diet-induced atherosclerotic vascular disease, TSP1 and its receptor CD47 become more limiting for blood flow and tissue survival after ischemic injury. Drugs that limit TSP1/CD47 regulation of blood flow could improve outcomes from surgical interventions in the elderly and ameliorate vascular complications attendant to aging.
Collapse
Affiliation(s)
- Jeff S Isenberg
- MPH, Laboratory of Pathology, Building 10, 2A33, National Cancer Institute, Bethesda, Maryland 20892-1500, USA.
| | | | | | | | | | | | | | | |
Collapse
|
39
|
van Weel V, Seghers L, de Vries MR, Kuiper EJ, Schlingemann RO, Bajema IM, Lindeman JHN, Delis-van Diemen PM, van Hinsbergh VWM, van Bockel JH, Quax PHA. Expression of Vascular Endothelial Growth Factor, Stromal Cell-Derived Factor-1, and CXCR4 in Human Limb Muscle With Acute and Chronic Ischemia. Arterioscler Thromb Vasc Biol 2007; 27:1426-32. [PMID: 17363691 DOI: 10.1161/atvbaha.107.139642] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Vascular endothelial growth factor (VEGF)-induced stromal cell-derived factor-1 (SDF-1) has been implicated in angiogenesis in ischemic tissues by recruitment of CXCR4-positive bone marrow-derived circulating cells with paracrine functions in preclinical models. Here, evidence for this is provided in patients with peripheral artery disease. METHODS AND RESULTS Expression patterns of VEGF, SDF-1, and CXCR4 were studied in amputated limbs of 16 patients. VEGF-A was expressed in vascular structures and myofibers. SDF-1 was expressed in endothelial and subendothelial cells, whereas CXCR4 was expressed in proximity to capillaries. VEGF-A, SDF-1, and CXCR4 expressions were generally decreased in ischemic muscle as compared with nonischemic muscle in patients with chronic ischemia (0.41-fold, 0.97-fold, and 0.54-fold induction [medians], respectively), whereas substantially increased in 2 patients with acute-on-chronic ischemia (3.5- to 65.8-fold, 3.9- to 19.0-fold, and 4.1- to 30.6-fold induction, respectively). Furthermore, these gene expressions strongly correlated with capillary area. Only acute ischemic tissue displayed a high percentage of hypoxia-inducible factor-1alpha-positive nuclei. CONCLUSIONS These data suggest that VEGF and SDF-1 function as pro-angiogenic factors in patients with ischemic disease by perivascular retention of CXCR4-positive cells. Furthermore, these genes are downregulated in chronic ischemia as opposed to upregulated in more acute ischemia. The VEGF-SDF-1-CXCR4 pathway is a promising target to treat chronic ischemic disease.
Collapse
MESH Headings
- Acute Disease
- Aged
- Aged, 80 and over
- Amputation, Surgical
- Capillaries/pathology
- Chemokine CXCL12
- Chemokines, CXC/analysis
- Chemokines, CXC/genetics
- Chronic Disease
- Extremities/blood supply
- Female
- Humans
- Immunohistochemistry
- Ischemia/etiology
- Ischemia/metabolism
- Ischemia/pathology
- Ischemia/physiopathology
- Ischemia/surgery
- Male
- Middle Aged
- Muscle, Skeletal/blood supply
- Muscle, Skeletal/chemistry
- Muscle, Skeletal/pathology
- Muscle, Skeletal/physiopathology
- Neovascularization, Physiologic
- Peripheral Vascular Diseases/complications
- Peripheral Vascular Diseases/metabolism
- Peripheral Vascular Diseases/physiopathology
- RNA, Messenger/analysis
- Receptors, CXCR4/analysis
- Receptors, CXCR4/genetics
- Receptors, Vascular Endothelial Growth Factor/analysis
- Reverse Transcriptase Polymerase Chain Reaction
- Vascular Endothelial Growth Factor A/analysis
- Vascular Endothelial Growth Factor A/genetics
Collapse
Affiliation(s)
- Vincent van Weel
- Gaubius Laboratory TNO-Quality of Life, P.O. Box 2215, 2301CE Leiden, The Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Olfert IM, Breen EC, Gavin TP, Wagner PD. Temporal thrombospondin-1 mRNA response in skeletal muscle exposed to acute and chronic exercise. Growth Factors 2006; 24:253-9. [PMID: 17381066 DOI: 10.1080/08977190601000111] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Thrombospondin-l (TSP-1) is believed to be an endogenous angiogenic inhibitor. In this study, we report that a single 1 h bout of treadmill running increases TSP-1 mRNA 3-4-fold (p < 0.001). Interestingly, with short-term training (up to 5 days, 1 h/day) the acute response of TSP-1 mRNA to exercise was ablated after 3 days. Following long-term training (8 weeks, 1 h/day, 5 d/wk), in either normoxia or chronic hypoxia, the TSP-1 mRNA response to an acute bout of exercise was restored and increased 3-4-fold (p < 0.01). However, chronic exposure to hypoxia (8-weeks) decreases both the basal and acute exercise-induced TSP-1 mRNA levels by 44 and 48%, respectively (p < 0.05). Based on the robust TSP-1 gene response to a single acute exercise bout, its temporal response to repetitive exercise bouts, and the putative role of TSP-1 in the angiogenic process, we speculate that TSP-1 may play a role in regulating the onset of skeletal muscle angiogenesis in response to exercise.
Collapse
Affiliation(s)
- I Mark Olfert
- Division of Physiology, Department of Medicine, University of California San Diego, La Jolla, CA 92093-0623, USA.
| | | | | | | |
Collapse
|
41
|
Isenberg JS, Hyodo F, Matsumoto KI, Romeo MJ, Abu-Asab M, Tsokos M, Kuppusamy P, Wink DA, Krishna MC, Roberts DD. Thrombospondin-1 limits ischemic tissue survival by inhibiting nitric oxide-mediated vascular smooth muscle relaxation. Blood 2006; 109:1945-52. [PMID: 17082319 PMCID: PMC1801044 DOI: 10.1182/blood-2006-08-041368] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The nitric oxide (NO)/cGMP pathway, by relaxing vascular smooth muscle cells, is a major physiologic regulator of tissue perfusion. We now identify thrombospondin-1 as a potent antagonist of NO for regulating F-actin assembly and myosin light chain phosphorylation in vascular smooth muscle cells. Thrombospondin-1 prevents NO-mediated relaxation of precontracted vascular smooth muscle cells in a collagen matrix. Functional magnetic resonance imaging demonstrated that an NO-mediated increase in skeletal muscle perfusion was enhanced in thrombospondin-1-null relative to wild-type mice, implicating endogenous thrombospondin-1 as a physiologic antagonist of NO-mediated vasodilation. Using a random myocutaneous flap model for ischemic injury, tissue survival was significantly enhanced in thrombospondin-1-null mice. Improved flap survival correlated with increased recovery of oxygen levels in the ischemic tissue of thrombospondin-1-null mice as measured by electron paramagnetic resonance oximetry. These findings demonstrate an important antagonistic relation between NO/cGMP signaling and thrombospondin-1 in vascular smooth muscle cells to regulate vascular tone and tissue perfusion.
Collapse
Affiliation(s)
- Jeff S Isenberg
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-1500, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|