1
|
Bai J, Zhao Y, Wang Z, Qin P, Huang J, Cheng Y, Wang C, Chen Y, Liu L, Zhang Y, Wu B. Stroke-Associated Pneumonia and the Brain-Gut-Lung Axis: A Systematic Literature Review. Neurologist 2025:00127893-990000000-00191. [PMID: 40331253 DOI: 10.1097/nrl.0000000000000626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
BACKGROUND Stroke-associated pneumonia (SAP), a highly lethal complication following stroke, is closely linked to dysregulation of the "brain-gut-lung axis." Accumulating evidence indicates that stroke triggers intestinal alterations through the brain-gut axis, while multiple studies confirm that gut-derived changes can mediate pneumonia through the gut-lung axis. However, the mechanisms connecting stroke-induced intestinal dyshomeostasis to SAP remain incompletely elucidated, and the multiorgan interaction mechanisms of the "brain-gut-lung axis" in SAP pathogenesis require further exploration. REVIEW SUMMARY This systematic literature review systematically searched databases, including PubMed, using the keywords "stroke," "gastrointestinal microbiome," and "bacterial pneumonia," incorporating 80 mechanistic studies. Key findings reveal that stroke initiates a cascade of "neuro-microbial-immune" pathway interactions along the brain-gut-lung axis, leading to intestinal dyshomeostasis characterized by microbiota and metabolite alterations, barrier disruption, immune dysregulation, inflammatory responses, and impaired gut motility. These intestinal perturbations ultimately disrupt pulmonary immune homeostasis, promoting SAP development. In addition, stroke directly induces vagus nerve injury through the brain-gut axis, resulting in impaired swallowing and cough reflexes that exacerbate aspiration-related pulmonary infection risks. CONCLUSIONS Elucidating the role of the brain-gut-lung axis in SAP pathogenesis provides critical insights into its underlying mechanisms. This paradigm highlights intestinal homeostasis modulation and vagus nerve stimulation as promising therapeutic strategies for SAP prevention and management, advancing a multitargeted approach to mitigate poststroke complications.
Collapse
Affiliation(s)
- Jing Bai
- Tianjin University of Traditional Chinese Medicine
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yusheng Zhao
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zihe Wang
- Tianjin University of Traditional Chinese Medicine
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Peng Qin
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jingjie Huang
- Tianjin University of Traditional Chinese Medicine
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yupei Cheng
- Tianjin University of Traditional Chinese Medicine
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Chaoran Wang
- Tianjin University of Traditional Chinese Medicine
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yuyan Chen
- Tianjin University of Traditional Chinese Medicine
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Longxiao Liu
- Tianjin University of Traditional Chinese Medicine
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yuxing Zhang
- Tianjin University of Traditional Chinese Medicine
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Bangqi Wu
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
2
|
Li J, Xiao C, Li C, He J. Tissue-resident immune cells: from defining characteristics to roles in diseases. Signal Transduct Target Ther 2025; 10:12. [PMID: 39820040 PMCID: PMC11755756 DOI: 10.1038/s41392-024-02050-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/28/2024] [Accepted: 11/04/2024] [Indexed: 01/19/2025] Open
Abstract
Tissue-resident immune cells (TRICs) are a highly heterogeneous and plastic subpopulation of immune cells that reside in lymphoid or peripheral tissues without recirculation. These cells are endowed with notably distinct capabilities, setting them apart from their circulating leukocyte counterparts. Many studies demonstrate their complex roles in both health and disease, involving the regulation of homeostasis, protection, and destruction. The advancement of tissue-resolution technologies, such as single-cell sequencing and spatiotemporal omics, provides deeper insights into the cell morphology, characteristic markers, and dynamic transcriptional profiles of TRICs. Currently, the reported TRIC population includes tissue-resident T cells, tissue-resident memory B (BRM) cells, tissue-resident innate lymphocytes, tissue-resident macrophages, tissue-resident neutrophils (TRNs), and tissue-resident mast cells, but unignorably the existence of TRNs is controversial. Previous studies focus on one of them in specific tissues or diseases, however, the origins, developmental trajectories, and intercellular cross-talks of every TRIC type are not fully summarized. In addition, a systemic overview of TRICs in disease progression and the development of parallel therapeutic strategies is lacking. Here, we describe the development and function characteristics of all TRIC types and their major roles in health and diseases. We shed light on how to harness TRICs to offer new therapeutic targets and present burning questions in this field.
Collapse
Affiliation(s)
- Jia Li
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chu Xiao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chunxiang Li
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Jie He
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
3
|
Wright SW, Sengyee S, Ekchariyawat P, Phunpang R, Dulsuk A, Rerolle G, Bashmail A, Chantratita N, Gharib SA, West TE. γδ T Cells Mediate Protection against Neutrophil-associated Lung Inflammation in Pulmonary Melioidosis. Am J Respir Cell Mol Biol 2024; 71:546-558. [PMID: 38935886 PMCID: PMC11568474 DOI: 10.1165/rcmb.2024-0072oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 06/27/2024] [Indexed: 06/29/2024] Open
Abstract
Pulmonary melioidosis is a severe tropical infection caused by Burkholderia pseudomallei and is associated with high mortality, despite early antibiotic treatment. γδ T cells have been increasingly implicated as drivers of the host neutrophil response during bacterial pneumonia, but their role in pulmonary melioidosis is unknown. Here, we report that in patients with melioidosis, a lower peripheral blood γδ T-cell concentration is associated with higher mortality, even when adjusting for severity of illness. γδ T cells were also enriched in the lung and protected against mortality in a mouse model of pulmonary melioidosis. γδ T-cell deficiency in infected mice induced an early recruitment of neutrophils to the lung, independent of bacterial burden. Subsequently, γδ T-cell deficiency resulted in increased neutrophil-associated inflammation in the lung as well as impaired bacterial clearance. In addition, γδ T cells influenced neutrophil function and subset diversity in the lung after infection. Our results indicate that γδ T cells serve a novel protective role in the lung during severe bacterial pneumonia by regulating excessive neutrophil-associated inflammation.
Collapse
MESH Headings
- Melioidosis/immunology
- Melioidosis/pathology
- Melioidosis/microbiology
- Animals
- Neutrophils/immunology
- Neutrophils/metabolism
- Humans
- Lung/immunology
- Lung/pathology
- Lung/microbiology
- Mice, Inbred C57BL
- Burkholderia pseudomallei/immunology
- Female
- Mice
- Receptors, Antigen, T-Cell, gamma-delta/metabolism
- Receptors, Antigen, T-Cell, gamma-delta/immunology
- Pneumonia/immunology
- Pneumonia/microbiology
- Pneumonia/pathology
- Male
- Disease Models, Animal
- Pneumonia, Bacterial/immunology
- Pneumonia, Bacterial/microbiology
- Pneumonia, Bacterial/pathology
- Neutrophil Infiltration
- T-Lymphocytes/immunology
- Intraepithelial Lymphocytes/immunology
Collapse
Affiliation(s)
- Shelton W. Wright
- Division of Pediatric Critical Care Medicine, Department of Pediatrics
| | - Sineenart Sengyee
- Department of Microbiology and Immunology, University of Nevada, Reno School of Medicine, Reno, Nevada; and
| | | | - Rungnapa Phunpang
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Adul Dulsuk
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Guilhem Rerolle
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine
| | - Abdullah Bashmail
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine
| | - Narisara Chantratita
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Sina A. Gharib
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine
- Center for Lung Biology, and
| | - T. Eoin West
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine
- Department of Global Health, University of Washington, Seattle, Washington
| |
Collapse
|
4
|
Akhmatova NK, Kurbatova EA, Zaytsev AE, Akhmatova EA, Yastrebova NE, Sukhova EV, Yashunsky DV, Tsvetkov YE, Nifantiev NE. Synthetic BSA-conjugated disaccharide related to the Streptococcus pneumoniae serotype 3 capsular polysaccharide increases IL-17A Levels, γδ T cells, and B1 cells in mice. Front Immunol 2024; 15:1388721. [PMID: 38840926 PMCID: PMC11150546 DOI: 10.3389/fimmu.2024.1388721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/06/2024] [Indexed: 06/07/2024] Open
Abstract
The disaccharide (β-D-glucopyranosyluronic acid)-(1→4)-β-D-glucopyranoside represents a repeating unit of the capsular polysaccharide of Streptococcus pneumoniae serotype 3. A conjugate of the disaccharide with BSA (di-BSA conjugate) adjuvanted with aluminum hydroxide induced - in contrast to the non-adjuvanted conjugate - IgG1 antibody production and protected mice against S. pneumoniae serotype 3 infection after intraperitoneal prime-boost immunization. Adjuvanted and non-adjuvanted conjugates induced production of Th1 (IFNγ, TNFα); Th2 (IL-5, IL-13); Th17 (IL-17A), Th1/Th17 (IL-22), and Th2/Th17 cytokines (IL-21) after immunization. The concentration of cytokines in mice sera was higher in response to the adjuvanted conjugate, with the highest level of IL-17A production after the prime and boost immunizations. In contrast, the non-adjuvanted conjugate elicited only weak production of IL-17A, which gradually decreased after the second immunization. After boost immunization of mice with the adjuvanted di-BSA conjugate, there was a significant increase in the number of CD45+/CD19+ B cells, TCR+ γδ T cell, CD5+ В1 cells, and activated cells with MHC II+ expression in the spleens of the mice. IL-17A, TCR+ γδ T cells, and CD5+ В1 cells play a crucial role in preventing pneumococcal infection, but can also contribute to autoimmune diseases. Immunization with the adjuvanted and non-adjuvanted di-BSA conjugate did not elicit autoantibodies against double-stranded DNA targeting cell nuclei in mice. Thus, the molecular and cellular markers associated with antibody production and protective activity in response to immunization with the di-BSA conjugate adjuvanted with aluminum hydroxide are IL-17A, TCR+ γδ T cells, and CD5+ В1 cells against the background of increasing MHC II+ expression.
Collapse
MESH Headings
- Polysaccharides, Bacterial/administration & dosage
- Polysaccharides, Bacterial/chemical synthesis
- Polysaccharides, Bacterial/chemistry
- Polysaccharides, Bacterial/immunology
- Antigens, Bacterial/administration & dosage
- Antigens, Bacterial/chemistry
- Antigens, Bacterial/immunology
- Streptococcus pneumoniae/chemistry
- Streptococcus pneumoniae/immunology
- Aluminum Hydroxide/administration & dosage
- Serum Albumin, Bovine/administration & dosage
- Serum Albumin, Bovine/chemistry
- Vaccines, Conjugate/administration & dosage
- Vaccines, Conjugate/chemistry
- Streptococcal Vaccines/administration & dosage
- Streptococcal Vaccines/chemical synthesis
- Streptococcal Vaccines/chemistry
- Streptococcal Vaccines/immunology
- Adjuvants, Vaccine/administration & dosage
- Immunogenicity, Vaccine
- Animals
- Mice
- Pneumococcal Infections/immunology
- Pneumococcal Infections/microbiology
- Pneumococcal Infections/prevention & control
- Interleukin-17/blood
- Interleukin-17/immunology
- Antibodies, Bacterial/blood
- Antibodies, Bacterial/immunology
- Intraepithelial Lymphocytes/immunology
- Serogroup
- Mice, Inbred BALB C
- Male
- Bacterial Capsules/chemistry
- Bacterial Capsules/immunology
- B-Lymphocyte Subsets/immunology
Collapse
Affiliation(s)
- Nelli K. Akhmatova
- Laboratory of Therapeutic Vaccines, Mechnikov Research Institute for Vaccines and Sera, Moscow, Russia
| | - Ekaterina A. Kurbatova
- Laboratory of Therapeutic Vaccines, Mechnikov Research Institute for Vaccines and Sera, Moscow, Russia
| | - Anton E. Zaytsev
- Laboratory of Therapeutic Vaccines, Mechnikov Research Institute for Vaccines and Sera, Moscow, Russia
| | - Elina A. Akhmatova
- Laboratory of Glycoconjugate Chemistry, N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Science, Moscow, Russia
| | - Natalya E. Yastrebova
- Laboratory of Therapeutic Vaccines, Mechnikov Research Institute for Vaccines and Sera, Moscow, Russia
| | - Elena V. Sukhova
- Laboratory of Glycoconjugate Chemistry, N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Science, Moscow, Russia
| | - Dmitriy V. Yashunsky
- Laboratory of Glycoconjugate Chemistry, N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Science, Moscow, Russia
| | - Yury E. Tsvetkov
- Laboratory of Glycoconjugate Chemistry, N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Science, Moscow, Russia
| | - Nikolay E. Nifantiev
- Laboratory of Glycoconjugate Chemistry, N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Science, Moscow, Russia
| |
Collapse
|
5
|
Vermeersch V, Léon K, Caillard A, Szczesnowski A, Albacete G, Marec N, Tissier F, Gilbert G, Droguet M, Marcorelles P, Giroux-Metges MA, Huet O. Moderate Exercise Modulates Inflammatory Responses and Improves Survival in a Murine Model of Acute Pneumonia. Crit Care Med 2024; 52:e142-e151. [PMID: 38193770 PMCID: PMC10876171 DOI: 10.1097/ccm.0000000000006166] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
OBJECTIVES An association between physical inactivity and worse outcome during infectious disease has been reported. The effect of moderate exercise preconditioning on the immune response during an acute pneumonia in a murine model was evaluated. SETTING Laboratory experiments. SUBJECTS C57BL6/j male mice. INTERVENTIONS Six-week-old C57BL/6J mice were divided in two groups: an exercise group and a control group. In the exercise group, a moderate, progressive, and standardized physical exercise was applied for 8 weeks. It consisted in a daily treadmill training lasting 60 minutes and with an intensity of 65% of the maximal theoretical oxygen uptake. Usual housing recommendation were applied in the control group during the same period. After 8 weeks, pneumonia was induced in both groups by intratracheal instillation of a fixed concentration of a Klebsiella pneumoniae (5 × 103 colony-forming unit) solution. MEASUREMENTS AND MAIN RESULTS Mice preconditioned by physical exercise had a less sever onset of pneumonia as shown by a significant decrease of the Mouse Clinical Assessment Severity Score and had a significantly lower mortality compared with the control group (27% vs. 83%; p = 0.019). In the exercise group, we observed a significantly earlier but transient recruitment of inflammatory immune cells with a significant increase of neutrophils, CD4+ cells and interstitial macrophages counts compared with control group. Lung tumor necrosis factor-α, interleukin (IL)-1β, IL-6, and IL-10 were significantly decreased at 48 hours after pneumonia induction in the exercise group compared with the control group. CONCLUSIONS In our model, preconditioning by moderate physical exercise improves outcome by reducing the severity of acute pneumonia with an increased but transient activation of the innate immune response.
Collapse
Affiliation(s)
- Veronique Vermeersch
- Department of Anesthesia and Intensive Care Unit, Brest Teaching Hospital, Brest, France
- ORPHY, EA4324, Université de Bretagne Occidentale, Brest, France
| | - Karelle Léon
- ORPHY, EA4324, Université de Bretagne Occidentale, Brest, France
| | - Anais Caillard
- Department of Anesthesia and Intensive Care Unit, Brest Teaching Hospital, Brest, France
| | | | - Gaëlle Albacete
- ORPHY, EA4324, Université de Bretagne Occidentale, Brest, France
| | - Nadege Marec
- LBAI, Inserm UMR1227, Université de Bretagne Occidentale, Brest, France
| | - Florine Tissier
- ORPHY, EA4324, Université de Bretagne Occidentale, Brest, France
| | | | - Mickael Droguet
- ORPHY, EA4324, Université de Bretagne Occidentale, Brest, France
| | | | - Marie-Agnes Giroux-Metges
- ORPHY, EA4324, Université de Bretagne Occidentale, Brest, France
- Explorations Fonctionnelles Respiratoires, Brest Teaching Hospital, Brest, France
| | - Olivier Huet
- Department of Anesthesia and Intensive Care Unit, Brest Teaching Hospital, Brest, France
- ORPHY, EA4324, Université de Bretagne Occidentale, Brest, France
- Australian and New Zealand Intensive Care research Center, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
6
|
Nanda N, Alphonse MP. From Host Defense to Metabolic Signatures: Unveiling the Role of γδ T Cells in Bacterial Infections. Biomolecules 2024; 14:225. [PMID: 38397462 PMCID: PMC10886488 DOI: 10.3390/biom14020225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/12/2024] [Accepted: 02/12/2024] [Indexed: 02/25/2024] Open
Abstract
The growth of antibiotic-resistant bacterial infections necessitates focusing on host-derived immunotherapies. γδ T cells are an unconventional T cell subset, making up a relatively small portion of healthy circulating lymphocytes but a substantially increased proportion in mucosal and epithelial tissues. γδ T cells are activated and expanded in response to bacterial infection, having the capability to produce proinflammatory cytokines to recruit neutrophils and clear infection. They also play a significant role in dampening immune response to control inflammation and protecting the host against secondary challenge, making them promising targets when developing immunotherapy. Importantly, γδ T cells have differential metabolic states influencing their cytokine profile and subsequent inflammatory capacity. Though these differential metabolic states have not been well studied or reviewed in the context of bacterial infection, they are critical in understanding the mechanistic underpinnings of the host's innate immune response. Therefore, this review will focus on the context-specific host defense conferred by γδ T cells during infection with Staphylococcus aureus, Streptococcus pneumoniae, Listeria monocytogenes, and Mycobacterium tuberculosis.
Collapse
Affiliation(s)
| | - Martin P. Alphonse
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| |
Collapse
|
7
|
Korkmaz FT, Traber KE. Innate immune responses in pneumonia. Pneumonia (Nathan) 2023; 15:4. [PMID: 36829255 PMCID: PMC9957695 DOI: 10.1186/s41479-023-00106-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 01/05/2023] [Indexed: 02/26/2023] Open
Abstract
The lungs are an immunologically unique environment; they are exposed to innumerable pathogens and particulate matter daily. Appropriate clearance of pathogens and response to pollutants is required to prevent overwhelming infection, while preventing tissue damage and maintaining efficient gas exchange. Broadly, the innate immune system is the collection of immediate, intrinsic immune responses to pathogen or tissue injury. In this review, we will examine the innate immune responses of the lung, with a particular focus on their role in pneumonia. We will discuss the anatomic barriers and antimicrobial proteins of the lung, pathogen and injury recognition, and the role of leukocytes (macrophages, neutrophils, and innate lymphocytes) and lung stromal cells in innate immunity. Throughout the review, we will focus on new findings in innate immunity as well as features that are unique to the lung.
Collapse
Affiliation(s)
- Filiz T Korkmaz
- Department of Medicine, Division of Immunology & Infectious Disease, University of Massachusetts, Worcester, MA, USA
- Pulmonary Center, Boston University School of Medicine, Boston, MA, USA
| | - Katrina E Traber
- Pulmonary Center, Boston University School of Medicine, Boston, MA, USA.
- Department of Medicine, Boston University School of Medicine, Boston, MA, USA.
| |
Collapse
|
8
|
Abstract
γδ T cells are a unique T cell subpopulation that are rare in secondary lymphoid organs but enriched in many peripheral tissues, such as the skin, intestines and lungs. By rapidly producing large amounts of cytokines, γδ T cells make key contributions to immune responses in these tissues. In addition to their immune surveillance activities, recent reports have unravelled exciting new roles for γδ T cells in steady-state tissue physiology, with functions ranging from the regulation of thermogenesis in adipose tissue to the control of neuronal synaptic plasticity in the central nervous system. Here, we review the roles of γδ T cells in tissue homeostasis and in surveillance of infection, aiming to illustrate their major impact on tissue integrity, tissue repair and immune protection.
Collapse
|
9
|
Yang Q, Li C, Wang W, Zheng R, Huang X, Deng H, Jin P, Tan K, Yan Y, Wang D. Infiltration pattern of gammadelta T cells and its association with local inflammatory response in the nasal mucosa of patients with allergic rhinitis. Int Forum Allergy Rhinol 2019; 9:1318-1326. [PMID: 31545872 DOI: 10.1002/alr.22421] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 07/29/2019] [Accepted: 07/29/2019] [Indexed: 01/02/2023]
Abstract
BACKGROUND gammadelta (γδ) T cells play important roles in allergic lower airway inflammation. However, little is known about their infiltration pattern in the nasal mucosa during upper airway inflammation. This study investigated γδ T cell distribution in nasal tissues of allergic rhinitis (AR) patients and the relationship between γδ T cells and other inflammatory cell types. METHODS A total of 30 patients with septal deviation were examined, including 22 with and 8 without AR. The localization of γδ T cells and other cells (eosinophils, neutrophils, mast cells, macrophages, B cells, cluster of differentiation [CD]4+ T cells, CD8+ T cells, regulatory T cells [Tregs], interferon [IFN]-γ+ cells, interleukin [IL]17+ cells, and IL10+ cells) was evaluated by histological analysis and immunohistochemistry. T helper cell (Th)1/Th2/Th17 and Treg gene expression was analyzed by quantitative polymerase chain reaction (PCR). RESULTS γδ T cells were localized in the epithelium or subepithelial region of nasal mucosa, and their infiltration was higher in AR patients relative to control subjects. The number of γδ T cells was associated with the presence of eosinophils, macrophages, mast cells, B cells, CD8+ T cells, Forkhead box (Fox)p3+ Tregs, IL17+ cells, and IL10+ cells but not of neutrophils or IFN-γ+ cells. The messenger RNA (mRNA) level of a γδ T cell subunit was positively correlated with those of Th1 genes (T-bet and IFN-γ), Th2 cytokine (C-C motif chemokine ligand 18), and Treg genes (Foxp3 and IL10). CONCLUSION γδ T cells play multiple roles in mucosal inflammation in AR including immune surveillance and adaptive and innate immune responses.
Collapse
Affiliation(s)
- Qintai Yang
- Department of Otorhinolaryngology-Head and Neck Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Chunwei Li
- Department of Otorhinolaryngology-Head and Neck Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Weihao Wang
- Department of Otorhinolaryngology-Head and Neck Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Rui Zheng
- Department of Otorhinolaryngology-Head and Neck Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xuekun Huang
- Department of Otorhinolaryngology-Head and Neck Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Huiyi Deng
- Department of Otorhinolaryngology-Head and Neck Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Peng Jin
- Department of Otolaryngology, The Second Hospital of Shandong University, Shandong, China
| | - Kaisen Tan
- Department of Otolaryngology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Yan Yan
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Deyun Wang
- Department of Otolaryngology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
10
|
Peñaloza HF, Salazar-Echegarai FJ, Bueno SM. Interleukin 10 modulation of neutrophil subsets infiltrating lungs during Streptococcus pneumoniae infection. Biochem Biophys Rep 2017; 13:12-16. [PMID: 29226257 PMCID: PMC5714253 DOI: 10.1016/j.bbrep.2017.11.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 11/13/2017] [Indexed: 01/01/2023] Open
Abstract
Interleukin-10 production and lung neutrophil infiltration are two essential components of the balanced immune response to pneumonia caused by Streptococcus pneumoniae. Here we describe the existence of two neutrophil subsets in lungs during experimental S. pneumoniae infection in mice, which have different size, granularity and expression of activation markers. During infection, both neutrophils subsets were increased in the lungs of IL-10 producing mice, however this increment was significantly higher in the absence of this cytokine. These results suggest that IL-10 is a key cytokine that regulates lung inflammation during bacterial infection caused by specific neutrophil subsets infiltrating the lungs.
Collapse
Affiliation(s)
- Hernán F Peñaloza
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331010, Chile
| | - Francisco J Salazar-Echegarai
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331010, Chile
| | - Susan M Bueno
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331010, Chile
| |
Collapse
|
11
|
Cheng M, Hu S. Lung-resident γδ T cells and their roles in lung diseases. Immunology 2017; 151:375-384. [PMID: 28555812 PMCID: PMC5506441 DOI: 10.1111/imm.12764] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 05/12/2017] [Accepted: 05/20/2017] [Indexed: 12/15/2022] Open
Abstract
γδ T cells are greatly enriched in mucosal and epithelial sites, such as the skin, respiratory, digestive and reproductive tracts, and they are defined as tissue-resident immune cells. In these tissues, the characteristics and biological roles of γδ T cells are distinguished from each other. The lungs represent the most challenging immunological dilemma for the host, and they have their own effective immune system. The abundance of γδ T cells, an estimated 8-20% of resident pulmonary lymphocytes in the lung, maintains lung tissue homeostasis. In this review, we summarize the recent research progress regarding lung-resident γδ T cells, including their development, residency and immune characteristics, and discuss the involvement of γδ T cells in infectious diseases of the lung, including bacterial, viral and fungal infections; lung allergic disease; lung inflammation and fibrosis; and lung cancer.
Collapse
Affiliation(s)
- Min Cheng
- Gerontology Institute of Anhui ProvinceAnhui Province HospitalAnhui Medical UniversityHefeiChina
- Anhui Provincial Key Laboratory of Tumour Immunotherapy and Nutrition TherapyHefeiChina
| | - Shilian Hu
- Gerontology Institute of Anhui ProvinceAnhui Province HospitalAnhui Medical UniversityHefeiChina
- Anhui Provincial Key Laboratory of Tumour Immunotherapy and Nutrition TherapyHefeiChina
| |
Collapse
|
12
|
Peñaloza HF, Nieto PA, Muñoz-Durango N, Salazar-Echegarai FJ, Torres J, Parga MJ, Alvarez-Lobos M, Riedel CA, Kalergis AM, Bueno SM. Interleukin-10 plays a key role in the modulation of neutrophils recruitment and lung inflammation during infection by Streptococcus pneumoniae. Immunology 2015; 146:100-12. [PMID: 26032199 DOI: 10.1111/imm.12486] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 05/03/2015] [Accepted: 05/27/2015] [Indexed: 12/29/2022] Open
Abstract
Streptococcus pneumoniae is a major aetiological agent of pneumonia worldwide, as well as otitis media, sinusitis, meningitis and sepsis. Recent reports have suggested that inflammation of lungs due to S. pneumoniae infection promotes bacterial dissemination and severe disease. However, the contribution of anti-inflammatory molecules to the pathogenesis of S. pneumoniae remains unknown. To elucidate whether the production of the anti-inflammatory cytokine interleukin-10 (IL-10) is beneficial or detrimental for the host during pneumococcal pneumonia, we performed S. pneumoniae infections in mice lacking IL-10 (IL-10(-/-) mice). The IL-10(-/-) mice showed increased mortality, higher expression of pro-inflammatory cytokines, and an exacerbated recruitment of neutrophils into the lungs after S. pneumoniae infection. However, IL-10(-/-) mice showed significantly lower bacterial loads in lungs, spleen, brain and blood, when compared with mice that produced this cytokine. Our results support the notion that production of IL-10 during S. pneumoniae infection modulates the expression of pro-inflammatory cytokines and the infiltration of neutrophils into the lungs. This feature of IL-10 is important to avoid excessive inflammation of tissues and to improve host survival, even though bacterial dissemination is less efficient in the absence of this cytokine.
Collapse
Affiliation(s)
- Hernán F Peñaloza
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Pamela A Nieto
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Natalia Muñoz-Durango
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Francisco J Salazar-Echegarai
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Javiera Torres
- Departamento de Anatomía Patológica, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - María J Parga
- Departamento de Gastroenterología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Manuel Alvarez-Lobos
- Departamento de Gastroenterología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Claudia A Riedel
- Millennium Institute on Immunology and Immunotherapy, Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas y Facultad de Medicina, Universidad Andrés Bello, Santiago, Chile
| | - Alexis M Kalergis
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,Departamento de Inmunología Clínica y Reumatología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile.,INSERM U1064, Nantes, France
| | - Susan M Bueno
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,INSERM U1064, Nantes, France
| |
Collapse
|
13
|
γδ T Cells Are Required for M2 Macrophage Polarization and Resolution of Ozone-Induced Pulmonary Inflammation in Mice. PLoS One 2015; 10:e0131236. [PMID: 26135595 PMCID: PMC4489797 DOI: 10.1371/journal.pone.0131236] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 05/29/2015] [Indexed: 12/21/2022] Open
Abstract
We examined the role of γδ T cells in the induction of alternatively activated M2 macrophages and the resolution of inflammation after ozone exposure. Wildtype (WT) mice and mice deficient in γδ T cells (TCRδ-/- mice) were exposed to air or to ozone (0.3 ppm for up to 72h) and euthanized immediately or 1, 3, or 5 days after cessation of exposure. In WT mice, M2 macrophages accumulated in the lungs over the course of ozone exposure. Pulmonary mRNA abundance of the M2 genes, Arg1, Retnla, and Clec10a, also increased after ozone. In contrast, no evidence of M2 polarization was observed in TCRδ-/- mice. WT but not TCRδ-/- mice expressed the M2c polarizing cytokine, IL-17A, after ozone exposure and WT mice treated with an IL-17A neutralizing antibody exhibited attenuated ozone-induced M2 gene expression. In WT mice, ozone-induced increases in bronchoalveolar lavage neutrophils and macrophages resolved quickly after cessation of ozone exposure returning to air exposed levels within 3 days. However, lack of M2 macrophages in TCRδ-/- mice was associated with delayed clearance of inflammatory cells after cessation of ozone and increased accumulation of apoptotic macrophages in the lungs. Delayed restoration of normal lung architecture was also observed in TCRδ-/- mice. In summary, our data indicate that γδ T cells are required for the resolution of ozone-induced inflammation, likely because γδ T cells, through their secretion of IL-17A, contribute to changes in macrophage polarization that promote clearance of apoptotic cells.
Collapse
|
14
|
Ivanov S, Paget C, Trottein F. Role of non-conventional T lymphocytes in respiratory infections: the case of the pneumococcus. PLoS Pathog 2014; 10:e1004300. [PMID: 25299581 PMCID: PMC4192596 DOI: 10.1371/journal.ppat.1004300] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Non-conventional T lymphocytes constitute a special arm of the immune system and act as sentinels against pathogens at mucosal surfaces. These non-conventional T cells (including mucosal-associated invariant T [MAIT] cells, gamma delta [γδ] T cells, and natural killer T [NKT] cells) display several innate cell-like features and are rapidly activated by the recognition of conserved, stress-induced, self, and microbial ligands. Here, we review the role of non-conventional T cells during respiratory infections, with a particular focus on the encapsulated extracellular pathogen Streptococcus pneumoniae, the leading cause of bacterial pneumonia worldwide. We consider whether MAIT cells, γδ T cells, and NKT cells might offer opportunities for preventing and/or treating human pneumococcus infections.
Collapse
Affiliation(s)
- Stoyan Ivanov
- Institut Pasteur de Lille, Centre d'Infection et d'Immunité de Lille, Lille, France
- Institut National de la Santé et de la Recherche Médicale, U1019, Lille, France
- Centre National de la Recherche Scientifique, UMR 8204, Lille, France
- Université Lille Nord de France, Lille, France
| | - Christophe Paget
- Institut Pasteur de Lille, Centre d'Infection et d'Immunité de Lille, Lille, France
- Institut National de la Santé et de la Recherche Médicale, U1019, Lille, France
- Centre National de la Recherche Scientifique, UMR 8204, Lille, France
- Université Lille Nord de France, Lille, France
| | - François Trottein
- Institut Pasteur de Lille, Centre d'Infection et d'Immunité de Lille, Lille, France
- Institut National de la Santé et de la Recherche Médicale, U1019, Lille, France
- Centre National de la Recherche Scientifique, UMR 8204, Lille, France
- Université Lille Nord de France, Lille, France
- * E-mail:
| |
Collapse
|
15
|
Frellstedt L, Waldschmidt I, Gosset P, Desmet C, Pirottin D, Bureau F, Farnir F, Franck T, Dupuis-Tricaud MC, Lekeux P, Art T. Training Modifies Innate Immune Responses in Blood Monocytes and in Pulmonary Alveolar Macrophages. Am J Respir Cell Mol Biol 2014; 51:135-42. [DOI: 10.1165/rcmb.2013-0341oc] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
16
|
Kearns MT, Barthel L, Bednarek JM, Yunt ZX, Henson PM, Janssen WJ. Fas ligand-expressing lymphocytes enhance alveolar macrophage apoptosis in the resolution of acute pulmonary inflammation. Am J Physiol Lung Cell Mol Physiol 2014; 307:L62-70. [PMID: 24838751 DOI: 10.1152/ajplung.00273.2013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Apoptosis of alveolar macrophages and their subsequent clearance by neighboring phagocytes are necessary steps in the resolution of acute pulmonary inflammation. We have recently identified that activation of the Fas death receptor on the cell surface of macrophages drives macrophage apoptosis. However, the source of the cognate ligand for Fas (FasL) responsible for induction of alveolar macrophage apoptosis is not defined. Given their known role in the resolution of inflammation and ability to induce macrophage apoptosis ex vivo, we hypothesized that T lymphocytes represented a critical source of FasL. To address this hypothesis, C57BL/6J and lymphocyte-deficient (Rag-1(-/-)) mice were exposed to intratracheal lipopolysaccharide to induce pulmonary inflammation. Furthermore, utilizing mice expressing nonfunctional FasL, we adoptively transferred donor lymphocytes into inflamed lymphocyte-deficient mice to characterize the effect of lymphocyte-derived FasL on alveolar macrophage apoptosis in the resolution of inflammation. Herein, evidence is presented that lymphocytes expressing FasL enhance alveolar macrophage apoptosis during the resolution of LPS-induced inflammation. Moreover, lymphocyte induction of alveolar macrophage apoptosis results in contraction of the alveolar macrophage pool, which occurs in a FasL-dependent manner. Specifically, FasL-expressing CD8(+) T lymphocytes potently induce alveolar macrophage apoptosis and contraction of the alveolar macrophage pool. Together, these studies identify a novel role for CD8(+) T lymphocytes in the resolution of acute pulmonary inflammation.
Collapse
Affiliation(s)
- Mark T Kearns
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Denver Anschutz Medical Campus, Denver, Colorado;
| | - Lea Barthel
- Division of Pulmonary Medicine, National Jewish Health, Denver, Colorado; and
| | | | - Zulma X Yunt
- Division of Pulmonary Medicine, National Jewish Health, Denver, Colorado; and
| | - Peter M Henson
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Denver Anschutz Medical Campus, Denver, Colorado; Department of Pediatrics, National Jewish Health, Denver, Colorado
| | - William J Janssen
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Denver Anschutz Medical Campus, Denver, Colorado; Division of Pulmonary Medicine, National Jewish Health, Denver, Colorado; and
| |
Collapse
|
17
|
Abstract
γδ T cells, αβ T cells, and B cells are present together in all but the most primitive vertebrates, suggesting that each population contributes to host immune competence uniquely and that all three are necessary for maintaining immune competence. Functional and molecular analyses indicate that in infections, γδ T cells respond earlier than αβ T cells do and that they emerge late after pathogen numbers start to decline. Thus, these cells may be involved in both establishing and regulating the inflammatory response. Moreover, γδ T cells and αβ T cells are clearly distinct in their antigen recognition and activation requirements as well as in the development of their antigen-specific repertoire and effector function. These aspects allow γδ T cells to occupy unique temporal and functional niches in host immune defense. We review these and other advances in γδ T cell biology in the context of their being the major initial IL-17 producers in acute infection.
Collapse
|
18
|
Glanville N, Message SD, Walton RP, Pearson RM, Parker HL, Laza-Stanca V, Mallia P, Kebadze T, Contoli M, Kon OM, Papi A, Stanciu LA, Johnston SL, Bartlett NW. γδT cells suppress inflammation and disease during rhinovirus-induced asthma exacerbations. Mucosal Immunol 2013; 6:1091-100. [PMID: 23385428 PMCID: PMC3806405 DOI: 10.1038/mi.2013.3] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Accepted: 01/02/2013] [Indexed: 02/04/2023]
Abstract
Most asthma exacerbations are triggered by virus infections, the majority being caused by human rhinoviruses (RV). In mouse models, γδT cells have been previously demonstrated to influence allergen-driven airways hyper-reactivity (AHR) and can have antiviral activity, implicating them as prime candidates in the pathogenesis of asthma exacerbations. To explore this, we have used human and mouse models of experimental RV-induced asthma exacerbations to examine γδT-cell responses and determine their role in the immune response and associated airways disease. In humans, airway γδT-cell numbers were increased in asthmatic vs. healthy control subjects during experimental infection. Airway and blood γδT-cell numbers were associated with increased airways obstruction and AHR. Airway γδT-cell number was also positively correlated with bronchoalveolar lavage (BAL) virus load and BAL eosinophils and lymphocytes during RV infection. Consistent with our observations of RV-induced asthma exacerbations in humans, infection of mice with allergic airways inflammation increased lung γδT-cell number and activation. Inhibiting γδT-cell responses using anti-γδTCR (anti-γδT-cell receptor) antibody treatment in the mouse asthma exacerbation model increased AHR and airway T helper type 2 cell recruitment and eosinophilia, providing evidence that γδT cells are negative regulators of airways inflammation and disease in RV-induced asthma exacerbations.
Collapse
Affiliation(s)
- N Glanville
- Airways Disease Infection Section, National Heart and Lung Institute, Imperial College London; MRC and Asthma UK Centre in Allergic Mechanisms of Asthma; Centre for Respiratory Infections, London, UK
| | - S D Message
- Airways Disease Infection Section, National Heart and Lung Institute, Imperial College London; MRC and Asthma UK Centre in Allergic Mechanisms of Asthma; Centre for Respiratory Infections, London, UK
| | - R P Walton
- Airways Disease Infection Section, National Heart and Lung Institute, Imperial College London; MRC and Asthma UK Centre in Allergic Mechanisms of Asthma; Centre for Respiratory Infections, London, UK
| | - R M Pearson
- Airways Disease Infection Section, National Heart and Lung Institute, Imperial College London; MRC and Asthma UK Centre in Allergic Mechanisms of Asthma; Centre for Respiratory Infections, London, UK
| | - H L Parker
- Airways Disease Infection Section, National Heart and Lung Institute, Imperial College London; MRC and Asthma UK Centre in Allergic Mechanisms of Asthma; Centre for Respiratory Infections, London, UK
| | - V Laza-Stanca
- Airways Disease Infection Section, National Heart and Lung Institute, Imperial College London; MRC and Asthma UK Centre in Allergic Mechanisms of Asthma; Centre for Respiratory Infections, London, UK
| | - P Mallia
- Airways Disease Infection Section, National Heart and Lung Institute, Imperial College London; MRC and Asthma UK Centre in Allergic Mechanisms of Asthma; Centre for Respiratory Infections, London, UK
| | - T Kebadze
- Airways Disease Infection Section, National Heart and Lung Institute, Imperial College London; MRC and Asthma UK Centre in Allergic Mechanisms of Asthma; Centre for Respiratory Infections, London, UK
| | - M Contoli
- Sezione di Malattie dell'Apparato Respiratorio, Centro per lo Studio delle Malattie Infiammatorie Croniche delle Vie Aeree e Patologie Fumo Correlate dell'Apparato Respiratorio (CEMICEF), University of Ferrara, Ferrara, Italy
| | - O M Kon
- Imperial College Healthcare NHS Trust, St Mary's Hospital, London, UK
| | - A Papi
- Sezione di Malattie dell'Apparato Respiratorio, Centro per lo Studio delle Malattie Infiammatorie Croniche delle Vie Aeree e Patologie Fumo Correlate dell'Apparato Respiratorio (CEMICEF), University of Ferrara, Ferrara, Italy
| | - L A Stanciu
- Airways Disease Infection Section, National Heart and Lung Institute, Imperial College London; MRC and Asthma UK Centre in Allergic Mechanisms of Asthma; Centre for Respiratory Infections, London, UK
| | - S L Johnston
- Airways Disease Infection Section, National Heart and Lung Institute, Imperial College London; MRC and Asthma UK Centre in Allergic Mechanisms of Asthma; Centre for Respiratory Infections, London, UK
| | - N W Bartlett
- Airways Disease Infection Section, National Heart and Lung Institute, Imperial College London; MRC and Asthma UK Centre in Allergic Mechanisms of Asthma; Centre for Respiratory Infections, London, UK
| |
Collapse
|
19
|
Cheng P, Liu T, Zhou WY, Zhuang Y, Peng LS, Zhang JY, Yin ZN, Mao XH, Guo G, Shi Y, Zou QM. Role of gamma-delta T cells in host response against Staphylococcus aureus-induced pneumonia. BMC Immunol 2012; 13:38. [PMID: 22776294 PMCID: PMC3524664 DOI: 10.1186/1471-2172-13-38] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Accepted: 06/20/2012] [Indexed: 11/29/2022] Open
Abstract
Background Staphylococcus aureus is the major cause of hospital-acquired and community-acquired pneumonia. Host defense to S.aureus infection is largely mediated by the innate immune system. γδ T cells play an important role in innate immunity to many infectious diseases. However, less is known about the role of these cells during S.aureus-induced pneumonia. In this study, we examined the response and the role of γδ T cells to pulmonary S.aureus infection. Results Mice infected with S. aureus intranasally showed rapid γδ T cells accumulation in the lung. Deficiency of γδ T cells led to attenuated bacterial clearance and less tissue damage in lung compared with WT mice. Moreover, TCR-δ−/− mice exhibited impaired neutrophil recruitment and reduced cytokine production at the site of infection. The γδ T cells in response to pulmonary S. aureus infection mainly secreted IL-17 and γδ T cells deficiency reduced IL-17 production, which might regulate the production of neutrophil-inducing cytokine/chemokine in the S. aureus-infected lungs. Conclusions Accumulation of γδ T cells in the lungs to S. aureus infection is beneficial for bacteria clearance and also contributes to the tissue damage. These cells were the primary source of IL-17, which might influence the recruitment of neutrophils at the early stage of infection.
Collapse
Affiliation(s)
- Ping Cheng
- Department of Clinical Microbiology and Immunology, Faculty of Medical Laboratory Science, Third Military Medical University and National Engineering Technological Research Center of Immunological Biologicals, Chongqing 400038, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Abstract
Asthma remains an important human disease that is responsible for substantial worldwide morbidity and mortality. The causes of asthma are multifactorial and include a complex mix of environmental, immunological and host genetic factors. In addition, epidemiological studies show strong associations between asthma and infection with respiratory pathogens, including common respiratory viruses such as rhinoviruses, human respiratory syncytial virus, adenoviruses, coronaviruses and influenza viruses, as well as bacteria (including atypical bacteria) and fungi. In this Review, we describe the many roles of microorganisms in the risk of developing asthma and in the pathogenesis of and protection against the disease, and we discuss the mechanisms by which infections affect the severity and prevalence of asthma.
Collapse
|
21
|
Janssen WJ, Barthel L, Muldrow A, Oberley-Deegan RE, Kearns MT, Jakubzick C, Henson PM. Fas determines differential fates of resident and recruited macrophages during resolution of acute lung injury. Am J Respir Crit Care Med 2011; 184:547-60. [PMID: 21471090 DOI: 10.1164/rccm.201011-1891oc] [Citation(s) in RCA: 260] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
RATIONALE During acute lung injury (ALI) the macrophage pool expands markedly as inflammatory monocytes migrate from the circulation to the airspaces. As inflammation resolves, macrophage numbers return to preinjury levels and normal tissue structure and function are restored. OBJECTIVES To determine the fate of resident and recruited macrophages during the resolution of ALI in mice and to elucidate the mechanisms responsible for macrophage removal. METHODS ALI was induced in mice using influenza A (H1N1; PR8) infection and LPS instillation. Dye labeling techniques, bone marrow transplantation, and surface immunophenotyping were used to distinguish resident and recruited macrophages during inflammation and to study the role of Fas in determining macrophage fate during resolving ALI. MEASUREMENTS AND MAIN RESULTS During acute and resolving lung injury from influenza A and LPS, a high proportion of the original resident alveolar macrophages persisted. In contrast, recruited macrophages exhibited robust accumulation in early inflammation, followed by a progressive decline in their number. This decline was mediated by apoptosis with local phagocytic clearance. Recruited macrophages expressed high levels of the death receptor Fas and were rapidly depleted from the airspaces by Fas-activating antibodies. In contrast, macrophage depletion was inhibited in mice treated with Fas-blocking antibodies and in chimeras with Fas-deficient bone marrow. Caspase-8 inhibition prevented macrophage apoptosis and delayed the resolution of ALI. CONCLUSIONS These findings indicate that Fas-induced apoptosis of recruited macrophages is essential for complete resolution of ALI.
Collapse
Affiliation(s)
- William J Janssen
- Division of Pulmonary Medicine, Department of Medicine, National Jewish Health, Denver, Colorado 80206, USA.
| | | | | | | | | | | | | |
Collapse
|
22
|
Snelgrove RJ, Godlee A, Hussell T. Airway immune homeostasis and implications for influenza-induced inflammation. Trends Immunol 2011; 32:328-34. [PMID: 21612981 DOI: 10.1016/j.it.2011.04.006] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Revised: 04/15/2011] [Accepted: 04/18/2011] [Indexed: 10/18/2022]
Abstract
The lung is exposed to a myriad of innocuous antigens on a daily basis and must maintain a state of immune ignorance or tolerance to these harmless stimuli to retain pulmonary homeostasis and to prevent potentially fatal immunopathology. Here, we examine how, in the lower airways, resident cell populations contribute to the immune regulatory strategies that restrain inflammation. During influenza infection, these suppressive signals must be overcome to elicit a protective immune response that eliminates the virus. We also discuss how, after resolution of infection, the lung does not return to the original homeostatic state, and how the induced altered state can persist for long periods, which leaves the lung more susceptible to other infectious insults.
Collapse
Affiliation(s)
- Robert J Snelgrove
- Imperial College London, Leukocyte Biology Section, National Heart and Lung Institute, London, SW7 2AZ, UK
| | | | | |
Collapse
|
23
|
Abstract
The absolute requirement of the pulmonary immune system is to limit the inflammatory consequences of inhaled infectious agents while maintaining tolerance to harmless aeroallergens. This tolerance is maintained by a complex network of cells and molecules interacting with lung stromal cells. However, in some individuals there is a breakdown in tolerance to particles such as pollens, animal dander, or dust, resulting in the development of allergic pathology. Emerging evidence suggests that this breakdown in tolerance is influenced by the genetic background of individuals as well as environmental considerations such as early exposure to respiratory pathogens. Further understanding of the mechanisms used by the pulmonary immune system to maintain tolerance might result in exploitation of novel avenues for therapy to treat the growing number of chronic asthmatic patients.
Collapse
Affiliation(s)
- C M Lloyd
- Leukocyte Biology Section, National Heart and Lung Institute, Faculty of Medicine, Imperial College, London, UK.
| | | |
Collapse
|
24
|
Murdoch JR, Lloyd CM. Resolution of allergic airway inflammation and airway hyperreactivity is mediated by IL-17-producing {gamma}{delta}T cells. Am J Respir Crit Care Med 2010; 182:464-76. [PMID: 20413629 DOI: 10.1164/rccm.200911-1775oc] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
RATIONALE gammadeltaT lymphocytes are enriched within the epithelial microenvironment, where they are thought to maintain homeostasis and limit immunopathology. gammadeltaT cells are postulated to exert a regulatory influence during acute allergic airway disease, but the mechanism is unknown. Although regulation of allergic airway disease has been attributed to IL-17-producing T helper (Th) 17 cells, we have found that gammadeltaT cells represent the major source of IL-17 in the allergic lung. OBJECTIVES The aim of this study was to determine the contribution of these IL-17-producing gammadeltaT cells to regulation of allergic airway inflammation. METHODS Flow cytometry revealed that IL-17-producing gammadeltaT cells are more prevalent than IL-17(+)alphabetaT cells (Th17) in a murine model of ovalbumin-induced allergic inflammation. MEASUREMENTS AND MAIN RESULTS Transfer of gammadeltaT cells at the peak of acute allergic responses ameliorated airway hyperresponsiveness with a corresponding acceleration in the resolution of eosinophilic and Th2-driven inflammation. Conversely, functional blockade of gammadeltaT cells led to exacerbation of injury. Neither treatment changed pulmonary Th17 cell numbers. Moreover, transfer of Th17 cells had no effect on disease outcome. Importantly, IL-17-deficient gammadeltaT cells were unable to promote resolution of injury. These data identify IL-17-producing gammadeltaT cells as key regulators of the allergic response in vivo. CONCLUSIONS This unfolds a new perspective for the understanding of gammadeltaT cell function with regard to innate regulation of the adaptive immune responses, emphasizing that resolution of responses are important in determining the outcome of acute inflammatory episodes as well as for maintenance of tissue integrity and homeostasis.
Collapse
Affiliation(s)
- Jenna R Murdoch
- National Heart and Lung Institute, Imperial College, London, United Kingdom
| | | |
Collapse
|
25
|
Jambo KC, Sepako E, Heyderman RS, Gordon SB. Potential role for mucosally active vaccines against pneumococcal pneumonia. Trends Microbiol 2009; 18:81-9. [PMID: 20031415 PMCID: PMC2855428 DOI: 10.1016/j.tim.2009.12.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2009] [Revised: 11/23/2009] [Accepted: 12/01/2009] [Indexed: 11/26/2022]
Abstract
Pneumococcal pneumonia is a life-threatening disease with high mortality and morbidity among children under 5 years of age, the elderly and immunocompromised individuals worldwide. Protection against pneumococcal pneumonia relies on successful regulation of colonisation in the nasopharynx and a brisk alveolar macrophage-mediated immune response in the lung. Therefore, enhancing pulmonary mucosal immunity (which includes a combination of innate, humoral and cell-mediated immunity) through mucosal vaccination might be the key to prevention of pneumococcal infection. Current challenges include a lack of information in humans on mucosal immunity against pneumococci and a lack of suitable adjuvants for new vaccines. Data from mouse models, however, suggest that mucosally active vaccines will enhance mucosal and systemic immunity for protection against pneumococcal infection.
Collapse
Affiliation(s)
- Kondwani C Jambo
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, P.O. Box 30096, Chichiri, Blantyre, Malawi.
| | | | | | | |
Collapse
|
26
|
Abstract
Pneumococcus remains the most common cause of community-acquired pneumonia worldwide. Streptococcus pneumoniae is well adapted to people, and is a frequent inhabitant of the upper airways in healthy hosts. This seemingly innocuous state of colonisation is a dynamic and competitive process in which the pathogen attempts to engage the host, proliferate, and invade the lower airways. The host in turn continuously deploys an array of innate and acquired cellular and humoral defences to prevent pneumococci from breaching tissue barriers. Discoveries into essential molecular mechanisms used by pneumococci to evade host-sensing systems that are designed to contain the pathogen provide new insights into potential treatment options. Versatility of the genome of pneumococci and the bacteria's polygenic virulence capabilities show that a multifaceted approach with many vaccine antigens, antibiotic combinations, and immunoadjuvant therapies will be needed to control this microbe.
Collapse
Affiliation(s)
- Tom van der Poll
- Centre for Infection and Immunity Amsterdam, Centre for Experimental and Molecular Medicine, Academic Medical Centre, University of Amsterdam, Amsterdam, the Netherlands.
| | | |
Collapse
|
27
|
O'Brien RL, Taylor MA, Hartley J, Nuhsbaum T, Dugan S, Lahmers K, Aydintug MK, Wands JM, Roark CL, Born WK. Protective role of gammadelta T cells in spontaneous ocular inflammation. Invest Ophthalmol Vis Sci 2009; 50:3266-74. [PMID: 19151391 PMCID: PMC2701479 DOI: 10.1167/iovs.08-2982] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE A role for gammadelta T cells in immunoregulation has been shown in a number of studies, but in the absence of infection or induced disease, mice lacking gammadelta T cells generally appear to be healthy. That certain mice lacking gammadelta T cells often spontaneously develop keratitis, characterized by a progressive and destructive inflammation of the cornea is reported here. METHODS The keratitis developing in these mice was characterized in terms of prevalence in males versus females, age of onset, and histologic features. Attempts were made to understand the underlying causes of the disease by removing alphabeta T cells, altering sex hormones, and reconstituting gammadelta T cells. RESULTS The development of keratitis in these mice depended on the C57BL/10 genetic background, and was much more common among females than males. The incidence of the disease increased with age, exceeding 80% in females greater than 18 weeks old. Evidence that the keratitis in these mice is at least partly autoimmune in nature, and that despite its prevalence in females, male hormones do not protect against the disease is presented. CONCLUSIONS These findings indicate an important role for gammadelta T cells in maintaining immune balance in the eye. The mice described in this study represent a potential new small animal model of keratitis.
Collapse
Affiliation(s)
- Rebecca L O'Brien
- Integrated Department of Immunology, National Jewish Health, Denver, Colorado 80206, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Characterization of protective mucosal and systemic immune responses elicited by pneumococcal surface protein PspA and PspC nasal vaccines against a respiratory pneumococcal challenge in mice. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2009; 16:636-45. [PMID: 19279169 DOI: 10.1128/cvi.00395-08] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Pneumococcal surface protein A (PspA) and PspC are virulence factors that are involved in the adhesion of Streptococcus pneumoniae to epithelial cells and/or evasion from the immune system. Here, the immune responses induced by mucosal vaccines composed of both antigens as recombinant proteins or delivered by Lactobacillus casei were evaluated. None of the PspC vaccines protected mice against an invasive challenge with pneumococcal strain ATCC 6303. On the other hand, protection was observed for immunization with vaccines composed of PspA from clade 5 (PspA5 or L. casei expressing PspA5) through the intranasal route. The protective response was distinguished by a Th1 profile with high levels of immunoglobulin G2a production, efficient complement deposition, release of proinflammatory cytokines, and infiltration of neutrophils. Intranasal immunization with PspA5 elicited the highest level of protection, characterized by increased levels of secretion of interleukin-17 and gamma interferon by lung and spleen cells, respectively, and low levels of tumor necrosis factor alpha in the respiratory tract.
Collapse
|
29
|
Holderness J, Hedges JF, Daughenbaugh K, Kimmel E, Graff J, Freedman B, Jutila MA. Response of gammadelta T Cells to plant-derived tannins. Crit Rev Immunol 2009; 28:377-402. [PMID: 19166386 DOI: 10.1615/critrevimmunol.v28.i5.20] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Many pharmaceutical drugs arc isolated from plants used in traditional medicines, and new plant-derived pharmaceutical drugs continue to be identified. Relevant to this review, different plant-derived agonists for gammadelta T cells are described that impart effector functions upon distinct subsets of these cells. Recently, plant tannins have been defined as one class of gammadelta T cell agonist and appear to preferentially activate the mucosal population. Mucosal gammadelta T cells function to modulate tissue immune responses and induce epithelium repair. Select tannins, isolated from apple peel, rapidly induce immune gene transcription in gammadelta T cells, leading to cytokinc production and increased responsiveness to secondary signals. Activity of these tannin preparations tracks to the procyanidin fraction, with the procyanidin trimer (C1) having the most robust activity defined to date. The response to the procyanidins is evolutionarily conserved in that responses are seen with human, bovine, and murine gammadelta T cells, although human cells show less selectivity. Procyanidin-induced responses described in this review likely account for the expansion of mucosal gammadelta T cells seen in mice and rats fed soluble extracts of tannins. Use of procyanidins to activate gammadelta T cells may represent a novel approach for the treatment of tissue damage and autoimmune diseases.
Collapse
Affiliation(s)
- Jeff Holderness
- Veterinary Molecular Biology, Montana State University, Bozeman, MT 59718, USA
| | | | | | | | | | | | | |
Collapse
|
30
|
Born WK, Roark CL, Jin N, Wands JM, Kemal Aydintug M, Huang Y, Chain JL, Hahn YS, Simonian PL, Fontenot AP, O'Brien RL. Role of γδ T Cells in Lung Inflammation. ACTA ACUST UNITED AC 2009; 2:143-150. [PMID: 26550059 PMCID: PMC4634705 DOI: 10.2174/1874226200902010143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The resident population of γδ T cells in the normal lung is small but during lung inflammation, γδ T cells can increase dramatically. Histological analysis reveals diverse interactions between γδ T cells and other pulmonary leukocytes. Studies in animal models show that γδ T cells play a role in allergic lung inflammation where they can protect normal lung function, that they also are capable of resolving infection-induced pulmonary inflammation, and that they can help preventing pulmonary fibrosis. Lung inflammation threatens vital lung functions. Protection of the lung tissues and their functions during inflammation is the net-effect of opposing influences of specialized subsets of γδ T cells as well as interactions of these cells with other pulmonary leukocytes.
Collapse
Affiliation(s)
- Willi K Born
- Integrated Department of Immunology, National Jewish Health, 1400 Jackson Street, Denver, CO, 80206 and University of Colorado Denver, Aurora, CO 80045, USA
| | - Christina L Roark
- Integrated Department of Immunology, National Jewish Health, 1400 Jackson Street, Denver, CO, 80206 and University of Colorado Denver, Aurora, CO 80045, USA
| | - Niyun Jin
- Integrated Department of Immunology, National Jewish Health, 1400 Jackson Street, Denver, CO, 80206 and University of Colorado Denver, Aurora, CO 80045, USA
| | - J M Wands
- Integrated Department of Immunology, National Jewish Health, 1400 Jackson Street, Denver, CO, 80206 and University of Colorado Denver, Aurora, CO 80045, USA
| | - M Kemal Aydintug
- Integrated Department of Immunology, National Jewish Health, 1400 Jackson Street, Denver, CO, 80206 and University of Colorado Denver, Aurora, CO 80045, USA
| | - Yafei Huang
- Integrated Department of Immunology, National Jewish Health, 1400 Jackson Street, Denver, CO, 80206 and University of Colorado Denver, Aurora, CO 80045, USA
| | - Jennifer L Chain
- Integrated Department of Immunology, National Jewish Health, 1400 Jackson Street, Denver, CO, 80206 and University of Colorado Denver, Aurora, CO 80045, USA
| | - Youn-Soo Hahn
- Department of Pediatrics, College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju 361-711 and 240, Korea
| | - Philip L Simonian
- Department of Medicine, University of Colorado Denver, Aurora, CO 80045, USA
| | - Andrew P Fontenot
- Department of Medicine, University of Colorado Denver, Aurora, CO 80045, USA
| | - Rebecca L O'Brien
- Integrated Department of Immunology, National Jewish Health, 1400 Jackson Street, Denver, CO, 80206 and University of Colorado Denver, Aurora, CO 80045, USA
| |
Collapse
|
31
|
Tramonti D, Rhodes K, Martin N, Dalton JE, Andrew E, Carding SR. gammadeltaT cell-mediated regulation of chemokine producing macrophages during Listeria monocytogenes infection-induced inflammation. J Pathol 2008; 216:262-70. [PMID: 18767021 DOI: 10.1002/path.2412] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Infection of gammadeltaT cell-deficient (TcRdelta-/-) mice with the intracellular bacterium Listeria monocytogenes (Lm) results in an exacerbated inflammatory response characterized by the accumulation of activated macrophages and necrotic liver lesions. Here we investigated whether changes in chemokine production by Lm-elicited macrophages contribute to this abnormal inflammatory response. In response to Lm infection, activated macrophages accumulate in the primary sites of infection in TcRdelta-/- mice and express high amounts of mRNA encoding the chemokines CCL3 (MIP-1alpha), CCL4 (MIP-1beta), CXCL2 (MIP-2) and CXCL10 (IP-10). In the infected tissues of TcRdelta-/- the number of chemokine-synthesizing macrophages was higher than in wild-type (WT) mice, with the amount of MIP-1alpha and MIP-1beta secreted by individual macrophages in the spleen of TcRdelta-/- mice also being significantly higher than in WT mice. By contrast, protease activity and NO production in individual splenic macrophages of Lm-infected TcRdelta-/- and WT mice were comparable. Pathogen-elicited macrophages in TcRdelta-/- mice also expressed high levels of the CCL3 and CCL4 receptor, CCR5. In macrophage-gammadeltaT cell co-cultures, chemokine-producing macrophages were killed by cytotoxic Vgamma1+ T cells in a Fas-FasL-dependent manner consistent with the high levels of chemokine-producing macrophages seen in infected TcRdelta-/- mice being due to the absence of Vgamma1+ T cells. Together these findings highlight the importance of gammadeltaT cells in regulating macrophage anti-microbial responses.
Collapse
Affiliation(s)
- D Tramonti
- Research Institute of Molecular and Cellular Biology, University of Leeds, Leeds LS29JT, UK
| | | | | | | | | | | |
Collapse
|
32
|
Landgraf RG, Jancar S. Endothelin A receptor antagonist modulates lymphocyte and eosinophil infiltration, hyperreactivity and mucus in murine asthma. Int Immunopharmacol 2008; 8:1748-53. [PMID: 18793757 DOI: 10.1016/j.intimp.2008.08.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2008] [Revised: 08/15/2008] [Accepted: 08/18/2008] [Indexed: 10/21/2022]
Abstract
Levels of endothelins are particularly high in the lung, and there is evidence that these peptides are involved in asthma. Asthma is a chronic inflammatory disease associated with lymphocyte infiltration. In the present study, we used a murine model of asthma to investigate the role of endothelins in lymphocyte and eosinophil infiltration into the airway hyperreactivity and mucus secretion. Sensitized C57Bl/6 mice were treated with endothelin ETA receptor antagonist (BQ123) or endothelin ETB receptor antagonist (BQ788) 30 min before an antigen aerosol challenge. After 24 h, dose response curves to methacholine were performed in isolated lungs, FACS analysis of lymphocytes and eosinophil counts were performed in bronchoalveolar lavage fluid and mucus index was determined by histopathology. In sensitized and antigen-challenged mice there is a marked increase in the T CD4+, T CD8+, B220+, Tgammadelta+ and NK1.1+ lymphocyte subsets. Treatment with BQ123 further increased these cell populations. The number of eosinophils, airway hyperreactivity and mucus were all reduced by BQ123 treatment. The BQ 788 had no significant effect on the parameters analyzed. Treatment with BQ123 reduced the endothelin concentration in lung homogenates, suggesting that endothelins exert a positive feedback on their synthesis. We show here that in murine asthma the ETA receptor antagonist up-regulates lymphocyte infiltration and reduces eosinophils, hyperreactivity and mucus.
Collapse
Affiliation(s)
- Richardt G Landgraf
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | |
Collapse
|
33
|
Small CL, McCormick S, Gill N, Kugathasan K, Santosuosso M, Donaldson N, Heinrichs DE, Ashkar A, Xing Z. NK cells play a critical protective role in host defense against acute extracellular Staphylococcus aureus bacterial infection in the lung. THE JOURNAL OF IMMUNOLOGY 2008; 180:5558-68. [PMID: 18390740 DOI: 10.4049/jimmunol.180.8.5558] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Staphylococcus aureus remains a common cause of nosocomial bacterial infections and are often antibiotic resistant. The role of NK cells and IL-15 and their relationship in host defense against extracellular bacterial pathogens including S. aureus remain unclear. We have undertaken several approaches to address this issue using wild type (WT), IL-15 gene knock-out (KO), and NK cell-depleted mouse models. Upon pulmonary staphylococcal infection WT mice had markedly increased activated NK cells, but not NKT or gammadelta T cells, in the airway lumen that correlated with IL-15 production in the airway and with alveolar macrophages. In vitro exposure to staphylococcal products and/or coculture with lung macrophages directly activated NK cells. In contrast, lung macrophages better phagocytosed S. aureus in the presence of NK cells. In sharp contrast to WT controls, IL-15 KO mice deficient in NK cells were found to be highly susceptible to pulmonary staphylococcal infection despite markedly increased neutrophils and macrophages in the lung. In further support of these findings, WT mice depleted of NK cells were similarly susceptible to staphylococcal infection while they remained fully capable of IL-15 production in the lung at levels similar to those of NK-competent WT hosts. Our study thus identifies a critical role for NK cells in host defense against pulmonary extracellular bacterial infection and suggests that IL-15 is involved in this process via its indispensable effect on NK cells, but not other innate cells. These findings hold implication for the development of therapeutics in treating antibiotic-resistant S. aureus infection.
Collapse
Affiliation(s)
- Cherrie-Lee Small
- Department of Pathology and Molecular Medicine, Division of Infectious Diseases, Center for Gene Therapeutics, McMaster University, Hamilton, Ontario, L8N 3Z5, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Kirby AC, Newton DJ, Carding SR, Kaye PM. Evidence for the involvement of lung-specific gammadelta T cell subsets in local responses to Streptococcus pneumoniae infection. Eur J Immunol 2008; 37:3404-13. [PMID: 18022862 PMCID: PMC2435423 DOI: 10.1002/eji.200737216] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Although γδ T cells are involved in the response to many pathogens, the dynamics and heterogeneity of the local γδ T cell response remains poorly defined. We recently identified γδ T cells as regulators of macrophages and dendritic cells during the resolution of Streptococcus pneumoniae-mediated lung inflammation. Here, using PCR, spectratype analysis and flow cytometry, we show that multiple γδ T cell subsets, including those bearing Vγ1, Vγ4 and Vγ6 TCR, increase in number in the lungs of infected mice, but not in associated lymphoid tissue. These γδ T cells displayed signs of activation, as defined by CD69 and CD25 expression. In vivo BrdU incorporation suggested that local expansion, rather than recruitment, was the principal mechanism underlying this increase in γδ T cells. This conclusion was supported by the finding that pulmonary γδ T cells, but not αβ T cells, isolated from mice that had resolved infection exhibited lung-homing capacity in both naive and infected recipients. Together, these data provide novel insights into the origins of the heterogeneous γδ T cell response that accompanies lung infection, and the first evidence that inflammation-associated γδ T cells may exhibit distinct tissue-homing potential.
Collapse
Affiliation(s)
- Alun C Kirby
- Immunology and Infection Unit, Hull York Medical School and Department of Biology, University of York, York, UK.
| | | | | | | |
Collapse
|
35
|
Romani L, Fallarino F, De Luca A, Montagnoli C, D'Angelo C, Zelante T, Vacca C, Bistoni F, Fioretti MC, Grohmann U, Segal BH, Puccetti P. Defective tryptophan catabolism underlies inflammation in mouse chronic granulomatous disease. Nature 2008; 451:211-5. [PMID: 18185592 DOI: 10.1038/nature06471] [Citation(s) in RCA: 426] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2007] [Accepted: 11/13/2007] [Indexed: 01/01/2023]
Abstract
Half a century ago, chronic granulomatous disease (CGD) was first described as a disease fatally affecting the ability of children to survive infections. Various milestone discoveries have since been made, from an insufficient ability of patients' leucocytes to kill microbes to the underlying genetic abnormalities. In this inherited disorder, phagocytes lack NADPH oxidase activity and do not generate reactive oxygen species, most notably superoxide anion, causing recurrent bacterial and fungal infections. Patients with CGD also suffer from chronic inflammatory conditions, most prominently granuloma formation in hollow viscera. The precise mechanisms of the increased microbial pathogenicity have been unclear, and more so the reasons for the exaggerated inflammatory response. Here we show that a superoxide-dependent step in tryptophan metabolism along the kynurenine pathway is blocked in CGD mice with lethal pulmonary aspergillosis, leading to unrestrained Vgamma1(+) gammadelta T-cell reactivity, dominant production of interleukin (IL)-17, defective regulatory T-cell activity and acute inflammatory lung injury. Although beneficial effects are induced by IL-17 neutralization or gammadelta T-cell contraction, complete cure and reversal of the hyperinflammatory phenotype are achieved by replacement therapy with a natural kynurenine distal to the blockade in the pathway. Effective therapy, which includes co-administration of recombinant interferon-gamma (IFN-gamma), restores production of downstream immunoactive metabolites and enables the emergence of regulatory Vgamma4(+) gammadelta and Foxp3(+) alphabeta T cells. Therefore, paradoxically, the lack of reactive oxygen species contributes to the hyperinflammatory phenotype associated with NADPH oxidase deficiencies, through a dysfunctional kynurenine pathway of tryptophan catabolism. Yet, this condition can be reverted by reactivating the pathway downstream of the superoxide-dependent step.
Collapse
Affiliation(s)
- Luigina Romani
- Department of Experimental Medicine, University of Perugia, 06126 Perugia, Italy.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Goulding J, Snelgrove R, Saldana J, Didierlaurent A, Cavanagh M, Gwyer E, Wales J, Wissinger EL, Hussell T. Respiratory infections: do we ever recover? PROCEEDINGS OF THE AMERICAN THORACIC SOCIETY 2007; 4:618-25. [PMID: 18073393 PMCID: PMC2647650 DOI: 10.1513/pats.200706-066th] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2007] [Accepted: 08/21/2007] [Indexed: 01/09/2023]
Abstract
Although the outcome of respiratory infection alters with age, nutritional status, and immunologic competence, there is a growing body of evidence that we all develop a unique but subtle inflammatory profile. This uniqueness is determined by the sequence of infections or antigenic insults encountered that permanently mold our lungs through experience. This experience and learning process forms the basis of immunologic memory that is attributed to the acquired immune system. But what happens if the pathogen is not homologous to any preceding it? In the absence of cross-specific acquired immunity, one would expect a response similar to that of a subject who had never been infected with anything before. It is now clear that this is not the case. Prior inflammation in the respiratory tract alters immunity and pathology to subsequent infections even when they are antigenically distinct. Furthermore, the influence of the first infection is long lasting, not dependent on the presence of T and B cells, and effective against disparate pathogen combinations. We have used the term "innate imprinting" to explain this phenomenon, although innate education may be a closer description. This educational process, by sequential waves of infection, may be beneficial, as shown for successive viral infections, or significantly worse, as illustrated by the increased susceptibly to life-threatening bacterial pneumonia in patients infected with seasonal and pandemic influenza. We now examine what these long-term changes involve, the likely cell populations affected, and what this means to those studying inflammatory disorders in the lung.
Collapse
Affiliation(s)
- John Goulding
- Kennedy Institute for Rheumatology, Imperial College London, 1 Aspenlea Road, London W6 8LH, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Didierlaurent A, Goulding J, Hussell T. The impact of successive infections on the lung microenvironment. Immunology 2007; 122:457-65. [PMID: 17991012 PMCID: PMC2266032 DOI: 10.1111/j.1365-2567.2007.02729.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2007] [Revised: 08/17/2007] [Accepted: 09/03/2007] [Indexed: 12/30/2022] Open
Abstract
The effect of infection history on the immune response is ignored in most models of infectious disease and in preclinical vaccination studies. No one, however, is naive and repeated microbial exposure, in particular during childhood, shapes the immune system to respond more efficiently later in life. Concurrent or sequential infections influence the immune response to secondary unrelated pathogens. The involvement of cross-reactive acquired immunity, in particular T-cell responses, is extensively documented. In this review, we discuss the impact of successive infections on the infected tissue itself, with a particular focus on the innate response of the respiratory tract, including a persistent alteration of (1) epithelial or macrophage expression of Toll-like receptors or adherence molecules used by subsequent bacteria to invade the host, (2) the responsiveness of macrophages and neutrophils and (3) the local cytokine milieu that affects the activation of local antigen-presenting cells and hence adaptive immunity to the next infection. We emphasize that such alterations not only occur during coinfection, but are maintained long after the initial pathogen is cleared. As innate responses are crucial to the fight against local pathogens but are also involved in the maintenance of the homeostasis of mucosal tissues, dysregulation of these responses by repeated infections is likely to have a major impact on the outcome of infectious or allergic disease.
Collapse
|
38
|
Landgraf RG, Nossi DF, Sirois P, Jancar S. Prostaglandins, leukotrienes and PAF selectively modulate lymphocyte subset and eosinophil infiltration into the airways in a murine model of asthma. Prostaglandins Leukot Essent Fatty Acids 2007; 77:163-72. [PMID: 17923399 DOI: 10.1016/j.plefa.2007.08.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2007] [Revised: 08/03/2007] [Accepted: 08/13/2007] [Indexed: 10/22/2022]
Abstract
The effects of inhibitors of prostaglandins synthesis, indomethacin and nimesulide, or of receptor antagonists of cysteinyl-leukotrienes, MK571 or of platelet activating factor (PAF), WEB2170, were studied on the infiltration of lymphocytes (Tgammadelta, NKT, CD4, CD8 and B cells) and eosinophils into the bronchoalveolar lavage fluid (BALF) in two mouse strains (C57Bl/6 and BALB/c) as well as on bronchial hyperreactivity and mucus production. It was found that indomethacin and nimesulide strongly reduced the number of all cell types analyzed in both mouse strains. MK571 did not affect Tgammadelta or CD4 lymphocytes but reduced the other populations. WEB2170 reduced all lymphocyte subpopulations in both mouse strains. Moreover, the relative numbers of the lymphocyte subsets in the airways and their response to PAF antagonist were strain-dependent. The intensity of bronchoconstriction and mucus production did not correlate with BALF cell types or numbers. The cysteinyl-leukotriene receptor antagonist inhibited eosinophil infiltration and bronchial hyperreactivity, without affecting the Tgammadelta cell subset. Since Tgammadelta cells play a major role in mucosa protection and resolution of lung inflammation, this would represent an additional benefit of cysteinyl-leukotrienes antagonism in asthma.
Collapse
Affiliation(s)
- Richardt G Landgraf
- Universidade de São Paulo, Instituto de Ciências Biomédicas, Departamento de Imunologia, Av. Prof. Lineu Prestes, 1730, CEP 05508-000, São Paulo-SP, Brazil
| | | | | | | |
Collapse
|
39
|
Beamer CA, Holian A. Antigen-presenting cell population dynamics during murine silicosis. Am J Respir Cell Mol Biol 2007; 37:729-38. [PMID: 17641296 PMCID: PMC2219550 DOI: 10.1165/rcmb.2007-0099oc] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Silicosis is an occupational lung disease resulting from the inhalation of silica particles over prolonged periods of time, which causes chronic inflammation and progressive pulmonary fibrosis. Alveolar macrophages (AM) are critical effector cells, while less is known about the role and function of pulmonary dendritic cells (DC) in silicosis. We hypothesize that a balance exists between the suppressive nature of AM and the stimulatory capacity of DC to regulate lung immunity, and that this equilibrium may be overcome by silica exposure in vivo. Our results demonstrate that in response to silica exposure, both the percent and absolute number of AM significantly decreased over time, with a concomitant significant increase in DC. Both AM and DC exhibited cellular activation in response to silica, indicated by increased expression of cell surface markers. In the absence of silica-induced AM apoptosis (TNFR 1/2-null and Gld mice), no change was observed in the percent or absolute number of either cell type. Furthermore, bone marrow-derived DC, but not bone marrow-derived macrophages, migrated from the alveoli into the lung parenchyma in response to silica, resulting in significantly increased numbers of activated T lymphocytes. Collectively, the results demonstrate that AM and DC are distinct antigen-presenting cells within the respiratory tract that respond to silica exposure in vivo in unique ways, with significant implications for immune reactivity of the lung in response to environmental pathogens.
Collapse
Affiliation(s)
- Celine A Beamer
- Center for Environmental Health Sciences, Department of Biomedical and Pharmaceutical Sciences, School of Pharmacy and Allied Health Sciences, University of Montana, Missoula, Montana 59812, USA.
| | | |
Collapse
|