1
|
Shelton SD, House S, Martins Nascentes Melo L, Ramesh V, Chen Z, Wei T, Wang X, Llamas CB, Venigalla SSK, Menezes CJ, Allies G, Krystkiewicz J, Rösler J, Meckelmann SW, Zhao P, Rambow F, Schadendorf D, Zhao Z, Gill JG, DeBerardinis RJ, Morrison SJ, Tasdogan A, Mishra P. Pathogenic mitochondrial DNA mutations inhibit melanoma metastasis. SCIENCE ADVANCES 2024; 10:eadk8801. [PMID: 39485847 PMCID: PMC11529715 DOI: 10.1126/sciadv.adk8801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 09/27/2024] [Indexed: 11/03/2024]
Abstract
Mitochondrial DNA (mtDNA) mutations are frequent in cancer, yet their precise role in cancer progression remains debated. To functionally evaluate the impact of mtDNA variants on tumor growth and metastasis, we developed an enhanced cytoplasmic hybrid (cybrid) generation protocol and established isogenic human melanoma cybrid lines with wild-type mtDNA or pathogenic mtDNA mutations with partial or complete loss of mitochondrial oxidative function. Cybrids with homoplasmic levels of pathogenic mtDNA reliably established tumors despite dysfunctional oxidative phosphorylation. However, these mtDNA variants disrupted spontaneous metastasis from primary tumors and reduced the abundance of circulating tumor cells. Migration and invasion of tumor cells were reduced, indicating that entry into circulation is a bottleneck for metastasis amid mtDNA dysfunction. Pathogenic mtDNA did not inhibit organ colonization following intravenous injection. In heteroplasmic cybrid tumors, single-cell analyses revealed selection against pathogenic mtDNA during melanoma growth. Collectively, these findings experimentally demonstrate that functional mtDNA is favored during melanoma growth and supports metastatic entry into the blood.
Collapse
Affiliation(s)
- Spencer D. Shelton
- Children’s Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Sara House
- Children’s Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Luiza Martins Nascentes Melo
- Department of Dermatology, University Hospital Essen and German Cancer Consortium (DKTK), Partner Site, Essen, Germany
| | - Vijayashree Ramesh
- Children’s Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Zhenkang Chen
- Children’s Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Tao Wei
- Children’s Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Xun Wang
- Children’s Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Claire B. Llamas
- Children’s Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Siva Sai Krishna Venigalla
- Children’s Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Cameron J. Menezes
- Children’s Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Gabriele Allies
- Department of Dermatology, University Hospital Essen and German Cancer Consortium (DKTK), Partner Site, Essen, Germany
| | - Jonathan Krystkiewicz
- Department of Dermatology, University Hospital Essen and German Cancer Consortium (DKTK), Partner Site, Essen, Germany
| | - Jonas Rösler
- Department of Dermatology, University Hospital Essen and German Cancer Consortium (DKTK), Partner Site, Essen, Germany
- Applied Analytical Chemistry, University of Duisburg-Essen, Essen, Germany
| | - Sven W. Meckelmann
- Applied Analytical Chemistry, University of Duisburg-Essen, Essen, Germany
| | - Peihua Zhao
- Department of Applied Computational Cancer Research, Institute for AI in Medicine (IKIM), University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Florian Rambow
- Department of Applied Computational Cancer Research, Institute for AI in Medicine (IKIM), University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Dirk Schadendorf
- Department of Dermatology, University Hospital Essen and German Cancer Consortium (DKTK), Partner Site, Essen, Germany
- National Center for Tumor Diseases (NCT)-West, Campus Essen, and Research Alliance Ruhr, Research Center One Health, University Duisburg-Essen, Essen, Germany
| | - Zhiyu Zhao
- Children’s Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jennifer G. Gill
- Department of Dermatology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ralph J. DeBerardinis
- Children’s Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Sean J. Morrison
- Children’s Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Alpaslan Tasdogan
- Department of Dermatology, University Hospital Essen and German Cancer Consortium (DKTK), Partner Site, Essen, Germany
| | - Prashant Mishra
- Children’s Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
2
|
Shelton SD, House S, Ramesh V, Chen Z, Wei T, Wang X, Llamas CB, Venigalla SSK, Menezes CJ, Zhao Z, Gill JG, DeBerardinis RJ, Morrison SJ, Tasdogan A, Mishra P. Pathogenic mitochondrial DNA mutations inhibit melanoma metastasis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.01.555986. [PMID: 37732192 PMCID: PMC10508716 DOI: 10.1101/2023.09.01.555986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
Mitochondrial DNA (mtDNA) mutations are frequently observed in cancer, but their contribution to tumor progression is controversial. To evaluate the impact of mtDNA variants on tumor growth and metastasis, we created human melanoma cytoplasmic hybrid (cybrid) cell lines transplanted with wildtype mtDNA or pathogenic mtDNA encoding variants that partially or completely inhibit oxidative phosphorylation. Homoplasmic pathogenic mtDNA cybrids reliably established tumors despite dysfunctional oxidative phosphorylation. However, pathogenic mtDNA variants disrupted spontaneous metastasis of subcutaneous tumors and decreased the abundance of circulating melanoma cells in the blood. Pathogenic mtDNA did not induce anoikis or inhibit organ colonization of melanoma cells following intravenous injections. Instead, migration and invasion were reduced, indicating that limited circulation entry functions as a metastatic bottleneck amidst mtDNA dysfunction. Furthermore, analysis of selective pressure exerted on the mitochondrial genomes of heteroplasmic cybrid lines revealed a suppression of pathogenic mtDNA allelic frequency during melanoma growth. Collectively, these findings demonstrate that functional mtDNA is favored during melanoma growth and enables metastatic entry into the blood.
Collapse
Affiliation(s)
- Spencer D. Shelton
- Children’s Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, 75390 USA
| | - Sara House
- Children’s Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, 75390 USA
| | - Vijayashree Ramesh
- Children’s Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, 75390 USA
| | - Zhenkang Chen
- Children’s Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, 75390 USA
| | - Tao Wei
- Children’s Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, 75390 USA
| | - Xun Wang
- Children’s Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, 75390 USA
| | - Claire B. Llamas
- Children’s Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, 75390 USA
| | - Siva Sai Krishna Venigalla
- Children’s Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, 75390 USA
| | - Cameron J. Menezes
- Children’s Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, 75390 USA
| | - Zhiyu Zhao
- Children’s Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, 75390 USA
| | - Jennifer G. Gill
- Department of Dermatology, University of Texas Southwestern Medical Center, Dallas, TX 75390 USA
| | - Ralph J. DeBerardinis
- Children’s Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, 75390 USA
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390 USA
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390 USA
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390 USA
| | - Sean J. Morrison
- Children’s Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, 75390 USA
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390 USA
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390 USA
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390 USA
| | - Alpaslan Tasdogan
- Department of Dermatology, University Hospital Essen & German Cancer Consortium, Partner Site, Essen, Germany
| | - Prashant Mishra
- Children’s Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, 75390 USA
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390 USA
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390 USA
| |
Collapse
|
3
|
Salavaty A, Azadian E, Naik SH, Currie PD. Clonal selection parallels between normal and cancer tissues. Trends Genet 2023; 39:358-380. [PMID: 36842901 DOI: 10.1016/j.tig.2023.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 01/12/2023] [Accepted: 01/26/2023] [Indexed: 02/28/2023]
Abstract
Clonal selection and drift drive both normal tissue and cancer development. However, the biological mechanisms and environmental conditions underpinning these processes remain to be elucidated. Clonal selection models are centered in Darwinian evolutionary theory, where some clones with the fittest features are selected and populate the tissue or tumor. We suggest that different subclasses of stem cells, each of which is responsible for a distinct feature of the selection process, share common features between normal and cancer conditions. While active stem cells populate the tissue, dormant cells account for tissue replenishment/regeneration in both normal and cancerous tissues. We also discuss potential mechanisms that drive clonal drift, their interactions with clonal selection, and their similarities during normal and cancer tissue development.
Collapse
Affiliation(s)
- Adrian Salavaty
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia; Systems Biology Institute Australia, Monash University, Clayton, VIC 3800, Australia.
| | - Esmaeel Azadian
- Immunology Division, Walter and Eliza Hall Institute, Parkville, VIC, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia; Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia
| | - Shalin H Naik
- Immunology Division, Walter and Eliza Hall Institute, Parkville, VIC, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia; Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia
| | - Peter D Currie
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia; EMBL Australia, Monash University, Clayton, VIC 3800, Australia.
| |
Collapse
|
4
|
Gabbutt C, Schenck RO, Weisenberger DJ, Kimberley C, Berner A, Househam J, Lakatos E, Robertson-Tessi M, Martin I, Patel R, Clark SK, Latchford A, Barnes CP, Leedham SJ, Anderson ARA, Graham TA, Shibata D. Fluctuating methylation clocks for cell lineage tracing at high temporal resolution in human tissues. Nat Biotechnol 2022; 40:720-730. [PMID: 34980912 PMCID: PMC9110299 DOI: 10.1038/s41587-021-01109-w] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 09/28/2021] [Indexed: 02/07/2023]
Abstract
Molecular clocks that record cell ancestry mutate too slowly to measure the short-timescale dynamics of cell renewal in adult tissues. Here, we show that fluctuating DNA methylation marks can be used as clocks in cells where ongoing methylation and demethylation cause repeated 'flip-flops' between methylated and unmethylated states. We identify endogenous fluctuating CpG (fCpG) sites using standard methylation arrays and develop a mathematical model to quantitatively measure human adult stem cell dynamics from these data. Small intestinal crypts were inferred to contain slightly more stem cells than the colon, with slower stem cell replacement in the small intestine. Germline APC mutation increased the number of replacements per crypt. In blood, we measured rapid expansion of acute leukemia and slower growth of chronic disease. Thus, the patterns of human somatic cell birth and death are measurable with fluctuating methylation clocks (FMCs).
Collapse
Affiliation(s)
- Calum Gabbutt
- Evolution and Cancer Laboratory, Centre for Genomics and Computational Biology, Barts Cancer Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- Department of Cell and Developmental Biology, University College London, London, UK
- London Interdisciplinary Doctoral Training Programme (LIDo), London, UK
| | - Ryan O Schenck
- Integrated Mathematical Oncology Department, Moffitt Cancer Center, Tampa, FL, USA
- Intestinal Stem Cell Biology Lab, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Daniel J Weisenberger
- Department of Biochemistry and Molecular Medicine, University of Southern California, Los Angeles, CA, USA
| | - Christopher Kimberley
- Evolution and Cancer Laboratory, Centre for Genomics and Computational Biology, Barts Cancer Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Alison Berner
- Evolution and Cancer Laboratory, Centre for Genomics and Computational Biology, Barts Cancer Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Jacob Househam
- Evolution and Cancer Laboratory, Centre for Genomics and Computational Biology, Barts Cancer Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Eszter Lakatos
- Evolution and Cancer Laboratory, Centre for Genomics and Computational Biology, Barts Cancer Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Mark Robertson-Tessi
- Integrated Mathematical Oncology Department, Moffitt Cancer Center, Tampa, FL, USA
| | - Isabel Martin
- Evolution and Cancer Laboratory, Centre for Genomics and Computational Biology, Barts Cancer Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- St. Mark's Hospital, Harrow, London, UK
| | - Roshani Patel
- Evolution and Cancer Laboratory, Centre for Genomics and Computational Biology, Barts Cancer Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- St. Mark's Hospital, Harrow, London, UK
| | - Susan K Clark
- St. Mark's Hospital, Harrow, London, UK
- Department of Surgery and Cancer, Imperial College, London, UK
| | - Andrew Latchford
- St. Mark's Hospital, Harrow, London, UK
- Department of Surgery and Cancer, Imperial College, London, UK
| | - Chris P Barnes
- Department of Cell and Developmental Biology, University College London, London, UK
| | - Simon J Leedham
- Intestinal Stem Cell Biology Lab, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | | | - Trevor A Graham
- Evolution and Cancer Laboratory, Centre for Genomics and Computational Biology, Barts Cancer Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK.
| | - Darryl Shibata
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
5
|
Evans JA, Carlotti E, Lin ML, Hackett RJ, Haughey MJ, Passman AM, Dunn L, Elia G, Porter RJ, McLean MH, Hughes F, ChinAleong J, Woodland P, Preston SL, Griffin SM, Lovat L, Rodriguez-Justo M, Huang W, Wright NA, Jansen M, McDonald SAC. Clonal Transitions and Phenotypic Evolution in Barrett's Esophagus. Gastroenterology 2022; 162:1197-1209.e13. [PMID: 34973296 PMCID: PMC8972067 DOI: 10.1053/j.gastro.2021.12.271] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 12/21/2021] [Accepted: 12/22/2021] [Indexed: 01/10/2023]
Abstract
BACKGROUND & AIMS Barrett's esophagus (BE) is a risk factor for esophageal adenocarcinoma but our understanding of how it evolves is poorly understood. We investigated BE gland phenotype distribution, the clonal nature of phenotypic change, and how phenotypic diversity plays a role in progression. METHODS Using immunohistochemistry and histology, we analyzed the distribution and the diversity of gland phenotype between and within biopsy specimens from patients with nondysplastic BE and those who had progressed to dysplasia or had developed postesophagectomy BE. Clonal relationships were determined by the presence of shared mutations between distinct gland types using laser capture microdissection sequencing of the mitochondrial genome. RESULTS We identified 5 different gland phenotypes in a cohort of 51 nondysplastic patients where biopsy specimens were taken at the same anatomic site (1.0-2.0 cm superior to the gastroesophageal junction. Here, we observed the same number of glands with 1 and 2 phenotypes, but 3 phenotypes were rare. We showed a common ancestor between parietal cell-containing, mature gastric (oxyntocardiac) and goblet cell-containing, intestinal (specialized) gland phenotypes. Similarly, we have shown a clonal relationship between cardiac-type glands and specialized and mature intestinal glands. Using the Shannon diversity index as a marker of gland diversity, we observed significantly increased phenotypic diversity in patients with BE adjacent to dysplasia and predysplasia compared to nondysplastic BE and postesophagectomy BE, suggesting that diversity develops over time. CONCLUSIONS We showed that the range of BE phenotypes represents an evolutionary process and that changes in gland diversity may play a role in progression. Furthermore, we showed a common ancestry between gastric and intestinal-type glands in BE.
Collapse
Affiliation(s)
- James A Evans
- Clonal Dynamics in Epithelia Laboratory, Queen Mary University of London, London, United Kingdom
| | - Emanuela Carlotti
- Clonal Dynamics in Epithelia Laboratory, Queen Mary University of London, London, United Kingdom
| | - Meng-Lay Lin
- Clonal Dynamics in Epithelia Laboratory, Queen Mary University of London, London, United Kingdom
| | - Richard J Hackett
- Clonal Dynamics in Epithelia Laboratory, Queen Mary University of London, London, United Kingdom
| | - Magnus J Haughey
- School of Mathematical Sciences, Queen Mary University of London, London, United Kingdom
| | - Adam M Passman
- Clonal Dynamics in Epithelia Laboratory, Queen Mary University of London, London, United Kingdom
| | - Lorna Dunn
- Northern Institute for Cancer Research, Newcastle University, Newcastle, United Kingdom
| | - George Elia
- Clonal Dynamics in Epithelia Laboratory, Queen Mary University of London, London, United Kingdom
| | - Ross J Porter
- Department of Gastroenterology, University of Aberdeen, Aberdeen, United Kingdom
| | - Mairi H McLean
- Department of Gastroenterology, University of Aberdeen, Aberdeen, United Kingdom
| | - Frances Hughes
- Department of Surgery, Barts Health NHS Trust, Royal London Hospital, London, United Kingdom
| | - Joanne ChinAleong
- Department of Histopathology, Barts Health NHS Trust, Royal London Hospital, London, United Kingdom
| | - Philip Woodland
- Endoscopy Unit, Barts Health NHS Trust, Royal London Hospital, London, United Kingdom
| | - Sean L Preston
- Endoscopy Unit, Barts Health NHS Trust, Royal London Hospital, London, United Kingdom
| | - S Michael Griffin
- School of Mathematical Sciences, Queen Mary University of London, London, United Kingdom; Royal College of Surgeons of Edinburgh, Edinburgh, United Kingdom
| | - Laurence Lovat
- Oeosophagogastric Disorders Centre, Department of Gastroenterology, University College London Hospitals, London, United Kingdom; Research Department of Tissue and Energy, University College London Division of Surgical and Interventional Science, University College London, London, United Kingdom
| | - Manuel Rodriguez-Justo
- Department of Cellular Pathology, University College London Hospitals, London, United Kingdom
| | - Weini Huang
- School of Mathematical Sciences, Queen Mary University of London, London, United Kingdom
| | - Nicholas A Wright
- Epithelial Stem Cell Laboratory, Centre for Cancer Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Marnix Jansen
- Department of Cellular Pathology, University College London Hospitals, London, United Kingdom; UCL Cancer Institute, University College London, London, United Kingdom
| | - Stuart A C McDonald
- Clonal Dynamics in Epithelia Laboratory, Queen Mary University of London, London, United Kingdom.
| |
Collapse
|
6
|
Abstract
Cancer is a clonal disorder derived from a single ancestor cell and its progenies that are positively selected by acquisition of 'driver mutations'. However, the evolution of positively selected clones does not necessarily imply the presence of cancer. On the contrary, it has become clear that expansion of these clones in phenotypically normal or non-cancer tissues is commonly seen in association with ageing and/or in response to environmental insults and chronic inflammation. Recent studies have reported expansion of clones harbouring mutations in cancer driver genes in the blood, skin, oesophagus, bronchus, liver, endometrium and bladder, where the expansion could be so extensive that tissues undergo remodelling of an almost entire tissue. The presence of common cancer driver mutations in normal tissues suggests a strong link to cancer development, providing an opportunity to understand early carcinogenic processes. Nevertheless, some driver mutations are unique to normal tissues or have a mutation frequency that is much higher in normal tissue than in cancer, indicating that the respective clones may not necessarily be destined for evolution to cancer but even negatively selected for carcinogenesis depending on the mutated gene. Moreover, tissues that are remodelled by genetically altered clones might define functionalities of aged tissues or modified inflammatory processes. In this Review, we provide an overview of major findings on clonal expansion in phenotypically normal or non-cancer tissues and discuss their biological significance not only in cancer development but also in ageing and inflammatory diseases.
Collapse
Affiliation(s)
- Nobuyuki Kakiuchi
- Department of Pathology and Tumour Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Seishi Ogawa
- Department of Pathology and Tumour Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto, Japan.
- Department of Medicine, Centre for Haematology and Regenerative Medicine, Karolinska Institute, Stockholm, Sweden.
| |
Collapse
|
7
|
Alison MR. The cellular origins of cancer with particular reference to the gastrointestinal tract. Int J Exp Pathol 2020; 101:132-151. [PMID: 32794627 PMCID: PMC7495846 DOI: 10.1111/iep.12364] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/11/2020] [Accepted: 06/13/2020] [Indexed: 12/18/2022] Open
Abstract
Stem cells or their closely related committed progenitor cells are the likely founder cells of most neoplasms. In the continually renewing and hierarchically organized epithelia of the oesophagus, stomach and intestine, homeostatic stem cells are located at the beginning of the cell flux, in the basal layer of the oesophagus, the isthmic region of gastric oxyntic glands and at the bottom of gastric pyloric-antral glands and colonic crypts. The introduction of mutant oncogenes such as KrasG12D or loss of Tp53 or Apc to specific cell types expressing the likes of Lgr5 and Mist1 can be readily accomplished in genetically engineered mouse models to initiate tumorigenesis. Other origins of cancer are discussed including 'reserve' stem cells that may be activated by damage or through disruption of morphogen gradients along the crypt axis. In the liver and pancreas, with little cell turnover and no obvious stem cell markers, the importance of regenerative hyperplasia associated with chronic inflammation to tumour initiation is vividly apparent, though inflammatory conditions in the renewing populations are also permissive for tumour induction. In the liver, hepatocytes, biliary epithelial cells and hepatic progenitor cells are embryologically related, and all can give rise to hepatocellular carcinoma and cholangiocarcinoma. In the exocrine pancreas, both acinar and ductal cells can give rise to pancreatic ductal adenocarcinoma (PDAC), although the preceding preneoplastic states are quite different: acinar-ductal metaplasia gives rise to pancreatic intraepithelial neoplasia culminating in PDAC, while ducts give rise to PDAC via. mucinous cell metaplasia that may have a polyclonal origin.
Collapse
Affiliation(s)
- Malcolm R. Alison
- Centre for Tumour BiologyBarts Cancer Institute, Charterhouse SquareBarts and The London School of Medicine and DentistryLondonUK
| |
Collapse
|
8
|
|
9
|
Roles of Mitochondrial DNA Mutations in Stem Cell Ageing. Genes (Basel) 2018; 9:genes9040182. [PMID: 29584704 PMCID: PMC5924524 DOI: 10.3390/genes9040182] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 03/22/2018] [Accepted: 03/26/2018] [Indexed: 12/29/2022] Open
Abstract
Mitochondrial DNA (mtDNA) mutations accumulate in somatic stem cells during ageing and cause mitochondrial dysfunction. In this review, we summarize the studies that link mtDNA mutations to stem cell ageing. We discuss the age-related behaviours of the somatic mtDNA mutations in stem cell populations and how they potentially contribute to stem cell ageing by altering mitochondrial properties in humans and in mtDNA-mutator mice. We also draw attention to the diverse fates of the mtDNA mutations with different origins during ageing, with potential selective pressures on the germline inherited but not the somatic mtDNA mutations.
Collapse
|
10
|
Cereser B, Jansen M, Austin E, Elia G, McFarlane T, van Deurzen CHM, Sieuwerts AM, Daidone MG, Tadrous PJ, Wright NA, Jones L, McDonald SAC. Analysis of clonal expansions through the normal and premalignant human breast epithelium reveals the presence of luminal stem cells. J Pathol 2018; 244:61-70. [PMID: 28940516 PMCID: PMC5765426 DOI: 10.1002/path.4989] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 09/06/2017] [Accepted: 09/15/2017] [Indexed: 12/12/2022]
Abstract
It is widely accepted that the cell of origin of breast cancer is the adult mammary epithelial stem cell; however, demonstrating the presence and location of tissue stem cells in the human breast has proved difficult. Furthermore, we do not know the clonal architecture of the normal and premalignant mammary epithelium or its cellular hierarchy. Here, we use deficiency in the mitochondrial enzyme cytochrome c oxidase (CCO), typically caused by somatic mutations in the mitochondrial genome, as a means to perform lineage tracing in the human mammary epithelium. PCR sequencing of laser-capture microdissected cells in combination with immunohistochemistry for markers of lineage differentiation was performed to determine the clonal nature of the mammary epithelium. We have shown that in the normal human breast, clonal expansions (defined here by areas of CCO deficiency) are typically uncommon and of limited size, but can occur at any site within the adult mammary epithelium. The presence of a stem cell population was shown by demonstrating multi-lineage differentiation within CCO-deficient areas. Interestingly, we observed infrequent CCO deficiency that was restricted to luminal cells, suggesting that niche succession, and by inference stem cell location, is located within the luminal layer. CCO-deficient areas appeared large within areas of ductal carcinoma in situ, suggesting that the rate of clonal expansion was altered in the premalignant lesion. © 2017 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Biancastella Cereser
- Clonal Dynamics in Epithelia Laboratory, Centre for Tumour BiologyBarts Cancer Institute, Queen Mary University of LondonUK
| | - Marnix Jansen
- Epithelial Stem Cell Laboratory, Centre for Tumour BiologyBarts Cancer Institute, Queen Mary University of LondonUK
| | - Emily Austin
- Centre for Histopathology Laboratory, Barts Cancer InstituteQueen Mary University of LondonUK
| | - George Elia
- Centre for Histopathology Laboratory, Barts Cancer InstituteQueen Mary University of LondonUK
| | - Taneisha McFarlane
- Department of Surgery and Cancer, Imperial College LondonCharing Cross HospitalLondonUK
| | - Carolien HM van Deurzen
- Department of Pathology, Erasmus MC Cancer InstituteErasmus University Medical CenterRotterdamThe Netherlands
| | - Anieta M Sieuwerts
- Department of Medical Oncology, Erasmus MC Cancer InstituteErasmus University Medical Center, RotterdamThe Netherlands
| | - Maria G Daidone
- Department of Experimental Oncology and Molecular MedicineFondazione IRCCS Istituto Nazionale dei TumoriMilanItaly
| | - Paul J Tadrous
- Department of Cellular PathologyNorthwick Park HospitalLondonUK
| | - Nicholas A Wright
- Epithelial Stem Cell Laboratory, Centre for Tumour BiologyBarts Cancer Institute, Queen Mary University of LondonUK
| | - Louise Jones
- Breast Cancer Laboratory, Centre for Tumour BiologyBarts Cancer Institute, Queen Mary University of LondonUK
| | - Stuart AC McDonald
- Clonal Dynamics in Epithelia Laboratory, Centre for Tumour BiologyBarts Cancer Institute, Queen Mary University of LondonUK
| |
Collapse
|
11
|
Gausachs M, Borras E, Chang K, Gonzalez S, Azuara D, Delgado Amador A, Lopez-Doriga A, San Lucas FA, Sanjuan X, Paules MJ, Taggart MW, Davies GE, Ehli EA, Fowler J, Moreno V, Pineda M, You YN, Lynch PM, Lazaro C, Navin NE, Scheet PA, Hawk ET, Capella G, Vilar E. Mutational Heterogeneity in APC and KRAS Arises at the Crypt Level and Leads to Polyclonality in Early Colorectal Tumorigenesis. Clin Cancer Res 2017. [PMID: 28645942 DOI: 10.1158/1078-0432.ccr-17-0821] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Purpose: The majority of genomic alterations causing intratumoral heterogeneity (ITH) in colorectal cancer are thought to arise during early stages of carcinogenesis as a burst but only after truncal mutations in APC have expanded a single founder clone. We have investigated if the initial source of ITH is consequent to multiple independent lineages derived from different crypts harboring distinct truncal APC and driver KRAS mutations, thus challenging the prevailing monoclonal monocryptal model.Experimental Design: High-depth next-generation sequencing and SNP arrays were performed in whole-lesion extracts of 37 familial adenomatous polyposis colorectal adenomas. Also, ultrasensitive genotyping of hotspot mutations of APC and KRAS was performed using nanofluidic PCRs in matched bulk biopsies (n = 59) and crypts (n = 591) from 18 adenomas and seven carcinomas and adjacent normal tissues.Results: Multiple co-occurring truncal APC and driver KRAS alterations were uncovered in whole-lesion extracts from adenomas and subsequently confirmed to belong to multiple clones. Ultrasensitive genotyping of bulk biopsies and crypts revealed novel undetected APC mutations that were prominent among carcinomas, whereas abundant wild-type APC crypts were detected in adenomas. KRAS mutational heterogeneity within crypts was evident in both adenomas and carcinomas with a higher degree of concordance between biopsy and crypt genotyping in carcinomas. Nonrandom heterogeneity among crypts was also observed.Conclusions: The striking degree of nonrandom intercrypt heterogeneity in truncal and driver gene mutations observed in adenomas and carcinomas is consistent with a polycryptal model derived from multiple independent initiation linages as the source of early ITH in colorectal carcinogenesis. Clin Cancer Res; 23(19); 5936-47. ©2017 AACR.
Collapse
Affiliation(s)
- Mireia Gausachs
- Hereditary Cancer Program, Catalan Institute of Oncology (ICO - IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Ester Borras
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Kyle Chang
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas.,Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Sara Gonzalez
- Hereditary Cancer Program, Catalan Institute of Oncology (ICO - IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain.,CIBERONC, Instituto de Salud Carlos III, Madrid, Spain
| | - Daniel Azuara
- Hereditary Cancer Program, Catalan Institute of Oncology (ICO - IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain.,CIBERONC, Instituto de Salud Carlos III, Madrid, Spain
| | - Axel Delgado Amador
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Adriana Lopez-Doriga
- Cancer Prevention and Control Program, Catalan Institute of Oncology (ICO-IDIBELL) and CIBERESP, L'Hospitalet de Llobregat, Barcelona, Spain
| | - F Anthony San Lucas
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Xavier Sanjuan
- Department of Pathology, University Hospital Bellvitge (HUB - IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Maria J Paules
- Department of Pathology, University Hospital Bellvitge (HUB - IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Melissa W Taggart
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Gareth E Davies
- Avera Institute for Human Genetics, Sioux Falls, South Dakota
| | - Erik A Ehli
- Avera Institute for Human Genetics, Sioux Falls, South Dakota
| | - Jerry Fowler
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Victor Moreno
- Cancer Prevention and Control Program, Catalan Institute of Oncology (ICO-IDIBELL) and CIBERESP, L'Hospitalet de Llobregat, Barcelona, Spain.,Department of Clinical Sciences, Medical School, University of Barcelona, Barcelona, Spain
| | - Marta Pineda
- Hereditary Cancer Program, Catalan Institute of Oncology (ICO - IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain.,CIBERONC, Instituto de Salud Carlos III, Madrid, Spain
| | - Y Nancy You
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.,Clinical Cancer Genetics Program, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Patrick M Lynch
- Clinical Cancer Genetics Program, The University of Texas MD Anderson Cancer Center, Houston, Texas.,Department of Gastroenterology, Hepatology and Nutrition, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Conxi Lazaro
- Hereditary Cancer Program, Catalan Institute of Oncology (ICO - IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain.,CIBERONC, Instituto de Salud Carlos III, Madrid, Spain
| | - Nicholas E Navin
- Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, Texas.,Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Paul A Scheet
- Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, Texas.,Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ernest T Hawk
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Gabriel Capella
- Hereditary Cancer Program, Catalan Institute of Oncology (ICO - IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain. .,CIBERONC, Instituto de Salud Carlos III, Madrid, Spain
| | - Eduardo Vilar
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas. .,Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, Texas.,Clinical Cancer Genetics Program, The University of Texas MD Anderson Cancer Center, Houston, Texas.,Department of GI Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
12
|
Woodworth MB, Girskis KM, Walsh CA. Building a lineage from single cells: genetic techniques for cell lineage tracking. Nat Rev Genet 2017; 18:230-244. [PMID: 28111472 PMCID: PMC5459401 DOI: 10.1038/nrg.2016.159] [Citation(s) in RCA: 170] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Resolving lineage relationships between cells in an organism is a fundamental interest of developmental biology. Furthermore, investigating lineage can drive understanding of pathological states, including cancer, as well as understanding of developmental pathways that are amenable to manipulation by directed differentiation. Although lineage tracking through the injection of retroviral libraries has long been the state of the art, a recent explosion of methodological advances in exogenous labelling and single-cell sequencing have enabled lineage tracking at larger scales, in more detail, and in a wider range of species than was previously considered possible. In this Review, we discuss these techniques for cell lineage tracking, with attention both to those that trace lineage forwards from experimental labelling, and those that trace backwards across the life history of an organism.
Collapse
Affiliation(s)
- Mollie B Woodworth
- Division of Genetics and Genomics, Manton Center for Orphan Disease, and Howard Hughes Medical Institute, Boston Children's Hospital, Boston, Massachusetts 02115, USA
- Departments of Neurology and Pediatrics, Harvard Medical School, Boston, Massachusetts 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02139, USA
| | - Kelly M Girskis
- Division of Genetics and Genomics, Manton Center for Orphan Disease, and Howard Hughes Medical Institute, Boston Children's Hospital, Boston, Massachusetts 02115, USA
- Departments of Neurology and Pediatrics, Harvard Medical School, Boston, Massachusetts 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02139, USA
| | - Christopher A Walsh
- Division of Genetics and Genomics, Manton Center for Orphan Disease, and Howard Hughes Medical Institute, Boston Children's Hospital, Boston, Massachusetts 02115, USA
- Departments of Neurology and Pediatrics, Harvard Medical School, Boston, Massachusetts 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
13
|
Ma H, Morsink FHM, Offerhaus GJA, de Leng WWJ. Stem cell dynamics and pretumor progression in the intestinal tract. J Gastroenterol 2016; 51:841-52. [PMID: 27108415 PMCID: PMC4990616 DOI: 10.1007/s00535-016-1211-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 04/04/2016] [Indexed: 02/04/2023]
Abstract
Colorectal carcinogenesis is a process that follows a stepwise cascade that goes from the normal to an invisible pretumor stage ultimately leading to grossly visible tumor progression. During pretumor progression, an increasing accumulation of genetic alterations occurs, by definition without visible manifestations. It is generally thought that stem cells in the crypt base are responsible for this initiation of colorectal cancer progression because they are the origin of the differentiated epithelial cells that occupy the crypt. Furthermore, they are characterized by a long life span that enables them to acquire these cumulative mutations. Recent studies visualized the dynamics of stem cells both in vitro and in vivo. Translating this work into clinical applications will contribute to the evaluation of patients' predisposition for colorectal carcinogenesis and may help in the design of preventive measures for high-risk groups. In this review, we outline the progress made in the research into tracing stem cell dynamics. Further, we highlight the importance and potential clinical value of tracing stem cell dynamics in pretumor progression.
Collapse
Affiliation(s)
- Huiying Ma
- Department of Pathology, University Medical Center, 3508 GA Utrecht, The Netherlands
| | - Folkert H. M. Morsink
- Department of Pathology, University Medical Center, 3508 GA Utrecht, The Netherlands
| | | | - Wendy W. J. de Leng
- Department of Pathology, University Medical Center, 3508 GA Utrecht, The Netherlands
| |
Collapse
|
14
|
Walther V, Alison MR. Cell lineage tracing in human epithelial tissues using mitochondrial DNA mutations as clonal markers. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2015; 5:103-17. [PMID: 26302049 DOI: 10.1002/wdev.203] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 06/20/2015] [Accepted: 07/01/2015] [Indexed: 12/29/2022]
Abstract
The study of cell lineages through heritable genetic lineage tracing is well established in experimental animals, particularly mice. While such techniques are not feasible in humans, we have taken advantage of the fact that the mitochondrial genome is highly prone to nonpathogenic mutations and such mutations can be used as clonal markers to identify stem cell derived clonal populations in human tissue sections. A mitochondrial DNA (mtDNA) mutation can spread by a stochastic process through the several copies of the circular genome in a single mitochondrion, and then through the many mitochondria in a single cell, a process called 'genetic drift.' This process takes many years and so is likely to occur only in stem cells, but once established, the fate of stem cell progeny can be followed. A cell having at least 80% of its mtDNA genomes bearing the mutation results in a demonstrable deficiency in mtDNA-encoded cytochrome c oxidase (CCO), optimally detected in frozen tissue sections by dual-color histochemistry, whereby CCO activity stains brown and CCO deficiency is highlighted by subsequent succinate dehydrogenase activity, staining the CCO-deficient areas blue. Cells with CCO deficiency can be laser captured and subsequent mtDNA sequencing can ascertain the nature of the mutation. If all cells in a CCO-deficient area have an identical mutation, then a clonal population has been identified; the chances of the same mutation initially arising in separate cells are highly improbable. The technique lends itself to the study of both normal epithelia and can answer several questions in tumor biology. WIREs Dev Biol 2016, 5:103-117. doi: 10.1002/wdev.203 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Viola Walther
- Centre for Tumour Biology, Barts Cancer Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Malcolm R Alison
- Centre for Tumour Biology, Barts Cancer Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| |
Collapse
|
15
|
Abstract
In the past century, considerable efforts were made to understand the role of mitochondrial DNA (mtDNA) mutations and of oxidative stress in aging. The classic mitochondrial free radical theory of aging, in which mtDNA mutations cause genotoxic oxidative stress, which in turn creates more mutations, has been a central hypothesis in the field for decades. In the past few years, however, new elements have discredited this original theory. The major sources of mitochondrial DNA mutations seem to be replication errors and failure of the repair mechanisms, and the accumulation of these mutations as observed in aged organisms seems to occur by clonal expansion and not to be caused by a reactive oxygen species-dependent vicious cycle. New hypotheses of how age-associated mitochondrial dysfunction may lead to aging are based on the role of reactive oxygen species as signaling molecules and on their role in mediating stress responses to age-dependent damage. Here, we review the changes that mtDNA undergoes during aging and the past and most recent hypotheses linking these changes to the tissue failure observed in aging.
Collapse
Affiliation(s)
- Milena Pinto
- Department of Neurology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Carlos T Moraes
- Department of Neurology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; Department of Cell Biology and Anatomy, Miller School of Medicine, University of Miami, Miami, FL 33136, USA.
| |
Collapse
|
16
|
McDonald SAC, Lavery D, Wright NA, Jansen M. Barrett oesophagus: lessons on its origins from the lesion itself. Nat Rev Gastroenterol Hepatol 2015; 12:50-60. [PMID: 25365976 DOI: 10.1038/nrgastro.2014.181] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Barrett oesophagus develops when the lower oesophageal squamous epithelium is replaced with columnar epithelium, which shows both intestinal and gastric differentiation. No consensus has been reached on the origin of Barrett oesophagus. Theories include a direct origin from the oesophageal-stratified squamous epithelium, or by proximal migration of the gastric cardiac epithelium with subsequent intestinalization. Variations of this theory suggest the origin is a distinctive cell at the squamocolumnar junction, the oesophageal gland ducts, or circulating bone-marrow-derived cells. Much of the supporting evidence comes from experimental models and not from studies of Barrett mucosa. In this Perspectives article, we look at the Barrett lesion itself: at its phenotype, its complexity, its clonal architecture and its stem cell organization. We conclude that Barrett glands are unique structures, but share many similarities with gastric glands undergoing the process of intestinal metaplasia. We conclude that current evidence most strongly supports an origin from stem cells in the cardia.
Collapse
Affiliation(s)
- Stuart A C McDonald
- Centre for Tumour Biology, Barts Cancer Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1 2AD, UK
| | - Danielle Lavery
- Centre for Tumour Biology, Barts Cancer Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1 2AD, UK
| | - Nicholas A Wright
- Centre for Tumour Biology, Barts Cancer Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1 2AD, UK
| | - Marnix Jansen
- Centre for Tumour Biology, Barts Cancer Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1 2AD, UK
| |
Collapse
|
17
|
Frede J, Adams DJ, Jones PH. Mutation, clonal fitness and field change in epithelial carcinogenesis. J Pathol 2014; 234:296-301. [PMID: 25046364 DOI: 10.1002/path.4409] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 07/14/2014] [Accepted: 07/15/2014] [Indexed: 12/14/2022]
Abstract
Developments in lineage tracing in mouse models have revealed how stem cells maintain normal squamous and glandular epithelia. Here we review recent quantitative studies tracing the fate of individual mutant stem cells which have uncovered how common oncogenic mutations alter cell behaviour, creating clones with a growth advantage that may persist long term. In the intestine this occurs by a mutant clone colonizing an entire crypt, whilst in the squamous oesophagus blocking differentiation creates clones that expand to colonize large areas of epithelium, a phenomenon known as field change. We consider the implications of these findings for early cancer evolution and the cancer stem cell hypothesis, and the prospects of targeted cancer prevention by purging mutant clones from normal-appearing epithelia.
Collapse
Affiliation(s)
- Julia Frede
- MRC Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Box 197, Cambridge Biomedical Campus, Cambridge, CB2 0XZ, UK
| | | | | |
Collapse
|
18
|
Baker AM, Cereser B, Melton S, Fletcher AG, Rodriguez-Justo M, Tadrous PJ, Humphries A, Elia G, McDonald SAC, Wright NA, Simons BD, Jansen M, Graham TA. Quantification of crypt and stem cell evolution in the normal and neoplastic human colon. Cell Rep 2014; 8:940-7. [PMID: 25127143 PMCID: PMC4471679 DOI: 10.1016/j.celrep.2014.07.019] [Citation(s) in RCA: 136] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 06/27/2014] [Accepted: 07/15/2014] [Indexed: 01/08/2023] Open
Abstract
Human intestinal stem cell and crypt dynamics remain poorly characterized because transgenic lineage-tracing methods are impractical in humans. Here, we have circumvented this problem by quantitatively using somatic mtDNA mutations to trace clonal lineages. By analyzing clonal imprints on the walls of colonic crypts, we show that human intestinal stem cells conform to one-dimensional neutral drift dynamics with a "functional" stem cell number of five to six in both normal patients and individuals with familial adenomatous polyposis (germline APC(-/+)). Furthermore, we show that, in adenomatous crypts (APC(-/-)), there is a proportionate increase in both functional stem cell number and the loss/replacement rate. Finally, by analyzing fields of mtDNA mutant crypts, we show that a normal colon crypt divides around once every 30-40 years, and the division rate is increased in adenomas by at least an order of magnitude. These data provide in vivo quantification of human intestinal stem cell and crypt dynamics.
Collapse
Affiliation(s)
- Ann-Marie Baker
- Barts Cancer Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Biancastella Cereser
- Barts Cancer Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Samuel Melton
- Cavendish Laboratory, Department of Physics, J.J. Thomson Avenue, University of Cambridge, Cambridge CB3 0HE, UK
| | - Alexander G Fletcher
- Wolfson Centre for Mathematical Biology, Mathematical Institute, University of Oxford, Oxford OX2 6GG, UK
| | | | - Paul J Tadrous
- Cellular Pathology, Northwest London Hospitals NHS Trust, London HA1 3UJ, UK
| | | | - George Elia
- Barts Cancer Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Stuart A C McDonald
- Barts Cancer Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Nicholas A Wright
- Barts Cancer Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Benjamin D Simons
- Cavendish Laboratory, Department of Physics, J.J. Thomson Avenue, University of Cambridge, Cambridge CB3 0HE, UK; The Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK; The Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
| | - Marnix Jansen
- Barts Cancer Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK; Department of Pathology, Academic Medical Centre, Meibergdreef 9, 1105AZ Amsterdam, the Netherlands
| | - Trevor A Graham
- Barts Cancer Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK; Center for Evolution and Cancer, 2340 Sutter Street, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
19
|
Abstract
Intestinal stem cells (ISCs) and colorectal cancer (CRC) biology are tightly linked in many aspects. It is generally thought that ISCs are the cells of origin for a large proportion of CRCs and crucial ISC-associated signalling pathways are often affected in CRCs. Moreover, CRCs are thought to retain a cellular hierarchy that is reminiscent of the intestinal epithelium. Recent studies offer quantitative insights into the dynamics of ISC behaviour that govern homeostasis and thereby provide the necessary baseline parameters to begin to apply these analyses during the various stages of tumour development.
Collapse
Affiliation(s)
- Louis Vermeulen
- 1] Laboratory for Experimental Oncology and Radiobiology, Center for Experimental Molecular Medicine, Academic Medical Center, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands. [2] Cancer Research UK - Cambridge Institute, University of Cambridge, Robinson Way, CB2 0RE, Cambridge, UK
| | - Hugo J Snippert
- Molecular Cancer Research and Cancer Genomics Netherlands, Center for Molecular Medicine, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands
| |
Collapse
|
20
|
Baines HL, Turnbull DM, Greaves LC. Human stem cell aging: do mitochondrial DNA mutations have a causal role? Aging Cell 2014; 13:201-5. [PMID: 24382254 PMCID: PMC4331785 DOI: 10.1111/acel.12199] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/21/2013] [Indexed: 01/20/2023] Open
Abstract
A decline in the replicative and regenerative capacity of adult stem cell populations is a major contributor to the aging process. Mitochondrial DNA (mtDNA) mutations clonally expand with age in human stem cell compartments including the colon, small intestine, and stomach, and result in respiratory chain deficiency. Studies in a mouse model with high levels of mtDNA mutations due to a defect in the proofreading domain of the mtDNA polymerase γ (mtDNA mutator mice) have established causal relationships between the accumulation of mtDNA point mutations, stem cell dysfunction, and premature aging. These mtDNA mutator mice have also highlighted that the consequences of mtDNA mutations upon stem cells vary depending on the tissue. In this review, we present evidence that these studies in mice are relevant to normal human stem cell aging and we explore different hypotheses to explain the tissue-specific consequences of mtDNA mutations. In addition, we emphasize the need for a comprehensive analysis of mtDNA mutations and their effects on cellular function in different aging human stem cell populations.
Collapse
Affiliation(s)
- Holly L. Baines
- Centre for Brain Ageing and Vitality; Institute for Ageing and Health; The Medical School; Newcastle upon Tyne NE2 4HH UK
| | - Douglass M. Turnbull
- Centre for Brain Ageing and Vitality; Institute for Ageing and Health; The Medical School; Newcastle upon Tyne NE2 4HH UK
- Wellcome Trust centre for Mitochondrial Research; Institute for Ageing and Health; Newcastle University; Newcastle upon Tyne NE2 4HH UK
| | - Laura C. Greaves
- Centre for Brain Ageing and Vitality; Institute for Ageing and Health; The Medical School; Newcastle upon Tyne NE2 4HH UK
| |
Collapse
|
21
|
Adult intestinal stem cells: critical drivers of epithelial homeostasis and regeneration. Nat Rev Mol Cell Biol 2013; 15:19-33. [PMID: 24326621 DOI: 10.1038/nrm3721] [Citation(s) in RCA: 911] [Impact Index Per Article: 75.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Small populations of adult stem cells are responsible for the remarkable ability of the epithelial lining of the intestine to be efficiently renewed and repaired throughout life. The recent discovery of specific markers for these stem cells, together with the development of new technologies to track endogenous stem cell activity in vivo and to exploit their ability to generate new epithelia ex vivo, has greatly improved our understanding of stem cell-driven homeostasis, regeneration and cancer in the intestine. These exciting new insights into the biology of intestinal stem cells have the potential to accelerate the development of stem cell-based therapies and ameliorate cancer treatments.
Collapse
|
22
|
Evidence that gastric pit dysplasia-like atypia is a neoplastic precursor lesion. Hum Pathol 2013; 45:446-55. [PMID: 24529328 DOI: 10.1016/j.humpath.2013.10.032] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 10/23/2013] [Accepted: 10/30/2013] [Indexed: 12/13/2022]
Abstract
Most gastric cancers develop via an intestinal metaplasia (IM)-dysplasia-carcinogenic pathway. We have noted that some patients with chronic gastritis have dysplasia-like atypia (DLA) limited to the pit epithelium but without involvement of the surface epithelium. We performed this study to determine the clinical and biological characteristics and outcome of DLA, to gain insight into its role in the pathogenesis of gastric cancer. The study consisted of 102 consecutive patients with resected gastric cancer, a separate cohort of patients (n = 166) with chronic gastritis and IM in their index gastric biopsies, and 44 controls. All specimens were evaluated for clinical and pathologic features of the cancer (in the resection cohort) and background mucosa. Of 102 patients with gastric cancer, 50 (49%) had DLA in areas of mucosa adjacent to or near either conventional dysplasia or cancer. This value was significantly higher than controls (DLA 6.8%; P < .0001). Gastric cancer patients with DLA showed a significantly higher age at presentation; intestinal-type adenocarcinoma; low-grade differentiation; stage 1 tumors; and a higher rate of chronic gastritis, IM, atrophy, and conventional dysplasia in the background mucosa compared to patients without DLA. DLA showed intestinal-type differentiation, and a higher Ki-67 rate and MUC6 positivity compared with IM. Of the 166 patients with biopsies, DLA was identified in 24 (14%). Upon follow-up, 38% of positive cases showed persistent DLA, whereas 25% progressed to conventional low-grade dysplasia. Based on these results, we conclude that DLA represents an important precursor lesion in gastric carcinogenesis and supports its interpretation as a neoplastic lesion.
Collapse
|
23
|
Teixeira VH, Nadarajan P, Graham TA, Pipinikas CP, Brown JM, Falzon M, Nye E, Poulsom R, Lawrence D, Wright NA, McDonald S, Giangreco A, Simons BD, Janes SM. Stochastic homeostasis in human airway epithelium is achieved by neutral competition of basal cell progenitors. eLife 2013; 2:e00966. [PMID: 24151545 PMCID: PMC3804062 DOI: 10.7554/elife.00966] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Accepted: 09/08/2013] [Indexed: 12/22/2022] Open
Abstract
Lineage tracing approaches have provided new insights into the cellular mechanisms that support tissue homeostasis in mice. However, the relevance of these discoveries to human epithelial homeostasis and its alterations in disease is unknown. By developing a novel quantitative approach for the analysis of somatic mitochondrial mutations that are accumulated over time, we demonstrate that the human upper airway epithelium is maintained by an equipotent basal progenitor cell population, in which the chance loss of cells due to lineage commitment is perfectly compensated by the duplication of neighbours, leading to "neutral drift" of the clone population. Further, we show that this process is accelerated in the airways of smokers, leading to intensified clonal consolidation and providing a background for tumorigenesis. This study provides a benchmark to show how somatic mutations provide quantitative information on homeostatic growth in human tissues, and a platform to explore factors leading to dysregulation and disease. DOI:http://dx.doi.org/10.7554/eLife.00966.001.
Collapse
Affiliation(s)
- Vitor H Teixeira
- Lungs for Living Research Centre, UCL Respiratory, University College London, London, United Kingdom
| | - Parthiban Nadarajan
- Lungs for Living Research Centre, UCL Respiratory, University College London, London, United Kingdom
| | - Trevor A Graham
- Histopathology Laboratory, Cancer Research UK London Research Institute, London, United Kingdom
- Centre for Evolution and Cancer, UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, United States
| | - Christodoulos P Pipinikas
- Lungs for Living Research Centre, UCL Respiratory, University College London, London, United Kingdom
| | - James M Brown
- Lungs for Living Research Centre, UCL Respiratory, University College London, London, United Kingdom
| | - Mary Falzon
- Department of Histopathology, University College Hospital London, London, United Kingdom
| | - Emma Nye
- Experimental Histopathology Laboratory, Cancer Research UK London Research Institute, London, United Kingdom
| | - Richard Poulsom
- Histopathology Laboratory, Cancer Research UK London Research Institute, London, United Kingdom
- Centre for Digestive Diseases, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary, University of London, London, United Kingdom
| | - David Lawrence
- Department of Cardiothoracic Surgery, The Heart Hospital, London, United Kingdom
| | - Nicholas A Wright
- Histopathology Laboratory, Cancer Research UK London Research Institute, London, United Kingdom
- Centre for Tumour Biology, Barts Cancer Institute, John Vane Science Centre, Barts and the London School of Medicine and Dentistry, Queen Mary, University of London, London, United Kingdom
| | - Stuart McDonald
- Histopathology Laboratory, Cancer Research UK London Research Institute, London, United Kingdom
- Centre for Tumour Biology, Barts Cancer Institute, John Vane Science Centre, Barts and the London School of Medicine and Dentistry, Queen Mary, University of London, London, United Kingdom
| | - Adam Giangreco
- Lungs for Living Research Centre, UCL Respiratory, University College London, London, United Kingdom
| | - Benjamin D Simons
- Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, United Kingdom
- The Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, United Kingdom
- Wellcome Trust–Medical Research Council Stem Cell Institute, University of Cambridge, United Kingdom
| | - Sam M Janes
- Lungs for Living Research Centre, UCL Respiratory, University College London, London, United Kingdom
| |
Collapse
|
24
|
Teixeira VH, Nadarajan P, Graham TA, Pipinikas CP, Brown JM, Falzon M, Nye E, Poulsom R, Lawrence D, Wright NA, McDonald S, Giangreco A, Simons BD, Janes SM. Stochastic homeostasis in human airway epithelium is achieved by neutral competition of basal cell progenitors. eLife 2013; 2:e00966. [PMID: 24151545 PMCID: PMC3804062 DOI: 10.7554/elife.00966#sthash.xxrcqaik.dpuf] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Accepted: 09/08/2013] [Indexed: 05/28/2023] Open
Abstract
Lineage tracing approaches have provided new insights into the cellular mechanisms that support tissue homeostasis in mice. However, the relevance of these discoveries to human epithelial homeostasis and its alterations in disease is unknown. By developing a novel quantitative approach for the analysis of somatic mitochondrial mutations that are accumulated over time, we demonstrate that the human upper airway epithelium is maintained by an equipotent basal progenitor cell population, in which the chance loss of cells due to lineage commitment is perfectly compensated by the duplication of neighbours, leading to "neutral drift" of the clone population. Further, we show that this process is accelerated in the airways of smokers, leading to intensified clonal consolidation and providing a background for tumorigenesis. This study provides a benchmark to show how somatic mutations provide quantitative information on homeostatic growth in human tissues, and a platform to explore factors leading to dysregulation and disease. DOI:http://dx.doi.org/10.7554/eLife.00966.001.
Collapse
Affiliation(s)
- Vitor H Teixeira
- Lungs for Living Research Centre, UCL Respiratory, University College London, London, United Kingdom
| | - Parthiban Nadarajan
- Lungs for Living Research Centre, UCL Respiratory, University College London, London, United Kingdom
| | - Trevor A Graham
- Histopathology Laboratory, Cancer Research UK London Research Institute, London, United Kingdom
- Centre for Evolution and Cancer, UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, United States
| | - Christodoulos P Pipinikas
- Lungs for Living Research Centre, UCL Respiratory, University College London, London, United Kingdom
| | - James M Brown
- Lungs for Living Research Centre, UCL Respiratory, University College London, London, United Kingdom
| | - Mary Falzon
- Department of Histopathology, University College Hospital London, London, United Kingdom
| | - Emma Nye
- Experimental Histopathology Laboratory, Cancer Research UK London Research Institute, London, United Kingdom
| | - Richard Poulsom
- Histopathology Laboratory, Cancer Research UK London Research Institute, London, United Kingdom
- Centre for Digestive Diseases, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary, University of London, London, United Kingdom
| | - David Lawrence
- Department of Cardiothoracic Surgery, The Heart Hospital, London, United Kingdom
| | - Nicholas A Wright
- Histopathology Laboratory, Cancer Research UK London Research Institute, London, United Kingdom
- Centre for Tumour Biology, Barts Cancer Institute, John Vane Science Centre, Barts and the London School of Medicine and Dentistry, Queen Mary, University of London, London, United Kingdom
| | - Stuart McDonald
- Histopathology Laboratory, Cancer Research UK London Research Institute, London, United Kingdom
- Centre for Tumour Biology, Barts Cancer Institute, John Vane Science Centre, Barts and the London School of Medicine and Dentistry, Queen Mary, University of London, London, United Kingdom
| | - Adam Giangreco
- Lungs for Living Research Centre, UCL Respiratory, University College London, London, United Kingdom
| | - Benjamin D Simons
- Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, United Kingdom
- The Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, United Kingdom
- Wellcome Trust–Medical Research Council Stem Cell Institute, University of Cambridge, United Kingdom
| | - Sam M Janes
- Lungs for Living Research Centre, UCL Respiratory, University College London, London, United Kingdom
| |
Collapse
|
25
|
Baker AM, Graham TA, Wright NA. Pre-tumour clones, periodic selection and clonal interference in the origin and progression of gastrointestinal cancer: potential for biomarker development. J Pathol 2013; 229:502-14. [PMID: 23288692 DOI: 10.1002/path.4157] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 12/17/2012] [Accepted: 12/18/2012] [Indexed: 12/18/2022]
Abstract
Classically, the risk of cancer progression in premalignant conditions of the gastrointestinal tract is assessed by examining the degree of histological dysplasia. However, there are many putative pro-cancer genetic changes that have occurred in histologically normal tissue well before the onset of dysplasia. Here we summarize the evidence for such pre-tumour clones and the existing technology that can be used to locate these clones and characterize them at the genetic level. We also discuss the mechanisms by which pre-tumour clones may spread through large areas of normal tissue, and highlight emerging theories on how multiple clones compete and interact within the gastrointestinal mucosa. It is important to gain an understanding of these processes, as it is envisaged that certain pre-tumour changes may be powerful predictive markers, with the potential to identify patients at high risk of developing cancer at a much earlier stage.
Collapse
Affiliation(s)
- Ann-Marie Baker
- Centre for Tumour Biology, Barts and the London School of Medicine and Dentistry, London, UK.
| | | | | |
Collapse
|
26
|
Greaves LC, Elson JL, Nooteboom M, Grady JP, Taylor GA, Taylor RW, Mathers JC, Kirkwood TBL, Turnbull DM. Comparison of mitochondrial mutation spectra in ageing human colonic epithelium and disease: absence of evidence for purifying selection in somatic mitochondrial DNA point mutations. PLoS Genet 2012; 8:e1003082. [PMID: 23166522 PMCID: PMC3499406 DOI: 10.1371/journal.pgen.1003082] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Accepted: 09/28/2012] [Indexed: 01/12/2023] Open
Abstract
Human ageing has been predicted to be caused by the accumulation of molecular damage in cells and tissues. Somatic mitochondrial DNA (mtDNA) mutations have been documented in a number of ageing tissues and have been shown to be associated with cellular mitochondrial dysfunction. It is unknown whether there are selective constraints, which have been shown to occur in the germline, on the occurrence and expansion of these mtDNA mutations within individual somatic cells. Here we compared the pattern and spectrum of mutations observed in ageing human colon to those observed in the general population (germline variants) and those associated with primary mtDNA disease. The pathogenicity of the protein encoding mutations was predicted using a computational programme, MutPred, and the scores obtained for the three groups compared. We show that the mutations associated with ageing are randomly distributed throughout the genome, are more frequently non-synonymous or frameshift mutations than the general population, and are significantly more pathogenic than population variants. Mutations associated with primary mtDNA disease were significantly more pathogenic than ageing or population mutations. These data provide little evidence for any selective constraints on the occurrence and expansion of mtDNA mutations in somatic cells of the human colon during human ageing in contrast to germline mutations seen in the general population. Mitochondrial DNA encodes essential components of the mitochondrial respiratory chain and is strictly maternally inherited, making it vulnerable to the accumulation of deleterious mutations. To avoid this, mtDNA is subjected to a bottleneck phenomenon whereby only a small number of mtDNA molecules are passed on to the oocyte precursor. These are then amplified to the required number of mtDNA molecules in the mature oocyte, meaning that any mutations may be either lost or rapidly fixed. Purifying selection is thought to be an important protective mechanism against pathogenic mtDNA mutations in the germline, as this is essential for mtDNA stability. It is unknown whether there are any such protective mechanisms in the somatic tissues. To investigate this we have compared the spectrum of mutations present in ageing human colonocytes with those population variants passed through the maternal germline and mtDNA mutations responsible for primary mtDNA disease. We show that pathogenic mtDNA mutations are present at a significantly higher frequency in the somatic cells of the human colon in contrast to variants that have passed though the germline, showing little evidence for purifying selection in the somatic tissues studied here, but strong evidence of this selective mechanism in the germline.
Collapse
Affiliation(s)
- Laura C. Greaves
- Newcastle University Centre for Brain Ageing and Vitality, Institute for Ageing and Health, Newcastle University, Newcastle upon Tyne, United Kingdom
- Wellcome Trust Centre for Mitochondrial Research, Institute for Ageing and Health, Newcastle University, Newcastle upon Tyne, United Kingdom
- * E-mail:
| | - Joanna L. Elson
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Marco Nooteboom
- Wellcome Trust Centre for Mitochondrial Research, Institute for Ageing and Health, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - John P. Grady
- Wellcome Trust Centre for Mitochondrial Research, Institute for Ageing and Health, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Geoffrey A. Taylor
- Wellcome Trust Centre for Mitochondrial Research, Institute for Ageing and Health, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Robert W. Taylor
- Wellcome Trust Centre for Mitochondrial Research, Institute for Ageing and Health, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - John C. Mathers
- Newcastle University Centre for Brain Ageing and Vitality, Institute for Ageing and Health, Newcastle University, Newcastle upon Tyne, United Kingdom
- Human Nutrition Research Centre, Institute for Ageing and Health, Campus for Ageing and Vitality, Newcastle Upon Tyne, United Kingdom
| | - Thomas B. L. Kirkwood
- Newcastle University Centre for Brain Ageing and Vitality, Institute for Ageing and Health, Newcastle University, Newcastle upon Tyne, United Kingdom
- Institute for Ageing and Health, Newcastle University, Campus for Ageing and Vitality, Newcastle Upon Tyne, United Kingdom
| | - Doug M. Turnbull
- Newcastle University Centre for Brain Ageing and Vitality, Institute for Ageing and Health, Newcastle University, Newcastle upon Tyne, United Kingdom
- Wellcome Trust Centre for Mitochondrial Research, Institute for Ageing and Health, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
27
|
Identification and characterization of stemlike cells in human esophageal adenocarcinoma and normal epithelial cell lines. J Thorac Cardiovasc Surg 2012; 144:1192-9. [PMID: 22980068 DOI: 10.1016/j.jtcvs.2012.08.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2012] [Revised: 07/20/2012] [Accepted: 08/01/2012] [Indexed: 01/31/2023]
Abstract
OBJECTIVE Recent studies have suggested that human solid tumors may contain subpopulations of cancer stem cells with the capacity for self-renewal and the potential to initiate and maintain tumor growth. The aim of this study was to use human esophageal cell lines to identify and characterize putative esophageal cancer stem cell populations. METHODS To enrich stemlike cells, Het-1A (derived from immortalized normal esophageal epithelium), OE33, and JH-EsoAd1 (each derived from primary esophageal adenocarcinomas) were cultured using serum-free media to form spheres. A comprehensive analysis of parent and spheroid cells was performed by flow cytometry, Western blot analysis, immunohistochemistry and polymerase chain reaction array to study cancer stem cell-related genes, colony formation assays to assess clonogenicity, xenotransplantation to assess tumorigenicity, and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assays to assess chemosensitivity to 5-fluorouracil and cisplatin. RESULTS For all cell lines, clonogenicity, tumorigenicity, and chemoresistance to 5-fluorouracil and cisplatin were significantly higher than for spheroid cells compared with parent cells. Spheroids exhibited an increased frequency of cells expressing integrin α6(bri)/CD71(dim), and Achaete-scute complex homolog 2 messenger RNA and protein were also significantly overexpressed in spheroid cells compared with parent cells. CONCLUSIONS The higher clonogenicity, tumorigenicity, and drug resistance exhibited by spheroids derived from Het-1A, OE33, and JH-EsoAd1 reflects an enrichment of stemlike cell populations within each esophageal cell line. Esophageal cells enriched for integrin α6(bri)/CD71(dim) and/or overexpressing Achaete-scute complex homolog 2 would appear to represent at least a subpopulation of stemlike cells in Het-1A, OE33, and JH-EsoAd1.
Collapse
|
28
|
Wright NA. Stem cell identification-in vivo
lineage analysis versus in vitro
isolation and clonal expansion. J Pathol 2012; 227:255-66. [DOI: 10.1002/path.4018] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Revised: 02/20/2012] [Accepted: 02/22/2012] [Indexed: 12/19/2022]
|
29
|
Galandiuk S, Rodriguez-Justo M, Jeffery R, Nicholson AM, Cheng Y, Oukrif D, Elia G, Leedham SJ, Mcdonald SAC, Wright NA, Graham TA. Field cancerization in the intestinal epithelium of patients with Crohn's ileocolitis. Gastroenterology 2012; 142:855-864.e8. [PMID: 22178590 PMCID: PMC4446968 DOI: 10.1053/j.gastro.2011.12.004] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Revised: 11/23/2011] [Accepted: 12/03/2012] [Indexed: 12/16/2022]
Abstract
BACKGROUND & AIMS Tumors that develop in patients with Crohn's disease tend be multifocal, so field cancerization (the replacement of normal cells with nondysplastic but tumorigenic clones) might contribute to intestinal carcinogenesis. We investigated patterns of tumor development from pretumor intestinal cell clones. METHODS We performed genetic analyses of multiple areas of intestine from 10 patients with Crohn's disease and intestinal neoplasia. Two patients had multifocal neoplasia; longitudinal sections were collected from 3 patients. Individual crypts were microdissected and genotyped; clonal dependency analysis was used to determine the order and timing of mutations that led to tumor development. RESULTS The same mutations in KRAS, CDKN2A(p16), and TP53 that were observed in neoplasias were also present in nontumor, nondysplastic, and dysplastic epithelium. In 2 patients, carcinogenic mutations were detected in nontumor epithelium 4 years before tumors developed. The same mutation (TP53 p.R248W) was detected at multiple sites along the entire length of the colon from 1 patient; it was the apparent founder mutation for synchronous tumors and multiple dysplastic areas. Disruption of TP53, CDKN2A, and KRAS were all seen as possible initial events in tumorigenesis; the sequence of mutations (the tumor development pathway) differed among lesions. CONCLUSIONS Pretumor clones can grow extensively in the intestinal epithelium of patients with Crohn's disease. Segmental resections for neoplasia in patients with Crohn's disease might therefore leave residual pretumor disease, and dysplasia might be an unreliable biomarker for cancer risk. Characterization of the behavior of pretumor clones might be used to predict the development of intestinal neoplasia.
Collapse
Affiliation(s)
- Susan Galandiuk
- Histopathology Laboratory, Cancer Research UK London Research Institute, London, England.
| | | | - Rosemary Jeffery
- Histopathology Laboratory, Cancer Research UK London Research Institute, London, England
| | - Anna M. Nicholson
- Centre for Digestive Diseases, Blizard Institute of Cell and Molecular Science, Barts and the London School of Medicine and Dentistry, London, England
| | - Yong Cheng
- Histopathology Laboratory, Cancer Research UK London Research Institute, London, England,Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, Peoples Republic of China
| | - Dahmane Oukrif
- Department of Histopathology, University College London Hospital, London, England
| | - George Elia
- Centre for Tumour Biology, Institute of Cancer and CR-UK Clinical Centre, Barts and the London School of Medicine and Dentistry, London, England
| | - Simon J. Leedham
- Molecular and Population Genetics Laboratory, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, England
| | - Stuart A. C. Mcdonald
- Histopathology Laboratory, Cancer Research UK London Research Institute, London, England,Centre for Digestive Diseases, Blizard Institute of Cell and Molecular Science, Barts and the London School of Medicine and Dentistry, London, England
| | - Nicholas A. Wright
- Histopathology Laboratory, Cancer Research UK London Research Institute, London, England,Centre for Digestive Diseases, Blizard Institute of Cell and Molecular Science, Barts and the London School of Medicine and Dentistry, London, England
| | - Trevor A. Graham
- Histopathology Laboratory, Cancer Research UK London Research Institute, London, England
| |
Collapse
|
30
|
Abstract
The widely accepted paradigm for tumorigenesis begins with rate-limiting mutations in a key growth control gene resulting in immediate lesion growth. Tumor progression occurs as cells within the tumor acquire additional carcinogenic mutations. However, there is clear evidence that the road to cancer can begin long before the growth of a clinically detectable lesion - indeed, long before any of the usual morphological correlates of preneoplasia are recognizable. Field cancerization, the replacement of the normal cell population by a histologically nondysplastic but protumorigenic mutant cell clone, underlies the development of many cancer types, and in this article we review field cancerization in the GI tract. We present the evidence that field cancerization can underpin tumorigenesis in all gastrointestinal compartments, discuss the homeostatic mechanisms that could permit clone spread and highlight how an understanding of the mechanisms driving field cancerization is a means to study human stem cell biology. Finally, we discuss how appropriate recognition of the role of field cancerization in tumorigenesis could impact patient care.
Collapse
Affiliation(s)
- Trevor A Graham
- Histopathology Laboratory, Cancer Research UK London Research Institute, 44 Lincoln's Inn Fields, London, WC2A 3LY, UK.
| | | | | |
Collapse
|
31
|
Gaisa NT, Graham TA, McDonald SA, Poulsom R, Heidenreich A, Jakse G, Knuechel R, Wright NA. Clonal architecture of human prostatic epithelium in benign and malignant conditions. J Pathol 2011; 225:172-80. [PMID: 21898875 DOI: 10.1002/path.2959] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Revised: 06/24/2011] [Accepted: 06/27/2011] [Indexed: 12/25/2022]
Abstract
The location of stem cells in the epithelium of the prostatic acinus remains uncertain, as does the cellular origin of prostatic neoplasia. Here, we apply lineage tracing to visualize the clonal progeny of stem cells in benign and malignant human prostates and understand the clonal architecture of this epithelium. Cells deficient for the mitochondrially-encoded enzyme cytochrome c oxidase (CCO) were identified in 27 frozen prostatectomy specimens using dual colour enzyme histochemistry and individual CCO-normal and -deficient cell areas were laser-capture microdissected. PCR-sequencing of the entire mitochondrial genome (mtDNA) of cells from CCO-deficient areas found to share mtDNA mutations not present in adjacent CCO-normal cells, thus proving a clonal origin. Immunohistochemistry was performed to visualize the three cell lineages normally present in the prostatic epithelium. Entire CCO-deficient acini, and part-deficient acini were found. Deficient patches spanned either basal or luminal cells, but sometimes also both epithelial cell types in normal, hyperplastic or atrophic epithelium, and prostatic intraepithelial neoplasia (PIN). Patches comprising both PIN and invasive cancer were observed. Each cell area within a CCO-deficient patch contained an identical mtDNA mutation, defining the patch as a clonal unit. CCO-deficient patches in benign epithelium contained basal, luminal and endocrine cells, demonstrating multilineage differentiation and therefore the presence of a stem cell. Our results demonstrate that the normal, atrophic, hypertrophic and atypical (PIN) epithelium of human prostate contains stem cell-derived clonal units that actively replenish the epithelium during ageing. These deficient areas usually included the basal compartment indicating the basal layer as the location of the stem cell. Importantly, single clonal units comprised both PIN and invasive cancer, supporting PIN as the pre-invasive lesion for prostate cancer.
Collapse
Affiliation(s)
- Nadine T Gaisa
- Institute of Pathology, RWTH, Aachen University, Aachen, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Gaisa NT, Graham TA, McDonald SAC, Cañadillas-Lopez S, Poulsom R, Heidenreich A, Jakse G, Tadrous PJ, Knuechel R, Wright NA. The human urothelium consists of multiple clonal units, each maintained by a stem cell. J Pathol 2011; 225:163-71. [PMID: 21744343 DOI: 10.1002/path.2945] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2011] [Revised: 05/24/2011] [Accepted: 05/25/2011] [Indexed: 11/08/2022]
Abstract
Little is known about the clonal architecture of human urothelium. It is likely that urothelial stem cells reside within the basal epithelial layer, yet lineage tracing from a single stem cell as a means to show the presence of a urothelial stem cell has never been performed. Here, we identify clonally related cell areas within human bladder mucosa in order to visualize epithelial fields maintained by a single founder/stem cell. Sixteen frozen cystectomy specimens were serially sectioned. Patches of cells deficient for the mitochondrially encoded enzyme cytochrome c oxidase (CCO) were identified using dual-colour enzyme histochemistry. To show that these patches represent clonal proliferations, small CCO-proficient and -deficient areas were individually laser-capture microdissected and the entire mitochondrial genome (mtDNA) in each area was PCR amplified and sequenced to identify mtDNA mutations. Immunohistochemistry was performed for the different cell layers of the urothelium and adjacent mesenchyme. CCO-deficient patches could be observed in normal urothelium of all cystectomy specimens. The two-dimensional length of these negative patches varied from 2-3 cells (about 30 µm) to 4.7 mm. Each cell area within a CCO-deficient patch contained an identical somatic mtDNA mutation, indicating that the patch was a clonal unit. Patches contained all the mature cell differentiation stages present in the urothelium, suggesting the presence of a stem cell. Our results demonstrate that the normal mucosa of human bladder contains stem cell-derived clonal units that actively replenish the urothelium during ageing. The size of the clonal unit attributable to each stem cell was broadly distributed, suggesting replacement of one stem cell clone by another.
Collapse
Affiliation(s)
- Nadine T Gaisa
- Institute of Pathology RWTH Aachen University, Aachen, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Langeveld D, Jansen M, Brosens L, Morsink F, Offerhaus GJ, de Leng W. Diversity counts. Visualizing pretumor progression in the gastrointestinal tract. Am J Clin Pathol 2011; 135:878-88. [PMID: 21571961 DOI: 10.1309/ajcpp3i5hdywmhja] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Tumor progression is critically dependent on the selection of genetic alterations. This clonal evolution can be traced to the stage preceding visible tumor formation called pretumor progression, in which genetic change occurs without visible change. Recently, the identification of intestinal stem cell markers in animal models has made visualization of stem cells possible in vivo. Translating this work to the clinical setting by visualizing stem cells in patient material may allow us to understand differences in patients' vulnerability to cancer development and target preventive measures to high-risk groups. In this review article, we examine some of the analytic methods currently used in research settings tracing stem cell dynamics.
Collapse
|
34
|
Graham TA, Humphries A, Sanders T, Rodriguez-Justo M, Tadrous PJ, Preston SL, Novelli MR, Leedham SJ, McDonald SAC, Wright NA. Use of methylation patterns to determine expansion of stem cell clones in human colon tissue. Gastroenterology 2011; 140:1241-1250.e1-9. [PMID: 21192938 DOI: 10.1053/j.gastro.2010.12.036] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2010] [Revised: 11/18/2010] [Accepted: 12/14/2010] [Indexed: 12/11/2022]
Abstract
BACKGROUND & AIMS It is a challenge to determine the dynamics of stem cells within human epithelial tissues such as colonic crypts. By tracking methylation patterns of nonexpressed genes, we have been able to determine how rapidly individual stem cells became dominant within a human colonic crypt. We also analyzed methylation patterns to study clonal expansion of entire crypts via crypt fission. METHODS Colonic mucosa was obtained from 9 patients who received surgery for colorectal cancer. The methylation patterns of Cardiac-specific homeobox, Myoblast determination protein 1, and Biglycan were examined within clonal cell populations, comprising either part of, or multiple adjacent, normal human colonic crypts. Clonality was demonstrated by following cytochrome c oxidase-deficient (CCO⁻) cells that shared an identical somatic point mutation in mitochondrial DNA. RESULTS Methylation pattern diversity among CCO⁻ clones that occupied only part of a crypt was proportional to clone size; this allowed us to determine rates of clonal expansion. Analysis indicated a slow rate of niche succession within the crypt. The 2 arms of bifurcating crypts had distinct methylation patterns, indicating that fission can disrupt epigenetic records of crypt ancestry. Adjacent clonal CCO⁻ crypts usually had methylation patterns as dissimilar to one another as methylation patterns of 2 unrelated crypts. Mathematical models indicated that stem cell dynamics and epigenetic drift could account for observed dissimilarities in methylation patterns. CONCLUSIONS Methylation patterns can be analyzed to determine the rates of recent clonal expansion of stem cells, but determination of clonality over many decades is restricted by epigenetic drift. We developed a technique to follow changes in intestinal stem cell dynamics in human epithelial tissues that might be used to study premalignant disease.
Collapse
Affiliation(s)
- Trevor A Graham
- Histopathology Laboratory, Cancer Research UK London Research Institute, London, UK.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Spence JR, Lauf R, Shroyer NF. Vertebrate intestinal endoderm development. Dev Dyn 2011; 240:501-20. [PMID: 21246663 DOI: 10.1002/dvdy.22540] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/23/2010] [Indexed: 12/12/2022] Open
Abstract
The endoderm gives rise to the lining of the esophagus, stomach and intestines, as well as associated organs. To generate a functional intestine, a series of highly orchestrated developmental processes must occur. In this review, we attempt to cover major events during intestinal development from gastrulation to birth, including endoderm formation, gut tube growth and patterning, intestinal morphogenesis, epithelial reorganization, villus emergence, as well as proliferation and cytodifferentiation. Our discussion includes morphological and anatomical changes during intestinal development as well as molecular mechanisms regulating these processes.
Collapse
|
36
|
Wolkenhauer O, Shibata DK, Mesarović MD. A stem cell niche dominance theorem. BMC SYSTEMS BIOLOGY 2011; 5:4. [PMID: 21214945 PMCID: PMC3030540 DOI: 10.1186/1752-0509-5-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2010] [Accepted: 01/08/2011] [Indexed: 01/23/2023]
Abstract
Background Multilevelness is a defining characteristic of complex systems. For example, in the intestinal tissue the epithelial lining is organized into crypts that are maintained by a niche of stem cells. The behavior of the system 'as a whole' is considered to emerge from the functioning and interactions of its parts. What we are seeking here is a conceptual framework to demonstrate how the "fate" of intestinal crypts is an emergent property that inherently arises from the complex yet robust underlying biology of stem cells. Results We establish a conceptual framework in which to formalize cross-level principles in the context of tissue organization. To this end we provide a definition for stemness, which is the propensity of a cell lineage to contribute to a tissue fate. We do not consider stemness a property of a cell but link it to the process in which a cell lineage contributes towards tissue (mal)function. We furthermore show that the only logically feasible relationship between the stemness of cell lineages and the emergent fate of their tissue, which satisfies the given criteria, is one of dominance from a particular lineage. Conclusions The dominance theorem, conceived and proven in this paper, provides support for the concepts of niche succession and monoclonal conversion in intestinal crypts as bottom-up relations, while crypt fission is postulated to be a top-down principle.
Collapse
Affiliation(s)
- Olaf Wolkenhauer
- Department of Systems Biology and Bioinformatics, University of Rostock, Rostock, Germany.
| | | | | |
Collapse
|
37
|
Passenger mutations as a marker of clonal cell lineages in emerging neoplasia. Semin Cancer Biol 2010; 20:294-303. [PMID: 20951806 DOI: 10.1016/j.semcancer.2010.10.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2010] [Accepted: 10/07/2010] [Indexed: 02/07/2023]
Abstract
Cancer arises as the result of a natural selection process among cells of the body, favoring lineages bearing somatic mutations that bestow them with a proliferative advantage. Of the thousands of mutations within a tumor, only a small fraction functionally drive its growth; the vast majority are mere passengers of minimal biological consequence. Yet the presence of any mutation, independent of its role in facilitating proliferation, tags a cell's clonal descendants in a manner that allows them to be distinguished from unrelated cells. Such markers of cell lineage can be used to identify the abnormal proliferative signature of neoplastic clonal evolution, even at a stage which predates morphologically recognizable dysplasia. This article focuses on molecular techniques for assessing cellular clonality in humans with an emphasis on how they may be used for early detection of tumorigenic processes. We discuss historical as well as contemporary approaches and consider ways in which powerful new genomic technologies might be harnessed to develop a future generation of early cancer diagnostics.
Collapse
|
38
|
Karpowicz P, Perrimon N. All for one, and one for all: the clonality of the intestinal stem cell niche. F1000 BIOLOGY REPORTS 2010; 2:73. [PMID: 21173846 PMCID: PMC2989629 DOI: 10.3410/b2-73] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Intestinal epithelia are maintained by intestinal stem cells (ISCs) that divide to replace dying absorptive and secretory cells that make up this tissue. Lineage labeling studies, both in vertebrates and Drosophila, have revealed the relationships between ISCs and their progeny. In addition, a number of signaling pathways involved in ISC proliferation and differentiation have been identified. Further studies will clarify the signals originating from the ISC niche and determine the processes that control the number and uniform distribution of niches throughout the epithelium.
Collapse
Affiliation(s)
- Phillip Karpowicz
- Department of Genetics, Harvard Medical School77 Avenue Louis Pasteur, Boston, MA 02115USA
| | - Norbert Perrimon
- Department of Genetics, Harvard Medical School77 Avenue Louis Pasteur, Boston, MA 02115USA
- Howard Hughes Medical Institute4000 Jones Bridge Road, Chevy Chase, MD 20815-6789USA
| |
Collapse
|
39
|
Abstract
Cellular and tissue regeneration in the gastrointestinal tract and liver depends on stem cells with properties of longevity, self-renewal and multipotency. Progress in stem cell research and the identification of potential esophageal, gastric, intestinal, colonic, hepatic and pancreatic stem cells provides hope for the use of stem cells in regenerative medicine and treatments for disease. Embryonic stem cells and induced pluripotent stem cells have the potential to give rise to any cell type in the human body, but their therapeutic application remains challenging. The use of adult or tissue-restricted stem cells is emerging as another possible approach for the treatment of gastrointestinal diseases. The same self-renewal properties that allow stem cells to remain immortal and generate any tissue can occasionally make their proliferation difficult to control and make them susceptible to malignant transformation. This Review provides an overview of the different types of stem cell, focusing on tissue-restricted adult stem cells in the fields of gastroenterology and hepatology and summarizing the potential benefits and risks of using stems cells to treat gastroenterological and liver disorders.
Collapse
|
40
|
Potten CS, Gandara R, Mahida YR, Loeffler M, Wright NA. The stem cells of small intestinal crypts: where are they? Cell Prolif 2009; 42:731-50. [PMID: 19788585 PMCID: PMC6496740 DOI: 10.1111/j.1365-2184.2009.00642.x] [Citation(s) in RCA: 149] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2009] [Accepted: 05/27/2009] [Indexed: 12/11/2022] Open
Abstract
Recently, there has been resurgence of interest in the question of small intestinal stem cells, their precise location and numbers in the crypts. In this article, we attempt to re-assess the data, including historical information often omitted in recent studies on the subject. The conclusion we draw is that the evidence supports the concept that active murine small intestinal stem cells in steady state are few in number and are proliferative. There are two evolving, but divergent views on their location (which may be more related to scope of capability and reversibility than to location) several lineage labelling and stem cell self-renewing studies (based on Lgr5 expression) suggest a location intercalated between the Paneth cells (crypt base columnar cells (CBCCs)), or classical cell kinetic, label-retention and radiobiological evidence plus other recent studies, pointing to a location four cell positions luminally from the base of the crypt The latter is supported by recent lineage labelling of Bmi-1-expressing cells and by studies on expression of Wip-1 phosphatase. The situation in the human small intestine remains unclear, but recent mtDNA mutation studies suggest that the stem cells in humans are also located above the Paneth cell zone. There could be a distinct and as yet undiscovered relationship between these observed traits, with stem cell properties both in cells of the crypt base and those at cell position 4.
Collapse
|
41
|
McDonald SAC, Graham TA, Schier S, Wright NA, Alison MR. Stem cells and solid cancers. Virchows Arch 2009; 455:1-13. [PMID: 19499244 DOI: 10.1007/s00428-009-0783-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2009] [Revised: 04/22/2009] [Accepted: 04/28/2009] [Indexed: 02/06/2023]
Abstract
Recently, there have been significant advances in our knowledge of stem cells found in tissues that can develop solid tumours. In particular, novel stem cell markers have been identified for the first time identifying multipotential cells: a required characteristic of a stem cell. The scarcity of cancer stem cells has been questioned. Current dogma states that they are rare, but novel research has suggested that this may not be the case. Here, we review the latest literature on stem cells, particularly cancer stem cells within solid tumours. We discuss current thinking on how stem cells develop into cancer stem cells and how they protect themselves from doing so and do they express unique markers that can be used to detect stem cells. We attempt to put into perspective these latest advances in stem cell biology and their potential for cancer therapy.
Collapse
Affiliation(s)
- Stuart A C McDonald
- Centre for Gastroenterology, Institute of Cell and Molecular Science, Barts and the London School of Medicine and Dentistry, Blizard Building, 4 Newark Street, Whitechapel, London, E1 2AT, UK.
| | | | | | | | | |
Collapse
|
42
|
Fellous TG, McDonald SA, Burkert J, Humphries A, Islam S, De-Alwis NM, Gutierrez-Gonzalez L, Tadrous PJ, Elia G, Kocher HM, Bhattacharya S, Mears L, El-Bahrawy M, Turnbull DM, Taylor RW, Greaves LC, Chinnery PF, Day CP, Wright NA, Alison MR. A Methodological Approach to Tracing Cell Lineage in Human Epithelial Tissues. Stem Cells 2009; 27:1410-20. [DOI: 10.1002/stem.67] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|