1
|
Abstract
Fibrosis is not a unidirectional, linear process, but a dynamic one resulting from an interplay of fibrogenesis and fibrolysis depending on the extent and severity of a biologic insult, or lack thereof. Regression of fibrosis has been documented best in patients treated with phlebotomies for hemochromatosis, and after successful suppression and eradication of chronic hepatitis B and C infections. This evidence mandates a reconsideration of the term "cirrhosis," which implies an inevitable progression towards liver failure. Furthermore, it also necessitates a staging system that acknowledges the bidirectional nature of evolution of fibrosis, and has the ability to predict if the disease process is progressing or regressing. The Beijing classification attempts to fill this gap in contemporary practice. It is based on microscopic features termed "the hepatic repair complex," defined originally by Wanless and colleagues. The elements of the hepatic repair complex represent the 3 processes of fragmentation and regression of scar, vascular remodeling (resolution), and parenchymal regeneration. However, regression of fibrosis does not imply resolution of cirrhosis, which is more than just a stage of fibrosis. So far, there is little to no evidence to suggest that large regions of parenchymal extinction can be repopulated by regenerating hepatocytes. Similarly, the vascular lesions of cirrhosis persist, and there is no evidence of complete return to normal microcirculation in cirrhotic livers. In addition, the risk of hepatocellular carcinoma is higher compared with the general population and these patients need continued screening and surveillance.
Collapse
|
2
|
Alkhatib M, Di Maio VC, De Murtas V, Polilli E, Milana M, Teti E, Fiorentino G, Calvaruso V, Barbaliscia S, Bertoli A, Scutari R, Carioti L, Cento V, Santoro MM, Orro A, Maida I, Lenci I, Sarmati L, Craxì A, Pasquazzi C, Parruti G, Babudieri S, Milanesi L, Andreoni M, Angelico M, Perno CF, Ceccherini-Silberstein F, Svicher V, Salpini R, on behalf of HIRMA (Hepatocarcinoma Innovative Research MArkers) and Fondazione Vironet C (HCV Virology Italian Resistance Network). Genetic Determinants in a Critical Domain of NS5A Correlate with Hepatocellular Carcinoma in Cirrhotic Patients Infected with HCV Genotype 1b. Viruses 2021; 13:v13050743. [PMID: 33922732 PMCID: PMC8146897 DOI: 10.3390/v13050743] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/14/2021] [Accepted: 04/22/2021] [Indexed: 12/05/2022] Open
Abstract
HCV is an important cause of hepatocellular carcinoma (HCC). HCV NS5A domain-1 interacts with cellular proteins inducing pro-oncogenic pathways. Thus, we explore genetic variations in NS5A domain-1 and their association with HCC, by analyzing 188 NS5A sequences from HCV genotype-1b infected DAA-naïve cirrhotic patients: 34 with HCC and 154 without HCC. Specific NS5A mutations significantly correlate with HCC: S3T (8.8% vs. 1.3%, p = 0.01), T122M (8.8% vs. 0.0%, p < 0.001), M133I (20.6% vs. 3.9%, p < 0.001), and Q181E (11.8% vs. 0.6%, p < 0.001). By multivariable analysis, the presence of ≥1 of them independently correlates with HCC (OR (95%CI): 21.8 (5.7–82.3); p < 0.001). Focusing on HCC-group, the presence of these mutations correlates with higher viremia (median (IQR): 5.7 (5.4–6.2) log IU/mL vs. 5.3 (4.4–5.6) log IU/mL, p = 0.02) and lower ALT (35 (30–71) vs. 83 (48–108) U/L, p = 0.004), suggesting a role in enhancing viral fitness without affecting necroinflammation. Notably, these mutations reside in NS5A regions known to interact with cellular proteins crucial for cell-cycle regulation (p53, p85-PIK3, and β-catenin), and introduce additional phosphorylation sites, a phenomenon known to ameliorate NS5A interaction with cellular proteins. Overall, these results provide a focus for further investigations on molecular bases of HCV-mediated oncogenesis. The role of these NS5A domain-1 mutations in triggering pro-oncogenic stimuli that can persist also despite achievement of sustained virological response deserves further investigation.
Collapse
Affiliation(s)
- Mohammad Alkhatib
- Department of Experimental Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy; mohammad-- (M.A.); (V.C.D.M.); (S.B.); (A.B.); (R.S.); (L.C.); (M.M.S.); (F.C.-S.); (R.S.)
| | - Velia Chiara Di Maio
- Department of Experimental Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy; mohammad-- (M.A.); (V.C.D.M.); (S.B.); (A.B.); (R.S.); (L.C.); (M.M.S.); (F.C.-S.); (R.S.)
| | - Valentina De Murtas
- Department of Clinical and Experimental Medicine, University of Sassari, 07100 Sassari, Italy; (V.D.M.); (I.M.); (S.B.)
| | - Ennio Polilli
- Infectious Diseases Unit, Pescara General Hospital, 65124 Pescara, Italy; (E.P.); (G.P.)
| | - Martina Milana
- Hepatology Unit, University Hospital of Rome “Tor Vergata”, 00133 Rome, Italy; (M.M.); (I.L.); (M.A.)
| | - Elisabetta Teti
- Infectious Diseases Unit, University Hospital of Rome “Tor Vergata”, 00133 Rome, Italy; (E.T.); (L.S.); (M.A.)
| | - Gianluca Fiorentino
- Infectious Diseases Unit, Sant’Andrea Hospital—“Sapienza” University, 00189 Rome, Italy; (G.F.); (C.P.)
| | - Vincenza Calvaruso
- Gastroenterology, “P. Giaccone” University Hospital, 90127 Palermo, Italy; (V.C.); (A.C.)
| | - Silvia Barbaliscia
- Department of Experimental Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy; mohammad-- (M.A.); (V.C.D.M.); (S.B.); (A.B.); (R.S.); (L.C.); (M.M.S.); (F.C.-S.); (R.S.)
| | - Ada Bertoli
- Department of Experimental Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy; mohammad-- (M.A.); (V.C.D.M.); (S.B.); (A.B.); (R.S.); (L.C.); (M.M.S.); (F.C.-S.); (R.S.)
- Laboratory of Clinical Microbiology and Virology, Polyclinic Tor Vergata Foundation, 00133 Rome, Italy
| | - Rossana Scutari
- Department of Experimental Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy; mohammad-- (M.A.); (V.C.D.M.); (S.B.); (A.B.); (R.S.); (L.C.); (M.M.S.); (F.C.-S.); (R.S.)
| | - Luca Carioti
- Department of Experimental Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy; mohammad-- (M.A.); (V.C.D.M.); (S.B.); (A.B.); (R.S.); (L.C.); (M.M.S.); (F.C.-S.); (R.S.)
| | - Valeria Cento
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy;
| | - Maria Mercedes Santoro
- Department of Experimental Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy; mohammad-- (M.A.); (V.C.D.M.); (S.B.); (A.B.); (R.S.); (L.C.); (M.M.S.); (F.C.-S.); (R.S.)
| | - Alessandro Orro
- ITB-CNR, Institute of Biomedical Technologies, National Research Council of Italy, 20090 Milan, Italy; (A.O.); (L.M.)
| | - Ivana Maida
- Department of Clinical and Experimental Medicine, University of Sassari, 07100 Sassari, Italy; (V.D.M.); (I.M.); (S.B.)
| | - Ilaria Lenci
- Hepatology Unit, University Hospital of Rome “Tor Vergata”, 00133 Rome, Italy; (M.M.); (I.L.); (M.A.)
| | - Loredana Sarmati
- Infectious Diseases Unit, University Hospital of Rome “Tor Vergata”, 00133 Rome, Italy; (E.T.); (L.S.); (M.A.)
| | - Antonio Craxì
- Gastroenterology, “P. Giaccone” University Hospital, 90127 Palermo, Italy; (V.C.); (A.C.)
| | - Caterina Pasquazzi
- Infectious Diseases Unit, Sant’Andrea Hospital—“Sapienza” University, 00189 Rome, Italy; (G.F.); (C.P.)
| | - Giustino Parruti
- Infectious Diseases Unit, Pescara General Hospital, 65124 Pescara, Italy; (E.P.); (G.P.)
| | - Sergio Babudieri
- Department of Clinical and Experimental Medicine, University of Sassari, 07100 Sassari, Italy; (V.D.M.); (I.M.); (S.B.)
| | - Luciano Milanesi
- ITB-CNR, Institute of Biomedical Technologies, National Research Council of Italy, 20090 Milan, Italy; (A.O.); (L.M.)
| | - Massimo Andreoni
- Infectious Diseases Unit, University Hospital of Rome “Tor Vergata”, 00133 Rome, Italy; (E.T.); (L.S.); (M.A.)
| | - Mario Angelico
- Hepatology Unit, University Hospital of Rome “Tor Vergata”, 00133 Rome, Italy; (M.M.); (I.L.); (M.A.)
| | - Carlo Federico Perno
- Department of Diagnostic and Laboratory Medicine, IRCCS Bambino Gesu’, Pediatric Hospital, 60165 Rome, Italy;
| | - Francesca Ceccherini-Silberstein
- Department of Experimental Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy; mohammad-- (M.A.); (V.C.D.M.); (S.B.); (A.B.); (R.S.); (L.C.); (M.M.S.); (F.C.-S.); (R.S.)
| | - Valentina Svicher
- Department of Experimental Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy; mohammad-- (M.A.); (V.C.D.M.); (S.B.); (A.B.); (R.S.); (L.C.); (M.M.S.); (F.C.-S.); (R.S.)
- Correspondence: ; Tel.: +39-06-72596564
| | - Romina Salpini
- Department of Experimental Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy; mohammad-- (M.A.); (V.C.D.M.); (S.B.); (A.B.); (R.S.); (L.C.); (M.M.S.); (F.C.-S.); (R.S.)
| | | |
Collapse
|
3
|
Dimitriadis A, Foka P, Kyratzopoulou E, Karamichali E, Petroulia S, Tsitoura P, Kakkanas A, Eliadis P, Georgopoulou U, Mamalaki A. The Hepatitis C virus NS5A and core proteins exert antagonistic effects on HAMP gene expression: the hidden interplay with the MTF-1/MRE pathway. FEBS Open Bio 2021; 11:237-250. [PMID: 33247551 PMCID: PMC7780115 DOI: 10.1002/2211-5463.13048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 11/12/2020] [Accepted: 11/15/2020] [Indexed: 12/26/2022] Open
Abstract
Hepcidin, a 25-amino acid peptide encoded by the HAMP gene and produced mainly by hepatocytes and macrophages, is a mediator of innate immunity and the central iron-regulatory hormone. Circulating hepcidin controls iron efflux by inducing degradation of the cellular iron exporter ferroportin. HCV infection is associated with hepatic iron overload and elevated serum iron, which correlate with poor antiviral responses. The HCV nonstructural NS5A protein is known to function in multiple aspects of the HCV life cycle, probably exerting its activity in concert with cellular factor(s). In this study, we attempted to delineate the effect of HCV NS5A on HAMP gene expression. We observed that transient transfection of hepatoma cell lines with HCV NS5A resulted in down-regulation of HAMP promoter activity. A similar effect was evident after transduction of Huh7 cells with a recombinant baculovirus vector expressing NS5A protein. We proceeded to construct an NS5A-expressing stable cell line, which also exhibited down-regulation of HAMP gene promoter activity and significant reduction of HAMP mRNA and hepcidin protein levels. Concurrent expression of HCV core protein, a well-characterized hepcidin inducer, revealed antagonism between those two proteins for hepcidin regulation. In attempting to identify the pathways involved in NS5A-driven reduction of hepcidin levels, we ruled out any NS5A-induced alterations in the expression of the well-known hepcidin inducers SMAD4 and STAT3. Further analysis linked the abundance of intracellular zinc ions and the deregulation of the MTF-1/MRE/hepcidin axis with the observed phenomenon. This effect could be associated with distinct phases in HCV life cycle.
Collapse
Affiliation(s)
- Alexios Dimitriadis
- Laboratory of Molecular Biology and ImmunobiotechnologyHellenic Pasteur InstituteAthensGreece
| | - Pelagia Foka
- Laboratory of Molecular VirologyHellenic Pasteur InstituteAthensGreece
| | - Eleni Kyratzopoulou
- Laboratory of Molecular Biology and ImmunobiotechnologyHellenic Pasteur InstituteAthensGreece
| | | | | | - Panagiota Tsitoura
- Laboratory of Molecular VirologyHellenic Pasteur InstituteAthensGreece
- Present address:
Laboratory of Molecular Biology and ImmunobiotechnologyHellenic Pasteur InstituteAthensGreece
| | | | - Petros Eliadis
- Laboratory of Molecular Biology and ImmunobiotechnologyHellenic Pasteur InstituteAthensGreece
| | | | - Avgi Mamalaki
- Laboratory of Molecular Biology and ImmunobiotechnologyHellenic Pasteur InstituteAthensGreece
| |
Collapse
|
4
|
Goto K, Roca Suarez AA, Wrensch F, Baumert TF, Lupberger J. Hepatitis C Virus and Hepatocellular Carcinoma: When the Host Loses Its Grip. Int J Mol Sci 2020; 21:ijms21093057. [PMID: 32357520 PMCID: PMC7246584 DOI: 10.3390/ijms21093057] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 04/20/2020] [Accepted: 04/24/2020] [Indexed: 02/06/2023] Open
Abstract
Chronic infection with hepatitis C virus (HCV) is a major cause of hepatocellular carcinoma (HCC). Novel treatments with direct-acting antivirals achieve high rates of sustained virologic response; however, the HCC risk remains elevated in cured patients, especially those with advanced liver disease. Long-term HCV infection causes a persistent and accumulating damage of the liver due to a combination of direct and indirect pro-oncogenic mechanisms. This review describes the processes involved in virus-induced disease progression by viral proteins, derailed signaling, immunity, and persistent epigenetic deregulation, which may be instrumental to develop urgently needed prognostic biomarkers and as targets for novel chemopreventive therapies.
Collapse
Affiliation(s)
- Kaku Goto
- Université de Strasbourg, F-67000 Strasbourg, France
- Institut National de la Santé et de la Recherche Médicale, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Université de Strasbourg (IVH), F-67000 Strasbourg, France
| | - Armando Andres Roca Suarez
- Université de Strasbourg, F-67000 Strasbourg, France
- Institut National de la Santé et de la Recherche Médicale, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Université de Strasbourg (IVH), F-67000 Strasbourg, France
| | - Florian Wrensch
- Université de Strasbourg, F-67000 Strasbourg, France
- Institut National de la Santé et de la Recherche Médicale, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Université de Strasbourg (IVH), F-67000 Strasbourg, France
| | - Thomas F. Baumert
- Université de Strasbourg, F-67000 Strasbourg, France
- Institut National de la Santé et de la Recherche Médicale, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Université de Strasbourg (IVH), F-67000 Strasbourg, France
- Pôle Hépato-digestif, Institut Hopitalo-Universitaire, F-67000 Strasbourg, France
- Institut Universitaire de France, F-75231 Paris, France
- Correspondence: (T.F.B.); (J.L.); Tel.: +33-3-68-85-37-03 (T.F.B. & J.L.); Fax: +33-3-68-85-37-24 (T.F.B. & J.L.)
| | - Joachim Lupberger
- Université de Strasbourg, F-67000 Strasbourg, France
- Institut National de la Santé et de la Recherche Médicale, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Université de Strasbourg (IVH), F-67000 Strasbourg, France
- Correspondence: (T.F.B.); (J.L.); Tel.: +33-3-68-85-37-03 (T.F.B. & J.L.); Fax: +33-3-68-85-37-24 (T.F.B. & J.L.)
| |
Collapse
|
5
|
Hepatitis C Virus Downregulates Ubiquitin-Conjugating Enzyme E2S Expression To Prevent Proteasomal Degradation of NS5A, Leading to Host Cells More Sensitive to DNA Damage. J Virol 2019; 93:JVI.01240-18. [PMID: 30381483 DOI: 10.1128/jvi.01240-18] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 10/17/2018] [Indexed: 12/14/2022] Open
Abstract
Hepatitis C virus (HCV) infection may cause chronic hepatitis, liver cirrhosis, and hepatocellular carcinoma. HCV exploits cellular machineries to establish persistent infection. We demonstrate here that ubiquitin-conjugating enzyme E2S (UBE2S), a member of the ubiquitin-conjugating enzyme family (E2s), was downregulated by endoplasmic reticulum stress caused by HCV in Huh7 cells. UBE2S interacted with domain I of HCV NS5A and degraded NS5A protein through the Lys11-linked proteasome-dependent pathway. Overexpression of UBE2S suppressed viral propagation, while depletion of UBE2S expression increased viral infectivity. Enzymatically inactive UBE2S C95A mutant exerted no antiviral activity, suggesting that ubiquitin-conjugating enzymatic activity was required for the suppressive role of UBE2S. Chromatin ubiquitination plays a crucial role in the DNA damage response. We showed that the levels of UBE2S and Lys11 chains bound to the chromatin were markedly decreased in the context of HCV replication, rendering HCV-infected cells more sensitive to DNA damage. These data suggest that HCV counteracts antiviral activity of UBE2S to optimize viral propagation and may contribute to HCV-induced liver pathogenesis.IMPORTANCE Protein homeostasis is essential to normal cell function. HCV infection disturbs the protein homeostasis in the host cells. Therefore, host cells exert an anti-HCV activity in order to maintain normal cellular metabolism. We showed that UBE2S interacted with HCV NS5A and degraded NS5A protein through the Lys11-linked proteasome-dependent pathway. However, HCV has evolved to overcome host antiviral activity. We demonstrated that the UBE2S expression level was suppressed in HCV-infected cells. Since UBE2S is an ubiquitin-conjugating enzyme and this enzyme activity is involved in DNA damage repair, HCV-infected cells are more sensitive to DNA damage, and thus UBE2S may contribute to viral oncogenesis.
Collapse
|
6
|
Nonstructural Protein 5A Impairs DNA Damage Repair: Implications for Hepatitis C Virus-Mediated Hepatocarcinogenesis. J Virol 2018; 92:JVI.00178-18. [PMID: 29563287 DOI: 10.1128/jvi.00178-18] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 03/11/2018] [Indexed: 01/01/2023] Open
Abstract
RAD51-associated protein 1 (RAD51AP1) is a member of the multiprotein complexes postulated to carry out RAD51-mediated homologous recombination and DNA repair in mammalian cells. In the present study, we showed that hepatitis C virus (HCV) NS5A directly bound RAD51AP1 and increased the protein level of RAD51AP1 through modulation of the ubiquitin-proteasome pathway. We also demonstrated that RAD51AP1 protein levels were increased in the liver tissues of HCV-infected patients and NS5A-transgenic mice. Importantly, NS5A impaired DNA repair by disrupting the RAD51/RAD51AP1/UAF1 complex and rendered HCV-infected cells more sensitive to DNA damage. Silencing of RAD51AP1 expression resulted in a decrease of viral propagation. We further demonstrated that RAD51AP1 was involved in the assembly step of the HCV life cycle by protecting viral RNA. These data suggest that HCV exploits RAD51AP1 to promote viral propagation and thus that host DNA repair is compromised in HCV-infected cells. Overall, our findings provide mechanistic insight into the pathogenesis of HCV infection.IMPORTANCE Chronic infection with HCV is the leading cause of hepatocellular carcinoma (HCC). However, the molecular mechanisms underlying HCV-induced HCC are not fully understood. Here we demonstrate that the HCV NS5A protein physically interacts with RAD51AP1 and increases the RAD51AP1 protein level through modulation of the ubiquitin-proteasome pathway. HCV coopts host RAD51AP1 to protect viral RNA at an assembly step of the HCV life cycle. Note that the RAD51 protein accumulates in the cytoplasm of HCV-infected cells, and thus the RAD51/RAD51AP1/UAF1-mediated DNA damage repair system in the nucleus is compromised in HCV-infected cells. Our data may provide new insight into the molecular mechanisms of HCV-induced pathogenesis.
Collapse
|
7
|
Samson A, Bentham MJ, Scott K, Nuovo G, Bloy A, Appleton E, Adair RA, Dave R, Peckham-Cooper A, Toogood G, Nagamori S, Coffey M, Vile R, Harrington K, Selby P, Errington-Mais F, Melcher A, Griffin S. Oncolytic reovirus as a combined antiviral and anti-tumour agent for the treatment of liver cancer. Gut 2018; 67:562-573. [PMID: 27902444 PMCID: PMC5868283 DOI: 10.1136/gutjnl-2016-312009] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 09/26/2016] [Accepted: 10/13/2016] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Oncolytic viruses (OVs) represent promising, proinflammatory cancer treatments. Here, we explored whether OV-induced innate immune responses could simultaneously inhibit HCV while suppressing hepatocellular carcinoma (HCC). Furthermore, we extended this exemplar to other models of virus-associated cancer. DESIGN AND RESULTS Clinical grade oncolytic orthoreovirus (Reo) elicited innate immune activation within primary human liver tissue in the absence of cytotoxicity and independently of viral genome replication. As well as achieving therapy in preclinical models of HCC through the activation of innate degranulating immune cells, Reo-induced cytokine responses efficiently suppressed HCV replication both in vitro and in vivo. Furthermore, Reo-induced innate responses were also effective against models of HBV-associated HCC, as well as an alternative endogenous model of Epstein-Barr virus-associated lymphoma. Interestingly, Reo appeared superior to the majority of OVs in its ability to elicit innate inflammatory responses from primary liver tissue. CONCLUSIONS We propose that Reo and other select proinflammatory OV may be used in the treatment of multiple cancers associated with oncogenic virus infections, simultaneously reducing both virus-associated oncogenic drive and tumour burden. In the case of HCV-associated HCC (HCV-HCC), Reo should be considered as an alternative agent to supplement and support current HCV-HCC therapies, particularly in those countries where access to new HCV antiviral treatments may be limited.
Collapse
Affiliation(s)
- Adel Samson
- Leeds Institute of Cancer & Pathology (LICAP) and Leeds Cancer Research UK Clinical Centre, Faculty of Medicine and Health, University of Leeds, St James’ University Hospital, Leeds, UK
| | - Matthew J Bentham
- Leeds Institute of Cancer & Pathology (LICAP) and Leeds Cancer Research UK Clinical Centre, Faculty of Medicine and Health, University of Leeds, St James’ University Hospital, Leeds, UK
| | - Karen Scott
- Leeds Institute of Cancer & Pathology (LICAP) and Leeds Cancer Research UK Clinical Centre, Faculty of Medicine and Health, University of Leeds, St James’ University Hospital, Leeds, UK
| | - Gerard Nuovo
- The Ohio State University, Comprehensive Cancer Centre, Columbus, Ohio, USA
| | - Abigail Bloy
- Leeds Institute of Cancer & Pathology (LICAP) and Leeds Cancer Research UK Clinical Centre, Faculty of Medicine and Health, University of Leeds, St James’ University Hospital, Leeds, UK
| | - Elizabeth Appleton
- Leeds Institute of Cancer & Pathology (LICAP) and Leeds Cancer Research UK Clinical Centre, Faculty of Medicine and Health, University of Leeds, St James’ University Hospital, Leeds, UK
| | - Robert A Adair
- Leeds Institute of Cancer & Pathology (LICAP) and Leeds Cancer Research UK Clinical Centre, Faculty of Medicine and Health, University of Leeds, St James’ University Hospital, Leeds, UK
| | - Rajiv Dave
- Leeds Institute of Cancer & Pathology (LICAP) and Leeds Cancer Research UK Clinical Centre, Faculty of Medicine and Health, University of Leeds, St James’ University Hospital, Leeds, UK
| | - Adam Peckham-Cooper
- Leeds Institute of Cancer & Pathology (LICAP) and Leeds Cancer Research UK Clinical Centre, Faculty of Medicine and Health, University of Leeds, St James’ University Hospital, Leeds, UK
| | - Giles Toogood
- Leeds Institute of Cancer & Pathology (LICAP) and Leeds Cancer Research UK Clinical Centre, Faculty of Medicine and Health, University of Leeds, St James’ University Hospital, Leeds, UK
| | | | - Matthew Coffey
- Department of Virology II, National Institute of Infectious Diseases 1-23-1 Toyama, Tokyo, Japan
- Oncolytics Biotech, Calgary, Alberta, Canada
| | - Richard Vile
- Leeds Institute of Cancer & Pathology (LICAP) and Leeds Cancer Research UK Clinical Centre, Faculty of Medicine and Health, University of Leeds, St James’ University Hospital, Leeds, UK
- Department of Immunology, Mayo Clinic, Rochester, Minnesota, USA
- Department of Molecular Medicine, The Institute of Cancer Research, London, UK
| | - Kevin Harrington
- Department of Molecular Medicine, The Institute of Cancer Research, London, UK
| | - Peter Selby
- Leeds Institute of Cancer & Pathology (LICAP) and Leeds Cancer Research UK Clinical Centre, Faculty of Medicine and Health, University of Leeds, St James’ University Hospital, Leeds, UK
| | - Fiona Errington-Mais
- Leeds Institute of Cancer & Pathology (LICAP) and Leeds Cancer Research UK Clinical Centre, Faculty of Medicine and Health, University of Leeds, St James’ University Hospital, Leeds, UK
| | - Alan Melcher
- Department of Molecular Medicine, The Institute of Cancer Research, London, UK
| | - Stephen Griffin
- Leeds Institute of Cancer & Pathology (LICAP) and Leeds Cancer Research UK Clinical Centre, Faculty of Medicine and Health, University of Leeds, St James’ University Hospital, Leeds, UK
| |
Collapse
|
8
|
Hepatitis C Virus NS5A Targets Nucleosome Assembly Protein NAP1L1 To Control the Innate Cellular Response. J Virol 2017; 91:JVI.00880-17. [PMID: 28659470 DOI: 10.1128/jvi.00880-17] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 06/19/2017] [Indexed: 12/14/2022] Open
Abstract
Hepatitis C virus (HCV) is a single-stranded positive-sense RNA hepatotropic virus. Despite cellular defenses, HCV is able to replicate in hepatocytes and to establish a chronic infection that could lead to severe complications and hepatocellular carcinoma. An important player in subverting the host response to HCV infection is the viral nonstructural protein NS5A, which, in addition to its role in replication and assembly, targets several pathways involved in the cellular response to viral infection. Several unbiased screens identified nucleosome assembly protein 1-like 1 (NAP1L1) as an interaction partner of HCV NS5A. Here we confirmed this interaction and mapped it to the C terminus of NS5A of both genotype 1 and 2. NS5A sequesters NAP1L1 in the cytoplasm, blocking its nuclear translocation. However, only NS5A from genotype 2 HCV, and not that from genotype 1, targets NAP1L1 for proteosome-mediated degradation. NAP1L1 is a nuclear chaperone involved in chromatin remodeling, and we demonstrated the NAP1L1-dependent regulation of specific pathways involved in cellular responses to viral infection and cell survival. Among those, we showed that lack of NAP1L1 leads to a decrease of RELA protein levels and a strong defect of IRF3 TBK1/IKKε-mediated phosphorylation, leading to inefficient RIG-I and Toll-like receptor 3 (TLR3) responses. Hence, HCV is able to modulate the host cell environment by targeting NAP1L1 through NS5A.IMPORTANCE Viruses have evolved to replicate and to overcome antiviral countermeasures of the infected cell. Hepatitis C virus is capable of establishing a lifelong chronic infection in the liver, which could develop into cirrhosis and cancer. Chronic viruses are particularly able to interfere with the cellular antiviral pathways by several different mechanisms. In this study, we identified a novel cellular target of the viral nonstructural protein NS5A and demonstrated its role in antiviral signaling. This factor, called nucleosome assembly protein 1-like 1 (NAP1L1), is a nuclear chaperone involved in the remodeling of chromatin during transcription. When it is depleted, specific signaling pathways leading to antiviral effectors are affected. Therefore, we provide evidence for both a novel strategy of virus evasion from cellular immunity and a novel role for a cellular protein, which has not been described to date.
Collapse
|
9
|
Abstract
Liver cancer remains one of the most common human cancers with a high mortality rate. Therapies for hepatocellular carcinoma (HCC) remain ineffective, due to the heterogeneity of HCC with regard to both the etiology and mutation spectrum, as well as its chemotherapy resistant nature; thus surgical resection and liver transplantation remain the gold standard of patient care. The most common etiologies of HCC are extrinsic factors. Humans have multiple defense mechanisms against extrinsic factor-induced carcinogenesis, of which tumor suppressors play crucial roles in preventing normal cells from becoming cancerous. The tumor suppressor p53 is one of the most frequently mutated genes in liver cancer. p53 regulates expression of genes involved in cell cycle progression, cell death, and cellular metabolism to avert tumor development due to carcinogens. This review article mainly summarizes extrinsic factors that induce liver cancer and potentially have etiological association with p53, including aflatoxin B1, vinyl chloride, non-alcoholic fatty liver disease, iron overload, and infection of hepatitis viruses.
Collapse
Affiliation(s)
- Tim Link
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Tomoo Iwakuma
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
10
|
Rong Z, Fan T, Li H, Li J, Wang K, Wang X, Dong J, Chen J, Wang F, Wang J, Wang A. Differential Proteomic Analysis of Gender-dependent Hepatic Tumorigenesis in Hras12V Transgenic Mice. Mol Cell Proteomics 2017; 16:1475-1490. [PMID: 28512230 DOI: 10.1074/mcp.m116.065474] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Revised: 04/29/2017] [Indexed: 12/18/2022] Open
Abstract
Male prevalence is an outstanding characteristic of hepatocellular carcinoma (HCC), and the underlying mechanisms for this have remained largely unknown. In the present study, Hras12V transgenic mice, in which hepatocyte-specific expression of the ras oncogene induces male-biased hepatic tumorigenesis, were studied, and altered proteins were detected by two-dimensional fluorescence difference gel electrophoresis (2D-DIGE). Protein samples from hepatic tumor tissues (T) and peritumor tissues (P) of transgenic males and females and the corresponding normal liver tissues (Wt) of nontransgenic males and females were subjected to pairwise comparisons based on proteomic analysis. Among 2381 autodetected protein spots, more than 1600 were differentially expressed based on a pairwise comparison (|ratio| > = 1.5, p < = 0.05). Of these, 180 spots were randomly selected for matrix-assisted laser desorption ionization tandem time-of-flight mass spectrometry (MALDI-TOF/TOF MS) identification; finally, 89 distinct proteins were obtained. Among these 89 proteins, 7 and 50 proteins were further validated by Western blotting and literature investigation, respectively. Intriguingly, compared with Wt, the altered proteins were relatively concentrated in T in transgenic females but in P in transgenic males. Consistently, the levels of p-ERK and p-mTOR were significantly higher in the T of females compared with that of males. The pathway enrichment assay showed that 5 pathways in males but only 1 in females were significantly altered in terms of the upregulated proteins in T compared with Wt. These data indicate that female hepatocytes are disturbed by oncogenes with great difficulty, whereas male hepatocytes readily do so. In addition, 33 proteins were gender-dependently altered in hepatic tumorigenesis. Moreover, 4% DNA packaging and 4% homeostasis-related functional proteins were found in females but not in males, and more nucleus proteins were found in females (8%) than in males (3%). In conclusion, the proteomic data and comparative analysis presented here offer crucial clues for elucidating the mechanisms that underlie the male prevalence in HCC.
Collapse
Affiliation(s)
- Zhuona Rong
- From the ‡Laboratory Animal Center, Dalian Medical University, Dalian, Liaoning 116000, China
| | - Tingting Fan
- From the ‡Laboratory Animal Center, Dalian Medical University, Dalian, Liaoning 116000, China
| | - Huiling Li
- From the ‡Laboratory Animal Center, Dalian Medical University, Dalian, Liaoning 116000, China
| | - Juan Li
- From the ‡Laboratory Animal Center, Dalian Medical University, Dalian, Liaoning 116000, China
| | - Kangwei Wang
- From the ‡Laboratory Animal Center, Dalian Medical University, Dalian, Liaoning 116000, China
| | - Xinxin Wang
- From the ‡Laboratory Animal Center, Dalian Medical University, Dalian, Liaoning 116000, China
| | - Jianyi Dong
- From the ‡Laboratory Animal Center, Dalian Medical University, Dalian, Liaoning 116000, China
| | - Jun Chen
- From the ‡Laboratory Animal Center, Dalian Medical University, Dalian, Liaoning 116000, China
| | - Fujin Wang
- From the ‡Laboratory Animal Center, Dalian Medical University, Dalian, Liaoning 116000, China
| | - Jingyu Wang
- From the ‡Laboratory Animal Center, Dalian Medical University, Dalian, Liaoning 116000, China.
| | - Aiguo Wang
- From the ‡Laboratory Animal Center, Dalian Medical University, Dalian, Liaoning 116000, China.
| |
Collapse
|
11
|
Chen M, Gan X, Yoshino KI, Kitakawa M, Shoji I, Deng L, Hotta H. Hepatitis C virus NS5A protein interacts with lysine methyltransferase SET and MYND domain-containing 3 and induces activator protein 1 activation. Microbiol Immunol 2017; 60:407-17. [PMID: 27080060 DOI: 10.1111/1348-0421.12383] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 04/01/2016] [Accepted: 04/10/2016] [Indexed: 12/27/2022]
Abstract
Hepatitis C virus (HCV) non-structural protein 5A (NS5A) is a multifunctional protein that is involved in the HCV life cycle and pathogenesis. In this study, a host protein(s) interacting with NS5A by tandem affinity purification were searched for with the aim of elucidating the role of NS5A. An NS5A-interacting protein, SET and MYND domain-containing 3 (SMYD3), a lysine methyltransferase reportedly involved in the development of cancer, was identified. The interaction between NS5A and SMYD3 was confirmed in ectopically expressing, HCV RNA replicon-harboring and HCV-infected cells. The other HCV proteins did not bind to SMYD3. SMYD3 bound to NS5A of HCV genotypes 1b and 2a. Deletion mutational analysis revealed that domains II and III of NS5A (amino acids [aa] 250 to 447) and the MYND and N-SET domains of SMYD3 (aa 1 to 87) are involved in the full extent of NS5A-SMYD3 interaction. NS5A co-localized with SMYD3 exclusively in the cytoplasm, thereby inhibiting nuclear localization of SMYD3. Moreover, NS5A formed a complex with SMYD3 and heat shock protein 90 (HSP90), which is a positive regulator of SMYD3. The intensity of binding between SMYD3 and HSP90 was enhanced by NS5A. Luciferase reporter assay demonstrated that NS5A significantly induces activator protein 1 (AP-1) activity, this being potentiated by co-expression of SMYD3 with NS5A. Taken together, the present results suggest that NS5A interacts with SMYD3 and induces AP-1 activation, possibly by facilitating binding between HSP90 and SMYD3. This may be a novel mechanism of AP-1 activation in HCV-infected cells.
Collapse
Affiliation(s)
- Ming Chen
- Division of Microbiology.,Division of Infectious Disease Control, Kobe University Graduate School of Medicine
| | - Xiang Gan
- Division of Microbiology.,Institute of Biochemistry and Molecular Biology, Hubei University, Wuhan, China
| | | | | | - Ikuo Shoji
- Division of Infectious Disease Control, Kobe University Graduate School of Medicine
| | - Lin Deng
- Division of Microbiology.,Division of Infectious Disease Control, Kobe University Graduate School of Medicine
| | - Hak Hotta
- Division of Microbiology.,Department of Oral Vaccine and Drug Development, Kobe University Graduate School of Health Sciences, Kobe, Japan
| |
Collapse
|
12
|
Tsutsumi T, Okushin K, Enooku K, Fujinaga H, Moriya K, Yotsuyanagi H, Aizaki H, Suzuki T, Matsuura Y, Koike K. Nonstructural 5A Protein of Hepatitis C Virus Interferes with Toll-Like Receptor Signaling and Suppresses the Interferon Response in Mouse Liver. PLoS One 2017; 12:e0170461. [PMID: 28107512 PMCID: PMC5249188 DOI: 10.1371/journal.pone.0170461] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Accepted: 01/05/2017] [Indexed: 02/06/2023] Open
Abstract
The hepatitis C virus nonstructural protein NS5A is involved in resistance to the host immune response, as well as the viral lifecycle such as replication and maturation. Here, we established transgenic mice expressing NS5A protein in the liver and examined innate immune responses against lipopolysaccharide (LPS) in vivo. Intrahepatic gene expression levels of cytokines such as interleukin-6, tumor necrosis factor-α, and interferon-γ were significantly suppressed after LPS injection in the transgenic mouse liver. Induction of the C-C motif chemokine ligand 2, 4, and 5 was also suppressed. Phosphorylation of the signal transducer and activator of transcription 3, which is activated by cytokines, was also reduced, and expression levels of interferon-stimulated genes, 2’-5’ oligoadenylate synthase, interferon-inducible double-stranded RNA-activated protein kinase, and myxovirus resistance 1 were similarly suppressed. Since LPS binds to toll-like receptor 4 and stimulates the downstream pathway leading to induction of these genes, we examined the extracellular signal-regulated kinase and IκB-α. The phosphorylation levels of these molecules were reduced in transgenic mouse liver, indicating that the pathway upstream of the molecules was disrupted by NS5A. Further analyses revealed that the interaction between interleukin-1 receptor-associated kinase-1 and tumor necrosis factor receptor associated factor-6 was dispersed in transgenic mice, suggesting that NS5A may interfere with this interaction via myeloid differentiation primary response gene 88, which was shown to interact with NS5A. Since the gut microbiota, a source of LPS, is known to be associated with pathological conditions in liver diseases, our results suggest the involvement of NS5A in the pathogenesis of HCV infected-liver via the suppression of innate immunity.
Collapse
Affiliation(s)
- Takeya Tsutsumi
- Department of Internal Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- * E-mail:
| | - Kazuya Okushin
- Department of Internal Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kenichiro Enooku
- Department of Internal Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hidetaka Fujinaga
- Department of Internal Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kyoji Moriya
- Department of Internal Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hiroshi Yotsuyanagi
- Department of Internal Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hideki Aizaki
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Tetsuro Suzuki
- Department of Infectious Diseases, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Yoshiharu Matsuura
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Kazuhiko Koike
- Department of Internal Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
13
|
Wang Y, Jiang Y, Zhou J, Song W, Li J, Wang M, Chen J, Xu R, Zhang J, Ma F, Chen YH, Ma Y. Hepatitis C virus promotes hepatocellular carcinogenesis by targeting TIPE2, a new regulator of DNA damage response. Tumour Biol 2016; 37:15265-15274. [PMID: 27696294 PMCID: PMC5126206 DOI: 10.1007/s13277-016-5409-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 09/13/2016] [Indexed: 12/25/2022] Open
Abstract
Infection of hepatitis C virus (HCV) is associated with primary hepatocellular carcinoma (HCC). However, its underlying molecular mechanisms remain enigmatic. Tumor necrosis factor-α-induced protein 8-like 2 (TIPE2), a new negative regulator of immunity, plays significant roles in modulating inflammation and tumorigenesis. We hypothesized that TIPE2 might be involved in the development of HCV-induced HCC. To test this hypothesis, the expression of TIPE2 was determined by Western blot in the tumor and pericarcinomatous tissues collected from ten HCV-positive HCC patients; the interaction between TIPE2 and HCV-encoded non-structural proteins was analyzed by immunoprecipitation and immunofluorescence assays, and tumorigenesis and its mechanisms were studied in cell models and nude mice. Our results demonstrated that the expression of TIPE2 was significantly reduced in HCC tissues compared to that in the paracarcinoma tissues. HCV-encoded non-structural protein NS5A could specifically interact with TIPE2 and induce its degradation. Downregulation of TIPE2 by shRNA in cell lines increased genomic DNA damage and promoted cell colony formation in vitro and tumorigenesis in nude mice. In contrast, overexpression of TIPE2 had an opposite effect. Downregulation of TIPE2 by NS5A is associated with genomic DNA instability and HCV-induced HCC development. Thus, TIPE2 may be a new therapeutic target for the treatment of HCV-associated HCC.
Collapse
Affiliation(s)
- Yaohui Wang
- Henan Key Laboratory of Engineering Antibody Medicine, Medical College of Henan University, Kaifeng, Henan, 475004, China
| | - Yinan Jiang
- College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Jinxue Zhou
- Zhengzhou University Affiliated Tumor Hospital, Zhengzhou, Henan, 450001, China
| | - Wuhui Song
- Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jing Li
- Henan Key Laboratory of Engineering Antibody Medicine, Medical College of Henan University, Kaifeng, Henan, 475004, China
| | - Mingli Wang
- Henan Key Laboratory of Engineering Antibody Medicine, Medical College of Henan University, Kaifeng, Henan, 475004, China
| | - Jiuge Chen
- Henan Key Laboratory of Engineering Antibody Medicine, Medical College of Henan University, Kaifeng, Henan, 475004, China
| | - Rui Xu
- Henan Key Laboratory of Engineering Antibody Medicine, Medical College of Henan University, Kaifeng, Henan, 475004, China
| | - Jingjing Zhang
- Henan Key Laboratory of Engineering Antibody Medicine, Medical College of Henan University, Kaifeng, Henan, 475004, China
| | - Fanni Ma
- Henan Key Laboratory of Engineering Antibody Medicine, Medical College of Henan University, Kaifeng, Henan, 475004, China
| | - Youhai H Chen
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Yuanfang Ma
- Henan Key Laboratory of Engineering Antibody Medicine, Medical College of Henan University, Kaifeng, Henan, 475004, China.
| |
Collapse
|
14
|
Nagahashi M, Matsuda Y, Moro K, Tsuchida J, Soma D, Hirose Y, Kobayashi T, Kosugi SI, Takabe K, Komatsu M, Wakai T. DNA damage response and sphingolipid signaling in liver diseases. Surg Today 2016; 46:995-1005. [PMID: 26514817 PMCID: PMC5053096 DOI: 10.1007/s00595-015-1270-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2015] [Accepted: 10/04/2015] [Indexed: 02/06/2023]
Abstract
Patients with unresectable hepatocellular carcinoma (HCC) cannot generally be cured by systemic chemotherapy or radiotherapy due to their poor response to conventional therapeutic agents. The development of novel and efficient targeted therapies to increase their treatment options depends on the elucidation of the molecular mechanisms that underlie the pathogenesis of HCC. The DNA damage response (DDR) is a network of cell-signaling events that are triggered by DNA damage. Its dysregulation is thought to be one of the key mechanisms underlying the generation of HCC. Sphingosine-1-phosphate (S1P), a lipid mediator, has emerged as an important signaling molecule that has been found to be involved in many cellular functions. In the liver, the alteration of S1P signaling potentially affects the DDR pathways. In this review, we explore the role of the DDR in hepatocarcinogenesis of various etiologies, including hepatitis B and C infection and non-alcoholic steatohepatitis. Furthermore, we discuss the metabolism and functions of S1P that may affect the hepatic DDR. The elucidation of the pathogenic role of S1P may create new avenues of research into therapeutic strategies for patients with HCC.
Collapse
Affiliation(s)
- Masayuki Nagahashi
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata, 951-8510, Japan.
| | - Yasunobu Matsuda
- Department of Medical Technology, Niigata University Graduate School of Health Sciences, 2-746 Asahimachi-dori, Chuo-ku, Niigata, 951-8518, Japan
| | - Kazuki Moro
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata, 951-8510, Japan
| | - Junko Tsuchida
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata, 951-8510, Japan
| | - Daiki Soma
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata, 951-8510, Japan
| | - Yuki Hirose
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata, 951-8510, Japan
| | - Takashi Kobayashi
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata, 951-8510, Japan
| | - Shin-Ichi Kosugi
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata, 951-8510, Japan
| | - Kazuaki Takabe
- Division of Surgical Oncology, Department of Surgery, Virginia Commonwealth University School of Medicine and the Massey Cancer Center, West Hospital 7-402, 1200 East Broad Street, Richmond, VA, 23298-0011, USA
| | - Masaaki Komatsu
- Department of Biochemistry, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata, 951-8510, Japan
| | - Toshifumi Wakai
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata, 951-8510, Japan
| |
Collapse
|
15
|
Islam MJ, Hikosaka K, Noritake H, Uddin MKM, Amin MB, Aoto K, Wu YX, Sato E, Kobayashi Y, Wakita T, Miura N. Pol I-transcribed hepatitis C virus genome RNA replicates, produces an infectious virus and leads to severe hepatic steatosis in transgenic mice. Biomed Res 2016; 36:159-67. [PMID: 26106045 DOI: 10.2220/biomedres.36.159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Patients chronically infected with hepatitis C virus (HCV) are at risk of developing end-stage liver disease and hepatocellular carcinoma. Development of drugs to inhibit hepatocyte damage and a vaccine against HCV is hampered by the lack of a small animal model. We generated mice in which the viral genome RNA was always present in the hepatocytes using a special transgene. Here we show that the HCV genome RNA transcribed by Pol I polymerase can replicate and produce infectious viruses in mice. We obtained a transgenic mouse with 200 copies per haploid which we named the A line mouse. It produced ~ 3 × 10(6) HCV RNA copies/mL serum, which is at the comparable level as patients with chronic HCV infection. This mouse was immunotolerant to HCV and showed hepatic steatosis without any necroinflammation at the age of 6 months or hepatocellular carcinoma at the age of 15 months. Thus, the A line mouse can be used as an animal model for chronic HCV infection. This will enable better study of the abnormalities in metabolism and signal transduction in infected hepatocytes, and development of drugs that cure abnormalities.
Collapse
|
16
|
Grassi G, Di Caprio G, Fimia GM, Ippolito G, Tripodi M, Alonzi T. Hepatitis C virus relies on lipoproteins for its life cycle. World J Gastroenterol 2016; 22:1953-1965. [PMID: 26877603 PMCID: PMC4726671 DOI: 10.3748/wjg.v22.i6.1953] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 10/19/2015] [Accepted: 12/21/2015] [Indexed: 02/06/2023] Open
Abstract
Hepatitis C virus (HCV) infects over 150 million people worldwide. In most cases, HCV infection becomes chronic causing liver disease ranging from fibrosis to cirrhosis and hepatocellular carcinoma. Viral persistence and pathogenesis are due to the ability of HCV to deregulate specific host processes, mainly lipid metabolism and innate immunity. In particular, HCV exploits the lipoprotein machineries for almost all steps of its life cycle. The aim of this review is to summarize current knowledge concerning the interplay between HCV and lipoprotein metabolism. We discuss the role played by members of lipoproteins in HCV entry, replication and virion production.
Collapse
|
17
|
Mitchell JK, Lemon SM, McGivern DR. How do persistent infections with hepatitis C virus cause liver cancer? Curr Opin Virol 2015; 14:101-8. [PMID: 26426687 PMCID: PMC4628866 DOI: 10.1016/j.coviro.2015.09.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 09/02/2015] [Accepted: 09/08/2015] [Indexed: 12/21/2022]
Abstract
Persistent infection with hepatitis C virus (HCV) is associated with an increased risk of hepatocellular carcinoma (HCC). Cancer typically develops in a setting of chronic hepatic inflammation and advanced fibrosis or cirrhosis, and such tissue represents a pre-neoplastic 'cancer field'. However, not all persistent infections progress to HCC and a combination of viral and host immune factors likely contributes to carcinogenesis. HCV may disrupt cellular pathways involved in detecting and responding to DNA damage, potentially adding to the risk of cancer. Efforts to unravel how HCV promotes HCC are hindered by lack of a robust small animal model, but a better understanding of molecular mechanisms could identify novel biomarkers for early detection and allow for development of improved therapies.
Collapse
Affiliation(s)
- Jonathan K Mitchell
- Division of Infectious Diseases, Department of Medicine, and Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Stanley M Lemon
- Division of Infectious Diseases, Department of Medicine, and Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - David R McGivern
- Division of Infectious Diseases, Department of Medicine, and Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
18
|
Nishitsuji H, Funami K, Shimizu Y, Ujino S, Seya T, Shimotohno K. Hepatitis C Virus (HCV)-Induced Inflammation: The Role of Cross-Talk Between HCV-Infected Hepatocytes and Stellate Cells. INFLAMMATION AND IMMUNITY IN CANCER 2015:109-121. [DOI: 10.1007/978-4-431-55327-4_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
19
|
Kuo YC, Chen IY, Chang SC, Wu SC, Hung TM, Lee PH, Shimotohno K, Chang MF. Hepatitis C virus NS5A protein enhances gluconeogenesis through upregulation of Akt-/JNK-PEPCK signalling pathways. Liver Int 2014; 34:1358-68. [PMID: 25360475 DOI: 10.1111/liv.12389] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND & AIMS Hepatitis C virus (HCV) infection is highly associated with the type 2 diabetes mellitus, but the detailed mechanisms by which the viral proteins are involved in the clinical outcome remain unclear. METHODS A cDNA microarray analysis was performed following introducing an NS5A-encoding plasmid or a control vector into a mouse system by hydrodynamics- based transfection. Differentially expressed genes that are associated with gluconeogenesis were selected and their expression levels in HCV patients, in NS5A-expressing systems, and in the viral subgenomic replicon system were further examined by real-time quantitative polymerase chain reaction and Western blot analysis. RESULTS Differential gene expression including an upregulation of the gluconeogenic rate-limiting enzyme phosphoenolpyruvate carboxykinase (PEPCK) compared with controls was detected in mouse hepatocytes expressing HCV NS5A and in HCV patients with diabetes. In addition, an NS5A-dependent increase in glucose production was demonstrated in human primary hepatocytes. The upregulation of PEPCK and peroxisome proliferator-activated receptor-c coactivator-1a (PGC-1a) were also detected in NS5A-expressing cells and in the viral genotype 1b subgenomic replicon system. Further studies demonstrated that the NS5A-mediated upregulation of PEPCK and PGC-1a genes were resulted from the activation of PI3K-Akt and JNK signalling pathways. In addition, the expression levels of the forkhead transcription factor FoxO1 and the liver-enriched transcription factor HNF-4a were increased in HCV NS5A expressing cells. CONCLUSIONS By upregulating the expression of PEPCK gene via its transactivators FoxO1 and HNF-4a, and the coactivator PGC-1a, the NS5A promotes the production of hepatic glucose which may contribute to the development of HCV-associated type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Yi-Chen Kuo
- Institute of Biochemistry and Molecular Biology; National Taiwan University College of Medicine; Taipei Taiwan
| | - I-Yin Chen
- Institute of Biochemistry and Molecular Biology; National Taiwan University College of Medicine; Taipei Taiwan
- Institute of Microbiology; National Taiwan University College of Medicine; Taipei Taiwan
| | - Shin C. Chang
- Institute of Microbiology; National Taiwan University College of Medicine; Taipei Taiwan
| | - Shun-Chi Wu
- Institute of Biochemistry and Molecular Biology; National Taiwan University College of Medicine; Taipei Taiwan
| | - Tzu-Min Hung
- Department of Surgery; National Taiwan University Hospital; Taipei Taiwan
- Department of Medical Research; E-DA Hospital; Kaohsiung Taiwan
| | - Po-Huang Lee
- Department of Surgery; National Taiwan University Hospital; Taipei Taiwan
| | - Kunitada Shimotohno
- Laboratory of Human Tumor Viruses; Institute of Virus Research; Kyoto University; Kyoto Japan
| | - Ming-Fu Chang
- Institute of Biochemistry and Molecular Biology; National Taiwan University College of Medicine; Taipei Taiwan
| |
Collapse
|
20
|
Mitchell JK, McGivern DR. Mechanisms of hepatocarcinogenesis in chronic hepatitis C. Hepat Oncol 2014; 1:293-307. [PMID: 30190964 DOI: 10.2217/hep.14.7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Infection with hepatitis C virus (HCV) is a major risk factor for hepatocellular carcinoma. The genetic changes that drive cancer development are heterogeneous and how chronic hepatitis C promotes the initiation of hepatocellular carcinoma is incompletely understood. Cancer typically arises in the setting of advanced fibrosis and/or cirrhosis where chronic immune-mediated inflammation over decades promotes hepatocyte turnover providing selective pressure that favors the malignant phenotype. As well as contributions of unresolved inflammation to carcinogenesis, evidence from transgenic mice with liver-specific expression of viral sequences suggests that some HCV-encoded proteins may directly promote cancer. Numerous in vitro studies suggest roles for HCV proteins in subversion of cellular pathways that normally act to suppress tumorigenesis. Here, we review the mechanisms by which persistent HCV infection might promote cancer in addition to the procarcinogenic effects of inflammatory liver disease.
Collapse
Affiliation(s)
- Jonathan K Mitchell
- Lineberger Comprehensive Cancer Center & Division of Infectious Diseases, Department of Medicine, University of North Carolina, Chapel Hill, NC 27599-7295, USA
| | - David R McGivern
- Lineberger Comprehensive Cancer Center & Division of Infectious Diseases, Department of Medicine, University of North Carolina, Chapel Hill, NC 27599-7295, USA
| |
Collapse
|
21
|
Choi J, Corder NLB, Koduru B, Wang Y. Oxidative stress and hepatic Nox proteins in chronic hepatitis C and hepatocellular carcinoma. Free Radic Biol Med 2014; 72:267-84. [PMID: 24816297 PMCID: PMC4099059 DOI: 10.1016/j.freeradbiomed.2014.04.020] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2014] [Revised: 04/16/2014] [Accepted: 04/18/2014] [Indexed: 02/08/2023]
Abstract
Hepatocellular carcinoma (HCC) is the most common liver cancer and a leading cause of cancer-related mortality in the world. Hepatitis C virus (HCV) is a major etiologic agent of HCC. A majority of HCV infections lead to chronic infection that can progress to cirrhosis and, eventually, HCC and liver failure. A common pathogenic feature present in HCV infection, and other conditions leading to HCC, is oxidative stress. HCV directly increases superoxide and H2O2 formation in hepatocytes by elevating Nox protein expression and sensitizing mitochondria to reactive oxygen species generation while decreasing glutathione. Nitric oxide synthesis and hepatic iron are also elevated. Furthermore, activation of phagocytic NADPH oxidase (Nox) 2 of host immune cells is likely to exacerbate oxidative stress in HCV-infected patients. Key mechanisms of HCC include genome instability, epigenetic regulation, inflammation with chronic tissue injury and sustained cell proliferation, and modulation of cell growth and death. Oxidative stress, or Nox proteins, plays various roles in these mechanisms. Nox proteins also function in hepatic fibrosis, which commonly precedes HCC, and Nox4 elevation by HCV is mediated by transforming growth factor β. This review summarizes mechanisms of oncogenesis by HCV, highlighting the roles of oxidative stress and hepatic Nox enzymes in HCC.
Collapse
Affiliation(s)
- Jinah Choi
- School of Natural Sciences, University of California at Merced, Merced, CA 95343, USA.
| | - Nicole L B Corder
- School of Natural Sciences, University of California at Merced, Merced, CA 95343, USA
| | - Bhargav Koduru
- School of Natural Sciences, University of California at Merced, Merced, CA 95343, USA
| | - Yiyan Wang
- School of Natural Sciences, University of California at Merced, Merced, CA 95343, USA
| |
Collapse
|
22
|
Higgs MR, Chouteau P, Lerat H. 'Liver let die': oxidative DNA damage and hepatotropic viruses. J Gen Virol 2014; 95:991-1004. [PMID: 24496828 DOI: 10.1099/vir.0.059485-0] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Chronic infections by the hepatotropic viruses hepatitis B virus (HBV) and hepatitis C virus (HCV) are major risk factors for the development of hepatocellular carcinoma (HCC). It is estimated that more than 700,000 individuals per year die from HCC, and around 80 % of HCC is attributable to HBV or HCV infection. Despite the clear clinical importance of virus-associated HCC, the underlying molecular mechanisms remain largely elusive. Oxidative stress, in particular DNA lesions associated with oxidative damage, play a major contributory role in carcinogenesis, and are strongly linked to the development of many cancers, including HCC. A large body of evidence demonstrates that both HBV and HCV induce hepatic oxidative stress, with increased oxidative DNA damage being observed both in infected individuals and in murine models of infection. Here, we review the impact of HBV and HCV on the incidence and repair of oxidative DNA damage. We begin by giving a brief overview of oxidative stress and the repair of DNA lesions induced by oxidative stress. We then review in detail the evidence surrounding the mechanisms by which both viruses stimulate oxidative stress, before focusing on how the viral proteins themselves may perturb the cellular response to oxidative DNA damage, impacting upon genome stability and thus hepatocarcinogenesis.
Collapse
Affiliation(s)
- Martin R Higgs
- School of Cancer Sciences, University of Birmingham, Birmingham, UK
| | | | - Hervé Lerat
- INSERM U955, Université Paris-Est, Créteil, France
| |
Collapse
|
23
|
Billerbeck E, de Jong Y, Dorner M, de la Fuente C, Ploss A. Animal models for hepatitis C. Curr Top Microbiol Immunol 2013; 369:49-86. [PMID: 23463197 DOI: 10.1007/978-3-642-27340-7_3] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Hepatitis C remains a global epidemic. Approximately 3 % of the world's population suffers from chronic hepatitis C, which is caused by hepatitis C virus (HCV)-a positive sense, single-stranded RNA virus of the Flaviviridae family. HCV has a high propensity for establishing a chronic infection. If untreated chronic HCV carriers can develop severe liver disease including fibrosis, cirrhosis, and hepatocellular carcinoma (HCC). Antiviral treatment is only partially effective, costly, and poorly tolerated. A prophylactic or therapeutic vaccine for HCV does not exist. Mechanistic studies of virus-host interactions, HCV immunity, and pathogenesis as well as the development of more effective therapies have been hampered by the lack of a suitable small animal model. Besides humans, chimpanzees are the only species that is naturally susceptible to HCV infection. While experimentation in these large primates has yielded valuable insights, ethical considerations, limited availability, genetic heterogeneity, and cost limit their utility. In search for more tractable small animal models, numerous experimental approaches have been taken to recapitulate parts of the viral life cycle and/or aspects of viral pathogenesis that will be discussed in this review. Exciting new models and improvements in established models hold promise to further elucidate our understanding of chronic HCV infection.
Collapse
Affiliation(s)
- Eva Billerbeck
- Center for the Study of Hepatitis C, The Rockefeller University, NY, USA
| | | | | | | | | |
Collapse
|
24
|
Roingeard P. Hepatitis C virus diversity and hepatic steatosis. J Viral Hepat 2013; 20:77-84. [PMID: 23301542 DOI: 10.1111/jvh.12035] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Accepted: 10/01/2012] [Indexed: 02/06/2023]
Abstract
Hepatitis C virus (HCV) infection is closely associated with lipid metabolism defects throughout the viral lifecycle, with hepatic steatosis frequently observed in patients with chronic HCV infection. Hepatic steatosis is most common in patients infected with genotype 3 viruses, possibly due to direct effects of genotype 3 viral proteins. Hepatic steatosis in patients infected with other genotypes is thought to be mostly due to changes in host metabolism, involving insulin resistance in particular. Specific effects of the HCV genotype 3 core proteins have been observed in cellular models in vitro: mechanisms linked with a decrease in microsomal triglyceride transfer protein activity, decreases in the levels of peroxisome proliferator-activating receptors, increases in the levels of sterol regulatory element-binding proteins, and phosphatase and tensin homologue downregulation. Functional differences between the core proteins of genotype 3 viruses and viruses of other genotypes may reflect differences in amino acid sequences. However, bioclinical studies have failed to identify specific 'steatogenic' sequences in HCV isolates from patients with hepatic steatosis. It is therefore difficult to distinguish between viral and metabolic steatosis unambiguously, and host and viral factors are probably involved in both HCV genotype 3 and nongenotype 3 steatosis.
Collapse
Affiliation(s)
- P Roingeard
- INSERM U966, Université François Rabelais & CHRU de Tours, Tours, France.
| |
Collapse
|
25
|
Hepatitis C virus and hepatocellular carcinoma. BIOLOGY 2013; 2:304-16. [PMID: 24832662 PMCID: PMC4009856 DOI: 10.3390/biology2010304] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Revised: 01/18/2013] [Accepted: 01/23/2013] [Indexed: 12/28/2022]
Abstract
Hepatitis C virus (HCV), a hepatotropic virus, is a single stranded-positive RNA virus of ~9,600 nt. length belonging to the Flaviviridae family. HCV infection causes acute hepatitis, chronic hepatitis, cirrhosis and hepatocellular carcinoma (HCC). It has been reported that HCV-coding proteins interact with host-cell factors that are involved in cell cycle regulation, transcriptional regulation, cell proliferation and apoptosis. Severe inflammation and advanced liver fibrosis in the liver background are also associated with the incidence of HCV-related HCC. In this review, we discuss the mechanism of hepatocarcinogenesis in HCV-related liver diseases.
Collapse
|
26
|
|
27
|
Hepatitis C virus infection suppresses GLUT2 gene expression via downregulation of hepatocyte nuclear factor 1α. J Virol 2012; 86:12903-11. [PMID: 22993150 DOI: 10.1128/jvi.01418-12] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Hepatitis C virus (HCV) infection causes not only intrahepatic diseases but also extrahepatic manifestations, including type 2 diabetes. We previously reported that HCV replication suppresses cellular glucose uptake by downregulation of cell surface expression of glucose transporter 2 (GLUT2) (D. Kasai et al., J. Hepatol. 50:883-894, 2009). GLUT2 mRNA levels were decreased in both HCV RNA replicon cells and HCV J6/JFH1-infected cells. To elucidate molecular mechanisms of HCV-induced suppression of GLUT2 gene expression, we analyzed transcriptional regulation of the GLUT2 promoter using a series of GLUT2 promoter-luciferase reporter plasmids. HCV-induced suppression of GLUT2 promoter activity was abrogated when the hepatocyte nuclear factor 1α (HNF-1α)-binding motif was deleted from the GLUT2 promoter. HNF-1α mRNA levels were significantly reduced in HCV J6/JFH1-infected cells. Furthermore, HCV infection remarkably decreased HNF-1α protein levels. We assessed the effects of proteasome inhibitor or lysosomal protease inhibitors on the HCV-induced reduction of HNF-1α protein levels. Treatment of HCV-infected cells with a lysosomal protease inhibitor, but not with a proteasome inhibitor, restored HNF-1α protein levels, suggesting that HCV infection promotes lysosomal degradation of HNF-1α protein. Overexpression of NS5A protein enhanced lysosomal degradation of HNF-1α protein and suppressed GLUT2 promoter activity. Immunoprecipitation analyses revealed that the region from amino acids 1 to 126 of the NS5A domain I physically interacts with HNF-1α protein. Taken together, our results suggest that HCV infection suppresses GLUT2 gene expression via downregulation of HNF-1α expression at transcriptional and posttranslational levels. HCV-induced downregulation of HNF-1α expression may play a crucial role in glucose metabolic disorders caused by HCV.
Collapse
|
28
|
Wu Q, Liu Q. Do hepatitis B virus and hepatitis C virus co-infections increase hepatocellular carcinoma occurrence through synergistically modulating lipogenic gene expression? Hepatol Res 2012; 42:733-40. [PMID: 22487144 DOI: 10.1111/j.1872-034x.2012.00994.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Hepatitis B virus (HBV) and hepatitis C virus (HCV) infections cause a wide range of liver diseases including hepatocellular carcinoma (HCC). Because of the similar modes of transmission, HBV HCV co-infections are found in approximately 7-20 million people globally. Compared with HBV or HCV mono-infections, co-infections are associated with more severe liver diseases and higher risk of HCC. Abnormal lipid biosynthesis and metabolism has been increasingly recognized as a cause for cancer. While HBV infection does not seem to significantly increase the risk of developing hepatic steatosis, steatosis is a prominent feature of chronic hepatitis C (CHC). In addition, steatosis in HBV or HCV mono-infections is a significant and independent risk factor for HCC. However, whether and how HBV HCV co-infections synergistically increase the risk of HCC development through modulating lipid metabolism is not well understood. Possible mechanisms by which steatosis causes HCC include: activation of sterol regulatory element-binding protein-mediated lipogenesis through the PI3K-Akt pathway, abnormal activation of peroxisome proliferator-activated receptors and endoplasmic reticulum stress. Here, we review the potential mechanisms by which HBV HCV co-infections may increase HCC risk through modulation of lipogenic gene expression. We begin with reviewing the impact of HBV and HCV on host lipogenic gene expression and carcinogenesis. We then discuss the potential mechanisms by which HBV and HCV can increase carcinogenesis through synergistically activating lipid biosynthesis and metabolism. We end by sharing our thoughts on future research directions in this emerging paradigm with an ultimate goal of developing effective therapeutics.
Collapse
Affiliation(s)
- Qi Wu
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | | |
Collapse
|
29
|
Abe M, Koga H, Yoshida T, Masuda H, Iwamoto H, Sakata M, Hanada S, Nakamura T, Taniguchi E, Kawaguchi T, Yano H, Torimura T, Ueno T, Sata M. Hepatitis C virus core protein upregulates the expression of vascular endothelial growth factor via the nuclear factor-κB/hypoxia-inducible factor-1α axis under hypoxic conditions. Hepatol Res 2012; 42:591-600. [PMID: 22221855 DOI: 10.1111/j.1872-034x.2011.00953.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
AIM Hepatitis C virus (HCV) core protein critically contributes to hepatocarcinogenesis, which is often observed in liver cirrhosis. Since the liver cirrhosis microenvironment is affected by hypoxia, we focused on the possible driving force of HCV core protein on signal relay from hypoxia-inducible factor (HIF)-1α to vascular endothelial growth factor (VEGF). METHODS Human hepatocellular carcinoma cells stably overexpressing HCV core (Core cells) and NS5A (NS5A cells) were established; empty vector-transfected (EV) cells were used as controls. Hypoxia was induced by oxygen deprivation or by using cobalt chloride (CoCl(2) ). YC-1 was used to inhibit HIF-1α expression. Protein analyses for cultured cells and liver tissues obtained from CoCl(2) -treated HCV core-transgenic (Core-Tg) mice were performed by western blot and/or immunocytochemistry. Cellular mRNA levels were evaluated by quantitative real-time reverse transcription-polymerase chain reaction. RESULTS Under hypoxia, the sustained expression of HIF-1α, but not HIF-2α, was profoundly observed in Core cells but, was faint in EV and NS5A cells. Immunocytochemistry revealed increased HIF-1α in the nucleus. HIF-1α mRNA levels were significantly higher in Core cells than in EV cells under both normoxia and hypoxia. The HIF-1α-targeted VEGF and Bcl-xL expressions were increased in Core cells under hypoxia and abolished by YC-1 treatment. Hypoxic liver samples of Core-Tg mice indicated significant increases in both HIF-1α and VEGF expression compared with the wild type. CONCLUSIONS Hepatitis C virus core protein has the distinct potential to transcriptionally upregulate and sustain HIF-1α expression under hypoxia, thereby contributing to increased VEGF expression, a key regulator in the hypoxic milieu of liver cirrhosis.
Collapse
Affiliation(s)
- Mitsuhiko Abe
- Division of Gastroenterology, Department of Medicine Department of Pathology, Kurume University School of Medicine Research Center for Innovative Cancer Therapy, Kurume University, Kurume Asakura Medical Association Hospital, Asakura, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Clark PJ, Thompson AJ, Zhu M, Vock DM, Zhu Q, Ge D, Patel K, Harrison SA, Urban TJ, Naggie S, Fellay J, Tillmann HL, Shianna K, Noviello S, Pedicone LD, Esteban R, Kwo P, Sulkowski MS, Afdhal N, Albrecht JK, Goldstein DB, McHutchison JG, Muir AJ. Interleukin 28B polymorphisms are the only common genetic variants associated with low-density lipoprotein cholesterol (LDL-C) in genotype-1 chronic hepatitis C and determine the association between LDL-C and treatment response. J Viral Hepat 2012; 19:332-40. [PMID: 22497812 PMCID: PMC3518930 DOI: 10.1111/j.1365-2893.2011.01553.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Low-density lipoprotein cholesterol (LDL-C) levels and interleukin 28B (IL28B) polymorphism are associated with sustained viral response (SVR) to peginterferon/ribavirin (pegIFN/RBV) for chronic hepatitis C (CHC) infection. IL28B has been linked with LDL-C levels using a candidate gene approach, but it is not known whether other genetic variants are associated with LDL-C, nor how these factors definitively affect SVR. We assessed genetic predictors of serum lipid and triglyceride levels in 1604 patients with genotype 1 (G1) chronic hepatitis C virus (HCV) infection by genome-wide association study and developed multivariable predictive models of SVR. IL28B polymorphisms were the only common genetic variants associated with pretreatment LDL-C level in Caucasians (rs12980275, P = 4.7 × 10(-17), poor response IL28B variants associated with lower LDL-C). The association was dependent on HCV infection, IL28B genotype was no longer associated with LDL-C in SVR patients after treatment, while the association remained significant in non-SVR patients (P < 0.001). LDL-C was significantly associated with SVR for heterozygous IL28B genotype patients (P < 0.001) but not for homozygous genotypes. SVR modelling suggested that IL28B heterozygotes with LDL-C > 130 mg/dL and HCV RNA ≤600 000 IU/mL may anticipate cure rates >80%, while the absence of these two criteria was associated with an SVR rate of <35%. IL28B polymorphisms are the only common genetic variants associated with pretreatment LDL-C in G1-HCV. LDL-C remains significantly associated with SVR for heterozygous IL28B genotype patients, where LDL-C and HCV RNA burden may identify those patients with high or low likelihood of cure with pegIFN/RBV therapy.
Collapse
Affiliation(s)
- P. J. Clark
- Duke Clinical Research Institute, Duke University, Durham, NC, USA
- Kirby Institute for Infection and Immunity in Society, University of New South Wales, Sydney, NSW, Australia
| | - A. J. Thompson
- Duke Clinical Research Institute, Duke University, Durham, NC, USA
| | - M. Zhu
- Center for Human Genome Variation, Duke University, Durham, NC
| | - D. M. Vock
- Duke Clinical Research Institute, Duke University, Durham, NC, USA
| | - Q. Zhu
- Center for Human Genome Variation, Duke University, Durham, NC
| | - D. Ge
- Center for Human Genome Variation, Duke University, Durham, NC
| | - K. Patel
- Duke Clinical Research Institute, Duke University, Durham, NC, USA
| | | | - T. J. Urban
- Center for Human Genome Variation, Duke University, Durham, NC
| | - S. Naggie
- Duke Clinical Research Institute, Duke University, Durham, NC, USA
| | - J. Fellay
- Center for Human Genome Variation, Duke University, Durham, NC
| | - H. L. Tillmann
- Duke Clinical Research Institute, Duke University, Durham, NC, USA
| | - K. Shianna
- Center for Human Genome Variation, Duke University, Durham, NC
| | - S. Noviello
- Schering-Plough Corporation, now Merck & Co., Inc., Whitehouse Station, NJ, USA
| | - L. D. Pedicone
- Schering-Plough Corporation, now Merck & Co., Inc., Whitehouse Station, NJ, USA
| | - R. Esteban
- Hospital General Universitario Valle de Hebron, Barcelona, Spain
| | - P. Kwo
- Indiana University School of Medicine, Indianapolis, IN
| | | | - N. Afdhal
- Beth Israel Deaconess Medical Center, Harvard University Boston, Boston, MA, USA
| | - J. K. Albrecht
- Schering-Plough Corporation, now Merck & Co., Inc., Whitehouse Station, NJ, USA
| | - D. B. Goldstein
- Center for Human Genome Variation, Duke University, Durham, NC
| | | | - A. J. Muir
- Duke Clinical Research Institute, Duke University, Durham, NC, USA
| |
Collapse
|
31
|
Lim YS, Shin KS, Oh SH, Kang SM, Won SJ, Hwang SB. Nonstructural 5A protein of hepatitis C virus regulates heat shock protein 72 for its own propagation. J Viral Hepat 2012; 19:353-63. [PMID: 22497815 DOI: 10.1111/j.1365-2893.2011.01556.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We identified heat shock protein 72 (Hsp72) as a host factor that was differentially expressed in cells expressing nonstructural 5A (NS5A) protein. To investigate how NS5A modulates Hsp72 in hepatitis C virus (HCV) life cycle, we examined the role of Hsp72 in HCV replication and virus production. NS5A specifically interacted with Hsp72. Both Hsp72 and nuclear factor of activated T cells 5 (NFAT5) levels were increased in cells expressing NS5A protein. Treatments of N-acetylcysteine and glutathione markedly reduced protein levels of both NFAT5 and Hsp72. Knockdown of NFAT5 resulted in decrease in Hsp72 level in cells expressing NS5A. Importantly, silencing of Hsp72 expression resulted in decrease in both RNA replication and virus production in HCV-infected cells. These data indicate that NS5A modulates Hsp72 via NFAT5 and reactive oxygen species activation for HCV propagation.
Collapse
Affiliation(s)
- Y S Lim
- National Research Laboratory of Hepatitis C Virus, Ilsong Institute of Life Science, Hallym University, Anyang, South Korea
| | | | | | | | | | | |
Collapse
|
32
|
Depla M, d'Alteroche L, Le Gouge A, Moreau A, Hourioux C, Meunier JC, Gaillard J, de Muret A, Bacq Y, Kazemi F, Avargues A, Roch E, Piver E, Gaudy-Graffin C, Giraudeau B, Roingeard P. Viral sequence variation in chronic carriers of hepatitis C virus has a low impact on liver steatosis. PLoS One 2012; 7:e33749. [PMID: 22479436 PMCID: PMC3315576 DOI: 10.1371/journal.pone.0033749] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Accepted: 02/16/2012] [Indexed: 12/14/2022] Open
Abstract
Most clinical studies suggest that the prevalence and severity of liver steatosis are higher in patients infected with hepatitis C virus (HCV) genotype 3 than in patients infected with other genotypes. This may reflect the diversity and specific intrinsic properties of genotype 3 virus proteins. We analyzed the possible association of particular residues of the HCV core and NS5A proteins known to dysregulate lipid metabolism with steatosis severity in the livers of patients chronically infected with HCV. We used transmission electron microscopy to quantify liver steatosis precisely in a group of 27 patients, 12 of whom were infected with a genotype 3 virus, the other 15 being infected with viruses of other genotypes. We determined the area covered by lipid droplets in liver tissues and analyzed the diversity of the core and NS5A regions encoded by the viral variants circulating in these patients. The area covered by lipid droplets did not differ significantly between patients infected with genotype 3 viruses and those infected with other genotypes. The core and NS5A protein sequences of the viral variants circulating in patients with mild or severe steatosis were evenly distributed throughout the phylogenic trees established from all the collected sequences. Thus, individual host factors seem to play a much greater role than viral factors in the development of severe steatosis in patients chronically infected with HCV, including those infected with genotype 3 viruses.
Collapse
Affiliation(s)
- Marion Depla
- INSERM U966, Université François Rabelais and CHRU de Tours, Tours, France
| | - Louis d'Alteroche
- INSERM U966, Université François Rabelais and CHRU de Tours, Tours, France
- Service d'Hépatogastroentérologie, Hôpital Trousseau, CHRU de Tours, Tours, France
| | - Amélie Le Gouge
- INSERM CIC 0202, Université François Rabelais and CHRU de Tours, Tours, France
| | - Alain Moreau
- INSERM U966, Université François Rabelais and CHRU de Tours, Tours, France
| | - Christophe Hourioux
- INSERM U966, Université François Rabelais and CHRU de Tours, Tours, France
- Unité de Biologie Cellulaire, Hôpital Bretonneau, CHRU de Tours, Tours, France
- Plate-Forme RIO des Microscopies, PPF ASB, Université François Rabelais, Tours, France
| | | | - Julien Gaillard
- Plate-Forme RIO des Microscopies, PPF ASB, Université François Rabelais, Tours, France
| | - Anne de Muret
- Service d'Anatomie et Cytologie Pathologiques, Hôpital Trousseau, CHRU de Tours, Tours, France
| | - Yannick Bacq
- Service d'Hépatogastroentérologie, Hôpital Trousseau, CHRU de Tours, Tours, France
| | - Farhad Kazemi
- Service d'Hépatogastroentérologie, Centre Hospitalier de Blois, Blois, France
| | - Aurélie Avargues
- INSERM CIC 0202, Université François Rabelais and CHRU de Tours, Tours, France
| | - Emmanuelle Roch
- INSERM U966, Université François Rabelais and CHRU de Tours, Tours, France
| | - Eric Piver
- INSERM U966, Université François Rabelais and CHRU de Tours, Tours, France
- Service de Biochmie, Hôpital Trousseau, CHRU de Tours, Tours, France
| | - Catherine Gaudy-Graffin
- INSERM U966, Université François Rabelais and CHRU de Tours, Tours, France
- Service de Bactériologie-Virologie, Hôpital Bretonneau, CHRU de Tours, Tours, France
| | - Bruno Giraudeau
- INSERM CIC 0202, Université François Rabelais and CHRU de Tours, Tours, France
| | - Philippe Roingeard
- INSERM U966, Université François Rabelais and CHRU de Tours, Tours, France
- Unité de Biologie Cellulaire, Hôpital Bretonneau, CHRU de Tours, Tours, France
- Plate-Forme RIO des Microscopies, PPF ASB, Université François Rabelais, Tours, France
- * E-mail:
| |
Collapse
|
33
|
Shoji I, Deng L, Hotta H. Molecular mechanism of hepatitis C virus-induced glucose metabolic disorders. Front Microbiol 2012; 2:278. [PMID: 22291689 PMCID: PMC3263922 DOI: 10.3389/fmicb.2011.00278] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Accepted: 12/25/2011] [Indexed: 12/20/2022] Open
Abstract
Hepatitis C virus (HCV) infection causes not only intrahepatic diseases but also extrahepatic manifestations, including metabolic disorders. Chronic HCV infection is often associated with type 2 diabetes. However, the precise mechanism underlying this association is still unclear. Glucose is transported into hepatocytes via glucose transporter 2 (GLUT2). Hepatocytes play a crucial role in maintaining plasma glucose homeostasis via the gluconeogenic and glycolytic pathways. We have been investigating the molecular mechanism of HCV-related type 2 diabetes using HCV RNA replicon cells and HCV J6/JFH1 system. We found that HCV replication down-regulates cell surface expression of GLUT2 at the transcriptional level. We also found that HCV infection promotes hepatic gluconeogenesis in HCV J6/JFH1-infected Huh-7.5 cells. HCV infection transcriptionally up-regulated the genes for phosphoenolpyruvate carboxykinase (PEPCK) and glucose 6-phosphatase (G6Pase), the rate-limiting enzymes for hepatic gluconeogenesis. Gene expression of PEPCK and G6Pase was regulated by the transcription factor forkhead box O1 (FoxO1) in HCV-infected cells. Phosphorylation of FoxO1 at Ser319 was markedly diminished in HCV-infected cells, resulting in increased nuclear accumulation of FoxO1. HCV NS5A protein was directly linked with the FoxO1-dependent increased gluconeogenesis. This paper will discuss the current model of HCV-induced glucose metabolic disorders.
Collapse
Affiliation(s)
- Ikuo Shoji
- Division of Microbiology, Center for Infectious Diseases, Kobe University Graduate School of Medicine Kobe, Japan
| | | | | |
Collapse
|
34
|
Wang FB, Zhu CL, Liu X, Gao GS. HBV inhibits apoB production via the suppression of MTP expression. Lipids Health Dis 2011; 10:207. [PMID: 22074108 PMCID: PMC3221630 DOI: 10.1186/1476-511x-10-207] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Accepted: 11/11/2011] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Liver dominates the production and secretion of apolipoprotein B (apoB) and evidence shows that liver malfunction induced by hepatitis B virus (HBV) infection could lead to apolipoprotein metabolism disorders. The present study was undertaken to assess the effects of HBV on apoB expression. METHODS Clinical examination: serum apoB levels in patients with chronic HBV infection and in healthy individuals were measured by immunoturbidimetry using biochemical analyzer Olympus 5400. Cell study: mRNA and protein expression levels of apoB in HepG2 and HepG2.2.15 cells were measured by RT-PCR and Western blot. Alternatively, HBV infectious clone pHBV1.3 or control plasmid pBlue-ks were tranfected into HepG2 cells, and mRNA and protein expression levels of apoB, as well as the microsomal triglyceride transfer protein (MTP) in tranfected HepG2 cells were also measured by RT-PCR and western blot. RESULTS Serum apoB level was much lower in chronic HBV patients as compared to healthy individuals (P < 0.05). Expression of apoB mRNA and protein was lower in HepG2.2.15 cells than in HepG2 cells. Similarly, expression of apoB mRNA and protein was lower in pHBV1.3 transfected HepG2 cells than in pBlue-ks transfected HepG2 cells. Expression of MTP mRNA and protein in pHBV1.3 transfected HepG2 cells was reduced in a dose-dependent fashion. CONCLUSION HBV infection plays an inhibitory effect on apoB expression.
Collapse
Affiliation(s)
- Fu-Bing Wang
- Department of Clinical Laboratory, Zhongnan Hospital, Wuhan University, Wuhan, 430071, PR China
| | | | | | | |
Collapse
|
35
|
Parvaiz F, Manzoor S, Tariq H, Javed F, Fatima K, Qadri I. Hepatitis C virus infection: molecular pathways to insulin resistance. Virol J 2011; 8:474. [PMID: 22008087 PMCID: PMC3206488 DOI: 10.1186/1743-422x-8-474] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Accepted: 10/18/2011] [Indexed: 12/19/2022] Open
Abstract
Chronic Hepatitis C virus has the potential of inducing insulin resistance and type 2 Diabetes Mellitus in vitro as well as in vivo . Structural and non-structural proteins of HCV modulate cellular gene expression in such a way that insulin signaling is hampered, concomitantly leads toward diabetes mellitus. A number of mechanisms have been proposed in regard to the HCV induced insulin resistance involving the upregulation of Inflammatory cytokine TNF-α, hypophosphorylation of IRS-1 and IRS-2, phosphorylation of Akt, up-regulation of gluconeogenic genes, accumulation of lipids and targeting lipid storage organelles. This review provides an insight of molecular mechanisms by which HCV structural and non-structural proteins can induce insulin resistance.
Collapse
Affiliation(s)
- Fahed Parvaiz
- NUST Center of Virology and Immunology (NCVI), National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan
| | - Sobia Manzoor
- NUST Center of Virology and Immunology (NCVI), National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan
| | - Huma Tariq
- NUST Center of Virology and Immunology (NCVI), National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan
| | - Farakh Javed
- NUST Center of Virology and Immunology (NCVI), National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan
| | - Kaneez Fatima
- NUST Center of Virology and Immunology (NCVI), National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan
| | - Ishtiaq Qadri
- NUST Center of Virology and Immunology (NCVI), National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan
| |
Collapse
|
36
|
Nkontchou G, Ziol M, Aout M, Lhabadie M, Baazia Y, Mahmoudi A, Roulot D, Ganne-Carrie N, Grando-Lemaire V, Trinchet JC, Gordien E, Vicaut E, Baghad I, Beaugrand M. HCV genotype 3 is associated with a higher hepatocellular carcinoma incidence in patients with ongoing viral C cirrhosis. J Viral Hepat 2011; 18:e516-22. [PMID: 21914071 DOI: 10.1111/j.1365-2893.2011.01441.x] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Liver steatosis is a main histopathological feature of Hepatitis C (HCV) infection because of genotype 3. Steatosis and/or mechanisms underlying steatogenesis can contribute to hepatocarcinogenesis. The aim of this retrospective study was to assess the impact of infection with HCV genotype 3 on hepatocellular carcinoma (HCC) occurrence in patients with ongoing HCV cirrhosis. Three hundred and fifty-three consecutive patients (193 men, mean age 58 ± 13 years), with histologically proven HCV cirrhosis and persistent viral replication prospectively followed and screened for HCC between 1994 and 2007. Log-rank test and Cox model were used to compare the actuarial incidence of HCC between genotype subgroups. The patients infected with a genotype 3 (n = 25) as compared with those infected with other genotypes (n = 328) had a lower prothrombin activity [78 (interquartile range 60-85) vs 84 (71-195) %, P = 0.03] and higher rate of alcohol abuse (48%vs 29%, P = 0.046). During a median follow-up of 5.54 years [2.9-8.6], 11/25 patients (44%) and 87/328 patients (26%) with a genotype 3 and non-3 genotype, respectively, develop a HCC. HCC incidences were significantly different among the genotype subgroups (P = 0.001). The 5-year occurrence rate of HCC was 34% (95% CI, 1.3-6.3) and 17% (95% CI, 5.7-9.2) in genotype 3 and non-3 genotype groups, respectively (P = 0.002). In multivariate analysis, infection with a genotype 3 was independently associated with an increased risk of HCC occurrence [hazard ratio 3.54 (95% CI, 1.84-6.81), P = 0.0002], even after adjustment for prothrombin activity and alcohol abuse [3.58 (1.80-7.13); P = 0.003]. For patients with HCV cirrhosis and ongoing infection, infection with genotype 3 is independently associated with an increased risk of HCC development.
Collapse
Affiliation(s)
- G Nkontchou
- Department of Hepatogastroenterology, Hôpital Jean Verdier (Assistance Publique-Hôpitaux de Paris), Bondy, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Anderson LJ, Lin K, Compton T, Wiedmann B. Inhibition of cyclophilins alters lipid trafficking and blocks hepatitis C virus secretion. Virol J 2011; 8:329. [PMID: 21711559 PMCID: PMC3138436 DOI: 10.1186/1743-422x-8-329] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Accepted: 06/28/2011] [Indexed: 01/26/2023] Open
Abstract
Host cyclophilin (cyp) inhibitors, such as NIM811, efficiently inhibit replication of hepatitis C virus (HCV) and have shown significant promise in recent clinical trials for the treatment of chronic HCV. It is therefore important to fully understand the mechanism of action of these therapeutic agents. Data obtained from comprehensive systems biology approaches have led to the hypothesis that the antiviral activity of cyclophilin inhibitors is mediated through impairing the cellular machinery on which HCV relies to traffic cofactors necessary for formation of the replication complex. Indeed, our results demonstrate when cyclophilins are inhibited by NIM811, lipid and protein trafficking within the VLDL pathway is impaired. Following treatment of replicon or HCV infected cells with NIM811, intracellular lipid droplets (LD) more than double in size and decrease in number. Changes in the LDs in response to cyclophilin inhibition are dependent upon expression of viral proteins. Additionally, in cells treated with NIM811, apoB accumulates in a crescent or ring shaped structure surrounding the enlarged LDs and is no longer secreted. Silencing of cypA or cyp40 using siRNA had a similar effect on LD size and apoB localization as compound treatment, suggesting these cyclophilins may play an important role in lipid and apoB trafficking. Interestingly, the decrease in apoB secretion correlates with a decrease in release of viral particles in HCV infected cells. Altogether, these results add a new level of complexity to the mechanism of action of cyclophilin inhibition, and suggest the role for cyclophilins in the virus life cycle extends beyond replication to virus release.
Collapse
Affiliation(s)
- Leah J Anderson
- Novartis Institutes for Biomedical Research, Inc Cambridge, Massachusetts 02139, USA
| | | | | | | |
Collapse
|
38
|
Bouchard MJ, Navas-Martin S. Hepatitis B and C virus hepatocarcinogenesis: lessons learned and future challenges. Cancer Lett 2011; 305:123-43. [PMID: 21168955 PMCID: PMC3071446 DOI: 10.1016/j.canlet.2010.11.014] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Revised: 11/15/2010] [Accepted: 11/25/2010] [Indexed: 12/15/2022]
Abstract
Worldwide, hepatocellular carcinoma (HCC) is one of the most common cancers. It is thought that 80% of hepatocellular carcinomas are linked to chronic infections with the hepatitis B (HBV) or hepatitis C (HCV) viruses. Chronic HBV and HCV infections can alter hepatocyte physiology in similar ways and may utilize similar mechanisms to influence the development of HCC. There has been significant progress towards understanding the molecular biology of HBV and HCV and identifying the cellular signal transduction pathways that are altered by HBV and HCV infections. Although the precise molecular mechanisms that link HBV and HCV infections to the development of HCC are not entirely understood, there is considerable evidence that both inflammatory responses to infections with these viruses, and associated destruction and regeneration of hepatocytes, as well as activities of HBV- or HCV-encoded proteins, contribute to hepatocyte transformation. In this review, we summarize progress in defining mechanisms that may link HBV and HCV infections to the development of HCC, discuss the challenges of directly defining the processes that underlie HBV- and HCV-associated HCC, and describe areas that remain to be explored.
Collapse
Affiliation(s)
- Michael J Bouchard
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, 245 N. 15th Street, Philadelphia, PA 19102, USA.
| | | |
Collapse
|
39
|
Hepatitis C virus infection promotes hepatic gluconeogenesis through an NS5A-mediated, FoxO1-dependent pathway. J Virol 2011; 85:8556-68. [PMID: 21697492 DOI: 10.1128/jvi.00146-11] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Chronic hepatitis C virus (HCV) infection is often associated with type 2 diabetes. However, the precise mechanism underlying this association is still unclear. Here, using Huh-7.5 cells either harboring HCV-1b RNA replicons or infected with HCV-2a, we showed that HCV transcriptionally upregulated the genes for phosphoenolpyruvate carboxykinase (PEPCK) and glucose 6-phosphatase (G6Pase), the rate-limiting enzymes for hepatic gluconeogenesis. In this way, HCV enhanced the cellular production of glucose 6-phosphate (G6P) and glucose. PEPCK and G6Pase gene expressions are controlled by the transcription factor forkhead box O1 (FoxO1). We observed that although neither the mRNA levels nor the protein levels of FoxO1 expression were affected by HCV, the level of phosphorylation of FoxO1 at Ser319 was markedly diminished in HCV-infected cells compared to the control cells, resulting in an increased nuclear accumulation of FoxO1, which is essential for sustaining its transcriptional activity. It was unlikely that the decreased level of FoxO1 phosphorylation was mediated through Akt inactivation, as we observed an increased phosphorylation of Akt at Ser473 in HCV-infected cells compared to control cells. By using specific inhibitors of c-Jun N-terminal kinase (JNK) and reactive oxygen species (ROS), we demonstrated that HCV infection induced JNK activation via increased mitochondrial ROS production, resulting in decreased FoxO1 phosphorylation, FoxO1 nuclear accumulation, and, eventually, increased glucose production. We also found that HCV NS5A mediated increased ROS production and JNK activation, which is directly linked with the FoxO1-dependent increased gluconeogenesis. Taken together, these observations suggest that HCV promotes hepatic gluconeogenesis through an NS5A-mediated, FoxO1-dependent pathway.
Collapse
|
40
|
Steatosis induced by the accumulation of apolipoprotein A-I and elevated ROS levels in H-ras12V transgenic mice contributes to hepatic lesions. Biochem Biophys Res Commun 2011; 409:532-8. [PMID: 21600874 DOI: 10.1016/j.bbrc.2011.05.039] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Accepted: 05/06/2011] [Indexed: 11/22/2022]
Abstract
Hepatic steatosis is considered to have an important impact on liver tumorigenesis, despite a lack of clear experimental evidence. Histopathological analysis of H-ras12V transgenic mice showed liver lesions on a steatosis background had significantly higher incidence than on a non-steatosis background. Further investigation showed that apolipoprotein A-I was elevated and accumulated around fatty vacuoles. This elevated level of apolipoprotein A-I was coupled with an elevated level of H-ras12V protein and ROS. In conclusion, our results suggest that the expression of H-ras12V oncogene leads to elevated levels of ROS and apolipoprotein A-I that contribute to steatosis. The steatosis, in turn, promotes the development of hepatic lesions induced by H-ras12V oncogene.
Collapse
|
41
|
Xue HL, Feng GH, Dou XG. New advances in the development of experimental models of hepatitis C virus infection. Shijie Huaren Xiaohua Zazhi 2011; 19:1269-1274. [DOI: 10.11569/wcjd.v19.i12.1269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Hepatitis C virus (HCV) infection is another common cause of chronic hepatitis, liver cirrhosis, and hepatocellular carcinoma after hepatitis B virus. It is very difficult to study the variety and replication of HCV and interplay between HCV and the host and to develop new antiviral drugs and vaccines against HCV infection because of lack of susceptible hosts and stable and convenient experimental models of HCV infection. In this paper, we review recent advances in the development of experimental models of HCV infection.
Collapse
|
42
|
Lim YS, Hwang SB. Hepatitis C virus NS5A protein interacts with phosphatidylinositol 4-kinase type IIIalpha and regulates viral propagation. J Biol Chem 2011; 286:11290-8. [PMID: 21297162 DOI: 10.1074/jbc.m110.194472] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Hepatitis C Virus (HCV) nonstructural 5A (NS5A) is a pleiotropic protein involved in viral RNA replication and modulation of the cellular physiology in HCV-infected cells. To elucidate the mechanisms of the HCV life cycle, we identified cellular factors interacting with the NS5A protein in HCV-infected cells. Huh7.5 cells were electroporated with HCV Jc1 RNA. Cellular factors associated with HCV NS5A were identified by immunoprecipitation with Dynabead-conjugated NS5A antibody and LC-MS/MS. Phosphatidylinositol 4-kinase type IIIα (PI4KIIIα) was identified as a binding partner for the NS5A protein. NS5A derived from both genotypes 1b and 2a interacted with PI4KIIIα. NS5A interacted with PI4KIIIα through amino acids 401-600 of PI4KIIIα and domain I of NS5A. Interference of the protein interaction between NS5A and PI4KIIIα decreased HCV propagation. Knockdown of PI4KIIIα significantly reduced HCV replication in Huh7 cells harboring the subgenomic replicon and in Huh7.5 cells infected with cell culture grown virus (HCVcc). Silencing of PI4KIIIα further inhibited HCV release into the tissue culture medium. NS5A may recruit PI4KIIIα to the HCV RNA replication complex. These data suggest that PI4KIIIα is an essential host factor that supports HCV proliferation and therefore PI4KIIIα may be a legitimate target for anti-HCV therapy.
Collapse
Affiliation(s)
- Yun-Sook Lim
- National Research Laboratory of Hepatitis C Virus, Ilsong Institute of Life Science, Hallym University, Anyang, Korea
| | | |
Collapse
|
43
|
McGivern DR, Lemon SM. Virus-specific mechanisms of carcinogenesis in hepatitis C virus associated liver cancer. Oncogene 2011; 30:1969-83. [PMID: 21258404 DOI: 10.1038/onc.2010.594] [Citation(s) in RCA: 171] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The development of hepatocellular carcinoma (HCC) in persons who are persistently infected with hepatitis C virus (HCV) is a growing problem worldwide. Current antiviral therapies are not effective in many patients with chronic hepatitis C, and a greater understanding of the factors leading to progression of HCC will be necessary to design novel approaches to prevention of HCV-associated HCC. The lack of a small animal model of chronic HCV infection has hampered understanding of these factors. As HCV is an RNA virus with little potential for integration of its genetic material into the host genome, the mechanisms underlying HCV promotion of cancer are likely to differ from other models of viral carcinogenesis. In patients persistently infected with HCV, chronic inflammation resulting from immune responses against infected hepatocytes is associated with progressive fibrosis and cirrhosis. Cirrhosis is an important risk factor for HCC independent of HCV infection, and a majority of HCV-associated HCC arises in the setting of cirrhosis. However, a significant minority arises in the absence of cirrhosis, indicating that cirrhosis is not a prerequisite for cancer. Other lines of evidence suggest that direct, virus-specific mechanisms may be involved. Transgenic mice expressing HCV proteins develop cancer in the absence of inflammation or immune recognition of the transgene. In vitro studies have revealed multiple interactions of HCV-encoded proteins with cell cycle regulators and tumor suppressor proteins, raising the possibility that HCV can disrupt control of cellular proliferation, or impair the cell's response to DNA damage. A combination of virus-specific, host genetic, environmental and immune-related factors are likely to determine the progression to HCC in patients who are chronically infected with HCV. Here, we summarize current knowledge of the virus-specific mechanisms that may contribute to HCV-associated HCC.
Collapse
Affiliation(s)
- D R McGivern
- Lineberger Comprehensive Cancer Center, Center for Translational Research, Inflammatory Diseases Institute, and the Division of Infectious Diseases, Department of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7292, USA
| | | |
Collapse
|
44
|
Tumor initiation and progression in hepatocellular carcinoma: risk factors, classification, and therapeutic targets. Acta Pharmacol Sin 2010; 31:1409-20. [PMID: 20953207 DOI: 10.1038/aps.2010.142] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Hepatocellular carcinoma (HCC) is a major health problem worldwide responsible for 500 000 deaths annually. A number of risk factors are associated with either the induction of the disease or its progression; these include infection with hepatitis B or C virus, alcohol consumption, non-alcoholic steatohepatitis and certain congenital disorders. In around 80% of the cases, HCC is associated with cirrhosis or advanced fibrosis and with inflammation and oxidative stress. In this review we focus firstly on the different risk factors for HCC and summarize the mechanisms by which each is considered to contribute to HCC. In the second part we look at the molecular processes involved in cancer progression. HCC development is recognized as a multistep process that normally develops over many years. Over this period several mutations accumulate in the cell and that stimulate malign transformation, growth, and metastatic behavior. Over the recent years it has become evident that not only the tumor cell itself but also the tumor microenviroment plays a major role in the development of a tumor. There is a direct link between the role of inflammation and cirrhosis with this microenviroment. Both in vitro and in vivo it has been shown that tumor formation and metastatic properties are linked to epithelial-mesenchymal transition (EMT), a process by which facillitates the tumor cell's attempts to migrate to a more favourable microenviroment. Several groups have analyzed the gene expression in HCC and its surrounding tissue by microarray and this has resulted in the molecular classification into a distinct number of classes. Here we also found a role for hypoxia induced gene expression leading to a clinically more aggressive gene expression in HCC. Molecular analysis also helped to identify important cellular pathways and possible therapeutic targets. The first molecule that in this way has shown clinical application for liver cancer is the multikinase inhibitor sorafenib, others are currently in different stages of clinical studies like the mTOR inhibitor everolimus.
Collapse
|
45
|
Interaction of the hepatitis C virus (HCV) core with cellular genes in the development of HCV-induced steatosis. Arch Virol 2010; 155:1735-53. [DOI: 10.1007/s00705-010-0797-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2010] [Accepted: 08/31/2010] [Indexed: 12/13/2022]
|