1
|
Adomako K, Asamoah L. Effects of naked neck and frizzle genes on growth and egg-laying performance of chickens in the tropics in an era of climate change. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2025; 69:709-724. [PMID: 39856460 DOI: 10.1007/s00484-025-02853-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 03/06/2024] [Accepted: 12/09/2024] [Indexed: 01/27/2025]
Abstract
In regions characterized by tropical and subtropical climates, the elevated ambient temperatures exert adverse effects on both broiler and laying chickens, impacting their growth and egg production performance. To mitigate the challenges posed by heat stress, genetic strategies aimed at reducing feather coverage have gained prominence in hot climate areas. Among these approaches, the naked neck (Na) and frizzle (F) genes have emerged as particularly noteworthy. The Na and F genes play a pivotal role in facilitating heat dissipation and temperature regulation. By decreasing feather insulation, these genes enable efficient heat dissipation through exposed areas of the chickens' bodies. This reduction in feather coverage leads to elevated body surface temperature, which, in turn, enhances the capacity for heat loss and contributes to overall body temperature reduction. A substantial body of literature underscores the well-established positive impacts of the naked neck and frizzle genes on growth and egg-laying performance. As a result, these genes hold significant potential for integration into broiler and layer production systems, especially in regions characterized by high tropical temperatures. In the context of broiler farming under challenging heat conditions, the Na and F genes have demonstrated favorable effects on crucial parameters such as feed conversion ratio, body weight gain, disease resistance, and carcass attributes. Likewise, layers exposed to elevated temperatures exhibit enhanced egg production, eggshell quality, fertility, hatchability, and resistance to diseases when these genes are incorporated. Given that the prevalence of the naked neck and frizzle genes is primarily observed in indigenous chicken populations, it becomes imperative to prioritize measures for their conservation due to their exceptional performance in heat-stressed environments. To unlock the full genetic potential of exotic poultry reared in hot and humid conditions, the integration of the Na and F genes is a strongly recommended strategy.
Collapse
Affiliation(s)
- K Adomako
- Department of Animal Science, Faculty of Agriculture, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana.
| | - L Asamoah
- Department of Biochemistry and Biotechnology, Faculty of Biosciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| |
Collapse
|
2
|
Forrest MP, Penzes P. Mechanisms of copy number variants in neuropsychiatric disorders: From genes to therapeutics. Curr Opin Neurobiol 2023; 82:102750. [PMID: 37515924 PMCID: PMC10529795 DOI: 10.1016/j.conb.2023.102750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 06/01/2023] [Accepted: 06/27/2023] [Indexed: 07/31/2023]
Abstract
Copy number variants (CNVs) are genomic imbalances strongly linked to the aetiology of neuropsychiatric disorders such as schizophrenia and autism. By virtue of their large size, CNVs often contain many genes, providing a multi-genic view of disease processes that can be dissected in model systems. Thus, CNV research provides an important stepping stone towards understanding polygenic disease mechanisms, positioned between monogenic and polygenic risk models. In this review, we will outline hypothetical models for gene interactions occurring within CNVs and discuss different approaches used to study rodent and stem cell disease models. We highlight recent work showing that genetic and pharmacological strategies can be used to rescue important aspects of CNV-mediated pathophysiology, which often converges onto synaptic pathways. We propose that using a rescue approach in complete CNV models provides a new path forward for precise mechanistic understanding of complex disorders and a tangible route towards therapeutic development.
Collapse
Affiliation(s)
- Marc P Forrest
- Department of Neuroscience, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Center for Autism and Neurodevelopment, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| | - Peter Penzes
- Department of Neuroscience, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Center for Autism and Neurodevelopment, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| |
Collapse
|
3
|
Rayani K, Davies B, Cheung M, Comber D, Roberts JD, Tadros R, Green MS, Healey JS, Simpson CS, Sanatani S, Steinberg C, MacIntyre C, Angaran P, Duff H, Hamilton R, Arbour L, Leather R, Seifer C, Fournier A, Atallah J, Kimber S, Makanjee B, Alqarawi W, Cadrin-Tourigny J, Joza J, Gardner M, Talajic M, Bagnall RD, Krahn AD, Laksman ZWM. Identification and in-silico characterization of splice-site variants from a large cardiogenetic national registry. Eur J Hum Genet 2023; 31:512-520. [PMID: 36138163 PMCID: PMC10172209 DOI: 10.1038/s41431-022-01193-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 08/23/2022] [Accepted: 09/08/2022] [Indexed: 11/08/2022] Open
Abstract
Splice-site variants in cardiac genes may predispose carriers to potentially lethal arrhythmias. To investigate, we screened 1315 probands and first-degree relatives enrolled in the Canadian Hearts in Rhythm Organization (HiRO) registry. 10% (134/1315) of patients in the HiRO registry carry variants within 10 base-pairs of the intron-exon boundary with 78% (104/134) otherwise genotype negative. These 134 probands were carriers of 57 unique variants. For each variant, American College of Medical Genetics and Genomics (ACMG) classification was revisited based on consensus between nine in silico tools. Due in part to the in silico algorithms, seven variants were reclassified from the original report, with the majority (6/7) downgraded. Our analyses predicted 53% (30/57) of variants to be likely/pathogenic. For the 57 variants, an average of 9 tools were able to score variants within splice sites, while 6.5 tools responded for variants outside these sites. With likely/pathogenic classification considered a positive outcome, the ACMG classification was used to calculate sensitivity/specificity of each tool. Among these, Combined Annotation Dependent Depletion (CADD) had good sensitivity (93%) and the highest response rate (131/134, 98%), dbscSNV was also sensitive (97%), and SpliceAI was the most specific (64%) tool. Splice variants remain an important consideration in gene elusive inherited arrhythmia syndromes. Screening for intronic variants, even when restricted to the ±10 positions as performed here may improve genetic testing yield. We compare 9 freely available in silico tools and provide recommendations regarding their predictive capabilities. Moreover, we highlight several novel cardiomyopathy-associated variants which merit further study.
Collapse
Affiliation(s)
- Kaveh Rayani
- Center for Cardiovascular Innovation, Division of Cardiology, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Brianna Davies
- Center for Cardiovascular Innovation, Division of Cardiology, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Matthew Cheung
- Center for Cardiovascular Innovation, Division of Cardiology, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Drake Comber
- Center for Cardiovascular Innovation, Division of Cardiology, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Jason D Roberts
- Section of Cardiac Electrophysiology, Division of Cardiology, Department of Medicine, Western University, London, ON, Canada
| | - Rafik Tadros
- Cardiovascular Genetics Center, Montreal Heart Institute, Montreal, QC, Canada
- Department of Medicine, Universite de Montreal, Montreal, QC, Canada
| | - Martin S Green
- Heart Institute, University of Ottawa, Ottawa, ON, Canada
| | | | | | | | - Christian Steinberg
- Institut Universitaire de Cardiologie et Pneumologie de Quebec, Laval University, Quebec City, QC, Canada
| | - Ciorsti MacIntyre
- Division of Cardiology, QEII Health Sciences Center, Halifax, NS, Canada
| | - Paul Angaran
- St Michael's Hospital, University of Toronto, Toronto, ON, Canada
| | - Henry Duff
- Libin Cardiovascular Institute, University of Calgary, Calgary, AB, Canada
| | - Robert Hamilton
- Division of Cardiology, The Hospital for Sick Children (SickKids), Toronto, ON, Canada
| | - Laura Arbour
- Division of Medical Genetics, Island Health, Victoria, BC, Canada
| | | | - Colette Seifer
- Section of Cardiology, Department of Internal Medicine, University of Manitoba, Winnipeg, MB, Canada
| | - Anne Fournier
- Division of Pediatric Cardiology, CHU Sainte-Justine, Universite de Montreal, Montreal, QC, Canada
| | - Joseph Atallah
- Division of Pediatric Cardiology, University of Alberta Stollery Children's Hospital, Edmonton, AB, Canada
| | - Shane Kimber
- Division of Cardiology, Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Bhavanesh Makanjee
- Heart Health Institute, Scarborough Health Network, Scarborough, ON, Canada
| | - Wael Alqarawi
- Heart Institute, University of Ottawa, Ottawa, ON, Canada
| | - Julia Cadrin-Tourigny
- Cardiovascular Genetics Center, Montreal Heart Institute, Montreal, QC, Canada
- Department of Medicine, Universite de Montreal, Montreal, QC, Canada
| | - Jacqueline Joza
- Division of Cardiology, McGill University Health Centre, Montreal, QC, Canada
| | - Martin Gardner
- Division of Cardiology, QEII Health Sciences Center, Halifax, NS, Canada
| | - Mario Talajic
- Cardiovascular Genetics Center, Montreal Heart Institute, Montreal, QC, Canada
- Department of Medicine, Universite de Montreal, Montreal, QC, Canada
| | - Richard D Bagnall
- Agnes Ginges Centre for Molecular Cardiology at Centenary Institute, The University of Sydney, Sydney, NSW, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Andrew D Krahn
- Center for Cardiovascular Innovation, Division of Cardiology, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Zachary W M Laksman
- Center for Cardiovascular Innovation, Division of Cardiology, Department of Medicine, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
4
|
Vihinen M. Systematic errors in annotations of truncations, loss-of-function and synonymous variants. Front Genet 2023; 14:1015017. [PMID: 36713076 PMCID: PMC9880313 DOI: 10.3389/fgene.2023.1015017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 01/03/2023] [Indexed: 01/15/2023] Open
Abstract
Description of genetic phenomena and variations requires exact language and concepts. Vast amounts of variation data are produced with next-generation sequencing pipelines. The obtained variations are automatically annotated, e.g., for their functional consequences. These tools and pipelines, along with systematic nomenclature, mainly work well, but there are still some problems in nomenclature, organization of some databases, misuse of concepts and certain practices. Therefore, systematic errors prevent correct annotation and often preclude further analysis of certain variation types. Problems and solutions are described for presumed protein truncations, variants that are claimed to be of loss-of-function based on the type of variation, and synonymous variants that are not synonymous and lead to sequence changes or to missing protein.
Collapse
|
5
|
Legrand JMD, Hobbs RM. Defining Gene Function in Spermatogonial Stem Cells Through Conditional Knockout Approaches. Methods Mol Biol 2023; 2656:261-307. [PMID: 37249877 DOI: 10.1007/978-1-0716-3139-3_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Mammalian male fertility is maintained throughout life by a population of self-renewing mitotic germ cells known as spermatogonial stem cells (SSCs). Much of our current understanding regarding the molecular mechanisms underlying SSC activity is derived from studies using conditional knockout mouse models. Here, we provide a guide for the selection and use of mouse strains to develop conditional knockout models for the study of SSCs, as well as their precursors and differentiation-committed progeny. We describe Cre recombinase-expressing strains, breeding strategies to generate experimental groups, and treatment regimens for inducible knockout models and provide advice for verifying and improving conditional knockout efficiency. This resource can be beneficial to those aiming to develop conditional knockout models for the study of SSC development and postnatal function.
Collapse
Affiliation(s)
- Julien M D Legrand
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Molecular and Translational Sciences, Monash University, Clayton, VIC, Australia
| | - Robin M Hobbs
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, VIC, Australia.
- Department of Molecular and Translational Sciences, Monash University, Clayton, VIC, Australia.
| |
Collapse
|
6
|
Prapa M, Lago-Docampo M, Swietlik EM, Montani D, Eyries M, Humbert M, Welch CL, Chung WK, Berger RMF, Bogaard HJ, Danhaive O, Escribano-Subías P, Gall H, Girerd B, Hernandez-Gonzalez I, Holden S, Hunt D, Jansen SMA, Kerstjens-Frederikse W, Kiely DG, Lapunzina P, McDermott J, Moledina S, Pepke-Zaba J, Polwarth GJ, Schotte G, Tenorio-Castaño J, Thompson AAR, Wharton J, Wort SJ, Megy K, Mapeta R, Treacy CM, Martin JM, Li W, Swift AJ, Upton PD, Morrell NW, Gräf S, Valverde D, NIHR BioResource for Translational Research–Rare Diseases, National Cohort Study of Idiopathic and Heritable PAH, PAH Biobank Enrolling Centers’ Investigators. First Genotype-Phenotype Study in TBX4 Syndrome: Gain-of-Function Mutations Causative for Lung Disease. Am J Respir Crit Care Med 2022; 206:1522-1533. [PMID: 35852389 PMCID: PMC9757087 DOI: 10.1164/rccm.202203-0485oc] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 07/18/2022] [Indexed: 02/02/2023] Open
Abstract
Rationale: Despite the increased recognition of TBX4 (T-BOX transcription factor 4)-associated pulmonary arterial hypertension (PAH), genotype-phenotype associations are lacking and may provide important insights. Objectives: To compile and functionally characterize all TBX4 variants reported to date and undertake a comprehensive genotype-phenotype analysis. Methods: We assembled a multicenter cohort of 137 patients harboring monoallelic TBX4 variants and assessed the pathogenicity of missense variation (n = 42) using a novel luciferase reporter assay containing T-BOX binding motifs. We sought genotype-phenotype correlations and undertook a comparative analysis with patients with PAH with BMPR2 (Bone Morphogenetic Protein Receptor type 2) causal variants (n = 162) or no identified variants in PAH-associated genes (n = 741) genotyped via the National Institute for Health Research BioResource-Rare Diseases. Measurements and Main Results: Functional assessment of TBX4 missense variants led to the novel finding of gain-of-function effects associated with older age at diagnosis of lung disease compared with loss-of-function effects (P = 0.038). Variants located in the T-BOX and nuclear localization domains were associated with earlier presentation (P = 0.005) and increased incidence of interstitial lung disease (P = 0.003). Event-free survival (death or transplantation) was shorter in the T-BOX group (P = 0.022), although age had a significant effect in the hazard model (P = 0.0461). Carriers of TBX4 variants were diagnosed at a younger age (P < 0.001) and had worse baseline lung function (FEV1, FVC) (P = 0.009) than the BMPR2 and no identified causal variant groups. Conclusions: We demonstrated that TBX4 syndrome is not strictly the result of haploinsufficiency but can also be caused by gain of function. The pleiotropic effects of TBX4 in lung disease may be in part explained by the differential effect of pathogenic mutations located in critical protein domains.
Collapse
Affiliation(s)
- Matina Prapa
- Department of Medicine and
- St. George’s University Hospitals National Health Service (NHS) Foundation Trust, London, United Kingdom
| | - Mauro Lago-Docampo
- CINBIO, Universidade de Vigo, Vigo, Spain
- Rare Diseases and Pediatric Medicine, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Vigo, Spain
| | - Emilia M. Swietlik
- Department of Medicine and
- Addenbrooke’s Hospital NHS Foundation Trust, Cambridge Biomedical Campus, Cambridge, United Kingdom
- Royal Papworth Hospital NHS Foundation Trust, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - David Montani
- Université Paris-Saclay, AP-HP, Service de Pneumologie, Centre de référence de l’hypertension pulmonaire, INSERM UMR_S 999, Hôpital Bicêtre, Le Kremlin-Bicêtre, Paris, France
| | - Mélanie Eyries
- Département de génétique, hôpital Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, and UMR_S 1166-ICAN, INSERM, UPMC Sorbonne Universités, Paris, France
| | - Marc Humbert
- Université Paris-Saclay, AP-HP, Service de Pneumologie, Centre de référence de l’hypertension pulmonaire, INSERM UMR_S 999, Hôpital Bicêtre, Le Kremlin-Bicêtre, Paris, France
| | | | - Wendy K. Chung
- Department of Pediatrics and
- Department of Medicine, Columbia University Irving Medical Center, New York, New York
| | - Rolf M. F. Berger
- Centre for Congenital Heart Diseases, Pediatric Cardiology, Beatrix Children’s Hospital, and
| | - Harm Jan Bogaard
- Department of Pulmonary Medicine, Amsterdam University Medical Centre, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, the Netherlands
| | - Olivier Danhaive
- Division of Neonatology, St.-Luc University Hospital, Catholic University of Louvain, Brussels, Belgium
- Department of Pediatrics, University of California San Francisco, San Francisco, California
| | - Pilar Escribano-Subías
- Unidad Multidisciplinar de Hipertensión Pulmonar, Servicio de Cardiología, Hospital Universitario 12 de Octubre, Madrid, Spain
- CIBERCV, Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, ISCIII, Madrid, Spain
| | - Henning Gall
- Centre for Congenital Heart Diseases, Pediatric Cardiology, Beatrix Children’s Hospital, and
| | - Barbara Girerd
- Université Paris-Saclay, AP-HP, Service de Pneumologie, Centre de référence de l’hypertension pulmonaire, INSERM UMR_S 999, Hôpital Bicêtre, Le Kremlin-Bicêtre, Paris, France
| | | | - Simon Holden
- Department of Clinical Genetics, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
| | - David Hunt
- Wessex Clinical Genetics Service, Princess Anne Hospital, Southampton, United Kingdom
| | - Samara M. A. Jansen
- Department of Pulmonary Medicine, Amsterdam University Medical Centre, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, the Netherlands
| | | | - David G. Kiely
- Department of Infection, Immunity, and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
- Sheffield Pulmonary Vascular Disease Unit, Royal Hallamshire Hospital, Sheffield, United Kingdom
| | - Pablo Lapunzina
- Instituto de Genética Médica y Molecular (INGEMM)-IdiPAZ, Hospital Universitario La Paz-UAM, Madrid, Spain
- CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, Madrid, Spain
- ITHACA, European Reference Network on Rare Congenital Malformations and Rare Intellectual Disability, Brussels, Belgium
| | - John McDermott
- Manchester Centre for Genomic Medicine, St. Mary’s Hospital, Manchester University NHS Foundation Trust, Manchester, United Kingdom
- Division of Evolution and Genomic Sciences, School of Biological Sciences, University of Manchester, Manchester, United Kingdom
| | | | - Joanna Pepke-Zaba
- Royal Papworth Hospital NHS Foundation Trust, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Gary J. Polwarth
- Royal Papworth Hospital NHS Foundation Trust, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Gwen Schotte
- Department of Pulmonary Medicine, Amsterdam University Medical Centre, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, the Netherlands
| | - Jair Tenorio-Castaño
- Instituto de Genética Médica y Molecular (INGEMM)-IdiPAZ, Hospital Universitario La Paz-UAM, Madrid, Spain
- CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, Madrid, Spain
- ITHACA, European Reference Network on Rare Congenital Malformations and Rare Intellectual Disability, Brussels, Belgium
| | - A. A. Roger Thompson
- Department of Infection, Immunity, and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
- Sheffield Pulmonary Vascular Disease Unit, Royal Hallamshire Hospital, Sheffield, United Kingdom
| | - John Wharton
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Stephen J. Wort
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Karyn Megy
- Department of Medicine and
- Addenbrooke’s Hospital NHS Foundation Trust, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Rutendo Mapeta
- Department of Medicine and
- Addenbrooke’s Hospital NHS Foundation Trust, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | | | | | - Wei Li
- Department of Medicine and
| | - Andrew J. Swift
- Department of Infection, Immunity, and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| | | | - Nicholas W. Morrell
- Department of Medicine and
- Addenbrooke’s Hospital NHS Foundation Trust, Cambridge Biomedical Campus, Cambridge, United Kingdom
- Royal Papworth Hospital NHS Foundation Trust, Cambridge Biomedical Campus, Cambridge, United Kingdom
- National Institute of Health Research (NIHR) BioResource for Translational Research, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Stefan Gräf
- Department of Medicine and
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
- National Institute of Health Research (NIHR) BioResource for Translational Research, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Diana Valverde
- CINBIO, Universidade de Vigo, Vigo, Spain
- Rare Diseases and Pediatric Medicine, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Vigo, Spain
| | | | | | | |
Collapse
|
7
|
Benndorf R, Velazquez R, Zehr JD, Pond SLK, Martin JL, Lucaci AG. Human HspB1, HspB3, HspB5 and HspB8: Shaping these disease factors during vertebrate evolution. Cell Stress Chaperones 2022; 27:309-323. [PMID: 35678958 PMCID: PMC9346038 DOI: 10.1007/s12192-022-01268-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/21/2022] [Accepted: 03/22/2022] [Indexed: 12/05/2022] Open
Abstract
Small heat shock proteins (sHSPs) emerged early in evolution and occur in all domains of life and nearly in all species, including humans. Mutations in four sHSPs (HspB1, HspB3, HspB5, HspB8) are associated with neuromuscular disorders. The aim of this study is to investigate the evolutionary forces shaping these sHSPs during vertebrate evolution. We performed comparative evolutionary analyses on a set of orthologous sHSP sequences, based on the ratio of non-synonymous: synonymous substitution rates for each codon. We found that these sHSPs had been historically exposed to different degrees of purifying selection, decreasing in this order: HspB8 > HspB1, HspB5 > HspB3. Within each sHSP, regions with different degrees of purifying selection can be discerned, resulting in characteristic selective pressure profiles. The conserved α-crystallin domains were exposed to the most stringent purifying selection compared to the flanking regions, supporting a 'dimorphic pattern' of evolution. Thus, during vertebrate evolution the different sequence partitions were exposed to different and measurable degrees of selective pressures. Among the disease-associated mutations, most are missense mutations primarily in HspB1 and to a lesser extent in the other sHSPs. Our data provide an explanation for this disparate incidence. Contrary to the expectation, most missense mutations cause dominant disease phenotypes. Theoretical considerations support a connection between the historic exposure of these sHSP genes to a high degree of purifying selection and the unusual prevalence of genetic dominance of the associated disease phenotypes. Our study puts the genetics of inheritable sHSP-borne diseases into the context of vertebrate evolution.
Collapse
Affiliation(s)
| | - Ryan Velazquez
- Institute for Genomics and Evolutionary Medicine, Department of Biology, Temple University, Philadelphia, PA 19122 USA
| | - Jordan D. Zehr
- Institute for Genomics and Evolutionary Medicine, Department of Biology, Temple University, Philadelphia, PA 19122 USA
| | - Sergei L. Kosakovsky Pond
- Institute for Genomics and Evolutionary Medicine, Department of Biology, Temple University, Philadelphia, PA 19122 USA
| | - Jody L. Martin
- Cell and Molecular Core, Cardiovascular Research Institute, University of California at Davis, Davis, CA USA
| | - Alexander G. Lucaci
- Institute for Genomics and Evolutionary Medicine, Department of Biology, Temple University, Philadelphia, PA 19122 USA
| |
Collapse
|
8
|
O'Neill MJ, Muhammad A, Li B, Wada Y, Hall L, Solus JF, Short L, Roden DM, Glazer AM. Dominant negative effects of SCN5A missense variants. Genet Med 2022; 24:1238-1248. [PMID: 35305865 PMCID: PMC9262418 DOI: 10.1016/j.gim.2022.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 02/15/2022] [Accepted: 02/15/2022] [Indexed: 10/18/2022] Open
Abstract
PURPOSE Up to 30% of patients with Brugada syndrome (BrS) carry loss-of-function (LoF) variants in the cardiac sodium channel gene SCN5A encoding for the protein NaV1.5. Recent studies suggested that NaV1.5 can dimerize, and some variants exert dominant negative effects. In this study, we sought to explore the generality of missense variant NaV1.5 dominant negative effects and their clinical severity. METHODS We identified 35 LoF variants (<10% of wild type [WT] peak current) and 15 partial LoF variants (10%-50% of WT peak current) that we assessed for dominant negative effects. SCN5A variants were studied in HEK293T cells, alone or in heterozygous coexpression with WT SCN5A using automated patch clamp. To assess the clinical risk, we compared the prevalence of dominant negative vs putative haploinsufficient (frameshift, splice, or nonsense) variants in a BrS consortium and the Genome Aggregation Database population database. RESULTS In heterozygous expression with WT, 32 of 35 LoF and 6 of 15 partial LoF variants showed reduction to <75% of WT-alone peak current, showing a dominant negative effect. Individuals with dominant negative LoF variants had an elevated disease burden compared with the individuals with putative haploinsufficient variants (2.7-fold enrichment in BrS cases, P = .019). CONCLUSION Most SCN5A missense LoF variants exert a dominant negative effect. This class of variant confers an especially high burden of BrS.
Collapse
Affiliation(s)
- Matthew J O'Neill
- Vanderbilt University School of Medicine, Medical Scientist Training Program, Vanderbilt University, Nashville, TN
| | - Ayesha Muhammad
- Vanderbilt University School of Medicine, Medical Scientist Training Program, Vanderbilt University, Nashville, TN
| | - Bian Li
- Vanderbilt Center for Arrhythmia Research and Therapeutics (VanCART), Vanderbilt University Medical Center, Nashville, TN
| | - Yuko Wada
- Vanderbilt Center for Arrhythmia Research and Therapeutics (VanCART), Vanderbilt University Medical Center, Nashville, TN
| | - Lynn Hall
- Vanderbilt Center for Arrhythmia Research and Therapeutics (VanCART), Vanderbilt University Medical Center, Nashville, TN
| | - Joseph F Solus
- Vanderbilt Center for Arrhythmia Research and Therapeutics (VanCART), Vanderbilt University Medical Center, Nashville, TN
| | - Laura Short
- Vanderbilt Center for Arrhythmia Research and Therapeutics (VanCART), Vanderbilt University Medical Center, Nashville, TN
| | - Dan M Roden
- Vanderbilt Center for Arrhythmia Research and Therapeutics (VanCART), Vanderbilt University Medical Center, Nashville, TN; Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN; Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN; Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN
| | - Andrew M Glazer
- Vanderbilt Center for Arrhythmia Research and Therapeutics (VanCART), Vanderbilt University Medical Center, Nashville, TN; Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN.
| |
Collapse
|
9
|
Mammalian X-chromosome inactivation: proposed role in suppression of the male programme in genetic females. J Genet 2022. [DOI: 10.1007/s12041-022-01363-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
10
|
Desta TT. The genetic basis and robustness of naked neck mutation in chicken. Trop Anim Health Prod 2021; 53:95. [PMID: 33415443 DOI: 10.1007/s11250-020-02505-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 12/03/2020] [Indexed: 10/22/2022]
Abstract
Chicken is a homeothermic animal; consequently, regardless of fluctuation in weather conditions, it maintains constant body temperature. However, in hot regions and seasons, chickens suffer from heat stress. To dissipate excess heat, besides modifying the environment, which is costly, however, chickens with efficient heat dissipation capacity might be utilized. Naked neck chickens have a higher capacity for heat loss attributable to reduced feather mass. The naked neck mutation (Na) was originated from a large insertion (~ 180 bp) integrated ~ 260-kb downstream of a protein-coding gene-GDF7 (Growth Differentiation Factor 7). Na possesses a cis-regulatory function and upregulates the expression of GDF7-a gene that exhibits a tissue-specific effect by the sensitizing action of retinoic acid. Na suppresses the development of feathers in the neck and vent. Na shows autosomal incomplete dominance and regulates several developmental processes. Na usually segregates at low frequency, which might be attributed to limited socio-cultural preferences. Specifically, in hot and humid regions, although to a varying extent, Na enhances performance, immunocompetence, and resilience to disease both in the homozygous and heterozygous state. Occasionally, naked neck chickens (especially the homozygous ones) lose comparative advantage in cool environments. Homozygous Na also results in high embryo death and reduced hatchability and diminishes floating and flying capacity. Nevertheless, selective breeding of naked neck chickens for fertility traits enhances the performance and welfare of chickens in hot and humid regions. The comparative advantage of Na needs to be studied not only from a temperature perspective and under controlled experiment but also from humidity, body weight, feed intake (absolute and relative to body weight), age, agroecology insights, and under field condition. Due to the incomplete dominant expression pattern of Na, studies need to separately report their findings for homozygous and heterozygous naked neck chicken.
Collapse
Affiliation(s)
- Takele Taye Desta
- Department of Biology, College of Natural and Computational Science, Kotebe Metropolitan University, Addis Ababa, Ethiopia.
| |
Collapse
|
11
|
Bermúdez-Guzmán L, Jimenez-Huezo G, Arguedas A, Leal A. Mutational survivorship bias: The case of PNKP. PLoS One 2020; 15:e0237682. [PMID: 33332469 PMCID: PMC7746193 DOI: 10.1371/journal.pone.0237682] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 11/23/2020] [Indexed: 01/21/2023] Open
Abstract
The molecular function of a protein relies on its structure. Understanding how variants alter structure and function in multidomain proteins is key to elucidate the generation of a pathological phenotype. However, one may fall into the logical bias of assessing protein damage only based on the variants that are visible (survivorship bias), which can lead to partial conclusions. This is the case of PNKP, an important nuclear and mitochondrial DNA repair enzyme with both kinase and phosphatase function. Most variants in PNKP are confined to the kinase domain, leading to a pathological spectrum of three apparently distinct clinical entities. Since proteins and domains may have a different tolerability to variation, we evaluated whether variants in PNKP are under survivorship bias. Here, we provide the evidence that supports a higher tolerance in the kinase domain even when all variants reported are deleterious. Instead, the phosphatase domain is less tolerant due to its lower variant rates, a higher degree of sequence conservation, lower dN/dS ratios, and the presence of more disease-propensity hotspots. Together, our results support previous experimental evidence that demonstrated that the phosphatase domain is functionally more necessary and relevant for DNA repair, especially in the context of the development of the central nervous system. Finally, we propose the term "Wald’s domain" for future studies analyzing the possible survivorship bias in multidomain proteins.
Collapse
Affiliation(s)
- Luis Bermúdez-Guzmán
- Section of Genetics and Biotechnology, School of Biology, University de Costa Rica, San Pedro, San José, Costa Rica
| | - Gabriel Jimenez-Huezo
- Section of Genetics and Biotechnology, School of Biology, University de Costa Rica, San Pedro, San José, Costa Rica
| | - Andrés Arguedas
- School of Statistics, University de Costa Rica, San Pedro, San José, Costa Rica
| | - Alejandro Leal
- Section of Genetics and Biotechnology, School of Biology, University de Costa Rica, San Pedro, San José, Costa Rica
| |
Collapse
|
12
|
Vihinen M. Functional effects of protein variants. Biochimie 2020; 180:104-120. [PMID: 33164889 DOI: 10.1016/j.biochi.2020.10.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 10/15/2020] [Accepted: 10/19/2020] [Indexed: 12/11/2022]
Abstract
Genetic and other variations frequently affect protein functions. Scientific articles can contain confusing descriptions about which function or property is affected, and in many cases the statements are pure speculation without any experimental evidence. To clarify functional effects of protein variations of genetic or non-genetic origin, a systematic conceptualisation and framework are introduced. This framework describes protein functional effects on abundance, activity, specificity and affinity, along with countermeasures, which allow cells, tissues and organisms to tolerate, avoid, repair, attenuate or resist (TARAR) the effects. Effects on abundance discussed include gene dosage, restricted expression, mis-localisation and degradation. Enzymopathies, effects on kinetics, allostery and regulation of protein activity are subtopics for the effects of variants on activity. Variation outcomes on specificity and affinity comprise promiscuity, specificity, affinity and moonlighting. TARAR mechanisms redress variations with active and passive processes including chaperones, redundancy, robustness, canalisation and metabolic and signalling rewiring. A framework for pragmatic protein function analysis and presentation is introduced. All of the mechanisms and effects are described along with representative examples, most often in relation to diseases. In addition, protein function is discussed from evolutionary point of view. Application of the presented framework facilitates unambiguous, detailed and specific description of functional effects and their systematic study.
Collapse
Affiliation(s)
- Mauno Vihinen
- Department of Experimental Medical Science, BMC B13, Lund University, SE-22 184, Lund, Sweden.
| |
Collapse
|
13
|
Mikedis MM, Fan Y, Nicholls PK, Endo T, Jackson EK, Cobb SA, de Rooij DG, Page DC. DAZL mediates a broad translational program regulating expansion and differentiation of spermatogonial progenitors. eLife 2020; 9:56523. [PMID: 32686646 PMCID: PMC7445011 DOI: 10.7554/elife.56523] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 07/20/2020] [Indexed: 01/28/2023] Open
Abstract
Fertility across metazoa requires the germline-specific DAZ family of RNA-binding proteins. Here we examine whether DAZL directly regulates progenitor spermatogonia using a conditional genetic mouse model and in vivo biochemical approaches combined with chemical synchronization of spermatogenesis. We find that the absence of Dazl impairs both expansion and differentiation of the spermatogonial progenitor population. In undifferentiated spermatogonia, DAZL binds the 3' UTRs of ~2,500 protein-coding genes. Some targets are known regulators of spermatogonial proliferation and differentiation while others are broadly expressed, dosage-sensitive factors that control transcription and RNA metabolism. DAZL binds 3' UTR sites conserved across vertebrates at a UGUU(U/A) motif. By assessing ribosome occupancy in undifferentiated spermatogonia, we find that DAZL increases translation of its targets. In total, DAZL orchestrates a broad translational program that amplifies protein levels of key spermatogonial and gene regulatory factors to promote the expansion and differentiation of progenitor spermatogonia.
Collapse
Affiliation(s)
| | - Yuting Fan
- Whitehead Institute, Cambridge, United States.,Reproductive Medicine Center, Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | | | | | - Emily K Jackson
- Whitehead Institute, Cambridge, United States.,Department of Biology, Massachusetts Institute of Technology, Cambridge, United States
| | | | | | - David C Page
- Whitehead Institute, Cambridge, United States.,Department of Biology, Massachusetts Institute of Technology, Cambridge, United States.,Howard Hughes Medical Institute, Whitehead Institute, Cambridge, United States
| |
Collapse
|
14
|
van der Lee R, Correard S, Wasserman WW. Deregulated Regulators: Disease-Causing cis Variants in Transcription Factor Genes. Trends Genet 2020; 36:523-539. [DOI: 10.1016/j.tig.2020.04.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 04/15/2020] [Accepted: 04/16/2020] [Indexed: 12/12/2022]
|
15
|
Poot M. Mutations in Mediator Complex Genes CDK8, MED12, MED13, and MEDL13 Mediate Overlapping Developmental Syndromes. Mol Syndromol 2019; 10:239-242. [PMID: 32021594 DOI: 10.1159/000502346] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/22/2019] [Indexed: 12/18/2022] Open
|
16
|
Huang SH, McCann CD, Mota TM, Wang C, Lipkin SM, Jones RB. Have Cells Harboring the HIV Reservoir Been Immunoedited? Front Immunol 2019; 10:1842. [PMID: 31447850 PMCID: PMC6691121 DOI: 10.3389/fimmu.2019.01842] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 07/22/2019] [Indexed: 01/05/2023] Open
Abstract
Immunoediting is an important concept in oncology, delineating the mechanisms through which tumors are selected for resistance to immune-mediated elimination. The recent emergence of immunotherapies, such as checkpoint inhibitors, as pillars of cancer therapy has intensified interest in immunoediting as a constraint limiting the efficacy of these approaches. Immunoediting manifests at a number of levels for different cancers, for example through the establishment of immunosuppressive microenvironments within solid tumors. Of particular interest to the current review, selection also occurs at the cellular level; and recent studies have revealed novel mechanisms by which tumor cells acquire intrinsic resistance to immune recognition and elimination. While the selection of escape mutations in viral epitopes by HIV-specific T cells, which is a hallmark of chronic HIV infection, can be considered a form of immunoediting, few studies have considered the possibility that HIV-infected cells themselves may parallel tumors in having differential intrinsic susceptibilities to immune-mediated elimination. Such selection, on the level of an infected cell, may not play a significant role in untreated HIV, where infection is propagated by high levels of cell-free virus produced by cells that quickly succumb to viral cytopathicity. However, it may play an unappreciated role in individuals treated with effective antiretroviral therapy where viral replication is abrogated. In this context, an "HIV reservoir" persists, comprising long-lived infected cells which undergo extensive and dynamic clonal expansion. The ability of these cells to persist in infected individuals has generally been attributed to viral latency, thought to render them invisible to immune recognition, and/or to their compartmentalization in anatomical sites that are poorly accessible to immune effectors. Recent data from ex vivo studies have led us to propose that reservoir-harboring cells may additionally have been selected for intrinsic resistance to CD8+ T cells, limiting their elimination even in the context of antigen expression. Here, we draw on knowledge from tumor immunoediting to discuss potential mechanisms by which clones of HIV reservoir-harboring cells may resist elimination by CD8+ T cells. The establishment of such parallels may provide a premise for testing therapeutics designed to sensitize tumor cells to immune-mediated elimination as novel approaches aimed at curing HIV infection.
Collapse
Affiliation(s)
- Szu-Han Huang
- Department of Medicine, Weill Cornell Medical College, New York, NY, United States
| | - Chase D. McCann
- Department of Medicine, Weill Cornell Medical College, New York, NY, United States
- Program in Immunology and Microbial Pathogenesis, Weill Cornell Graduate School of Medical Sciences, New York, NY, United States
| | - Talia M. Mota
- Department of Medicine, Weill Cornell Medical College, New York, NY, United States
| | - Chao Wang
- Department of Medicine, Weill Cornell Medical College, New York, NY, United States
| | - Steven M. Lipkin
- Department of Medicine, Weill Cornell Medical College, New York, NY, United States
| | - R. Brad Jones
- Department of Medicine, Weill Cornell Medical College, New York, NY, United States
- Program in Immunology and Microbial Pathogenesis, Weill Cornell Graduate School of Medical Sciences, New York, NY, United States
| |
Collapse
|
17
|
Abstract
Craniosynostosis refers to a condition during early development in which one or more of the fibrous sutures of the skull prematurely fuse by turning into bone, which produces recognizable patterns of cranial shape malformations depending on which suture(s) are affected. In addition to cases with isolated cranial dysmorphologies, craniosynostosis appears in syndromes that include skeletal features of the eyes, nose, palate, hands, and feet as well as impairment of vision, hearing, and intellectual development. Approximately 85% of the cases are nonsyndromic sporadic and emerge after de novo structural genome rearrangements or single nucleotide variation, while the remainders consist of syndromic cases following mendelian inheritance. By karyotyping, genome wide linkage, and CNV analyses as well as by whole exome and whole genome sequencing, numerous candidate genes for craniosynostosis belonging to the FGF, Wnt, BMP, Ras/ERK, ephrin, hedgehog, STAT, and retinoic acid signaling pathways have been identified. Many of the craniosynostosis-related candidate genes form a functional network based upon protein-protein or protein-DNA interactions. Depending on which node of this craniosynostosis-related network is affected by a gene mutation or a change in gene expression pattern, a distinct craniosynostosis syndrome or set of phenotypes ensues. Structural variations may alter the dosage of one or several genes or disrupt the genomic architecture of genes and their regulatory elements within topologically associated chromatin domains. These may exert dominant effects by either haploinsufficiency, dominant negative partial loss of function, gain of function, epistatic interaction, or alteration of levels and patterns of gene expression during development. Molecular mechanisms of dominant modes of action of these mutations may include loss of one or several binding sites for cognate protein partners or transcription factor binding sequences. Such losses affect interactions within functional networks governing development and consequently result in phenotypes such as craniosynostosis. Many of the novel variants identified by genome wide CNV analyses, whole exome and whole genome sequencing are incorporated in recently developed diagnostic algorithms for craniosynostosis.
Collapse
Affiliation(s)
- Martin Poot
- Department of Human Genetics, University of Würzburg, Würzburg, Germany
| |
Collapse
|
18
|
Shihab HA, Rogers MF, Campbell C, Gaunt TR. HIPred: an integrative approach to predicting haploinsufficient genes. Bioinformatics 2018; 33:1751-1757. [PMID: 28137713 PMCID: PMC5581952 DOI: 10.1093/bioinformatics/btx028] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 01/19/2017] [Indexed: 11/13/2022] Open
Abstract
Motivation A major cause of autosomal dominant disease is haploinsufficiency, whereby a single copy of a gene is not sufficient to maintain the normal function of the gene. A large proportion of existing methods for predicting haploinsufficiency incorporate biological networks, e.g. protein-protein interaction networks that have recently been shown to introduce study bias. As a result, these methods tend to perform best on well-studied genes, but underperform on less studied genes. The advent of large genome sequencing consortia, such as the 1000 genomes project, NHLBI Exome Sequencing Project and the Exome Aggregation Consortium creates an urgent need for unbiased haploinsufficiency prediction methods. Results Here, we describe a machine learning approach, called HIPred, that integrates genomic and evolutionary information from ENSEMBL, with functional annotations from the Encyclopaedia of DNA Elements consortium and the NIH Roadmap Epigenomics Project to predict haploinsufficiency, without the study bias described earlier. We benchmark HIPred using several datasets and show that our unbiased method performs as well as, and in most cases, outperforms existing biased algorithms. Availability and Implementation HIPred scores for all gene identifiers are available at: https://github.com/HAShihab/HIPred. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Hashem A Shihab
- MRC Integrative Epidemiology Unit (IEU), University of Bristol, Bristol, UK
| | - Mark F Rogers
- Intelligent Systems Laboratory, University of Bristol, Bristol, UK
| | - Colin Campbell
- Intelligent Systems Laboratory, University of Bristol, Bristol, UK
| | - Tom R Gaunt
- MRC Integrative Epidemiology Unit (IEU), University of Bristol, Bristol, UK
| |
Collapse
|
19
|
Abstract
For a subset of genes in our genome a change in gene dosage, by duplication or deletion, causes a phenotypic effect. These dosage-sensitive genes may confer an advantage upon copy number change, but more typically they are associated with disease, including heart disease, cancers and neuropsychiatric disorders. This gene copy number sensitivity creates characteristic evolutionary constraints that can serve as a diagnostic to identify dosage-sensitive genes. Though the link between copy number change and disease is well-established, the mechanism of pathogenicity is usually opaque. We propose that gene expression level may provide a common basis for the pathogenic effects of many copy number variants.
Collapse
Affiliation(s)
- Alan M Rice
- Smurfit Institute of Genetics, Trinity College Dublin, University of Dublin, Dublin 2, Ireland
| | - Aoife McLysaght
- Smurfit Institute of Genetics, Trinity College Dublin, University of Dublin, Dublin 2, Ireland.
| |
Collapse
|
20
|
Sex chromosomes drive gene expression and regulatory dimorphisms in mouse embryonic stem cells. Biol Sex Differ 2017; 8:28. [PMID: 28818098 PMCID: PMC5561606 DOI: 10.1186/s13293-017-0150-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 08/10/2017] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Pre-implantation embryos exhibit sexual dimorphisms in both primates and rodents. To determine whether these differences reflected sex-biased expression patterns, we generated transcriptome profiles for six 40,XX, six 40,XY, and two 39,X mouse embryonic stem (ES) cells by RNA sequencing. RESULTS We found hundreds of coding and non-coding RNAs that were differentially expressed between male and female cells. Surprisingly, the majority of these were autosomal and included RNA encoding transcription and epigenetic and chromatin remodeling factors. We showed differential Prdm14-responsive enhancer activity in male and female cells, correlating with the sex-specific levels of Prdm14 expression. This is the first time sex-specific enhancer activity in ES cells has been reported. Evaluation of X-linked gene expression patterns between our XX and XY lines revealed four distinct categories: (1) genes showing 2-fold greater expression in the female cells; (2) a set of genes with expression levels well above 2-fold in female cells; (3) genes with equivalent RNA levels in male and female cells; and strikingly, (4) a small number of genes with higher expression in the XY lines. Further evaluation of autosomal gene expression revealed differential expression of imprinted loci, despite appropriate parent-of-origin patterns. The 39,X lines aligned closely with the XY cells and provided insights into potential regulation of genes associated with Turner syndrome in humans. Moreover, inclusion of the 39,X lines permitted three-way comparisons, delineating X and Y chromosome-dependent patterns. CONCLUSIONS Overall, our results support the role of the sex chromosomes in establishing sex-specific networks early in embryonic development and provide insights into effects of sex chromosome aneuploidies originating at those stages.
Collapse
|
21
|
Abstract
Intragenic deletions of the contactin-associated protein-like 2 gene (CNTNAP2) have been found in patients with Gilles de la Tourette syndrome, intellectual disability (ID), obsessive compulsive disorder, cortical dysplasia-focal epilepsy syndrome, autism, schizophrenia, Pitt-Hopkins syndrome, stuttering, and attention deficit hyperactivity disorder. A variety of molecular mechanisms, such as loss of transcription factor binding sites and perturbation of penetrance and expressivity, have been proposed to account for the phenotypic variability resulting from CNTNAP2 mutations. Deletions of both CNTNAP2 alleles produced truncated proteins lacking the transmembrane or some of the extracellular domains, or no protein at all. This observation can be extended to heterozygous intragenic deletions by assuming that such deletion-containing alleles lead to expression of a Caspr2 protein lacking one or several extracellular domains. Such altered forms of Capr2 proteins will lack the ability to bridge the intercellular space between neurons by binding to partners, such as CNTN1, CNTN2, DLG1, and DLG4. This presumed effect of intragenic deletions of CNTNAP2, and possibly other genes involved in connecting neuronal cells, represents a molecular basis for the postulated neuronal hypoconnectivity in autism and probably other neurodevelopmental disorders, including epilepsy, ID, language impairments and schizophrenia. Thus, CNTNAP2 may represent a paradigmatic case of a gene functioning as a node in a genetic and cellular network governing brain development and acquisition of higher cognitive functions.
Collapse
Affiliation(s)
- Martin Poot
- Department of Human Genetics, University of Würzburg, Würzburg, Germany
| |
Collapse
|
22
|
Dosage sensitivity is a major determinant of human copy number variant pathogenicity. Nat Commun 2017; 8:14366. [PMID: 28176757 PMCID: PMC5309798 DOI: 10.1038/ncomms14366] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 12/20/2016] [Indexed: 01/22/2023] Open
Abstract
Human copy number variants (CNVs) account for genome variation an order of magnitude larger than single-nucleotide polymorphisms. Although much of this variation has no phenotypic consequences, some variants have been associated with disease, in particular neurodevelopmental disorders. Pathogenic CNVs are typically very large and contain multiple genes, and understanding the cause of the pathogenicity remains a major challenge. Here we show that pathogenic CNVs are significantly enriched for genes involved in development and genes that have greater evolutionary copy number conservation across mammals, indicative of functional constraints. Conversely, genes found in benign CNV regions have more variable copy number. These evolutionary constraints are characteristic of genes in pathogenic CNVs and can only be explained by dosage sensitivity of those genes. These results implicate dosage sensitivity of individual genes as a common cause of CNV pathogenicity. These evolutionary metrics suggest a path to identifying disease genes in pathogenic CNVs. Copy number variants (CNVs) cause significant genomic variation in humans and may be benign or may cause disease. Here, the authors show that pathogenic CNVs are evolutionarily constrained compared with benign, pointing to dosage sensitivity as a potential cause of disease.
Collapse
|
23
|
Bolognesi B, Lorenzo Gotor N, Dhar R, Cirillo D, Baldrighi M, Tartaglia GG, Lehner B. A Concentration-Dependent Liquid Phase Separation Can Cause Toxicity upon Increased Protein Expression. Cell Rep 2016; 16:222-231. [PMID: 27320918 PMCID: PMC4929146 DOI: 10.1016/j.celrep.2016.05.076] [Citation(s) in RCA: 205] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 04/14/2016] [Accepted: 05/18/2016] [Indexed: 11/17/2022] Open
Abstract
Multiple human diseases are associated with a liquid-to-solid phase transition resulting in the formation of amyloid fibers or protein aggregates. Here, we present an alternative mechanism for cellular toxicity based on a concentration-dependent liquid-liquid demixing. Analyzing proteins that are toxic when their concentration is increased in yeast reveals that they share physicochemical properties with proteins that participate in physiological liquid-liquid demixing in the cell. Increasing the concentration of one of these proteins indeed results in the formation of cytoplasmic foci with liquid properties. Demixing occurs at the onset of toxicity and titrates proteins and mRNAs from the cytoplasm. Focus formation is reversible, and resumption of growth occurs as the foci dissolve as protein concentration falls. Preventing demixing abolishes the dosage sensitivity of the protein. We propose that triggering inappropriate liquid phase separation may be an important cause of dosage sensitivity and a determinant of human disease.
Collapse
Affiliation(s)
- Benedetta Bolognesi
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Doctor Aiguader 88, 08003 Barcelona, Spain; EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Doctor Aiguader 88, 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | - Nieves Lorenzo Gotor
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Doctor Aiguader 88, 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | - Riddhiman Dhar
- EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Doctor Aiguader 88, 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | - Davide Cirillo
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Doctor Aiguader 88, 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | - Marta Baldrighi
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Doctor Aiguader 88, 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | - Gian Gaetano Tartaglia
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Doctor Aiguader 88, 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys 23, 08010 Barcelona, Spain.
| | - Ben Lehner
- EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Doctor Aiguader 88, 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys 23, 08010 Barcelona, Spain.
| |
Collapse
|
24
|
Cody JD, Hale DE. Making chromosome abnormalities treatable conditions. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2016; 169:209-15. [PMID: 26351122 DOI: 10.1002/ajmg.c.31447] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Individuals affected by the classic chromosome deletion syndromes which were first identified at the beginning of the genetic age, are now positioned to benefit from genomic advances. This issue highlights five of these conditions (4p-, 5p-, 11q-, 18p-, and 18q-). It focuses on the increased in understanding of the molecular underpinnings and envisions how these can be transformed into effective treatments. While it is scientifically exciting to see the phenotypic manifestations of hemizygosity being increasingly understood at the molecular and cellular level, it is even more amazing to consider that we are now on the road to making chromosome abnormalities treatable conditions.
Collapse
|
25
|
Poot M. A Loss or a Gain, Is It Not All the Same? Mol Syndromol 2016; 7:1-2. [PMID: 27194966 DOI: 10.1159/000443814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/16/2015] [Indexed: 11/19/2022] Open
|
26
|
Disteche CM. Dosage compensation of the sex chromosomes and autosomes. Semin Cell Dev Biol 2016; 56:9-18. [PMID: 27112542 DOI: 10.1016/j.semcdb.2016.04.013] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 04/15/2016] [Accepted: 04/19/2016] [Indexed: 12/16/2022]
Abstract
Males are XY and females are XX in most mammalian species. Other species such as birds have a different sex chromosome make-up: ZZ in males and ZW in females. In both types of organisms one of the sex chromosomes, Y or W, has degenerated due to lack of recombination with its respective homolog X or Z. Since autosomes are present in two copies in diploid organisms the heterogametic sex has become a natural "aneuploid" with haploinsufficiency for X- or Z-linked genes. Specific mechanisms have evolved to restore a balance between critical gene products throughout the genome and between males and females. Some of these mechanisms were co-opted from and/or added to compensatory processes that alleviate autosomal aneuploidy. Surprisingly, several modes of dosage compensation have evolved. In this review we will consider the evidence for dosage compensation and the molecular mechanisms implicated.
Collapse
Affiliation(s)
- Christine M Disteche
- Department of Pathology, School of Medicine, University of Washington, 1959 NE Pacific St. Seattle, WA 98115, USA; Department of Medicine, School of Medicine, University of Washington, 1959 NE Pacific St. Seattle, WA 98115, USA.
| |
Collapse
|
27
|
Sottas V, Abriel H. Negative-dominance phenomenon with genetic variants of the cardiac sodium channel Nav1.5. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:1791-8. [PMID: 26907222 DOI: 10.1016/j.bbamcr.2016.02.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 02/15/2016] [Accepted: 02/19/2016] [Indexed: 02/07/2023]
Abstract
During the past two decades, many pathological genetic variants in SCN5A, the gene encoding the pore-forming subunit of the cardiac (monomeric) sodium channel Na(v)1.5, have been described. Negative dominance is a classical genetic concept involving a "poison" mutant peptide that negatively interferes with the co-expressed wild-type protein, thus reducing its cellular function. This phenomenon has been described for genetic variants of multimeric K(+) channels, which mechanisms are well understood. Unexpectedly, several pathologic SCN5A variants that are linked to Brugada syndrome also demonstrate such a dominant-negative (DN) effect. The molecular determinants of these observations, however, are not yet elucidated. This review article summarizes recent findings that describe the mechanisms underlying the DN phenomenon of genetic variants of K(+), Ca(2+), Cl(-) and Na(+) channels, and in particular Brugada syndrome variants of Na(v)1.5. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Integration of Developmental and Environmental Cues in the Heart edited by Marcus Schaub and Hughes Abriel.
Collapse
Affiliation(s)
- Valentin Sottas
- Department of Clinical Research, Ion Channel Research Group, University of Bern, Switzerland
| | - Hugues Abriel
- Department of Clinical Research, Ion Channel Research Group, University of Bern, Switzerland.
| |
Collapse
|
28
|
Hochstenbach R, Nowakowska B, Volleth M, Ummels A, Kutkowska-Kaźmierczak A, Obersztyn E, Ziemkiewicz K, Gerloff C, Schanze D, Zenker M, Muschke P, Schanze I, Poot M, Liehr T. Multiple Small Supernumerary Marker Chromosomes Resulting from Maternal Meiosis I or II Errors. Mol Syndromol 2016; 6:210-21. [PMID: 26997941 PMCID: PMC4772618 DOI: 10.1159/000441408] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/16/2015] [Indexed: 01/11/2023] Open
Abstract
We present 2 cases with multiple de novo supernumerary marker chromosomes (sSMCs), each derived from a different chromosome. In a prenatal case, we found mosaicism for an sSMC(4), sSMC(6), sSMC(9), sSMC(14) and sSMC(22), while a postnatal case had an sSMC(4), sSMC(8) and an sSMC(11). SNP-marker segregation indicated that the sSMC(4) resulted from a maternal meiosis II error in the prenatal case. Segregation of short tandem repeat markers on the sSMC(8) was consistent with a maternal meiosis I error in the postnatal case. In the latter, a boy with developmental/psychomotor delay, autism, hyperactivity, speech delay, and hypotonia, the sSMC(8) was present at the highest frequency in blood. By comparison to other patients with a corresponding duplication, a minimal region of overlap for the phenotype was identified, with CHRNB3 and CHRNA6 as dosage-sensitive candidate genes. These genes encode subunits of nicotinic acetylcholine receptors (nAChRs). We propose that overproduction of these subunits leads to perturbed component stoichiometries with dominant negative effects on the function of nAChRs, as was shown by others in vitro. With the limitation that in each case only one sSMC could be studied, our findings demonstrate that different meiotic errors lead to multiple sSMCs. We relate our findings to age-related aneuploidy in female meiosis and propose that predivision sister-chromatid separation during meiosis I or II, or both, may generate multiple sSMCs.
Collapse
Affiliation(s)
- Ron Hochstenbach
- Division of Biomedical Genetics, Department of Medical Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Beata Nowakowska
- Department of Medical Genetics, Institute of the Mother and Child, Warsaw, Poland
| | | | - Amber Ummels
- Division of Biomedical Genetics, Department of Medical Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | - Ewa Obersztyn
- Department of Medical Genetics, Institute of the Mother and Child, Warsaw, Poland
| | - Kamila Ziemkiewicz
- Department of Medical Genetics, Institute of the Mother and Child, Warsaw, Poland
| | - Claudia Gerloff
- University Women's Clinic, Otto-von-Guericke University, Magdeburg, Germany
| | | | | | | | - Ina Schanze
- Department of Human Genetics, Magdeburg, Germany
| | - Martin Poot
- Division of Biomedical Genetics, Department of Medical Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Thomas Liehr
- Department of Human Genetics, University Clinic, Jena, Germany
| |
Collapse
|
29
|
Poot M, Haaf T. Mechanisms of Origin, Phenotypic Effects and Diagnostic Implications of Complex Chromosome Rearrangements. Mol Syndromol 2015; 6:110-34. [PMID: 26732513 DOI: 10.1159/000438812] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/23/2015] [Indexed: 01/08/2023] Open
Abstract
Complex chromosome rearrangements (CCRs) are currently defined as structural genome variations that involve more than 2 chromosome breaks and result in exchanges of chromosomal segments. They are thought to be extremely rare, but their detection rate is rising because of improvements in molecular cytogenetic technology. Their population frequency is also underestimated, since many CCRs may not elicit a phenotypic effect. CCRs may be the result of fork stalling and template switching, microhomology-mediated break-induced repair, breakage-fusion-bridge cycles, or chromothripsis. Patients with chromosomal instability syndromes show elevated rates of CCRs due to impaired DNA double-strand break responses during meiosis. Therefore, the putative functions of the proteins encoded by ATM, BLM, WRN, ATR, MRE11, NBS1, and RAD51 in preventing CCRs are discussed. CCRs may exert a pathogenic effect by either (1) gene dosage-dependent mechanisms, e.g. haploinsufficiency, (2) mechanisms based on disruption of the genomic architecture, such that genes, parts of genes or regulatory elements are truncated, fused or relocated and thus their interactions disturbed - these mechanisms will predominantly affect gene expression - or (3) mixed mutation mechanisms in which a CCR on one chromosome is combined with a different type of mutation on the other chromosome. Such inferred mechanisms of pathogenicity need corroboration by mRNA sequencing. Also, future studies with in vitro models, such as inducible pluripotent stem cells from patients with CCRs, and transgenic model organisms should substantiate current inferences regarding putative pathogenic effects of CCRs. The ramifications of the growing body of information on CCRs for clinical and experimental genetics and future treatment modalities are briefly illustrated with 2 cases, one of which suggests KDM4C (JMJD2C) as a novel candidate gene for mental retardation.
Collapse
Affiliation(s)
- Martin Poot
- Department of Human Genetics, University of Würzburg, Würzburg, Germany
| | - Thomas Haaf
- Department of Human Genetics, University of Würzburg, Würzburg, Germany
| |
Collapse
|
30
|
Burkart GM, Baskin TI, Bezanilla M. A family of ROP proteins that suppresses actin dynamics, and is essential for polarized growth and cell adhesion. J Cell Sci 2015; 128:2553-64. [PMID: 26045445 DOI: 10.1242/jcs.172445] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 05/31/2015] [Indexed: 01/22/2023] Open
Abstract
In plants, the ROP family of small GTPases has been implicated in the polarized growth of tip-growing cells, such as root hairs and pollen tubes; however, most of the data derive from overexpressing ROP genes or constitutively active and dominant-negative isoforms, whereas confirmation by using loss-of-function studies has generally been lacking. Here, in the model moss Physcomitrella patens, we study ROP signaling during tip growth by using a loss-of-function approach based on RNA interference (RNAi) to silence the entire moss ROP family. We find that plants with reduced expression of ROP genes, in addition to failing to initiate tip growth, have perturbed cell wall staining, reduced cell adhesion and have increased actin-filament dynamics. Although plants subjected to RNAi against the ROP family also have reduced microtubule dynamics, this reduction is not specific to loss of ROP genes, as it occurs when actin function is compromised chemically or genetically. Our data suggest that ROP proteins polarize the actin cytoskeleton by suppressing actin-filament dynamics, leading to an increase in actin filaments at the site of polarized secretion.
Collapse
Affiliation(s)
- Graham M Burkart
- Department of Biology, University of Massachusetts-Amherst, 611 N. Pleasant Street, Amherst, MA 01003, USA Plant Biology Graduate Program, University of Massachusetts-Amherst, 611 N. Pleasant Street, Amherst, MA 01003, USA
| | - Tobias I Baskin
- Department of Biology, University of Massachusetts-Amherst, 611 N. Pleasant Street, Amherst, MA 01003, USA
| | - Magdalena Bezanilla
- Department of Biology, University of Massachusetts-Amherst, 611 N. Pleasant Street, Amherst, MA 01003, USA
| |
Collapse
|
31
|
Conant GC. Comparative genomics as a time machine: how relative gene dosage and metabolic requirements shaped the time-dependent resolution of yeast polyploidy. Mol Biol Evol 2014; 31:3184-93. [PMID: 25158798 DOI: 10.1093/molbev/msu250] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Using a phylogenetic model of evolution after genome duplication (i.e., polyploidy) and 12 yeast genomes with a shared genome duplication, I show that the loss of duplicate genes after that duplication occurred in three phases. First, losses that occurred immediately after the event were biased toward genes functioning in DNA repair and organellar functions. Then, the main group of duplicate losses appear to have been shaped by a requirement to maintain balance in protein levels: There is a strong statistical association between the number of protein interactions a gene's product is involved in and its propensity to have remained in duplicate. Moreover, when duplicated genes with interactions were lost, it was more common than expected for both members of an interaction pair to have been lost on the same branch of the phylogeny. Finally, in the third phase of the resolution process, overretention of duplicated enzymes carrying high flux and of duplicated genes involved in transcriptional regulation became dominant. I speculate that initial retention of such genes by a requirement to maintain gene dosage set the stage for the later functional changes that then maintained these duplicates for long periods.
Collapse
Affiliation(s)
- Gavin C Conant
- Informatics Institute, University of Missouri, Columbia Division of Animal Sciences, University of Missouri, Columbia
| |
Collapse
|
32
|
Complexity of gene expression evolution after duplication: protein dosage rebalancing. GENETICS RESEARCH INTERNATIONAL 2014; 2014:516508. [PMID: 25197576 PMCID: PMC4150538 DOI: 10.1155/2014/516508] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 08/03/2014] [Indexed: 11/17/2022]
Abstract
Ongoing debates about functional importance of gene duplications have been recently intensified by a heated discussion of the “ortholog conjecture” (OC). Under the OC, which is central to functional annotation of genomes, orthologous genes are functionally more similar than paralogous genes at the same level of sequence divergence. However, a recent study challenged the OC by reporting a greater functional similarity, in terms of gene ontology (GO) annotations and expression profiles, among within-species paralogs compared to orthologs. These findings were taken to indicate that functional similarity of homologous genes is primarily determined by the cellular context of the genes, rather than evolutionary history. Subsequent studies suggested that the OC appears to be generally valid when applied to mammalian evolution but the complete picture of evolution of gene expression also has to incorporate lineage-specific aspects of paralogy. The observed complexity of gene expression evolution after duplication can be explained through selection for gene dosage effect combined with the duplication-degeneration-complementation model. This paper discusses expression divergence of recent duplications occurring before functional divergence of proteins encoded by duplicate genes.
Collapse
|
33
|
Poliakov E, Koonin EV, Rogozin IB. Impairment of translation in neurons as a putative causative factor for autism. Biol Direct 2014; 9:16. [PMID: 25011470 PMCID: PMC4099083 DOI: 10.1186/1745-6150-9-16] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 07/01/2014] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND A dramatic increase in the prevalence of autism and Autistic Spectrum Disorders (ASD) has been observed over the last two decades in USA, Europe and Asia. Given the accumulating data on the possible role of translation in the etiology of ASD, we analyzed potential effects of rare synonymous substitutions associated with ASD on mRNA stability, splicing enhancers and silencers, and codon usage. PRESENTATION OF THE HYPOTHESIS We hypothesize that subtle impairment of translation, resulting in dosage imbalance of neuron-specific proteins, contributes to the etiology of ASD synergistically with environmental neurotoxins. TESTING THE HYPOTHESIS A statistically significant shift from optimal to suboptimal codons caused by rare synonymous substitutions associated with ASD was detected whereas no effect on other analyzed characteristics of transcripts was identified. This result suggests that the impact of rare codons on the translation of genes involved in neuron development, even if slight in magnitude, could contribute to the pathogenesis of ASD in the presence of an aggressive chemical background. This hypothesis could be tested by further analysis of ASD-associated mutations, direct biochemical characterization of their effects, and assessment of in vivo effects on animal models. IMPLICATIONS OF THE HYPOTHESIS It seems likely that the synergistic action of environmental hazards with genetic variations that in themselves have limited or no deleterious effects but are potentiated by the environmental factors is a general principle that underlies the alarming increase in the ASD prevalence. REVIEWERS This article was reviewed by Andrey Rzhetsky, Neil R. Smalheiser, and Shamil R. Sunyaev.
Collapse
Affiliation(s)
- Eugenia Poliakov
- Laboratory of Retinal Cell & Molecular Biology, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Igor B Rogozin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
34
|
Benndorf R, Martin JL, Kosakovsky Pond SL, Wertheim JO. Neuropathy- and myopathy-associated mutations in human small heat shock proteins: Characteristics and evolutionary history of the mutation sites. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2014; 761:15-30. [PMID: 24607769 PMCID: PMC4157968 DOI: 10.1016/j.mrrev.2014.02.004] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2013] [Revised: 02/07/2014] [Accepted: 02/26/2014] [Indexed: 11/24/2022]
Abstract
Mutations in four of the ten human small heat shock proteins (sHSP) are associated with various forms of motor neuropathies and myopathies. In HspB1, HspB3, and HspB8 all known mutations cause motor neuropathies, whereas in HspB5 they cause myopathies. Several features are common to the majority of these mutations: (i) they are missense mutations, (ii) most associated disease phenotypes exhibit a dominant inheritance pattern and late disease onset, (iii) in the primary protein sequences, the sites of most mutations are located in the conserved α-crystallin domain and the variable C-terminal extensions, and (iv) most human mutation sites are highly conserved among the vertebrate orthologs and have been historically exposed to significant purifying selection. In contrast, a minor fraction of these mutations deviate from these rules: they are (i) frame shifting, nonsense, or elongation mutations, (ii) associated with recessive or early onset disease phenotypes, (iii) positioned in the N-terminal domain of the proteins, and (iv) less conserved among the vertebrates and were historically not subject to a strong selective pressure. In several vertebrate sHSPs (including primate sHSPs), homologous sites differ from the human sequence and occasionally even encode the same amino acid residues that cause the disease in humans. Apparently, a number of these mutations sites are not crucial for the protein function in single species or entire taxa, and single species even seem to have adopted mechanisms that compensate for potentially adverse effects of 'mutant-like' sHSPs. The disease-associated dominant sHSP missense mutations have a number of cellular consequences that are consistent with gain-of-function mechanisms of genetic dominance: dominant-negative effects, the formation of cytotoxic amyloid protein oligomers and precipitates, disruption of cytoskeletal networks, and increased downstream enzymatic activities. Future therapeutic concepts should aim for reducing these adverse effects of mutant sHSPs in patients. Indeed, initial experimental results are encouraging.
Collapse
Affiliation(s)
- Rainer Benndorf
- Center for Clinical and Translational Research, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA; Department of Pediatrics, The Ohio State University, Columbus, OH, USA.
| | - Jody L Martin
- Department of Cell and Molecular Physiology, Cardiovascular Institute, Loyola University Medical Center, Maywood, IL, USA.
| | | | - Joel O Wertheim
- Department of Medicine, University of California, San Diego, CA, USA; Department of Pathology, University of California, San Diego, CA, USA.
| |
Collapse
|
35
|
Abriel H, Sottas V. Unexpected α-α interactions with NaV1.5 genetic variants in Brugada syndrome. CIRCULATION. CARDIOVASCULAR GENETICS 2014; 7:97-9. [PMID: 24736849 DOI: 10.1161/circgenetics.114.000590] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Hugues Abriel
- Ion Channel Research Group, Department of Clinical Research, University of Bern, Bern, Switzerland
| | | |
Collapse
|
36
|
Wang WM, Chen JF, Liu ST, Hsu YJ, Liu YC, Huang SM. Biochemical properties of the recurrent LMX1b truncated mutant carried in a Taiwanese family with nail-patella syndrome. Br J Dermatol 2014; 171:356-62. [PMID: 24720768 DOI: 10.1111/bjd.13051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/06/2014] [Indexed: 01/18/2023]
Abstract
BACKGROUND Loss of the DNA-binding activity of a transcription factor is detrimental to its function in responsive gene regulation. We diagnosed a Taiwanese family with nail-patella syndrome (NPS) whose members inherited the mutated LMX1b transcription factor with no DNA-binding homeodomain. The loss-of-function variants cause haploinsufficiency of LMX1b, leading to the clinical manifestation of NPS. The underlying molecular mechanism is unclear. OBJECTIVES To test whether the recurrent pathogenic truncated LMX1b-R198X reported in our patients might be a functional protein. Its biochemical properties were explored. METHODS The luciferase reporter driven by the human interleukin (IL)-6 gene promoter was assayed to measure the transcriptional activity of LMX1b. The nuclear localization of different enhanced green fluorescent protein-tagged LMX1b proteins was observed using fluorescence microscopy. Western blotting was employed to evaluate the expression of various transfected LMX1b constructs. RESULTS LMX1b-R198X enhanced the IL-6 promoter activity activated by the wild-type LMX1b and diminished the promoter activity induced by phorbol 12-myristate 13-acetate. LMX1b-R198X carried out its effect differentially in the expression of various human genes. The nuclear localization of the wild-type LMX1b was disrupted by the C-terminus truncation. The protein stability exhibited by LMX1b-R198X appears to be much higher than that of the wild-type protein. CONCLUSIONS We demonstrated that loss of function might not be the only way for mutated LMX1b to cause haploinsufficiency as the main pathogenic mechanism for NPS. LMX1b-R198X has less nuclear localization and higher stability than the wild-type protein; consequently, it might function as a competitor to sequester other effectors by protein-protein interaction to interfere with downstream transcriptional events.
Collapse
Affiliation(s)
- W-M Wang
- Department of Dermatology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan; Biochemistry Department, National Defense Medical Center, Taipei, Taiwan
| | | | | | | | | | | |
Collapse
|
37
|
de Clare M, Oliver SG. Copy-number variation of cancer-gene orthologs is sufficient to induce cancer-like symptoms in Saccharomyces cerevisiae. BMC Biol 2013; 11:24. [PMID: 23531409 PMCID: PMC3635878 DOI: 10.1186/1741-7007-11-24] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Accepted: 03/19/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Copy-number variation (CNV), rather than complete loss of gene function, is increasingly implicated in human disease. Moreover, gene dosage is recognised as important in tumourigenesis, and there is an increasing realisation that CNVs may not be just symptomatic of the cancerous state but may, in fact, be causative. However, the identification of CNV-related phenotypes for mammalian genes is a slow process, due to the technical difficulty of constructing deletion mutants. Using the genome-wide deletion library for the model eukaryote, Saccharomyces cerevisiae, we have identified genes (termed haploproficient, HP) which, when one copy is deleted from a diploid cell, result in an increased rate of proliferation. Since haploproficiency under nutrient-sufficient conditions is a novel phenotype, we sought here to characterise a subset of the yeast haploproficient genes which seem particularly relevant to human cancers. RESULTS We show that, for a subset of HP genes, heterozygous deletion is sufficient to cause aberrant cell cycling and altered rates of apoptosis, phenotypes associated with cancer in mammalian cells. A majority of these yeast genes are the orthologs of mammalian cancer genes, and hence our studies suggest that CNV of these oncogenic orthologs may be sufficient to lead to tumourigenesis in human cells. Moreover, where not already implicated, this cluster of cancer-like phenotypes in this model eukaryote may be predictive of the involvement in cancer of the mammalian orthologs of these yeast HP genes. Using the yeast set as a model, we show that the response to a range of anti-cancer drugs is strongly dependent on gene dosage, such that intermediate concentrations of the drugs can actually increase a mutant's growth rate. CONCLUSIONS The exploitation of data on the phenotypic impact of heterozygosis in Saccharomyces cerevisiae has permitted the prediction of CNVs affecting tumourigenesis in humans. Our yeast data also suggest that the identification of CNVs in tumour cells may assist both the selection of anti-cancer drugs and the dosages at which they should be administered if they are to be a beneficial, rather than a deleterious, therapy.
Collapse
Affiliation(s)
- Michaela de Clare
- Cambridge Systems Biology Centre and Department of Biochemistry, University of Cambridge, Sanger Building, 80 Tennis Court Road, Cambridge CB2 1GA, UK.
| | | |
Collapse
|
38
|
Meinke DW. A survey of dominant mutations in Arabidopsis thaliana. TRENDS IN PLANT SCIENCE 2013; 18:84-91. [PMID: 22995285 DOI: 10.1016/j.tplants.2012.08.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Revised: 08/03/2012] [Accepted: 08/13/2012] [Indexed: 06/01/2023]
Abstract
Following the recent publication of a comprehensive dataset of 2400 genes with a loss-of-function mutant phenotype in Arabidopsis (Arabidopsis thaliana), questions remain concerning the diversity of dominant mutations in Arabidopsis. Most of these dominant phenotypes are expected to result from inappropriate gene expression, novel protein function, or disrupted protein complexes. This review highlights the major classes of dominant mutations observed in model organisms and presents a collection of 200 Arabidopsis genes associated with a dominant or semidominant phenotype. Emphasis is placed on mutants identified through forward genetic screens of mutagenized or activation-tagged populations. These datasets illustrate the variety of genetic changes and protein functions that underlie dominance in Arabidopsis and may ultimately contribute to phenotypic variation in flowering plants.
Collapse
Affiliation(s)
- David W Meinke
- Department of Botany, Oklahoma State University, Stillwater, OK 74078, USA.
| |
Collapse
|
39
|
Makanae K, Kintaka R, Makino T, Kitano H, Moriya H. Identification of dosage-sensitive genes in Saccharomyces cerevisiae using the genetic tug-of-war method. Genome Res 2012; 23:300-11. [PMID: 23275495 PMCID: PMC3561871 DOI: 10.1101/gr.146662.112] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Gene overexpression beyond a permissible limit causes defects in cellular functions. However, the permissible limits of most genes are unclear. Previously, we developed a genetic method designated genetic tug-of-war (gTOW) to measure the copy number limit of overexpression of a target gene. In the current study, we applied gTOW to the analysis of all protein-coding genes in the budding yeast Saccharomyces cerevisiae. We showed that the yeast cellular system was robust against an increase in the copy number by up to 100 copies in >80% of the genes. After frameshift and segmentation analyses, we isolated 115 dosage-sensitive genes (DSGs) with copy number limits of 10 or less. DSGs contained a significant number of genes involved in cytoskeletal organization and intracellular transport. DSGs tended to be highly expressed and to encode protein complex members. We demonstrated that the protein burden caused the dosage sensitivity of highly expressed genes using a gTOW experiment in which the open reading frame was replaced with GFP. Dosage sensitivities of some DSGs were rescued by the simultaneous increase in the copy numbers of partner genes, indicating that stoichiometric imbalances among complexes cause dosage sensitivity. The results obtained in this study will provide basic knowledge about the physiology of chromosomal abnormalities and the evolution of chromosomal composition.
Collapse
Affiliation(s)
- Koji Makanae
- Research Core for Interdisciplinary Sciences, Okayama University, Okayama 700-8530, Japan
| | | | | | | | | |
Collapse
|
40
|
Gene balance hypothesis: connecting issues of dosage sensitivity across biological disciplines. Proc Natl Acad Sci U S A 2012; 109:14746-53. [PMID: 22908297 DOI: 10.1073/pnas.1207726109] [Citation(s) in RCA: 400] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
We summarize, in this review, the evidence that genomic balance influences gene expression, quantitative traits, dosage compensation, aneuploid syndromes, population dynamics of copy number variants and differential evolutionary fate of genes after partial or whole-genome duplication. Gene balance effects are hypothesized to result from stoichiometric differences among members of macromolecular complexes, the interactome, and signaling pathways. The implications of gene balance are discussed.
Collapse
|
41
|
Copy number analysis of 413 isolated talipes equinovarus patients suggests role for transcriptional regulators of early limb development. Eur J Hum Genet 2012; 21:373-80. [PMID: 22892537 DOI: 10.1038/ejhg.2012.177] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Talipes equinovarus is one of the most common congenital musculoskeletal anomalies and has a worldwide incidence of 1 in 1000 births. A genetic predisposition to talipes equinovarus is evidenced by the high concordance rate in twin studies and the increased risk to first-degree relatives. Despite the frequency of isolated talipes equinovarus and the strong evidence of a genetic basis for the disorder, few causative genes have been identified. To identify rare and/or recurrent copy number variants, we performed a genome-wide screen for deletions and duplications in 413 isolated talipes equinovarus patients using the Affymetrix 6.0 array. Segregation analysis within families and gene expression in mouse E12.5 limb buds were used to determine the significance of copy number variants. We identified 74 rare, gene-containing copy number variants that were present in talipes equinovarus probands and not present in 759 controls or in the Database of Genomic Variants. The overall frequency of copy number variants was similar between talipes equinovarus patients compared with controls. Twelve rare copy number variants segregate with talipes equinovarus in multiplex pedigrees, and contain the developmentally expressed transcription factors and transcriptional regulators PITX1, TBX4, HOXC13, UTX, CHD (chromodomain protein)1, and RIPPLY2. Although our results do not support a major role for recurrent copy number variations in the etiology of isolated talipes equinovarus, they do suggest a role for genes involved in early embryonic patterning in some families that can now be tested with large-scale sequencing methods.
Collapse
|
42
|
Kleffmann W, Zink AM, Lee JA, Senderek J, Mangold E, Moog U, Rappold GA, Wohlleber E, Engels H. 5q31 Microdeletions: Definition of a Critical Region and Analysis of LRRTM2, a Candidate Gene for Intellectual Disability. Mol Syndromol 2012; 3:68-75. [PMID: 23326251 DOI: 10.1159/000341252] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/29/2012] [Indexed: 11/19/2022] Open
Abstract
Microdeletions including 5q31 have been reported in only few patients to date. Apart from intellectual disability/developmental delay (ID/DD) of varying degrees, which is common to all reported patients, the clinical spectrum is wide and includes short stature, failure to thrive, congenital heart defects, encephalopathies, and dysmorphic features. We report a patient with a 0.9-Mb de novo deletion in 5q31.2, the smallest microdeletion in 5q31 reported thus far. His clinical presentation includes mild DD, borderline short stature, postnatal microcephaly, and mild dysmorphic signs including microretrognathia. Together with data from 7 reported overlapping microdeletions, analysis of our patient enabled the tentative delineation of a phenotype map for 5q31 deletions. In contrast to the mild phenotype of small microdeletions affecting only 5q31.2, carriers of larger microdeletions which also include subbands 5q31.1 and/or 5q31.3 seem to be more severely affected with congenital malformations, growth anomalies, and severe encephalopathies. A 240-kb smallest region of overlap in 5q31.2 is delineated which contains only 2 genes, CTNNA1 and LRRTM2. We propose LRRTM2 as the most promising candidate gene for ID/DD due to its expression pattern, function as a key regulator of excitatory development, and interaction with Neurexin 1. However, sequence analysis of LRRTM2 in 330 patients with ID/DD revealed no relevant alterations, excluding point mutations in LRRTM2 as a frequent cause of ID/DD in patients without microdeletions.
Collapse
Affiliation(s)
- W Kleffmann
- Institute of Human Genetics, Life and Brain Center, University of Bonn, Bonn, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Lejonklou MH, Barbu A, Stålberg P, Skogseid B. Accelerated proliferation and differential global gene expression in pancreatic islets of five-week-old heterozygous Men1 mice: Men1 is a haploinsufficient suppressor. Endocrinology 2012; 153:2588-98. [PMID: 22492302 DOI: 10.1210/en.2011-1924] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Individuals carrying heterozygous (hz) MEN1 (Multiple Endocrine Neoplasia Syndrome Type 1) germ line mutations develop endocrine tumors as a result of somatic loss of the wild-type (wt) allele. However, endocrine cell proliferation has been observed despite wt allele retention, indicating haploinsufficiency. To study downstream molecular effects of the hz haplotype, a germ line Men1 hz mouse model was used to explore differences in global endocrine pancreatic gene expression. Because islet cells of 5-wk-old hz mice express Menin from the retained wt Men1 allele, these were isolated after collagenase digestion of the pancreas, and used for global gene expression array. Wild-type littermates were used for comparison. Array findings were corroborated by quantitative PCR, Western blotting, in situ proximity ligation assay, and immunohistochemistry. The hz islets show increased proliferation: the Ki-67 index was twice as high as in wt islets (3.48 vs. 1.74%; P = 0.024). The microarray results demonstrated that several genes were differentially expressed. Some selected genes were studied on the protein level, e.g. the cytoskeletal regulator myristoylated alanine-rich protein kinase C substrate (Marcks) was significantly less expressed in hz islets, using in situ proximity ligation assay and Western blotting (P < 0.001 and P < 0.01, respectively). Further, gene ontology analysis showed that genes with higher mRNA expression in the hz endocrine pancreas were associated with e.g. chromatin maintenance and apoptosis. Lower mRNA was observed for genes involved in growth factor binding. In conclusion, despite retained Menin expression, proliferation was accelerated, and numerous genes were differentially expressed in the endocrine pancreas of 5-wk-old hz Men1 mice, corroborating the hypothesis that MEN1 is a haploinsufficient suppressor.
Collapse
Affiliation(s)
- Margareta H Lejonklou
- Department of Medical Sciences, Science for Life Laboratory, Uppsala University, S-751 85 Uppsala, Sweden
| | | | | | | |
Collapse
|
44
|
Colnaghi R, Carpenter G, Volker M, O'Driscoll M. The consequences of structural genomic alterations in humans: genomic disorders, genomic instability and cancer. Semin Cell Dev Biol 2011; 22:875-85. [PMID: 21802523 DOI: 10.1016/j.semcdb.2011.07.010] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Revised: 07/11/2011] [Accepted: 07/14/2011] [Indexed: 12/20/2022]
Abstract
Over the last decade or so, sophisticated technological advances in array-based genomics have firmly established the contribution of structural alterations in the human genome to a variety of complex developmental disorders, and also to diseases such as cancer. In fact, multiple 'novel' disorders have been identified as a direct consequence of these advances. Our understanding of the molecular events leading to the generation of these structural alterations is also expanding. Many of the models proposed to explain these complex rearrangements involve DNA breakage and the coordinated action of DNA replication, repair and recombination machinery. Here, and within the context of Genomic Disorders, we will briefly overview the principal models currently invoked to explain these chromosomal rearrangements, including Non-Allelic Homologous Recombination (NAHR), Fork Stalling Template Switching (FoSTeS), Microhomology Mediated Break-Induced Repair (MMBIR) and Breakage-fusion-bridge cycle (BFB). We will also discuss an unanticipated consequence of certain copy number variations (CNVs) whereby the CNVs potentially compromise fundamental processes controlling genomic stability including DNA replication and the DNA damage response. We will illustrate these using specific examples including Genomic Disorders (DiGeorge/Veleocardiofacial syndrome, HSA21 segmental aneuploidy and rec (3) syndrome) and cell-based model systems. Finally, we will review some of the recent exciting developments surrounding specific CNVs and their contribution to cancer development as well as the latest model for cancer genome rearrangement; 'chromothripsis'.
Collapse
Affiliation(s)
- Rita Colnaghi
- Human DNA Damage Response Disorders Group, Genome Damage and Stability Centre, University of Sussex, Brighton, United Kingdom
| | | | | | | |
Collapse
|
45
|
Kuehn HS, Caminha I, Niemela JE, Rao VK, Davis J, Fleisher TA, Oliveira JB. FAS haploinsufficiency is a common disease mechanism in the human autoimmune lymphoproliferative syndrome. THE JOURNAL OF IMMUNOLOGY 2011; 186:6035-43. [PMID: 21490157 DOI: 10.4049/jimmunol.1100021] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The autoimmune lymphoproliferative syndrome (ALPS) is characterized by early-onset lymphadenopathy, splenomegaly, immune cytopenias, and an increased risk for B cell lymphomas. Most ALPS patients harbor mutations in the FAS gene, which regulates lymphocyte apoptosis. These are commonly missense mutations affecting the intracellular region of the protein and have a dominant-negative effect on the signaling pathway. However, analysis of a large cohort of ALPS patients revealed that ∼30% have mutations affecting the extracellular region of FAS, and among these, 70% are nonsense, splice site, or insertions/deletions with frameshift for which no dominant-negative effect would be expected. We evaluated the latter patients to understand the mechanism(s) by which these mutations disrupted the FAS pathway and resulted in clinical disease. We demonstrated that most extracellular-region FAS mutations induce low FAS expression due to nonsense-mediated RNA decay or protein instability, resulting in defective death-inducing signaling complex formation and impaired apoptosis, although to a lesser extent as compared with intracellular mutations. The apoptosis defect could be corrected by FAS overexpression in vitro. Our findings define haploinsufficiency as a common disease mechanism in ALPS patients with extracellular FAS mutations.
Collapse
Affiliation(s)
- Hye Sun Kuehn
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD 20814, USA
| | | | | | | | | | | | | |
Collapse
|
46
|
de Clare M, Pir P, Oliver SG. Haploinsufficiency and the sex chromosomes from yeasts to humans. BMC Biol 2011; 9:15. [PMID: 21356089 PMCID: PMC3058074 DOI: 10.1186/1741-7007-9-15] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2010] [Accepted: 02/28/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Haploinsufficient (HI) genes are those for which a reduction in copy number in a diploid from two to one results in significantly reduced fitness. Haploinsufficiency is increasingly implicated in human disease, and so predicting this phenotype could provide insights into the genetic mechanisms behind many human diseases, including some cancers. RESULTS In the present work we show that orthologues of Saccharomyces cerevisiae HI genes are preferentially retained across the kingdom Fungi, and that the HI genes of S. cerevisiae can be used to predict haploinsufficiency in humans. Our HI gene predictions confirm known associations between haploinsufficiency and genetic disease, and predict several further disorders in which the phenotype may be relevant. Haploinsufficiency is also clearly relevant to the gene-dosage imbalances inherent in eukaryotic sex-determination systems. In S. cerevisiae, HI genes are over-represented on chromosome III, the chromosome that determines yeast's mating type. This may be a device to select against the loss of one copy of chromosome III from a diploid. We found that orthologues of S. cerevisiae HI genes are also over-represented on the mating-type chromosomes of other yeasts and filamentous fungi. In animals with heterogametic sex determination, accumulation of HI genes on the sex chromosomes would compromise fitness in both sexes, given X chromosome inactivation in females. We found that orthologues of S. cerevisiae HI genes are significantly under-represented on the X chromosomes of mammals and of Caenorhabditis elegans. There is no X inactivation in Drosophila melanogaster (increased expression of X in the male is used instead) and, in this species, we found no depletion of orthologues to yeast HI genes on the sex chromosomes. CONCLUSION A special relationship between HI genes and the sex/mating-type chromosome extends from S. cerevisiae to Homo sapiens, with the microbe being a useful model for species throughout the evolutionary range. Furthermore, haploinsufficiency in yeast can predict the phenotype in higher organisms.
Collapse
Affiliation(s)
- Michaela de Clare
- Cambridge Systems Biology Centre and Department of Biochemistry, University of Cambridge, Sanger Building, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| | - Pınar Pir
- Cambridge Systems Biology Centre and Department of Biochemistry, University of Cambridge, Sanger Building, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| | - Stephen G Oliver
- Cambridge Systems Biology Centre and Department of Biochemistry, University of Cambridge, Sanger Building, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| |
Collapse
|
47
|
Constant splice-isoform ratios in human lymphoblastoid cells support the concept of a splico-stat. Genetics 2011; 187:761-70. [PMID: 21220357 DOI: 10.1534/genetics.110.125096] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Splicing generates mature transcripts from genes in pieces in eukaryotic cells. Overwhelming evidence has accumulated that alternative routes in splicing are possible for most human and mammalian genes, thereby allowing formation of different transcripts from one gene. No function has been assigned to the majority of identified alternative splice forms, and it has been assumed that they compose inert or tolerated waste from aberrant or noisy splicing. Here we demonstrate that five human transcription units (WT1, NOD2, GNAS, RABL2A, RABL2B) have constant splice-isoform ratios in genetically diverse lymphoblastoid cell lines independent of the type of alternative splicing (exon skipping, alternative donor/acceptor, tandem splice sites) and gene expression level. Even splice events that create premature stop codons and potentially trigger nonsense-mediated mRNA decay are found at constant fractions. The analyzed alternative splicing events were qualitatively but not quantitatively conserved in corresponding chimpanzee cell lines. Additionally, subtle splicing at tandem acceptor splice sites (GNAS, RABL2A/B) was highly constrained and strongly depends on the upstream donor sequence content. These results also demonstrate that unusual and unproductive splice variants are produced in a regulated manner.
Collapse
|
48
|
Wang E, Hsieh-Li HM, Chiou YY, Chien YL, Ho HH, Chin HJ, Wang CKL, Liang SC, Jiang ST. Progressive renal distortion by multiple cysts in transgenic mice expressing artificial microRNAs against Pkd1. J Pathol 2010; 222:238-48. [PMID: 20814903 DOI: 10.1002/path.2765] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is one of the most common life-threatening inherited diseases, and the PKD1 gene is responsible for most cases of this disease. Previous efforts to establish a mouse model that recapitulates the phenotypic characteristics of ADPKD, which have used conventional or conditional knockout of the mouse orthologue Pkd1, have been unsuccessful or unreliable. In a previous study, we described the generation of a novel Pkd1 hypomorphic allele, in which Pkd1 expression was significantly reduced but not totally blocked. These Pkd1 homozygous mutant mice rapidly developed renal cystic disease, supporting the hypothesis that 'haploinsufficiency' explains development of the ADPKD phenotype. In the present study, we further investigated the Pkd1 haploinsufficiency effect by generating Pkd1 knockdown transgenic mice with co-cistronic expression of two miRNA hairpins specific to Pkd1 transcript and an Emerald GFP reporter driven by a human ubiquitin B promoter. Two transgenic lines which had ∼60-70% reduction of Pkd1 expression developed severe renal cystic disease at a rate similar to that of human ADPKD. These results further support the haploinsufficiency hypothesis, and suggest that the onset and progression of the renal cystic diseases are correlated with the level of Pkd1 expression. The two novel mutant lines of mice appear to be ideal models for the study of ADPKD.
Collapse
Affiliation(s)
- Ellian Wang
- Department of Life Sciences, National Taiwan Normal University, Taipei, Taiwan, Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Goh AM, Coffill CR, Lane DP. The role of mutant p53 in human cancer. J Pathol 2010; 223:116-26. [PMID: 21125670 DOI: 10.1002/path.2784] [Citation(s) in RCA: 280] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Revised: 08/31/2010] [Accepted: 09/15/2010] [Indexed: 12/20/2022]
Abstract
Mutations in the TP53 (p53) gene are present in a large fraction of human tumours, which frequently express mutant p53 proteins at high but heterogeneous levels. The clinical significance of this protein accumulation remains clouded. Mouse models bearing knock-in mutations of p53 have established that the mutant p53 proteins can drive tumour formation, invasion and metastasis through dominant negative inhibition of wild-type p53 as well as through gain of function or 'neomorphic' activities that can inhibit or activate the function of other proteins. These models have also shown that mutation alone does not confer stability, so the variable staining of mutant proteins seen in human cancers reflects tumour-specific activation of p53-stabilizing pathways. Blocking the accumulation and activity of mutant p53 proteins may thus provide novel cancer therapeutic and diagnostic targets, but their induction by chemotherapy may paradoxically limit the effectiveness of these treatments.
Collapse
|
50
|
Alvarado DM, Aferol H, McCall K, Huang JB, Techy M, Buchan J, Cady J, Gonzales PR, Dobbs MB, Gurnett CA. Familial isolated clubfoot is associated with recurrent chromosome 17q23.1q23.2 microduplications containing TBX4. Am J Hum Genet 2010; 87:154-60. [PMID: 20598276 DOI: 10.1016/j.ajhg.2010.06.010] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2010] [Revised: 06/05/2010] [Accepted: 06/14/2010] [Indexed: 01/27/2023] Open
Abstract
Clubfoot is a common musculoskeletal birth defect for which few causative genes have been identified. To identify the genes responsible for isolated clubfoot, we screened for genomic copy-number variants with the Affymetrix Genome-wide Human SNP Array 6.0. A recurrent chromosome 17q23.1q23.2 microduplication was identified in 3 of 66 probands with familial isolated clubfoot. The chromosome 17q23.1q23.2 microduplication segregated with autosomal-dominant clubfoot in all three families but with reduced penetrance. Mild short stature was common and one female had developmental hip dysplasia. Subtle skeletal abnormalities consisted of broad and shortened metatarsals and calcanei, small distal tibial epiphyses, and thickened ischia. Several skeletal features were opposite to those described in the reciprocal chromosome 17q23.1q23.2 microdeletion syndrome associated with developmental delay and cardiac and limb abnormalities. Of note, during our study, we also identified a microdeletion at the locus in a sibling pair with isolated clubfoot. The chromosome 17q23.1q23.2 region contains the T-box transcription factor TBX4, a likely target of the bicoid-related transcription factor PITX1 previously implicated in clubfoot etiology. Our result suggests that this chromosome 17q23.1q23.2 microduplication is a relatively common cause of familial isolated clubfoot and provides strong evidence linking clubfoot etiology to abnormal early limb development.
Collapse
|