1
|
Salgkamis D, Sifakis EG, Agartz S, Wirta V, Hartman J, Bergh J, Foukakis T, Matikas A, Zerdes I. Systematic review and feasibility study on pre-analytical factors and genomic analyses on archival formalin-fixed paraffin-embedded breast cancer tissue. Sci Rep 2024; 14:18275. [PMID: 39107471 PMCID: PMC11303707 DOI: 10.1038/s41598-024-69285-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 08/02/2024] [Indexed: 08/10/2024] Open
Abstract
Formalin-fixed paraffin-embedded (FFPE) tissue represents a valuable source for translational cancer research. However, the widespread application of various downstream methods remains challenging. Here, we aimed to assess the feasibility of a genomic and gene expression analysis workflow using FFPE breast cancer (BC) tissue. We conducted a systematic literature review for the assessment of concordance between FFPE and fresh-frozen matched tissue samples derived from patients with BC for DNA and RNA downstream applications. The analytical performance of three different nucleic acid extraction kits on FFPE BC clinical samples was compared. We also applied a newly developed targeted DNA Next-Generation Sequencing (NGS) 370-gene panel and the nCounter BC360® platform on simultaneously extracted DNA and RNA, respectively, using FFPE tissue from a phase II clinical trial. Of the 3701 initial search results, 40 articles were included in the systematic review. High degree of concordance was observed in various downstream application platforms. Moreover, the performance of simultaneous DNA/RNA extraction kit was demonstrated with targeted DNA NGS and gene expression profiling. Exclusion of variants below 5% variant allele frequency was essential to overcome FFPE-induced artefacts. Targeted genomic analyses were feasible in simultaneously extracted DNA/RNA from FFPE material, providing insights for their implementation in clinical trials/cohorts.
Collapse
Affiliation(s)
| | | | - Susanne Agartz
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Valtteri Wirta
- Department of Microbiology, Tumor and Cell Biology, Clinical Genomics Stockholm, Science for Life Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - Johan Hartman
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Pathology and Cancer Diagnostics, Karolinska University Hospital, Stockholm, Sweden
| | - Jonas Bergh
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
- Breast Center, Theme Cancer, Karolinska University Hospital, Stockholm, Sweden
| | - Theodoros Foukakis
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
- Breast Center, Theme Cancer, Karolinska University Hospital, Stockholm, Sweden
| | - Alexios Matikas
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
- Breast Center, Theme Cancer, Karolinska University Hospital, Stockholm, Sweden
| | - Ioannis Zerdes
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
- Theme Cancer, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
2
|
Sorrentino C, Ciummo SL, D'Antonio L, Fieni C, Lanuti P, Turdo A, Todaro M, Di Carlo E. Interleukin-30 feeds breast cancer stem cells via CXCL10 and IL23 autocrine loops and shapes immune contexture and host outcome. J Immunother Cancer 2021; 9:jitc-2021-002966. [PMID: 34663639 PMCID: PMC8524378 DOI: 10.1136/jitc-2021-002966] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2021] [Indexed: 12/13/2022] Open
Abstract
Background Breast cancer (BC) progression to metastatic disease is the leading cause of death in women worldwide. Metastasis is driven by cancer stem cells (CSCs) and signals from their microenvironment. Interleukin (IL) 30 promotes BC progression, and its expression correlates with disease recurrence and mortality. Whether it acts by regulating BCSCs is unknown and could have significant therapeutic implications. Methods Human (h) and murine (m) BCSCs were tested for their production of and response to IL30 by using flow cytometry, confocal microscopy, proliferation and sphere-formation assays, and PCR array. Immunocompetent mice were used to investigate the role of BCSC-derived IL30 on tumor development and host outcome. TCGA PanCancer and Oncomine databases provided gene expression data from 1084 and 75 hBC samples, respectively, and immunostaining unveiled the BCSC microenvironment. Results hBCSCs constitutively expressed IL30 as a membrane-anchored glycoprotein. Blocking IL30 hindered their proliferation and self-renewal efficiency, which were boosted by IL30 overexpression. IL30 regulation of immunity gene expression in human and murine BCSCs shared a significant induction of IL23 and CXCL10. Both immunoregulatory mediators stimulated BCSC proliferation and self-renewal, while their selective blockade dramatically hindered IL30-dependent BCSC proliferation and mammosphere formation. Orthotopic implantation of IL30-overexpressing mBCSCs, in syngeneic mice, gave rise to poorly differentiated and highly proliferating MYC+KLF4+LAG3+ tumors, which expressed CXCL10 and IL23, and were infiltrated by myeloid-derived cells, Foxp3+ T regulatory cells and NKp46+RORγt+ type 3 innate lymphoid cells, resulting in increased metastasis and reduced survival. In tumor tissues from patients with BC, expression of IL30 overlapped with that of CXCL10 and IL23, and ranked beyond the 95th percentile in a Triple-Negative enriched BC collection from the Oncomine Platform. CIBERSORTx highlighted a defective dendritic cell, CD4+ T and γδ T lymphocyte content and a prominent LAG3 expression in IL30highversus IL30low human BC samples from the TCGA PanCancer collection. Conclusions Constitutive expression of membrane-bound IL30 regulates BCSC viability by juxtacrine signals and via second-level mediators, mainly CXCL10 and IL23. Their autocrine loops mediate much of the CSC growth factor activity of IL30, while their paracrine effect contributes to IL30 shaping of immune contexture. IL30-related immune subversion, which also emerged from computational analyses, strongly suggests that targeting IL30 can restrain the BCSC compartment and counteract BC progression.
Collapse
Affiliation(s)
- Carlo Sorrentino
- Department of Medicine and Sciences of Aging, "G. d'Annunzio" University" of Chieti-Pescara, Chieti, Italy.,Anatomic Pathology and Immuno-Oncology Unit, Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Stefania Livia Ciummo
- Department of Medicine and Sciences of Aging, "G. d'Annunzio" University" of Chieti-Pescara, Chieti, Italy.,Anatomic Pathology and Immuno-Oncology Unit, Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Luigi D'Antonio
- Department of Medicine and Sciences of Aging, "G. d'Annunzio" University" of Chieti-Pescara, Chieti, Italy.,Anatomic Pathology and Immuno-Oncology Unit, Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Cristiano Fieni
- Department of Medicine and Sciences of Aging, "G. d'Annunzio" University" of Chieti-Pescara, Chieti, Italy.,Anatomic Pathology and Immuno-Oncology Unit, Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Paola Lanuti
- Department of Medicine and Sciences of Aging, "G. d'Annunzio" University" of Chieti-Pescara, Chieti, Italy
| | - Alice Turdo
- Department of Health Promotion Sciences, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy
| | - Matilde Todaro
- Department of Health Promotion Sciences, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy
| | - Emma Di Carlo
- Department of Medicine and Sciences of Aging, "G. d'Annunzio" University" of Chieti-Pescara, Chieti, Italy .,Anatomic Pathology and Immuno-Oncology Unit, Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| |
Collapse
|
3
|
Skaftason A, Qu Y, Abdulla M, Nordlund J, Berglund M, Ednersson SB, Andersson PO, Enblad G, Amini RM, Rosenquist R, Mansouri L. Transcriptome sequencing of archived lymphoma specimens is feasible and clinically relevant using exome capture technology. Genes Chromosomes Cancer 2021; 61:27-36. [PMID: 34647650 DOI: 10.1002/gcc.23002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 10/06/2021] [Accepted: 10/06/2021] [Indexed: 11/06/2022] Open
Abstract
Formalin-fixed, paraffin-embedded (FFPE) specimens are an underutilized resource in medical research, particularly in the setting of transcriptome sequencing, as RNA from these samples is often degraded. We took advantage of an exome capture-based RNA-sequencing protocol to explore global gene expression in paired fresh-frozen (FF) and FFPE samples from 16 diffuse large B-cell lymphoma (DLBCL) patients. While FFPE samples generated fewer mapped reads compared to their FF counterparts, these reads captured the same library complexity and had a similar number of genes expressed on average. Furthermore, gene expression demonstrated a high correlation when comparing housekeeping genes only or across the entire transcriptome (r = 0.99 for both comparisons). Differences in gene expression were primarily seen in lowly expressed genes and genes with small or large coding sequences. Using cell-of-origin classifiers and clinically relevant gene expression signatures for DLBCL, FF, and FFPE samples from the same biopsy paired nearly perfectly in clustering analysis. This was further confirmed in a validation cohort of 50 FFPE DLBCL samples. In summary, we found the biological differences between tumors to be far greater than artifacts created as a result of degraded RNA. We conclude that exome capture transcriptome sequencing data from archival samples can confidently be used for cell-of-origin classification of DLBCL samples.
Collapse
Affiliation(s)
- Aron Skaftason
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Ying Qu
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Maysaa Abdulla
- Clinical and Experimental Pathology, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Jessica Nordlund
- Department of Medical Sciences and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Mattias Berglund
- Experimental and Clinical Oncology, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Susanne Bram Ednersson
- Department of Pathology, Sahlgrenska University Hospital, Gothenburg, Sweden.,Institute of Biomedicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Per-Ola Andersson
- Department of Medicine, Section of Hematology, South Älvsborg Hospital, Borås, Sweden.,Institute of Medicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Gunilla Enblad
- Experimental and Clinical Oncology, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Rose-Marie Amini
- Clinical and Experimental Pathology, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Richard Rosenquist
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Clinical Genetics, Karolinska University Laboratory, Karolinska University Hospital, Stockholm, Sweden
| | - Larry Mansouri
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
4
|
Genome-Wide Gene Expression Analyses of BRCA1- and BRCA2-Associated Breast and Ovarian Tumours. Cancers (Basel) 2020; 12:cancers12103015. [PMID: 33081408 PMCID: PMC7603076 DOI: 10.3390/cancers12103015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 09/28/2020] [Accepted: 10/14/2020] [Indexed: 12/13/2022] Open
Abstract
Germline pathogenic variants in BRCA1 and BRCA2 increase cumulative lifetime risk up to 75% for breast cancer and 76% for ovarian cancer. Genetic testing for BRCA1 and BRCA2 pathogenic variants has become an important part of clinical practice for cancer risk assessment and for reducing individual risk of developing cancer. Genetic testing can produce three outcomes: positive (a pathogenic variant), uninformative (no pathogenic variant) and uncertain significance (a variant of unknown clinical significance). More than one third of BRCA1 and BRCA2 variants identified have been classified as variants of uncertain significance, presenting a challenge for clinicians. To address this important clinical challenge, a number of studies have been undertaken to establish a gene expression phenotype for pathogenic BRCA1 and BRCA2 variant carriers in several diseased and normal tissues. However, the consistency of gene expression phenotypes described in studies has been poor. To determine if gene expression analysis has been a successful approach for variant classification, we describe the design and comparability of 23 published gene expression studies that have profiled cells from BRCA1 and BRCA2 pathogenic variant carriers. We show the impact of advancements in expression-based technologies, the importance of developing larger study cohorts and the necessity to better understand variables affecting gene expression profiles across different tissue types.
Collapse
|
5
|
LIMK2 promotes the metastatic progression of triple-negative breast cancer by activating SRPK1. Oncogenesis 2020; 9:77. [PMID: 32859889 PMCID: PMC7455732 DOI: 10.1038/s41389-020-00263-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 08/10/2020] [Accepted: 08/17/2020] [Indexed: 12/21/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is a highly metastatic breast cancer subtype and due to the lack of hormone receptors and HER2 expression, TNBC has limited therapeutic options with chemotherapy being the primary choice for systemic therapy. LIM Domain Kinase 2 (LIMK2) is a serine/threonine kinase that plays an important role in the regulation of actin filament dynamics. Here, we show that LIM domain kinase 2 (LIMK2) is overexpressed in TNBC, and short-hairpin RNA (shRNA)-mediated LIMK2 knockdown or its pharmacological inhibition blocks metastatic attributes of TNBC cells. To determine the mechanism by which LIMK2 promotes TNBC metastatic progression, we performed stable isotope labeling by amino acids in cell culture (SILAC) based unbiased large-scale phosphoproteomics analysis. This analysis identified 258 proteins whose phosphorylation was significantly reduced due to LIMK2 inhibition. Among these proteins, we identified SRSF protein kinase 1 (SRPK1), which encodes for a serine/arginine protein kinase specific for the SR (serine/arginine-rich domain) family of splicing factors. We show that LIMK2 inhibition blocked SRPK1 phosphorylation and consequentially its activity. Furthermore, similar to LIMK2, genetic inhibition of SRPK1 by shRNAs or its pharmacological inhibition blocked the metastatic attributes of TNBC cells. Moreover, the pharmacological inhibition of LIMK2 blocked metastatic progression in mice without affecting primary tumor growth. In sum, these results identified LIMK2 as a facilitator of distal TNBC metastasis and a potential target for preventing TNBC metastatic progression.
Collapse
|
6
|
Naderi A. Steroid receptor-associated and regulated protein is a biomarker in predicting the clinical outcome and treatment response in malignancies. Cancer Rep (Hoboken) 2020; 3:e1267. [PMID: 32706923 DOI: 10.1002/cnr2.1267] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/08/2020] [Accepted: 06/22/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Steroid receptor-associated and regulated protein (SRARP) has recently been identified as a novel tumor suppressor in malignancies of multiple tissue origins. SRARP is located on chromosome 1p36.13 and is widely inactivated by deletions and epigenetic silencing in malignancies. Therefore, additional studies are required to explore SRARP as a potential cancer biomarker. AIM This study explores the application of SRARP as a novel biomarker in malignancies of multiple tissue origins using the analysis of large genomic datasets. METHODS AND RESULTS A comprehensive genomic analysis of large cancer datasets was carried out to examine the association of SRARP expression and copy-number with molecular and clinical features in malignancies of multiple tissue origins. This study demonstrated that SRARP under-expression and copy-number loss are strongly associated with the loss of other tumor suppressors such as TP53 and NF1 mutations and oncogenic gains, including N-MYC amplification and ERG rearrangement, suggesting that SRARP inactivation is associated with wider genomic instability in malignancies. Importantly, SRARP under-expression and copy-number loss are strong predictors of poor clinical and/or pathological features in breast, colorectal, lung, prostate, gastric, endometrial, cervical, brain, ovarian, bladder, thyroid, and hepatocellular cancers as well as neuroblastoma, uveal melanoma, and acute myeloid leukemia with highly significant odds ratios. Finally, higher SRARP expression and copy-number predict a better response to several cancer drugs. CONCLUSION This study suggests that the SRARP inactivation presents a robust biomarker in predicting molecular and clinicopathological features, and treatment response in malignancies.
Collapse
Affiliation(s)
- Ali Naderi
- Cancer Biology Program, University of Hawaii Cancer Center, Honolulu, Hawaii, USA
| |
Collapse
|
7
|
Reliable Gene Expression Profiling from Small and Hematoxylin and Eosin–Stained Clinical Formalin-Fixed, Paraffin-Embedded Specimens Using the HTG EdgeSeq Platform. J Mol Diagn 2019; 21:796-807. [DOI: 10.1016/j.jmoldx.2019.04.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 03/06/2019] [Accepted: 04/16/2019] [Indexed: 01/24/2023] Open
|
8
|
Hong BY, Sobue T, Choquette L, Dupuy AK, Thompson A, Burleson JA, Salner AL, Schauer PK, Joshi P, Fox E, Shin DG, Weinstock GM, Strausbaugh LD, Dongari-Bagtzoglou A, Peterson DE, Diaz PI. Chemotherapy-induced oral mucositis is associated with detrimental bacterial dysbiosis. MICROBIOME 2019; 7:66. [PMID: 31018870 PMCID: PMC6482518 DOI: 10.1186/s40168-019-0679-5] [Citation(s) in RCA: 153] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 04/02/2019] [Indexed: 05/27/2023]
Abstract
BACKGROUND Gastrointestinal mucosal injury (mucositis), commonly affecting the oral cavity, is a clinically significant yet incompletely understood complication of cancer chemotherapy. Although antineoplastic cytotoxicity constitutes the primary injury trigger, the interaction of oral microbial commensals with mucosal tissues could modify the response. It is not clear, however, whether chemotherapy and its associated treatments affect oral microbial communities disrupting the homeostatic balance between resident microorganisms and the adjacent mucosa and if such alterations are associated with mucositis. To gain knowledge on the pathophysiology of oral mucositis, 49 subjects receiving 5-fluorouracil (5-FU) or doxorubicin-based chemotherapy were evaluated longitudinally during one cycle, assessing clinical outcomes, bacterial and fungal oral microbiome changes, and epithelial transcriptome responses. As a control for microbiome stability, 30 non-cancer subjects were longitudinally assessed. Through complementary in vitro assays, we also evaluated the antibacterial potential of 5-FU on oral microorganisms and the interaction of commensals with oral epithelial tissues. RESULTS Oral mucositis severity was associated with 5-FU, increased salivary flow, and higher oral granulocyte counts. The oral bacteriome was disrupted during chemotherapy and while antibiotic and acid inhibitor intake contributed to these changes, bacteriome disruptions were also correlated with antineoplastics and independently and strongly associated with oral mucositis severity. Mucositis-associated bacteriome shifts included depletion of common health-associated commensals from the genera Streptococcus, Actinomyces, Gemella, Granulicatella, and Veillonella and enrichment of Gram-negative bacteria such as Fusobacterium nucleatum and Prevotella oris. Shifts could not be explained by a direct antibacterial effect of 5-FU, but rather resembled the inflammation-associated dysbiotic shifts seen in other oral conditions. Epithelial transcriptional responses during chemotherapy included upregulation of genes involved in innate immunity and apoptosis. Using a multilayer epithelial construct, we show mucositis-associated dysbiotic shifts may contribute to aggravate mucosal damage since the mucositis-depleted Streptococcus salivarius was tolerated as a commensal, while the mucositis-enriched F. nucleatum displayed pro-inflammatory and pro-apoptotic capacity. CONCLUSIONS Altogether, our work reveals that chemotherapy-induced oral mucositis is associated with bacterial dysbiosis and demonstrates the potential for dysbiotic shifts to aggravate antineoplastic-induced epithelial injury. These findings suggest that control of oral bacterial dysbiosis could represent a novel preventive approach to ameliorate oral mucositis.
Collapse
Affiliation(s)
- Bo-Young Hong
- Department of Oral Health and Diagnostic Sciences, School of Dental Medicine, UConn Health, 263 Farmington Ave, Farmington, CT, 06030-1710, USA
- Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Takanori Sobue
- Department of Oral Health and Diagnostic Sciences, School of Dental Medicine, UConn Health, 263 Farmington Ave, Farmington, CT, 06030-1710, USA
| | - Linda Choquette
- Department of Oral Health and Diagnostic Sciences, School of Dental Medicine, UConn Health, 263 Farmington Ave, Farmington, CT, 06030-1710, USA
- Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Amanda K Dupuy
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
| | - Angela Thompson
- Department of Oral Health and Diagnostic Sciences, School of Dental Medicine, UConn Health, 263 Farmington Ave, Farmington, CT, 06030-1710, USA
| | - Joseph A Burleson
- Department of Community Medicine and Health Care, UConn Health, Farmington, CT, USA
| | | | | | - Pujan Joshi
- Department of Computer Science, University of Connecticut, Storrs, CT, USA
| | - Evan Fox
- Department of Oral Health and Diagnostic Sciences, School of Dental Medicine, UConn Health, 263 Farmington Ave, Farmington, CT, 06030-1710, USA
| | - Dong-Guk Shin
- Department of Computer Science, University of Connecticut, Storrs, CT, USA
| | | | - Linda D Strausbaugh
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
| | - Anna Dongari-Bagtzoglou
- Department of Oral Health and Diagnostic Sciences, School of Dental Medicine, UConn Health, 263 Farmington Ave, Farmington, CT, 06030-1710, USA
| | - Douglas E Peterson
- Department of Oral Health and Diagnostic Sciences, School of Dental Medicine, UConn Health, 263 Farmington Ave, Farmington, CT, 06030-1710, USA
| | - Patricia I Diaz
- Department of Oral Health and Diagnostic Sciences, School of Dental Medicine, UConn Health, 263 Farmington Ave, Farmington, CT, 06030-1710, USA.
| |
Collapse
|
9
|
Akbari V, Kallhor M, Akbari MT. Transcriptome mining of non-BRCA1/A2 and BRCA1/A2 familial breast cancer. J Cell Biochem 2018; 120:575-583. [PMID: 30125992 DOI: 10.1002/jcb.27413] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 07/12/2018] [Indexed: 12/23/2022]
Abstract
About 10% of all breast cancer cases are the familial type. Mutations in two highly penetrance breast cancer susceptibility genes, BRCA1 and BRCA2, can only explain 20% to 25% of genetic susceptibility to breast cancer, and most familial breast cancer cases have intact BRCA1 and BRCA2 genes that refer to non-BRCA1/A2 or BRCAX familial breast cancer. Despite extensive studies, more than 50% of genetic susceptibility to breast cancer remained to be disclosed. Finding the differences between these two types of breast cancer (non-BRCA1/A2 and BRCA1/A2) at genomic, transcriptomic, and proteomic levels can help us to elucidate fundamental molecular processes and develope more promising therapeutic targets. Here, we used expression data of 391 patients with familial breast cancer including 195 non-BRCA1/A2 and 196 BRCA1 and/or BRCA2 cases from four independent studies by means of meta-analysis to find differences in gene expression signature between these two types of familial breast cancer. As well as, we applied comprehensive network analysis to find crucial protein complexes and regulators for each condition. Our results revealed significant overexpression of cell cycle processes in BRCA1/A2 patients and significant overexpression of estrogen axis in non-BRCA1/A2 patients. Moreover, we found FOXM1 as the central regulator of cell cycle processes and GATA3, FOXA1, and ESR1 as the main regulators of estrogen axis.
Collapse
Affiliation(s)
- Vahid Akbari
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Marzieh Kallhor
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mohammad Taghi Akbari
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
10
|
Renault AL, Mebirouk N, Fuhrmann L, Bataillon G, Cavaciuti E, Le Gal D, Girard E, Popova T, La Rosa P, Beauvallet J, Eon-Marchais S, Dondon MG, d'Enghien CD, Laugé A, Chemlali W, Raynal V, Labbé M, Bièche I, Baulande S, Bay JO, Berthet P, Caron O, Buecher B, Faivre L, Fresnay M, Gauthier-Villars M, Gesta P, Janin N, Lejeune S, Maugard C, Moutton S, Venat-Bouvet L, Zattara H, Fricker JP, Gladieff L, Coupier I, Chenevix-Trench G, Hall J, Vincent-Salomon A, Stoppa-Lyonnet D, Andrieu N, Lesueur F. Morphology and genomic hallmarks of breast tumours developed by ATM deleterious variant carriers. Breast Cancer Res 2018; 20:28. [PMID: 29665859 PMCID: PMC5905168 DOI: 10.1186/s13058-018-0951-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 03/05/2018] [Indexed: 01/23/2023] Open
Abstract
Background The ataxia telangiectasia mutated (ATM) gene is a moderate-risk breast cancer susceptibility gene; germline loss-of-function variants are found in up to 3% of hereditary breast and ovarian cancer (HBOC) families who undergo genetic testing. So far, no clear histopathological and molecular features of breast tumours occurring in ATM deleterious variant carriers have been described, but identification of an ATM-associated tumour signature may help in patient management. Methods To characterise hallmarks of ATM-associated tumours, we performed systematic pathology review of tumours from 21 participants from ataxia-telangiectasia families and 18 participants from HBOC families, as well as copy number profiling on a subset of 23 tumours. Morphology of ATM-associated tumours was compared with that of 599 patients with no BRCA1 and BRCA2 mutations from a hospital-based series, as well as with data from The Cancer Genome Atlas. Absolute copy number and loss of heterozygosity (LOH) profiles were obtained from the OncoScan SNP array. In addition, we performed whole-genome sequencing on four tumours from ATM loss-of-function variant carriers with available frozen material. Results We found that ATM-associated tumours belong mostly to the luminal B subtype, are tetraploid and show LOH at the ATM locus at 11q22–23. Unlike tumours in which BRCA1 or BRCA2 is inactivated, tumours arising in ATM deleterious variant carriers are not associated with increased large-scale genomic instability as measured by the large-scale state transitions signature. Losses at 13q14.11-q14.3, 17p13.2-p12, 21p11.2-p11.1 and 22q11.23 were observed. Somatic alterations at these loci may therefore represent biomarkers for ATM testing and harbour driver mutations in potentially ‘druggable’ genes that would allow patients to be directed towards tailored therapeutic strategies. Conclusions Although ATM is involved in the DNA damage response, ATM-associated tumours are distinct from BRCA1-associated tumours in terms of morphological characteristics and genomic alterations, and they are also distinguishable from sporadic breast tumours, thus opening up the possibility to identify ATM variant carriers outside the ataxia-telangiectasia disorder and direct them towards effective cancer risk management and therapeutic strategies. Electronic supplementary material The online version of this article (10.1186/s13058-018-0951-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Anne-Laure Renault
- INSERM, U900, Paris, France.,Institut Curie, Paris, France.,Mines Paris Tech, Fontainebleau, France.,PSL Research University, Paris, France
| | - Noura Mebirouk
- INSERM, U900, Paris, France.,Institut Curie, Paris, France.,Mines Paris Tech, Fontainebleau, France.,PSL Research University, Paris, France
| | | | | | - Eve Cavaciuti
- INSERM, U900, Paris, France.,Institut Curie, Paris, France.,Mines Paris Tech, Fontainebleau, France.,PSL Research University, Paris, France
| | - Dorothée Le Gal
- INSERM, U900, Paris, France.,Institut Curie, Paris, France.,Mines Paris Tech, Fontainebleau, France.,PSL Research University, Paris, France
| | - Elodie Girard
- INSERM, U900, Paris, France.,Institut Curie, Paris, France.,Mines Paris Tech, Fontainebleau, France.,PSL Research University, Paris, France
| | - Tatiana Popova
- Institut Curie, Paris, France.,Mines Paris Tech, Fontainebleau, France.,INSERM U830, Paris, France
| | - Philippe La Rosa
- INSERM, U900, Paris, France.,Institut Curie, Paris, France.,Mines Paris Tech, Fontainebleau, France.,PSL Research University, Paris, France
| | - Juana Beauvallet
- INSERM, U900, Paris, France.,Institut Curie, Paris, France.,Mines Paris Tech, Fontainebleau, France.,PSL Research University, Paris, France
| | - Séverine Eon-Marchais
- INSERM, U900, Paris, France.,Institut Curie, Paris, France.,Mines Paris Tech, Fontainebleau, France.,PSL Research University, Paris, France
| | - Marie-Gabrielle Dondon
- INSERM, U900, Paris, France.,Institut Curie, Paris, France.,Mines Paris Tech, Fontainebleau, France.,PSL Research University, Paris, France
| | | | | | - Walid Chemlali
- Unité de Pharmacogénomique, Institut Curie, Paris, France
| | - Virginie Raynal
- Institut Curie Genomics of Excellence (ICGex) Platform, Institut Curie, Paris, France
| | - Martine Labbé
- INSERM, U900, Paris, France.,Institut Curie, Paris, France.,Mines Paris Tech, Fontainebleau, France.,PSL Research University, Paris, France
| | - Ivan Bièche
- Unité de Pharmacogénomique, Institut Curie, Paris, France
| | - Sylvain Baulande
- Institut Curie Genomics of Excellence (ICGex) Platform, Institut Curie, Paris, France
| | | | - Pascaline Berthet
- Unité de Pathologie Gynécologique, Centre François Baclesse, Caen, France
| | - Olivier Caron
- Service d'Oncologie Génétique, Gustave Roussy, Villejuif, France
| | | | - Laurence Faivre
- Institut GIMI, CHU de Dijon, Hôpital d'Enfants, Dijon, France.,Oncogénétique, Centre de Lutte contre le Cancer Georges François Leclerc, Dijon, France
| | - Marc Fresnay
- Département d'Hématologie et d'Oncologie Médicale, CLCC Antoine Lacassagne, Nice, France
| | | | - Paul Gesta
- Service d'Oncogénétique Régional Poitou-Charentes, Centre Hospitalier Georges-Renon, Niort, France
| | - Nicolas Janin
- Service de Génétique, Clinique Universitaire Saint-Luc, Brussels, Belgium
| | - Sophie Lejeune
- Service de Génétique Clinique Guy Fontaine, Hôpital Jeanne de Flandre, Lille, France
| | - Christine Maugard
- Laboratoire de Diagnostic Génétique, UF1422 Oncogénétique Moléculaire, Hôpitaux Universitaires de Strasbourg, Strasbourg, France.,Oncogénétique Evaluation familiale et suivi, UF6948 Oncogénétique, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Sébastien Moutton
- Laboratoire Maladies Rares: Génétique et Métabolisme, CHU de Bordeaux-GH Pellegrin, Bordeaux, France
| | | | - Hélène Zattara
- Département de Génétique, Hôpital de la Timone, Marseille, France
| | | | | | - Isabelle Coupier
- Service de Génétique Médicale et Oncogénétique, Hôpital Arnaud de Villeneuve, CHU de Montpellier, Montpellier, France.,Unité d'Oncogénétique, ICM Val d'Aurelle, Montpellier, France
| | | | | | | | - Georgia Chenevix-Trench
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Janet Hall
- UMR INSERM 1052, Lyon, France.,CNRS 5286, Lyon, France.,Centre de Recherche en Cancérologie de Lyon, Lyon, France
| | | | - Dominique Stoppa-Lyonnet
- INSERM U830, Paris, France.,Service de Génétique, Institut Curie, Paris, France.,Université Paris Descartes, Paris, France
| | - Nadine Andrieu
- INSERM, U900, Paris, France.,Institut Curie, Paris, France.,Mines Paris Tech, Fontainebleau, France.,PSL Research University, Paris, France
| | - Fabienne Lesueur
- INSERM, U900, Paris, France. .,Institut Curie, Paris, France. .,Mines Paris Tech, Fontainebleau, France. .,PSL Research University, Paris, France.
| |
Collapse
|
11
|
Takaku M, Grimm SA, Roberts JD, Chrysovergis K, Bennett BD, Myers P, Perera L, Tucker CJ, Perou CM, Wade PA. GATA3 zinc finger 2 mutations reprogram the breast cancer transcriptional network. Nat Commun 2018. [PMID: 29535312 PMCID: PMC5849768 DOI: 10.1038/s41467-018-03478-4] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
GATA3 is frequently mutated in breast cancer; these mutations are widely presumed to be loss-of function despite a dearth of information regarding their effect on disease course or their mechanistic impact on the breast cancer transcriptional network. Here, we address molecular and clinical features associated with GATA3 mutations. A novel classification scheme defines distinct clinical features for patients bearing breast tumors with mutations in the second GATA3 zinc-finger (ZnFn2). An engineered ZnFn2 mutant cell line by CRISPR–Cas9 reveals that mutation of one allele of the GATA3 second zinc finger (ZnFn2) leads to loss of binding and decreased expression at a subset of genes, including Progesterone Receptor. At other loci, associated with epithelial to mesenchymal transition, gain of binding correlates with increased gene expression. These results demonstrate that not all GATA3 mutations are equivalent and that ZnFn2 mutations impact breast cancer through gain and loss-of function. In breast cancer GATA3 is known to be frequently mutated, but the function of these mutations is unclear. Here, the authors utilise CRISPR-Cas9 to model frame-shift mutations in zinc finger 2 of GATA3, highlighting that GATA3 mutation can have gain- or loss-of function effects in breast cancer.
Collapse
Affiliation(s)
- Motoki Takaku
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC, 27709, USA
| | - Sara A Grimm
- Integrative Bioinformatics, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC, 27709, USA
| | - John D Roberts
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC, 27709, USA
| | - Kaliopi Chrysovergis
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC, 27709, USA
| | - Brian D Bennett
- Integrative Bioinformatics, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC, 27709, USA
| | - Page Myers
- Comparative Medicine Branch, National Institute of Environmental Health Sciences, Research Triangle Park, 27709, Durham, NC, USA
| | - Lalith Perera
- Laboratory of Genome Integrity and Structural Biology, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC, 27709, USA
| | - Charles J Tucker
- Fluorescence Microscopy and Imaging Center, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC, 27709, USA
| | - Charles M Perou
- Lineberger Comprehensive Cancer Center and Department of Genetics, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Paul A Wade
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC, 27709, USA.
| |
Collapse
|
12
|
Wang M, Abrams ZB, Kornblau SM, Coombes KR. Thresher: determining the number of clusters while removing outliers. BMC Bioinformatics 2018; 19:9. [PMID: 29310570 PMCID: PMC5759208 DOI: 10.1186/s12859-017-1998-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 12/13/2017] [Indexed: 11/10/2022] Open
Abstract
Background Cluster analysis is the most common unsupervised method for finding hidden groups in data. Clustering presents two main challenges: (1) finding the optimal number of clusters, and (2) removing “outliers” among the objects being clustered. Few clustering algorithms currently deal directly with the outlier problem. Furthermore, existing methods for identifying the number of clusters still have some drawbacks. Thus, there is a need for a better algorithm to tackle both challenges. Results We present a new approach, implemented in an R package called Thresher, to cluster objects in general datasets. Thresher combines ideas from principal component analysis, outlier filtering, and von Mises-Fisher mixture models in order to select the optimal number of clusters. We performed a large Monte Carlo simulation study to compare Thresher with other methods for detecting outliers and determining the number of clusters. We found that Thresher had good sensitivity and specificity for detecting and removing outliers. We also found that Thresher is the best method for estimating the optimal number of clusters when the number of objects being clustered is smaller than the number of variables used for clustering. Finally, we applied Thresher and eleven other methods to 25 sets of breast cancer data downloaded from the Gene Expression Omnibus; only Thresher consistently estimated the number of clusters to lie in the range of 4–7 that is consistent with the literature. Conclusions Thresher is effective at automatically detecting and removing outliers. By thus cleaning the data, it produces better estimates of the optimal number of clusters when there are more variables than objects. When we applied Thresher to a variety of breast cancer datasets, it produced estimates that were both self-consistent and consistent with the literature. We expect Thresher to be useful for studying a wide variety of biological datasets. Electronic supplementary material The online version of this article (doi:10.1186/s12859-017-1998-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Min Wang
- Department of Biomedical Informatics, The Ohio State University, 250 Lincoln Tower, 1800 Cannon Drive, Columbus, 43210, OH, USA.,Mathematical Biosciences Institute, The Ohio State University, 1735 Neil Avenue, Columbus, 43210, OH, USA
| | - Zachary B Abrams
- Department of Biomedical Informatics, The Ohio State University, 250 Lincoln Tower, 1800 Cannon Drive, Columbus, 43210, OH, USA
| | - Steven M Kornblau
- Department of Leukemia, The University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Blvd., Box 448, Houston, 77030, TX, USA
| | - Kevin R Coombes
- Department of Biomedical Informatics, The Ohio State University, 250 Lincoln Tower, 1800 Cannon Drive, Columbus, 43210, OH, USA.
| |
Collapse
|
13
|
Luo L, McGarvey P, Madhavan S, Kumar R, Gusev Y, Upadhyay G. Distinct lymphocyte antigens 6 (Ly6) family members Ly6D, Ly6E, Ly6K and Ly6H drive tumorigenesis and clinical outcome. Oncotarget 2017; 7:11165-93. [PMID: 26862846 PMCID: PMC4905465 DOI: 10.18632/oncotarget.7163] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 01/23/2016] [Indexed: 12/21/2022] Open
Abstract
Stem cell antigen-1 (Sca-1) is used to isolate and characterize tumor initiating cell populations from tumors of various murine models [1]. Sca-1 induced disruption of TGF-β signaling is required in vivo tumorigenesis in breast cancer models [2, 3-5]. The role of human Ly6 gene family is only beginning to be appreciated in recent literature [6-9]. To study the significance of Ly6 gene family members, we have visualized one hundred thirty gene expression omnibus (GEO) dataset using Oncomine (Invitrogen) and Georgetown Database of Cancer (G-DOC). This analysis showed that four different members Ly6D, Ly6E, Ly6H or Ly6K have increased gene expressed in bladder, brain and CNS, breast, colorectal, cervical, ovarian, lung, head and neck, pancreatic and prostate cancer than their normal counter part tissues. Increased expression of Ly6D, Ly6E, Ly6H or Ly6K was observed in sub-set of cancer type. The increased expression of Ly6D, Ly6E, Ly6H and Ly6K was found to be associated with poor outcome in ovarian, colorectal, gastric, breast, lung, bladder or brain and CNS as observed by KM plotter and PROGgeneV2 platform. The remarkable findings of increased expression of Ly6 family members and its positive correlation with poor outcome on patient survival in multiple cancer type indicate that Ly6 family members Ly6D, Ly6E, Ly6K and Ly6H will be an important targets in clinical practice as marker of poor prognosis and for developing novel therapeutics in multiple cancer type.
Collapse
Affiliation(s)
- Linlin Luo
- Innovation Center for Biomedical Informatics (ICBI), Georgetown University Medical Center, Washington, District of Columbia 20007, United States of America.,Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, District of Columbia 20007, United States of America
| | - Peter McGarvey
- Innovation Center for Biomedical Informatics (ICBI), Georgetown University Medical Center, Washington, District of Columbia 20007, United States of America.,Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, District of Columbia 20007, United States of America
| | - Subha Madhavan
- Innovation Center for Biomedical Informatics (ICBI), Georgetown University Medical Center, Washington, District of Columbia 20007, United States of America.,Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, District of Columbia 20007, United States of America
| | - Rakesh Kumar
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, George Washington University, Washington, District of Columbia 20037, United States of America
| | - Yuriy Gusev
- Innovation Center for Biomedical Informatics (ICBI), Georgetown University Medical Center, Washington, District of Columbia 20007, United States of America.,Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, District of Columbia 20007, United States of America
| | - Geeta Upadhyay
- Innovation Center for Biomedical Informatics (ICBI), Georgetown University Medical Center, Washington, District of Columbia 20007, United States of America.,Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, District of Columbia 20007, United States of America
| |
Collapse
|
14
|
Lawler K, Papouli E, Naceur-Lombardelli C, Mera A, Ougham K, Tutt A, Kimbung S, Hedenfalk I, Zhan J, Zhang H, Buus R, Dowsett M, Ng T, Pinder SE, Parker P, Holmberg L, Gillett CE, Grigoriadis A, Purushotham A. Gene expression modules in primary breast cancers as risk factors for organotropic patterns of first metastatic spread: a case control study. Breast Cancer Res 2017; 19:113. [PMID: 29029636 PMCID: PMC5640935 DOI: 10.1186/s13058-017-0881-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 07/12/2017] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Metastases from primary breast cancers can involve single or multiple organs at metastatic disease diagnosis. Molecular risk factors for particular patterns of metastastic spread in a clinical population are limited. METHODS A case-control design including 1357 primary breast cancers was used to study three distinct clinical patterns of metastasis, which occur within the first six months of metastatic disease: bone and visceral metasynchronous spread, bone-only, and visceral-only metastasis. Whole-genome expression profiles were obtained using whole genome (WG)-DASL assays from formalin-fixed paraffin-embedded (FFPE) samples. A systematic protocol was developed for handling FFPE samples together with stringent data quality controls to identify robust expression profiling data. A panel of published and novel gene sets were tested for association with these specific patterns of metastatic spread and odds ratios (ORs) were calculated. RESULTS Metasynchronous metastasis to bone and viscera was found in all intrinsic breast cancer subtypes, while immunohistochemically (IHC)-defined receptor status and specific IntClust subgroups were risk factors for visceral-only or bone-only first metastases. Among gene modules, those related to proliferation increased the risk of metasynchronous metastasis (OR (95% CI) = 2.3 (1.1-4.8)) and visceral-only first metastasis (OR (95% CI) = 2.5 (1.2-5.1)) but not bone-only metastasis (OR (95% CI) = 0.97 (0.56-1.7)). A 21-gene module (BV) was identified in estrogen-receptor-positive breast cancers with metasynchronous metastasis to bone and viscera (area under the curve = 0.77), and its expression increased the risk of bone and visceral metasynchronous spread in this population. BV was further orthogonally validated with NanoString nCounter in primary breast cancers, and was reproducible in their matched lymph nodes metastases and an external cohort. CONCLUSION This case-control study of WG-DASL global expression profiles from FFPE tumour samples, after careful quality control and RNA selection, revealed that gene modules in the primary tumour have differing risks for clinical patterns of metasynchronous first metastases. Moreover, a novel gene module was identified as a putative risk factor for metasynchronous bone and visceral first metastatic spread, with potential implications for disease monitoring and treatment planning.
Collapse
Affiliation(s)
- Katherine Lawler
- School of Cancer Studies, CRUK King’s Health Partners Centre, King’s College London, Guy’s Campus, London, SE1 1UL UK
- Institute for Mathematical and Molecular Biomedicine, King’s College London, Hodgkin Building, Guy’s Campus, London, SE1 1UL UK
| | - Efterpi Papouli
- NIHR Comprehensive Biomedical Research Centre at Guy’s and St Thomas’ NHS Foundation Trust and King’s College London, London, WC2R 2LS UK
| | - Cristina Naceur-Lombardelli
- Research Oncology, King’s College London, Faculty of Life Sciences and Medicine, Guy’s Hospital, London, SE1 9RT UK
| | - Anca Mera
- Research Oncology, King’s College London, Faculty of Life Sciences and Medicine, Guy’s Hospital, London, SE1 9RT UK
- Cancer Epidemiology Unit, King’s College London, Guy’s Hospital, Great Maze Pond, London, SE1 9RT UK
| | - Kayleigh Ougham
- Cancer Bioinformatics, King’s College London, Innovation Centre, Cancer Centre at Guy’s Hospital, London, SE1 9RT UK
| | - Andrew Tutt
- Breast Cancer Now Research Unit, Innovation Centre, Cancer Centre at Guy’s Hospital, King’s Health Partners AHSC, King’s College London, Faculty of Life Sciences and Medicine, London, SE1 9RT UK
| | - Siker Kimbung
- Division of Oncology and Pathology, Department of Clinical Sciences, Lund University, Lund, Sweden
- CREATE Health Strategic Center for Translational Cancer Research, Lund University, Lund, Sweden
| | - Ingrid Hedenfalk
- Division of Oncology and Pathology, Department of Clinical Sciences, Lund University, Lund, Sweden
- CREATE Health Strategic Center for Translational Cancer Research, Lund University, Lund, Sweden
| | - Jun Zhan
- Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education of Beijing, Beijing, People’s Republic of China, Laboratory of Molecular Cell Biology and Tumor Biology, Department of Anatomy, Histology and Embryology, Peking University Health Science Center, Beijing, People’s Republic of China
| | - Hongquan Zhang
- Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education of Beijing, Beijing, People’s Republic of China, Laboratory of Molecular Cell Biology and Tumor Biology, Department of Anatomy, Histology and Embryology, Peking University Health Science Center, Beijing, People’s Republic of China
| | - Richard Buus
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
| | - Mitch Dowsett
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
| | - Tony Ng
- School of Cancer Studies, CRUK King’s Health Partners Centre, King’s College London, Guy’s Campus, London, SE1 1UL UK
- Breast Cancer Now Research Unit, Innovation Centre, Cancer Centre at Guy’s Hospital, King’s Health Partners AHSC, King’s College London, Faculty of Life Sciences and Medicine, London, SE1 9RT UK
- Richard Dimbleby Department of Cancer Research, Randall Division of Cell and Molecular Biophysics, King’s College London, Guy’s Campus, London, SE1 1UL UK
- UCL Cancer Institute, Paul O’Gorman Building, University College London, London, WC1E 6DD UK
| | - Sarah E. Pinder
- Research Oncology, King’s College London, Faculty of Life Sciences and Medicine, Guy’s Hospital, London, SE1 9RT UK
| | - Peter Parker
- School of Cancer Studies, CRUK King’s Health Partners Centre, King’s College London, Guy’s Campus, London, SE1 1UL UK
- London Research Institute, Lincoln’s Inn Fields, London, WC2A 3LY UK
| | - Lars Holmberg
- Cancer Epidemiology Unit, King’s College London, Guy’s Hospital, Great Maze Pond, London, SE1 9RT UK
- Uppsala University, Department of Surgical Sciences, Uppsala University Hospital, 751 85 Uppsala, Sweden
| | - Cheryl E. Gillett
- Research Oncology, King’s College London, Faculty of Life Sciences and Medicine, Guy’s Hospital, London, SE1 9RT UK
| | - Anita Grigoriadis
- School of Cancer Studies, CRUK King’s Health Partners Centre, King’s College London, Guy’s Campus, London, SE1 1UL UK
- Research Oncology, King’s College London, Faculty of Life Sciences and Medicine, Guy’s Hospital, London, SE1 9RT UK
- Cancer Bioinformatics, King’s College London, Innovation Centre, Cancer Centre at Guy’s Hospital, London, SE1 9RT UK
- Breast Cancer Now Research Unit, Innovation Centre, Cancer Centre at Guy’s Hospital, King’s Health Partners AHSC, King’s College London, Faculty of Life Sciences and Medicine, London, SE1 9RT UK
| | - Arnie Purushotham
- School of Cancer Studies, CRUK King’s Health Partners Centre, King’s College London, Guy’s Campus, London, SE1 1UL UK
- Research Oncology, King’s College London, Faculty of Life Sciences and Medicine, Guy’s Hospital, London, SE1 9RT UK
| |
Collapse
|
15
|
Chaudhary S, Krishna BM, Mishra SK. A novel FOXA1/ ESR1 interacting pathway: A study of Oncomine™ breast cancer microarrays. Oncol Lett 2017; 14:1247-1264. [PMID: 28789340 PMCID: PMC5529806 DOI: 10.3892/ol.2017.6329] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 07/05/2016] [Indexed: 12/28/2022] Open
Abstract
Forkhead box protein A1 (FOXA1) is essential for the growth and differentiation of breast epithelium, and has a favorable outcome in breast cancer (BC). Elevated FOXA1 expression in BC also facilitates hormone responsiveness in estrogen receptor (ESR)-positive BC. However, the interaction between these two pathways is not fully understood. FOXA1 and GATA binding protein 3 (GATA3) along with ESR1 expression are responsible for maintaining a luminal phenotype, thus suggesting the existence of a strong association between them. The present study utilized the Oncomine™ microarray database to identify FOXA1:ESR1 and FOXA1:ESR1:GATA3 co-expression co-regulated genes. Oncomine™ analysis revealed 115 and 79 overlapping genes clusters in FOXA1:ESR1 and FOXA1:ESR1:GATA3 microarrays, respectively. Five ESR1 direct target genes [trefoil factor 1 (TFF1/PS2), B-cell lymphoma 2 (BCL2), seven in absentia homolog 2 (SIAH2), cellular myeloblastosis viral oncogene homolog (CMYB) and progesterone receptor (PGR)] were detected in the co-expression clusters. To further investigate the role of FOXA1 in ESR1-positive cells, MCF7 cells were transfected with a FOXA1 expression plasmid, and it was observed that the direct target genes of ESR1 (PS2, BCL2, SIAH2 and PGR) were significantly regulated upon transfection. Analysis of one of these target genes, PS2, revealed the presence of two FOXA1 binding sites in the vicinity of the estrogen response element (ERE), which was confirmed by binding assays. Under estrogen stimulation, FOXA1 protein was recruited to the FOXA1 site and could also bind to the ERE site (although in minimal amounts) in the PS2 promoter. Co-transfection of FOXA1/ESR1 expression plasmids demonstrated a significantly regulation of the target genes identified in the FOXA1/ESR1 multi-arrays compared with only FOXA1 transfection, which was suggestive of a synergistic effect of ESR1 and FOXA1 on the target genes. In summary, the present study identified novel FOXA1, ESR1 and GATA3 co-expressed genes that may be involved in breast tumorigenesis.
Collapse
Affiliation(s)
- Sanjib Chaudhary
- Cancer Biology Laboratory, Gene Function and Regulation Group, Institute of Life Sciences, Bhubaneswar, Odisha 751023, India
| | - B Madhu Krishna
- Cancer Biology Laboratory, Gene Function and Regulation Group, Institute of Life Sciences, Bhubaneswar, Odisha 751023, India
| | - Sandip K Mishra
- Cancer Biology Laboratory, Gene Function and Regulation Group, Institute of Life Sciences, Bhubaneswar, Odisha 751023, India
| |
Collapse
|
16
|
Lu Y, Zhang M, Jiang Q, Yin R, Zhu P, Wang H, Liu Z, Zheng C. RNA Extracted from Formalin-Fixed, Paraffin-Embedded Renal Biopsy Biospecimens: An Evaluation of Alternative Extraction Kits and the Effects of Storage Time. Biopreserv Biobank 2017; 15:396-398. [PMID: 28426236 DOI: 10.1089/bio.2017.0013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Yinghui Lu
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine , Nanjing, China
| | - Mingchao Zhang
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine , Nanjing, China
| | - Qi Jiang
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine , Nanjing, China
| | - Ru Yin
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine , Nanjing, China
| | - Ping Zhu
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine , Nanjing, China
| | - Hongtian Wang
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine , Nanjing, China
| | - Zhihong Liu
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine , Nanjing, China
| | - Chunxia Zheng
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine , Nanjing, China
| |
Collapse
|
17
|
Laginestra MA, Tripodo C, Agostinelli C, Motta G, Hartmann S, Döring C, Rossi M, Melle F, Sapienza MR, Tabanelli V, Pileri A, Fuligni F, Gazzola A, Mannu C, Sagramoso CA, Lonardi S, Lorenzi L, Bacci F, Sabattini E, Borges A, Simonitsch-Klupp I, Cabecadas J, Campo E, Rosai J, Hansmann ML, Facchetti F, Pileri SA. Distinctive Histogenesis and Immunological Microenvironment Based on Transcriptional Profiles of Follicular Dendritic Cell Sarcomas. Mol Cancer Res 2017; 15:541-552. [DOI: 10.1158/1541-7786.mcr-16-0301] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 12/02/2016] [Accepted: 12/15/2016] [Indexed: 11/16/2022]
|
18
|
Curci C, Sallustio F, Serino G, De Palma G, Trpevski M, Fiorentino M, Rossini M, Quaglia M, Valente M, Furian L, Toscano A, Mazzucco G, Barreca A, Bussolino S, Gesualdo L, Stratta P, Rigotti P, Citterio F, Biancone L, Schena FP. Potential role of effector memory T cells in chronic T cell-mediated kidney graft rejection. Nephrol Dial Transplant 2016; 31:2131-2142. [PMID: 27369853 DOI: 10.1093/ndt/gfw245] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 05/12/2016] [Indexed: 05/14/2025] Open
Abstract
BACKGROUND Chronic T cell-mediated rejection (TCMR) in kidney graft is characterized by reduction of the vessel lumen with marked intimal thickening, fibrous hyperplasia of the small renal arteries and leukocyte infiltrates. The aim of this study was to find specific gene expression profiles in chronic TCMR kidney biopsies. METHODS RNA extracted from archival formalin-fixed, paraffin-embedded renal biopsies was used for gene expression profiling. Our study included 14 patients with chronic TCMR and 10 with acute TCMR. Fifty-two cadaveric donors were used as controls. The results were validated in an independent set of kidney biopsies. RESULTS We identified 616 and 243 differentially expressed genes with a fold change ≥1.5 and a false discovery rate <0.05 in chronic and acute TCMR, respectively. Pathway analysis revealed upregulation of OX40 signalling. This pathway is involved in the generation of CD8+ effector memory T cells and the upregulation of killer cell lectin-like receptor G1 (KLRG-1), B lymphocyte-induced maturation protein 1 (BLIMP-1) and CD25, which characterize CD8+ effector memory T cells. However, the enhanced OX40 signalling pathway was specific to chronic TCMR; a significant increase of KLRG-1+/CD8+ and BLIMP-1+/CD8+ was only detected in these specimens. CONCLUSIONS These results suggest the involvement of memory-committed CD8+ effector T cells in chronic TCMR. The generation of effector memory T cells is mediated by the OX40 gene pathway, and could be considered a future target for the specific treatment of chronic TCMR.
Collapse
Affiliation(s)
- Claudia Curci
- C.A.R.S.O. Consortium, University of Bari, Bari, Italy
- Schena Foundation, Research Center of Renal Diseases, Bari, Italy
| | - Fabio Sallustio
- C.A.R.S.O. Consortium, University of Bari, Bari, Italy
- Renal, Dialysis and Transplant Unit, Department of Emergency and Organ Transplant, University of Bari, Bari, Italy
| | - Grazia Serino
- Laboratory of Experimental Immunopathology, IRCCS 'de Bellis', Castellana Grotte, Bari, Italy
| | - Giuseppe De Palma
- C.A.R.S.O. Consortium, University of Bari, Bari, Italy
- Schena Foundation, Research Center of Renal Diseases, Bari, Italy
| | | | - Marco Fiorentino
- Renal, Dialysis and Transplant Unit, Department of Emergency and Organ Transplant, University of Bari, Bari, Italy
| | - Michele Rossini
- Renal, Dialysis and Transplant Unit, Department of Emergency and Organ Transplant, University of Bari, Bari, Italy
| | - Marco Quaglia
- Nephrology and Kidney Transplant Unit, Department of Translational Medicine, University of Eastern Piedmont, Novara, Italy
| | - Marialuisa Valente
- Department of Cardiac, Thoracic and Vascular Sciences, Medical School, University of Padua, Padua, Italy
| | - Lucrezia Furian
- Kidney Pancreas Transplant Unit, Department of Surgery, Oncology and Gastroenterology, Padua University Hospital, Padua, Italy
| | - Alessia Toscano
- Renal Transplantation Unit, Department of Surgery, Catholic University, Rome, Italy
| | - Gianna Mazzucco
- Nephrology, Dialysis and Kidney Transplantation Unit, Department of Medical Sciences, University of Torino, Torino, Italy
| | - Antonella Barreca
- Nephrology, Dialysis and Kidney Transplantation Unit, Department of Medical Sciences, University of Torino, Torino, Italy
| | - Stefania Bussolino
- Nephrology, Dialysis and Kidney Transplantation Unit, Department of Medical Sciences, University of Torino, Torino, Italy
| | - Loreto Gesualdo
- Renal, Dialysis and Transplant Unit, Department of Emergency and Organ Transplant, University of Bari, Bari, Italy
| | - Piero Stratta
- Nephrology and Kidney Transplant Unit, Department of Translational Medicine, University of Eastern Piedmont, Novara, Italy
| | - Paolo Rigotti
- Kidney Pancreas Transplant Unit, Department of Surgery, Oncology and Gastroenterology, Padua University Hospital, Padua, Italy
| | - Franco Citterio
- Renal Transplantation Unit, Department of Surgery, Catholic University, Rome, Italy
| | - Luigi Biancone
- Nephrology, Dialysis and Kidney Transplantation Unit, Department of Medical Sciences, University of Torino, Torino, Italy
| | - Francesco P Schena
- C.A.R.S.O. Consortium, University of Bari, Bari, Italy
- Schena Foundation, Research Center of Renal Diseases, Bari, Italy
| |
Collapse
|
19
|
Iddawela M, Rueda OM, Klarqvist M, Graf S, Earl HM, Caldas C. Reliable gene expression profiling of formalin-fixed paraffin-embedded breast cancer tissue (FFPE) using cDNA-mediated annealing, extension, selection, and ligation whole-genome (DASL WG) assay. BMC Med Genomics 2016; 9:54. [PMID: 27542606 PMCID: PMC4992321 DOI: 10.1186/s12920-016-0215-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 08/05/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The difficulties in using formalin-fixed and paraffin-embedded (FFPE) tumour specimens for molecular marker studies have hampered progress in translational cancer research. The cDNA-mediated, annealing, selection, extension, and ligation (DASL) assay is a platform for gene expression profiling from FFPE tissue and hence could allow analysis of large collections of tissue with associated clinical data from existing archives, therefore facilitating the development of novel biomarkers. METHOD RNA isolated from matched fresh frozen (FF) and FFPE cancer specimens was profiled using both the DASL whole-genome (WG) platform, and Illumina BeadArray's, and results were compared. Samples utilized were obtained from the breast cancer tumour bank held at the Cambridge University Hospitals NHS Foundation Trust. RESULTS The number of reliably detected probes was comparable between the DASL and BeadArray platforms, indicating that the source of RNA did not result in a significant difference in the detection rates (Mean probes- 17114 in FFPE & 17400 in FF). There was a significant degree of correlation between replicates within the FF and FFPE sample sets (r (2) = 0.96-0.98) as well as between the two platforms (DASL vs. BeadArray r (2) = range 0.83-0.89). Hierarchical clustering using the most informative probes showed that replicate and matched samples were grouped into the same sub-cluster, regardless of whether RNA was derived from FF or FFPE tissue. CONCLUSION Both FF and FFPE material generated reproducible gene expression profiles, although there was more noise in profiles from FFPE specimens. We have shown that the DASL WG platform is suitable for profiling formalin-fixed paraffin-embedded samples, but robust bioinformatics analysis is required.
Collapse
Affiliation(s)
- Mahesh Iddawela
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE UK
- Department of Oncology, Addenbrooke’s Hospital, University of Cambridge, Hills Road, Cambridge, CB1 9RN UK
- Cambridge Breast Unit, Addenbrooke’s Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
- NIHR Cambridge Biomedical Research Centre and Cambridge Experimental Cancer Medicine Centre, Cambridge, UK
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria 3800 Australia
- School of Clinical Sciences, Monash University, Clayton, Victoria Australia
| | - Oscar M. Rueda
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE UK
| | - Marcus Klarqvist
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE UK
| | - Stefan Graf
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE UK
| | - Helena M. Earl
- Department of Oncology, Addenbrooke’s Hospital, University of Cambridge, Hills Road, Cambridge, CB1 9RN UK
- Cambridge Breast Unit, Addenbrooke’s Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
- NIHR Cambridge Biomedical Research Centre and Cambridge Experimental Cancer Medicine Centre, Cambridge, UK
| | - Carlos Caldas
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE UK
- Department of Oncology, Addenbrooke’s Hospital, University of Cambridge, Hills Road, Cambridge, CB1 9RN UK
- Cambridge Breast Unit, Addenbrooke’s Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
- NIHR Cambridge Biomedical Research Centre and Cambridge Experimental Cancer Medicine Centre, Cambridge, UK
| |
Collapse
|
20
|
Mustafa DAM, Sieuwerts AM, Smid M, de Weerd V, van der Weiden M, Meijer - van Gelder ME, Martens JWM, Foekens JA, Kros JM. A Method to Correlate mRNA Expression Datasets Obtained from Fresh Frozen and Formalin-Fixed, Paraffin-Embedded Tissue Samples: A Matter of Thresholds. PLoS One 2015; 10:e0144097. [PMID: 26716838 PMCID: PMC4696787 DOI: 10.1371/journal.pone.0144097] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 11/12/2015] [Indexed: 11/19/2022] Open
Abstract
Background Gene expression profiling of tumors is a successful tool for the discovery of new cancer biomarkers and potential targets for the development of new therapeutic strategies. Reliable profiling is preferably performed on fresh frozen (FF) tissues in which the quality of nucleic acids is better preserved than in formalin-fixed paraffin-embedded (FFPE) material. However, since snap-freezing of biopsy materials is often not part of daily routine in pathology laboratories, one may have to rely on archival FFPE material. Procedures to retrieve the RNAs from FFPE materials have been developed and therefore, datasets obtained from FFPE and FF materials need to be made compatible to ensure reliable comparisons are possible. Aim To develop an efficient method to compare gene expression profiles obtained from FFPE and FF samples using the same platform. Methods Twenty-six FFPE-FF sample pairs of the same tumors representing various cancer types, and two FFPE-FF sample pairs of breast cancer cell lines, were included. Total RNA was extracted and gene expression profiling was carried out using Illumina’s Whole-Genome cDNA-mediated Annealing, Selection, extension and Ligation (WG-DASL) V3 arrays, enabling the simultaneous detection of 24,526 mRNA transcripts. A sample exclusion criterion was created based on the expression of 11 stably expressed reference genes. Pearson correlation at the probe level was calculated for paired FFPE-FF, and three cut-off values were chosen. Spearman correlation coefficients between the matched FFPE and FF samples were calculated for three probe lists with varying levels of significance and compared to the correlation based on all measured probes. Unsupervised hierarchical cluster analysis was performed to verify performance of the included probe lists to compare matched FPPE-FF samples. Results Twenty-seven FFPE-FF pairs passed the sample exclusion criterion. From the profiles of 27 FFPE and FF matched samples, the best correlating probes were identified for various levels of significance (Pearson P<0.01, n = 1,432; P<0.05, n = 2,530; and P<0.10, n = 3,351 probes). Unsupervised hierarchical clustering of the 27 pairs using the resulting probes yielded 25, 21, and 19 correctly clustered pairs, respectively, compared to 1 pair when all probes were used. Conclusion The proposed method enables comparison of gene expression profiles of FFPE and/or FF origin measured on the same platform.
Collapse
Affiliation(s)
- Dana A. M. Mustafa
- Dept. of Pathology, Erasmus University Medical Center, Rotterdam, The Netherlands
- * E-mail:
| | - Anieta M. Sieuwerts
- Dept. of Medical Oncology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Marcel Smid
- Dept. of Medical Oncology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Vania de Weerd
- Dept. of Medical Oncology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | | | | | - John W. M. Martens
- Dept. of Medical Oncology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - John A. Foekens
- Dept. of Medical Oncology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Johan M. Kros
- Dept. of Pathology, Erasmus University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
21
|
Ahmad A, Ginnebaugh KR, Yin S, Bollig-Fischer A, Reddy KB, Sarkar FH. Functional role of miR-10b in tamoxifen resistance of ER-positive breast cancer cells through down-regulation of HDAC4. BMC Cancer 2015. [PMID: 26206152 PMCID: PMC4512090 DOI: 10.1186/s12885-015-1561-x] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Background For breast cancer patients diagnosed with estrogen receptor (ER)-positive tumors, treatment with tamoxifen is the gold standard. A significant number of patients, however, develop resistance to tamoxifen, and management of such tamoxifen-resistant patients is a major clinical challenge. With an eye to identify novel targets for the treatment of tamoxifen-resistant tumors, we observed that tamoxifen-resistant cells derived from ER-positive MCF-7 cells (MCF7TR) exhibit an increased expression of microRNA-10b (miR-10b). A role of miR-10b in drug-resistance of breast cancer cells has never been investigated, although its is very well known to influence invasion and metastasis. Methods To dileneate a role of miR-10b in tamoxifen-resistance, we over-expressed miR-10b in MCF-7 cells and down-regulated its levels in MCF7TR cells. The mechanistic role of HDAC4 in miR-10b-mediated tamoxifen resistance was studied using HDAC4 cDNA and HDAC4-specific siRNA in appropriate models. Results Over-expression of miR-10b in ER-positive MCF-7 and T47D cells led to increased resistance to tamoxifen and an attenuation of tamoxifen-mediated inhibition of migration, whereas down-regulation of miR-10b in MCF7TR cells resulted in increased sensitivity to tamoxifen. Luciferase assays identified HDAC4 as a direct target of miR-10b. In MCF7TR cells, we observed down-regulation of HDAC4 by miR-10b. HDAC4-specific siRNA-mediated inactivation of HDAC4 in MCF-7 cells led to acquisition of tamoxifen resistance, and, moreover, reduction of HDAC4 in MCF7TR cells by HDAC4-specific siRNA transfection resulted in further enhancement of tamoxifen-resistance. Conclusions We propose miR-10b-HDAC4 nexus as one of the molecular mechanism of tamoxifen resistance which can potentially be expolited as a novel targeted therapeutic approach for the clinical management of tamoxifen-resistant breast cancers. Electronic supplementary material The online version of this article (doi:10.1186/s12885-015-1561-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Aamir Ahmad
- Department of Pathology, Karmanos Cancer Institute, Wayne State University School of Medicine, 740 HWCRC Bldg, 4100 John R. Street, Detroit, MI, 48201, USA.
| | - Kevin R Ginnebaugh
- Department of Pathology, Karmanos Cancer Institute, Wayne State University School of Medicine, 740 HWCRC Bldg, 4100 John R. Street, Detroit, MI, 48201, USA.
| | - Shuping Yin
- Department of Pathology, Karmanos Cancer Institute, Wayne State University School of Medicine, 740 HWCRC Bldg, 4100 John R. Street, Detroit, MI, 48201, USA.
| | - Aliccia Bollig-Fischer
- Department of Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine, 740 HWCRC Bldg, 4100 John R. Street, Detroit, MI, 48201, USA.
| | - Kaladhar B Reddy
- Department of Pathology, Karmanos Cancer Institute, Wayne State University School of Medicine, 740 HWCRC Bldg, 4100 John R. Street, Detroit, MI, 48201, USA.
| | - Fazlul H Sarkar
- Department of Pathology, Karmanos Cancer Institute, Wayne State University School of Medicine, 740 HWCRC Bldg, 4100 John R. Street, Detroit, MI, 48201, USA. .,Department of Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine, 740 HWCRC Bldg, 4100 John R. Street, Detroit, MI, 48201, USA.
| |
Collapse
|
22
|
Raman K, Wang H, Troncone MJ, Khan WI, Pare G, Terry J. Overlap Chronic Placental Inflammation Is Associated with a Unique Gene Expression Pattern. PLoS One 2015. [PMID: 26207633 PMCID: PMC4514672 DOI: 10.1371/journal.pone.0133738] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Breakdown of the balance between maternal pro- and anti-inflammatory pathways is thought to allow an anti-fetal maternal immune response that underlies development of chronic placental inflammation. Chronic placental inflammation is manifested by the influx of maternal inflammatory cells, including lymphocytes, histiocytes, and plasma cells, into the placental membranes, villi, and decidua. These infiltrates are recognized pathologically as chronic chorioamnionitis, chronic villitis of unknown etiology, and chronic deciduitis. Each of these histological entities is associated with adverse fetal outcomes including intrauterine growth restriction and preterm birth. Studying the gene expression patterns in chronically inflamed placenta, particularly when overlapping histologies are present, may lead to a better understanding of the underlying mechanism(s). Therefore, this study compared tissue with and without chronic placental inflammation, manifested as overlapping chronic chorioamnionitis, chronic villitis of unknown etiology, and chronic deciduitis. RNA expression profiling was conducted on formalin fixed, paraffin embedded placental tissue using Illumina microarrays. IGJ was the most significant differentially expressed gene identified and had increased expression in the inflamed tissue. In addition, IGLL1, CXCL13, CD27, CXCL9, ICOS, and KLRC1 had increased expression in the inflamed placental samples. These differentially expressed genes are associated with T follicular helper cells, natural killer cells, and B cells. Furthermore, these genes differ from those typically associated with the individual components of chronic placental inflammation, such as chronic villitis, suggesting that the inflammatory infiltrate associated with overlapping chronic chorioamnionitis, chronic villitis of unknown etiology, and chronic deciduitis differs is unique. To further explore and validate gene expression findings, we conducted immunohistochemical assessment of protein level expression and demonstrate that IgJ expression was largely attributable to the presence of plasma cells as part of chronic deciduitis and that IgA positive plasma cells are associated with chronic deciduitis occurring in combination with chronic chorioamnionitis and chronic villitis of unknown etiology but not with isolated chronic deciduitis.
Collapse
Affiliation(s)
- Kripa Raman
- Population Health Research Institute, Hamilton Health Sciences and McMaster University, Hamilton, Ontario, Canada
- Thrombosis and Atherosclerosis Research Institute, Hamilton Health Sciences and McMaster University, Hamilton, Ontario, Canada
| | - Huaqing Wang
- Farncombe Family Digestive Health Research Institute, Hamilton Health Sciences and McMaster University, Hamilton, Ontario, Canada
- Department of Pathology and Molecular Medicine, Hamilton Health Sciences and McMaster University, Hamilton, Ontario, Canada
| | - Michael J. Troncone
- Department of Pathology and Molecular Medicine, Hamilton Health Sciences and McMaster University, Hamilton, Ontario, Canada
| | - Waliul I. Khan
- Farncombe Family Digestive Health Research Institute, Hamilton Health Sciences and McMaster University, Hamilton, Ontario, Canada
- Department of Pathology and Molecular Medicine, Hamilton Health Sciences and McMaster University, Hamilton, Ontario, Canada
| | - Guillaume Pare
- Population Health Research Institute, Hamilton Health Sciences and McMaster University, Hamilton, Ontario, Canada
- Thrombosis and Atherosclerosis Research Institute, Hamilton Health Sciences and McMaster University, Hamilton, Ontario, Canada
- Farncombe Family Digestive Health Research Institute, Hamilton Health Sciences and McMaster University, Hamilton, Ontario, Canada
| | - Jefferson Terry
- Department of Pathology and Molecular Medicine, Hamilton Health Sciences and McMaster University, Hamilton, Ontario, Canada
- * E-mail:
| |
Collapse
|
23
|
Winslow S, Leandersson K, Edsjö A, Larsson C. Prognostic stromal gene signatures in breast cancer. Breast Cancer Res 2015; 17:23. [PMID: 25848820 PMCID: PMC4360948 DOI: 10.1186/s13058-015-0530-2] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2014] [Accepted: 02/02/2015] [Indexed: 12/21/2022] Open
Abstract
Introduction Global gene expression analysis of tumor samples has been a valuable tool to subgroup tumors and has the potential to be of prognostic and predictive value. However, tumors are heterogeneous, and homogenates will consist of several different cell types. This study was designed to obtain more refined expression data representing different compartments of the tumor. Methods Formalin-fixed paraffin-embedded stroma-rich triple-negative breast cancer tumors were laser-microdissected, and RNA was extracted and processed to enable microarray hybridization. Genes enriched in stroma were identified and used to generate signatures by identifying correlating genes in publicly available data sets. The prognostic implications of the signature were analyzed. Results Comparison of the expression pattern from stromal and cancer cell compartments from three tumors revealed a number of genes that were essentially specifically expressed in the respective compartments. The stroma-specific genes indicated contribution from fibroblasts, endothelial cells, and immune/inflammatory cells. The gene set was expanded by identifying correlating mRNAs using breast cancer mRNA expression data from The Cancer Genome Atlas. By iterative analyses, 16 gene signatures of highly correlating genes were characterized. Based on the gene composition, they seem to represent different cell types. In multivariate Cox proportional hazard models, two immune/inflammatory signatures had opposing hazard ratios for breast cancer recurrence also after adjusting for clinicopathological variables and molecular subgroup. The signature associated with poor prognosis consisted mainly of C1Q genes and the one associated with good prognosis contained HLA genes. This association with prognosis was seen for other cancers as well as in other breast cancer data sets. Conclusions Our data indicate that the molecular composition of the immune response in a tumor may be a powerful predictor of cancer prognosis. Electronic supplementary material The online version of this article (doi:10.1186/s13058-015-0530-2) contains supplementary material, which is available to authorized users.
Collapse
|
24
|
Laginestra MA, Piccaluga PP, Fuligni F, Rossi M, Agostinelli C, Righi S, Sapienza MR, Motta G, Gazzola A, Mannu C, Sabattini E, Bacci F, Tabanelli V, Sacchetti CAS, Barrese TZ, Etebari M, Melle F, Clò A, Gibellini D, Tripodo C, Inghirami G, Croce CM, Pileri SA. Pathogenetic and diagnostic significance of microRNA deregulation in peripheral T-cell lymphoma not otherwise specified. Blood Cancer J 2014; 4:259. [PMID: 25382608 PMCID: PMC4335255 DOI: 10.1038/bcj.2014.78] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 09/18/2014] [Indexed: 12/14/2022] Open
Abstract
Peripheral T-cell lymphomas not otherwise specified (PTCLs/NOS) are rare and aggressive tumours whose molecular pathogenesis and diagnosis are still challenging. The microRNA (miRNA) profile of 23 PTCLs/NOS was generated and compared with that of normal T-lymphocytes (CD4+, CD8+, naive, activated). The differentially expressed miRNA signature was compared with the gene expression profile (GEP) of the same neoplasms. The obtained gene patterns were tested in an independent cohort of PTCLs/NOS. The miRNA profile of PTCLs/NOS then was compared with that of 10 angioimmunoblastic T-cell lymphomas (AITLs), 6 anaplastic large-cell lymphomas (ALCLs)/ALK+ and 6 ALCLs/ALK-. Differentially expressed miRNAs were validated in an independent set of 20 PTCLs/NOS, 20 AITLs, 19 ALCLs/ALK- and 15 ALCLs/ALK+. Two hundred and thirty-six miRNAs were found to differentiate PTCLs/NOS from activated T-lymphocytes. To assess which miRNAs impacted on GEP, a multistep analysis was performed, which identified all miRNAs inversely correlated to different potential target genes. One of the most discriminant miRNAs was selected and its expression was found to affect the global GEP of the tumours. Moreover, two sets of miRNAs were identified distinguishing PTCL/NOS from AITL and ALCL/ALK-, respectively. The diagnostic accuracy of this tool was very high (83.54%) and its prognostic value validated.
Collapse
Affiliation(s)
- M A Laginestra
- Hematopathology Section, Department of Experimental, Diagnostic and Specialty Medicine, S Orsola-Malpighi Hospital, Bologna University Medical School, Bologna, Italy
| | - P P Piccaluga
- Hematopathology Section, Department of Experimental, Diagnostic and Specialty Medicine, S Orsola-Malpighi Hospital, Bologna University Medical School, Bologna, Italy
| | - F Fuligni
- Hematopathology Section, Department of Experimental, Diagnostic and Specialty Medicine, S Orsola-Malpighi Hospital, Bologna University Medical School, Bologna, Italy
| | - M Rossi
- Hematopathology Section, Department of Experimental, Diagnostic and Specialty Medicine, S Orsola-Malpighi Hospital, Bologna University Medical School, Bologna, Italy
| | - C Agostinelli
- Hematopathology Section, Department of Experimental, Diagnostic and Specialty Medicine, S Orsola-Malpighi Hospital, Bologna University Medical School, Bologna, Italy
| | - S Righi
- Hematopathology Section, Department of Experimental, Diagnostic and Specialty Medicine, S Orsola-Malpighi Hospital, Bologna University Medical School, Bologna, Italy
| | - M R Sapienza
- Hematopathology Section, Department of Experimental, Diagnostic and Specialty Medicine, S Orsola-Malpighi Hospital, Bologna University Medical School, Bologna, Italy
| | - G Motta
- Hematopathology Section, Department of Experimental, Diagnostic and Specialty Medicine, S Orsola-Malpighi Hospital, Bologna University Medical School, Bologna, Italy
| | - A Gazzola
- Hematopathology Section, Department of Experimental, Diagnostic and Specialty Medicine, S Orsola-Malpighi Hospital, Bologna University Medical School, Bologna, Italy
| | - C Mannu
- Hematopathology Section, Department of Experimental, Diagnostic and Specialty Medicine, S Orsola-Malpighi Hospital, Bologna University Medical School, Bologna, Italy
| | - E Sabattini
- Hematopathology Section, Department of Experimental, Diagnostic and Specialty Medicine, S Orsola-Malpighi Hospital, Bologna University Medical School, Bologna, Italy
| | - F Bacci
- Hematopathology Section, Department of Experimental, Diagnostic and Specialty Medicine, S Orsola-Malpighi Hospital, Bologna University Medical School, Bologna, Italy
| | - V Tabanelli
- Hematopathology Section, Department of Experimental, Diagnostic and Specialty Medicine, S Orsola-Malpighi Hospital, Bologna University Medical School, Bologna, Italy
| | - C A S Sacchetti
- Hematopathology Section, Department of Experimental, Diagnostic and Specialty Medicine, S Orsola-Malpighi Hospital, Bologna University Medical School, Bologna, Italy
| | - T Z Barrese
- Department of Pathology, São Paulo University, Medical School, São Paulo, Brazil
| | - M Etebari
- Hematopathology Section, Department of Experimental, Diagnostic and Specialty Medicine, S Orsola-Malpighi Hospital, Bologna University Medical School, Bologna, Italy
| | - F Melle
- Hematopathology Section, Department of Experimental, Diagnostic and Specialty Medicine, S Orsola-Malpighi Hospital, Bologna University Medical School, Bologna, Italy
| | - A Clò
- Microbiology Section, Department of Experimental, Diagnostic and Specialty Medicine, S Orsola-Malpighi Hospital, Bologna University Medical School, Bologna, Italy
| | - D Gibellini
- Microbiology Section, Department of Experimental, Diagnostic and Specialty Medicine, S Orsola-Malpighi Hospital, Bologna University Medical School, Bologna, Italy
| | - C Tripodo
- Tumour Immunology Unit, Department of Health Science, Human Pathology Section University of Palermo School of Medicine, Palermo, Italy
| | - G Inghirami
- Department of Pathology and Center for Experimental Research and Medical Studies, University of Torino, Turin, Italy
| | - C M Croce
- Department of Molecular Virology, Immunology and Medical Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - S A Pileri
- Hematopathology Section, Department of Experimental, Diagnostic and Specialty Medicine, S Orsola-Malpighi Hospital, Bologna University Medical School, Bologna, Italy
| |
Collapse
|
25
|
Auerbach SS, Phadke DP, Mav D, Holmgren S, Gao Y, Xie B, Shin JH, Shah RR, Merrick BA, Tice RR. RNA-Seq-based toxicogenomic assessment of fresh frozen and formalin-fixed tissues yields similar mechanistic insights. J Appl Toxicol 2014; 35:766-80. [DOI: 10.1002/jat.3068] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 07/22/2014] [Accepted: 07/26/2014] [Indexed: 12/13/2022]
Affiliation(s)
- Scott S. Auerbach
- Biomolecular Screening Branch, Division of the National Toxicology Program; National Institute of Environmental Health Sciences; Research Triangle Park NC 27709 USA
| | | | | | - Stephanie Holmgren
- Library & Information Services Branch, Office of the Deputy Director; National Institute of Environmental Health Sciences; Research Triangle Park NC 27709 USA
| | - Yuan Gao
- Department of Biomedical Engineering; Johns Hopkins University; Baltimore MD 21205 USA
| | - Bin Xie
- Department of Biomedical Engineering; Johns Hopkins University; Baltimore MD 21205 USA
| | - Joo Heon Shin
- Department of Biomedical Engineering; Johns Hopkins University; Baltimore MD 21205 USA
| | | | - B. Alex Merrick
- Biomolecular Screening Branch, Division of the National Toxicology Program; National Institute of Environmental Health Sciences; Research Triangle Park NC 27709 USA
| | - Raymond R. Tice
- Biomolecular Screening Branch, Division of the National Toxicology Program; National Institute of Environmental Health Sciences; Research Triangle Park NC 27709 USA
| |
Collapse
|
26
|
Larsen MJ, Thomassen M, Gerdes AM, Kruse TA. Hereditary breast cancer: clinical, pathological and molecular characteristics. BREAST CANCER-BASIC AND CLINICAL RESEARCH 2014; 8:145-55. [PMID: 25368521 PMCID: PMC4213954 DOI: 10.4137/bcbcr.s18715] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 08/25/2014] [Accepted: 08/27/2014] [Indexed: 01/02/2023]
Abstract
Pathogenic mutations in BRCA1 or BRCA2 are only detected in 25% of families with a strong history of breast cancer, though hereditary factors are expected to be involved in the remaining families with no recognized mutation. Molecular characterization is expected to provide new insight into the tumor biology to guide the search of new high-risk alleles and provide better classification of the growing number of BRCA1/2 variants of unknown significance (VUS). In this review, we provide an overview of hereditary breast cancer, its genetic background, and clinical implications, before focusing on the pathologically and molecular features associated with the disease. Recent transcriptome and genome profiling studies of tumor series from BRCA1/2 mutation carriers as well as familial non-BRCA1/2 will be discussed. Special attention is paid to its association with molecular breast cancer subtypes as well as the latest advances in predicting BRCA1/2 involvement (BRCAness) using molecular signatures, for improved diagnostics and selection of patients sensitive to targeted therapeutics.
Collapse
Affiliation(s)
- Martin J Larsen
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark. ; Human Genetics, Institute of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Mads Thomassen
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark. ; Human Genetics, Institute of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Anne-Marie Gerdes
- Department of Clinical Genetics, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Torben A Kruse
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark. ; Human Genetics, Institute of Clinical Research, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
27
|
Larsen MJ, Thomassen M, Tan Q, Sørensen KP, Kruse TA. Microarray-based RNA profiling of breast cancer: batch effect removal improves cross-platform consistency. BIOMED RESEARCH INTERNATIONAL 2014; 2014:651751. [PMID: 25101291 PMCID: PMC4101981 DOI: 10.1155/2014/651751] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 04/17/2014] [Accepted: 06/09/2014] [Indexed: 12/13/2022]
Abstract
Microarray is a powerful technique used extensively for gene expression analysis. Different technologies are available, but lack of standardization makes it challenging to compare and integrate data. Furthermore, batch-related biases within datasets are common but often not tackled. We have analyzed the same 234 breast cancers on two different microarray platforms. One dataset contained known batch-effects associated with the fabrication procedure used. The aim was to assess the significance of correcting for systematic batch-effects when integrating data from different platforms. We here demonstrate the importance of detecting batch-effects and how tools, such as ComBat, can be used to successfully overcome such systematic variations in order to unmask essential biological signals. Batch adjustment was found to be particularly valuable in the detection of more delicate differences in gene expression. Furthermore, our results show that prober adjustment is essential for integration of gene expression data obtained from multiple sources. We show that high-variance genes are highly reproducibly expressed across platforms making them particularly well suited as biomarkers and for building gene signatures, exemplified by prediction of estrogen-receptor status and molecular subtypes. In conclusion, the study emphasizes the importance of utilizing proper batch adjustment methods when integrating data across different batches and platforms.
Collapse
Affiliation(s)
- Martin J. Larsen
- Department of Clinical Genetics, Odense University Hospital, Sdr. Boulevard 29, 5000 Odense C, Denmark
- Human Genetics, Institute of Clinical Research, University of Southern Denmark, Winsløwvej 19, 5000 Odense C, Denmark
| | - Mads Thomassen
- Department of Clinical Genetics, Odense University Hospital, Sdr. Boulevard 29, 5000 Odense C, Denmark
- Human Genetics, Institute of Clinical Research, University of Southern Denmark, Winsløwvej 19, 5000 Odense C, Denmark
| | - Qihua Tan
- Human Genetics, Institute of Clinical Research, University of Southern Denmark, Winsløwvej 19, 5000 Odense C, Denmark
- Epidemiology, Biostatistics and Biodemography, Institute of Public Health, University of Southern Denmark, J.B. Winsløws Vej 9B, 5000 Odense C, Denmark
| | - Kristina P. Sørensen
- Department of Clinical Genetics, Odense University Hospital, Sdr. Boulevard 29, 5000 Odense C, Denmark
- Human Genetics, Institute of Clinical Research, University of Southern Denmark, Winsløwvej 19, 5000 Odense C, Denmark
| | - Torben A. Kruse
- Department of Clinical Genetics, Odense University Hospital, Sdr. Boulevard 29, 5000 Odense C, Denmark
- Human Genetics, Institute of Clinical Research, University of Southern Denmark, Winsløwvej 19, 5000 Odense C, Denmark
| |
Collapse
|
28
|
Kang HJ, Lee MH, Kang HL, Kim SH, Ahn JR, Na H, Na TY, Kim YN, Seong JK, Lee MO. Differential regulation of estrogen receptor α expression in breast cancer cells by metastasis-associated protein 1. Cancer Res 2014; 74:1484-94. [PMID: 24413532 DOI: 10.1158/0008-5472.can-13-2020] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Metastasis-associated protein 1 (MTA1) is a component of the nucleosome remodeling and histone deacetylase (HDAC) complex, which plays an important role in progression of breast cancer. Although MTA1 is known as a repressor of the transactivation function of estrogen receptor α (ERα), its involvement in the epigenetic control of transcription of the ERα gene ESR1 has not been studied. Here, we show that silencing of MTA1 reduced the level of expression of ERα in ERα-positive cells but increased it in ERα-negative cells. In both MCF7 and MDA-MB-231, MTA1 was recruited to the region +146 to +461 bp downstream of the transcription start site of ESR1 (ERpro315). Proteomics analysis of the MTA1 complex that was pulled down by an oligonucleotide encoding ERpro315 revealed that the transcription factor AP-2γ (TFAP2C) and the IFN-γ-inducible protein 16 (IFI16) were components of the complex. Interestingly, in MCF7, TFAP2C activated the reporter encoding ERpro315 and the level of ERα mRNA. By contrast, in MDA-MB-231, IFI16 repressed the promoter activity and silencing of MTA1 increased expression of ERα. Importantly, class II HDACs are involved in the MTA1-mediated differential regulation of ERα. Finally, an MDA-MB-231-derived cell line that stably expressed shIFI16 or shMTA1 was more susceptible to tamoxifen-induced growth inhibition in in vitro and in vivo experiments. Taken together, our findings suggest that the MTA1-TFAP2C or the MTA1-IFI16 complex may contribute to the epigenetic regulation of ESR1 expression in breast cancer and may determine the chemosensitivity of tumors to tamoxifen therapy in patients with breast cancer.
Collapse
Affiliation(s)
- Hyun-Jin Kang
- Authors' Affiliations: College of Pharmacy and Bio-MAX institute, Research Institute of Pharmaceutical Sciences; and College of Veterinary Medicine, BK21 Plus Program for Veterinary Science, Seoul National University, Seoul, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Buckley NE, D'Costa Z, Kaminska M, Mullan PB. S100A2 is a BRCA1/p63 coregulated tumour suppressor gene with roles in the regulation of mutant p53 stability. Cell Death Dis 2014; 5:e1070. [PMID: 24556685 PMCID: PMC3944248 DOI: 10.1038/cddis.2014.31] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 01/13/2014] [Accepted: 01/15/2014] [Indexed: 12/23/2022]
Abstract
Here, we show for the first time that the familial breast/ovarian cancer susceptibility gene, BRCA1, along with interacting ΔNp63 proteins, transcriptionally upregulate the putative tumour suppressor protein, S100A2. Both BRCA1 and ΔNp63 proteins are required for S100A2 expression. BRCA1 requires ΔNp63 proteins for recruitment to the S100A2 proximal promoter region, while exogenous expression of individual ΔNp63 proteins cannot activate S100A2 transcription in the absence of a functional BRCA1. Consequently, mutation of the ΔNp63/p53 response element within the S100A2 promoter completely abrogates the ability of BRCA1 to upregulate S100A2. S100A2 shows growth control features in a range of cell models. Transient or stable exogenous S100A2 expression inhibits the growth of BRCA1 mutant and basal-like breast cancer cell lines, while short interfering RNA (siRNA) knockdown of S100A2 in non-tumorigenic cells results in enhanced proliferation. S100A2 modulates binding of mutant p53 to HSP90, which is required for efficient folding of mutant p53 proteins, by competing for binding to HSP70/HSP90 organising protein (HOP). HOP is a cochaperone that is required for the efficient transfer of proteins from HSP70 to HSP90. Loss of S100A2 leads to an HSP90-dependent stabilisation of mutant p53 with a concomitant loss of p63. Accordingly, S100A2-deficient cells are more sensitive to the HSP-90 inhibitor, 17-N-allylamino-17-demethoxygeldanamycin, potentially representing a novel therapeutic strategy for S100A2- and BRCA1-deficient cancers. Taken together, these data demonstrate the importance of S100A2 downstream of the BRCA1/ΔNp63 signalling axis in modulating transcriptional responses and enforcing growth control mechanisms through destabilisation of mutant p53.
Collapse
Affiliation(s)
- N E Buckley
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, UK
| | - Z D'Costa
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, UK
| | - M Kaminska
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, UK
| | - P B Mullan
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, UK
| |
Collapse
|
30
|
Larsen MJ, Thomassen M, Tan Q, Lænkholm AV, Bak M, Sørensen KP, Andersen MK, Kruse TA, Gerdes AM. RNA profiling reveals familial aggregation of molecular subtypes in non-BRCA1/2 breast cancer families. BMC Med Genomics 2014; 7:9. [PMID: 24479546 PMCID: PMC3909442 DOI: 10.1186/1755-8794-7-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Accepted: 01/24/2014] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND In more than 70% of families with a strong history of breast and ovarian cancers, pathogenic mutation in BRCA1 or BRCA2 cannot be identified, even though hereditary factors are expected to be involved. It has been proposed that tumors with similar molecular phenotypes also share similar underlying pathophysiological mechanisms. In the current study, the aim was to investigate if global RNA profiling can be used to identify functional subgroups within breast tumors from families tested negative for BRCA1/2 germline mutations and how these subgroupings relate to different breast cancer patients within the same family. METHODS In the current study we analyzed a collection of 70 frozen breast tumor biopsies from a total of 58 families by global RNA profiling and promoter methylation analysis. RESULTS We show that distinct functional subgroupings, similar to the intrinsic molecular breast cancer subtypes, exist among non-BRCA1/2 breast cancers. The distribution of subtypes was markedly different from the distribution found among BRCA1/2 mutation carriers. From 11 breast cancer families, breast tumor biopsies from more than one affected family member were included in the study. Notably, in 8 of these families we found that patients from the same family shared the same tumor subtype, showing a tendency of familial aggregation of tumor subtypes (p-value = 1.7e-3). Using our previously developed BRCA1/2-signatures, we identified 7 non-BRCA1/2 tumors with a BRCA1-like molecular phenotype and provide evidence for epigenetic inactivation of BRCA1 in three of the tumors. In addition, 7 BRCA2-like tumors were found. CONCLUSIONS Our finding indicates involvement of hereditary factors in non-BRCA1/2 breast cancer families in which family members may carry genetic susceptibility not just to breast cancer but to a particular subtype of breast cancer. This is the first study to provide a biological link between breast cancers from family members of high-risk non-BRCA1/2 families in a systematic manner, suggesting that future genetic analysis may benefit from subgrouping families into molecularly homogeneous subtypes in order to search for new high penetrance susceptibility genes.
Collapse
Affiliation(s)
- Martin J Larsen
- Department of Clinical Genetics, Odense University Hospital, Sdr, Boulevard 29, Odense 5000, Denmark.
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Bonin S, Stanta G. Nucleic acid extraction methods from fixed and paraffin-embedded tissues in cancer diagnostics. Expert Rev Mol Diagn 2014; 13:271-82. [DOI: 10.1586/erm.13.14] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
32
|
Granato A, Giantin M, Ariani P, Carminato A, Baratto C, Zorzan E, Vascellari M, Bozzato E, Dacasto M, Mutinelli F. DNA and RNA isolation from canine oncologic formalin-fixed, paraffin-embedded tissues for downstream "-omic" analyses: possible or not? J Vet Diagn Invest 2014; 26:117-24. [PMID: 24398906 DOI: 10.1177/1040638713509378] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Formalin-fixed, paraffin-embedded (FFPE) tissues represent a unique source of archived biological material, but obtaining suitable DNA and RNA for retrospective "-omic" investigations is still challenging. In the current study, canine tumor FFPE blocks were used to 1) compare common commercial DNA and RNA extraction kits; 2) compare target gene expression measured in FFPE blocks and biopsies stored in a commercial storage reagent; 3) assess the impact of fixation time; and 4) perform biomolecular investigations on archival samples chosen according to formalin fixation times. Nucleic acids yield and quality were determined by spectrophotometer and capillary electrophoresis, respectively. Quantitative real-time polymerase chain reaction assays for the following genes: BCL-2-associated X protein, B-cell lymphoma extra large, antigen identified by monoclonal antibody Ki-67, proto-oncogene c-KIT (c-kit). Two internal control genes (Golgin A1 and canine transmembrane BAX inhibitor motif containing 4), together with direct sequencing of c-kit exons 8, 9, 11, and 17, were used as end points. Differences in DNA/RNA yield and purity were noticed among the commercial kits. Nucleic acids (particularly RNA) extracted from paraffin blocks were degraded, even at lower fixation times. Compared to samples held in the commercial storage reagent, archived tissues showed a poorer amplification. Therefore, a gold standard protocol for DNA/RNA isolation from canine tumor FFPE blocks for molecular investigations is still troublesome. More standardized storage conditions, including time between sample acquisition and fixation, fixation time, and sample thickness, are needed to guarantee the preservation of nucleic acids and, then, their possible use in retrospective transcriptomic analysis.
Collapse
Affiliation(s)
- Anna Granato
- 1Anna Granato, Veterinary and Public Health Institute, viale Università 10, 35020 Legnaro, Padua, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Bailey ST, Miron PL, Choi YJ, Kochupurakkal B, Maulik G, Rodig SJ, Tian R, Foley KM, Bowman T, Miron A, Brown M, Iglehart JD, Debajit KB. NF-κB activation-induced anti-apoptosis renders HER2-positive cells drug resistant and accelerates tumor growth. Mol Cancer Res 2013; 12:408-420. [PMID: 24319068 DOI: 10.1158/1541-7786.mcr-13-0206-t] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
UNLABELLED Breast cancers with HER2 overexpression are sensitive to drugs targeting the receptor or its kinase activity. HER2-targeting drugs are initially effective against HER2-positive breast cancer, but resistance inevitably occurs. We previously found that NF-κB is hyperactivated in a subset of HER2-positive breast cancer cells and tissue specimens. In this study, we report that constitutively active NF-κB rendered HER2-positive cancer cells resistant to anti-HER2 drugs and cells selected for lapatinib resistance upregulated NF-κB. In both circumstances, cells were antiapoptotic and grew rapidly as xenografts. Lapatinib-resistant cells were refractory to HER2 and NF-κB inhibitors alone but were sensitive to their combination, suggesting a novel therapeutic strategy. A subset of NF-κB-responsive genes was overexpressed in HER2-positive and triple-negative breast cancers, and patients with this NF-κB signature had poor clinical outcome. Anti-HER2 drug resistance may be a consequence of NF-κB activation, and selection for resistance results in NF-κB activation, suggesting that this transcription factor is central to oncogenesis and drug resistance. Clinically, the combined targeting of HER2 and NF-κB suggests a potential treatment paradigm for patients who relapse after anti-HER2 therapy. Patients with these cancers may be treated by simultaneously suppressing HER2 signaling and NF-κB activation. IMPLICATIONS The combination of an inhibitor of IκB kinase (IKK) inhibitor and anti-HER2 drugs may be a novel treatment strategy for drug-resistant human breast cancers.
Collapse
Affiliation(s)
- Shannon T Bailey
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02115.,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115
| | - Penelope L Miron
- Department of Cancer Biology, Dana-Farber Cancer Institute & Harvard Medical School. Boston, MA 02115
| | - Yoon J Choi
- Department of Cancer Biology, Dana-Farber Cancer Institute & Harvard Medical School. Boston, MA 02115
| | - Bose Kochupurakkal
- Department of Cancer Biology, Dana-Farber Cancer Institute & Harvard Medical School. Boston, MA 02115
| | - Gautam Maulik
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02115
| | - Scott J Rodig
- Department of Pathology, Brigham & Women's Hospital and Harvard Medical School, Boston, MA 02115
| | - Ruiyang Tian
- Department of Cancer Biology, Dana-Farber Cancer Institute & Harvard Medical School. Boston, MA 02115
| | - Kathleen M Foley
- Department of Cancer Biology, Dana-Farber Cancer Institute & Harvard Medical School. Boston, MA 02115
| | - Teresa Bowman
- Department of Pathology, Brigham & Women's Hospital and Harvard Medical School, Boston, MA 02115
| | - Alexander Miron
- Department of Cancer Biology, Dana-Farber Cancer Institute & Harvard Medical School. Boston, MA 02115
| | - Myles Brown
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02115.,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115
| | - J Dirk Iglehart
- Department of Cancer Biology, Dana-Farber Cancer Institute & Harvard Medical School. Boston, MA 02115.,Department of Surgery, Brigham & Women's Hospital and Harvard Medical School. Boston, MA 02115
| | - K Biswas Debajit
- Department of Cancer Biology, Dana-Farber Cancer Institute & Harvard Medical School. Boston, MA 02115.,Department of Surgery, Brigham & Women's Hospital and Harvard Medical School. Boston, MA 02115
| |
Collapse
|
34
|
Feasibility of RNA and DNA extraction from fresh pipelle and archival endometrial tissues for use in gene expression and SNP arrays. Obstet Gynecol Int 2013; 2013:576842. [PMID: 24282417 PMCID: PMC3825122 DOI: 10.1155/2013/576842] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Accepted: 08/22/2013] [Indexed: 11/17/2022] Open
Abstract
Identifying molecular markers of endometrial hyperplasia (neoplasia) progression is critical to cancer prevention. To assess RNA and DNA quantity and quality from routinely collected endometrial samples and evaluate the performance of RNA- and DNA-based arrays across endometrial tissue types, we collected fresh frozen (FF) Pipelle, FF curettage, and formalin-fixed paraffin-embedded (FFPE) hysterectomy specimens (benign indications) from eight women. Additionally, neoplastic and uninvolved tissues from 24 FFPE archival hysterectomy specimens with endometrial hyperplasias and carcinomas were assessed. RNA was extracted from 15 of 16 FF and 51 of 51 FFPE samples, with yields >1.2 μg for 13/15 (87%) FF and 50/51 (98%) FFPE samples. Extracted RNA was of high quality; all samples performed successfully on the Illumina whole-genome cDNA-mediated annealing, selection, extension, and ligation (WG-DASL) array and performance did not vary by tissue type. While DNA quantity from FFPE samples was excellent, quality was not sufficient for successful performance on the Affymetrix SNP Array 6.0. In conclusion, FF Pipelle samples, which are minimally invasive, yielded excellent quantity and quality of RNA for gene expression arrays (similar to FF curettage) and should be considered for use in genomic studies. FFPE-derived DNA should be evaluated on new rapidly evolving sequencing platforms.
Collapse
|
35
|
Tam WL, Lu H, Buikhuisen J, Soh BS, Lim E, Reinhardt F, Wu ZJ, Krall JA, Bierie B, Guo W, Chen X, Liu XS, Brown M, Lim B, Weinberg RA. Protein kinase C α is a central signaling node and therapeutic target for breast cancer stem cells. Cancer Cell 2013; 24:347-64. [PMID: 24029232 PMCID: PMC4001722 DOI: 10.1016/j.ccr.2013.08.005] [Citation(s) in RCA: 265] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2012] [Revised: 05/03/2013] [Accepted: 08/06/2013] [Indexed: 02/06/2023]
Abstract
The epithelial-mesenchymal transition program becomes activated during malignant progression and can enrich for cancer stem cells (CSCs). We report that inhibition of protein kinase C α (PKCα) specifically targets CSCs but has little effect on non-CSCs. The formation of CSCs from non-stem cells involves a shift from EGFR to PDGFR signaling and results in the PKCα-dependent activation of FRA1. We identified an AP-1 molecular switch in which c-FOS and FRA1 are preferentially utilized in non-CSCs and CSCs, respectively. PKCα and FRA1 expression is associated with the aggressive triple-negative breast cancers, and the depletion of FRA1 results in a mesenchymal-epithelial transition. Hence, identifying molecular features that shift between cell states can be exploited to target signaling components critical to CSCs.
Collapse
Affiliation(s)
- Wai Leong Tam
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
- MIT Ludwig Center for Molecular Oncology, Cambridge, MA 02139, USA
| | - Haihui Lu
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Joyce Buikhuisen
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Boon Seng Soh
- Genome Institute of Singapore, 60 Biopolis Street, 138672, Singapore
| | - Elgene Lim
- Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA
| | - Ferenc Reinhardt
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Zhenhua Jeremy Wu
- Dana Farber Cancer Institute and Harvard School of Public Health, Boston, MA 02115, USA
| | - Jordan A. Krall
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Brian Bierie
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Wenjun Guo
- Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Xi Chen
- Weill Cornell Medical College, New York, NY 10065, USA
| | - Xiaole Shirley Liu
- Dana Farber Cancer Institute and Harvard School of Public Health, Boston, MA 02115, USA
| | - Myles Brown
- Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA
| | - Bing Lim
- Genome Institute of Singapore, 60 Biopolis Street, 138672, Singapore
| | - Robert A. Weinberg
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
- MIT Ludwig Center for Molecular Oncology, Cambridge, MA 02139, USA
- Correspondence: (R.A.W.)
| |
Collapse
|
36
|
Piccaluga PP, Fuligni F, De Leo A, Bertuzzi C, Rossi M, Bacci F, Sabattini E, Agostinelli C, Gazzola A, Laginestra MA, Mannu C, Sapienza MR, Hartmann S, Hansmann ML, Piva R, Iqbal J, Chan JC, Weisenburger D, Vose JM, Bellei M, Federico M, Inghirami G, Zinzani PL, Pileri SA. Molecular profiling improves classification and prognostication of nodal peripheral T-cell lymphomas: results of a phase III diagnostic accuracy study. J Clin Oncol 2013; 31:3019-3025. [PMID: 23857971 DOI: 10.1200/jco.2012.42.5611] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
PURPOSE The differential diagnosis among the commonest peripheral T-cell lymphomas (PTCLs; ie, PTCL not otherwise specified [NOS], angioimmunoblastic T-cell lymphoma [AITL], and anaplastic large-cell lymphoma [ALCL]) is difficult, with the morphologic and phenotypic features largely overlapping. We performed a phase III diagnostic accuracy study to test the ability of gene expression profiles (GEPs; index test) to identify PTCL subtype. METHODS We studied 244 PTCLs, including 158 PTCLs NOS, 63 AITLs, and 23 ALK-negative ALCLs. The GEP-based classification method was established on a support vector machine algorithm, and the reference standard was an expert pathologic diagnosis according to WHO classification. RESULTS First, we identified molecular signatures (molecular classifier [MC]) discriminating either AITL and ALK-negative ALCL from PTCL NOS in a training set. Of note, the MC was developed in formalin-fixed paraffin-embedded (FFPE) samples and validated in both FFPE and frozen tissues. Second, we found that the overall accuracy of the MC was remarkable: 98% to 77% for AITL and 98% to 93% for ALK-negative ALCL in test and validation sets of patient cases, respectively. Furthermore, we found that the MC significantly improved the prognostic stratification of patients with PTCL. Particularly, it enhanced the distinction of ALK-negative ALCL from PTCL NOS, especially from some CD30+ PTCL NOS with uncertain morphology. Finally, MC discriminated some T-follicular helper (Tfh) PTCL NOS from AITL, providing further evidence that a group of PTCLs NOS shares a Tfh derivation with but is distinct from AITL. CONCLUSION Our findings support the usage of an MC as additional tool in the diagnostic workup of nodal PTCL.
Collapse
|
37
|
The complex genetic landscape of familial breast cancer. Hum Genet 2013; 132:845-63. [PMID: 23552954 DOI: 10.1007/s00439-013-1299-y] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Accepted: 03/21/2013] [Indexed: 01/19/2023]
Abstract
Familial breast cancer represents a minor percentage of all human breast cancers. Mutations in two high susceptibility genes BRCA1 and BRCA2 explain around 25 % of familial breast cancers, while other high, moderate and low susceptibility genes explain up to 20 % more of breast cancer families. Thus, it is important to decipher the genetic architecture of families that show no mutations to improve genetic counselling. The comprehensive description of familial breast cancer using different techniques and platforms has shown to be very valuable for better patient diagnosis, tumour surveillance, and ultimately patient treatment. This review focuses on the complex landscape of pathological, protein, genetic and genomic features associated with BRCA1-, BRCA2-, and non-BRCA1/BRCA2-related cancers described up to date. Special emphasis deserves the coexistence of distinct molecular breast cancer subtypes, the development of tumour classifiers to predict BRCA1/2 mutations, and the last insights from recent whole genome sequencing studies and miRNA profiling.
Collapse
|
38
|
Mahoney DW, Therneau TM, Anderson SK, Jen J, Kocher JPA, Reinholz MM, Perez EA, Eckel-Passow JE. Quality assessment metrics for whole genome gene expression profiling of paraffin embedded samples. BMC Res Notes 2013; 6:33. [PMID: 23360712 PMCID: PMC3626608 DOI: 10.1186/1756-0500-6-33] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Accepted: 01/18/2013] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Formalin fixed, paraffin embedded tissues are most commonly used for routine pathology analysis and for long term tissue preservation in the clinical setting. Many institutions have large archives of Formalin fixed, paraffin embedded tissues that provide a unique opportunity for understanding genomic signatures of disease. However, genome-wide expression profiling of Formalin fixed, paraffin embedded samples have been challenging due to RNA degradation. Because of the significant heterogeneity in tissue quality, normalization and analysis of these data presents particular challenges. The distribution of intensity values from archival tissues are inherently noisy and skewed due to differential sample degradation raising two primary concerns; whether a highly skewed array will unduly influence initial normalization of the data and whether outlier arrays can be reliably identified. FINDINGS Two simple extensions of common regression diagnostic measures are introduced that measure the stress an array undergoes during normalization and how much a given array deviates from the remaining arrays post-normalization. These metrics are applied to a study involving 1618 formalin-fixed, paraffin-embedded HER2-positive breast cancer samples from the N9831 adjuvant trial processed with Illumina's cDNA-mediated Annealing Selection extension and Ligation assay. CONCLUSION Proper assessment of array quality within a research study is crucial for controlling unwanted variability in the data. The metrics proposed in this paper have direct biological interpretations and can be used to identify arrays that should either be removed from analysis all together or down-weighted to reduce their influence in downstream analyses.
Collapse
Affiliation(s)
- Douglas W Mahoney
- Biomedical Statistics and Informatics, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA.
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Kelly AD, Haibe-Kains B, Janeway KA, Hill KE, Howe E, Goldsmith J, Kurek K, Perez-Atayde AR, Francoeur N, Fan JB, April C, Schneider H, Gebhardt MC, Culhane A, Quackenbush J, Spentzos D. MicroRNA paraffin-based studies in osteosarcoma reveal reproducible independent prognostic profiles at 14q32. Genome Med 2013; 5:2. [PMID: 23339462 PMCID: PMC3706900 DOI: 10.1186/gm406] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Revised: 12/21/2012] [Accepted: 01/22/2013] [Indexed: 12/22/2022] Open
Abstract
Background Although microRNAs (miRNAs) are implicated in osteosarcoma biology and chemoresponse, miRNA prognostic models are still needed, particularly because prognosis is imperfectly correlated with chemoresponse. Formalin-fixed, paraffin-embedded tissue is a necessary resource for biomarker studies in this malignancy with limited frozen tissue availability. Methods We performed miRNA and mRNA microarray formalin-fixed, paraffin-embedded assays in 65 osteosarcoma biopsy and 26 paired post-chemotherapy resection specimens and used the only publicly available miRNA dataset, generated independently by another group, to externally validate our strongest findings (n = 29). We used supervised principal components analysis and logistic regression for survival and chemoresponse, and miRNA activity and target gene set analysis to study miRNA regulatory activity. Results Several miRNA-based models with as few as five miRNAs were prognostic independently of pathologically assessed chemoresponse (median recurrence-free survival: 59 months versus not-yet-reached; adjusted hazards ratio = 2.90; P = 0.036). The independent dataset supported the reproducibility of recurrence and survival findings. The prognostic value of the profile was independent of confounding by known prognostic variables, including chemoresponse, tumor location and metastasis at diagnosis. Model performance improved when chemoresponse was added as a covariate (median recurrence-free survival: 59 months versus not-yet-reached; hazard ratio = 3.91; P = 0.002). Most prognostic miRNAs were located at 14q32 - a locus already linked to osteosarcoma - and their gene targets display deregulation patterns associated with outcome. We also identified miRNA profiles predictive of chemoresponse (75% to 80% accuracy), which did not overlap with prognostic profiles. Conclusions Formalin-fixed, paraffin-embedded tissue-derived miRNA patterns are a powerful prognostic tool for risk-stratified osteosarcoma management strategies. Combined miRNA and mRNA analysis supports a possible role of the 14q32 locus in osteosarcoma progression and outcome. Our study creates a paradigm for formalin-fixed, paraffin-embedded-based miRNA biomarker studies in cancer.
Collapse
Affiliation(s)
- Andrew D Kelly
- Division of Hematology/Oncology, Sarcoma Program, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, USA
| | - Benjamin Haibe-Kains
- Center for Cancer Computational Biology, Department of Biostatistics and Computational Biology, Dana Farber Cancer Institute, Boston, MA 02215, USA ; Bioinformatics and Computational Genomics, Institut de Recherches Cliniques de Montréal, 110 Avenue Des Pins O, Montreal, Quebec H2W 1R7, Canada
| | - Katherine A Janeway
- Division of Hematology/Oncology, Department of Medicine, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02215, USA
| | - Katherine E Hill
- Division of Hematology/Oncology, Sarcoma Program, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, USA
| | - Eleanor Howe
- Center for Cancer Computational Biology, Department of Biostatistics and Computational Biology, Dana Farber Cancer Institute, Boston, MA 02215, USA
| | - Jeffrey Goldsmith
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, USA
| | - Kyle Kurek
- Department of Pathology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02215, USA
| | - Antonio R Perez-Atayde
- Department of Pathology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02215, USA
| | - Nancy Francoeur
- Division of Hematology/Oncology, Sarcoma Program, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, USA
| | - Jian-Bing Fan
- Illumina Inc., 5200 Illumina Way, San Diego, CA 92122, USA
| | - Craig April
- Illumina Inc., 5200 Illumina Way, San Diego, CA 92122, USA
| | - Hal Schneider
- Molecular Genetics Core Facility, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02215, USA
| | - Mark C Gebhardt
- Department of Orthopedic Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, USA
| | - Aedin Culhane
- Center for Cancer Computational Biology, Department of Biostatistics and Computational Biology, Dana Farber Cancer Institute, Boston, MA 02215, USA
| | - John Quackenbush
- Center for Cancer Computational Biology, Department of Biostatistics and Computational Biology, Dana Farber Cancer Institute, Boston, MA 02215, USA
| | - Dimitrios Spentzos
- Division of Hematology/Oncology, Sarcoma Program, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, USA
| |
Collapse
|
40
|
Waldron L, Ogino S, Hoshida Y, Shima K, McCart Reed AE, Simpson PT, Baba Y, Nosho K, Segata N, Vargas AC, Cummings MC, Lakhani SR, Kirkner GJ, Giovannucci E, Quackenbush J, Golub TR, Fuchs CS, Parmigiani G, Huttenhower C. Expression profiling of archival tumors for long-term health studies. Clin Cancer Res 2012; 18:6136-46. [PMID: 23136189 DOI: 10.1158/1078-0432.ccr-12-1915] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE More than 20 million archival tissue samples are stored annually in the United States as formalin-fixed, paraffin-embedded (FFPE) blocks, but RNA degradation during fixation and storage has prevented their use for transcriptional profiling. New and highly sensitive assays for whole-transcriptome microarray analysis of FFPE tissues are now available, but resulting data include noise and variability for which previous expression array methods are inadequate. EXPERIMENTAL DESIGN We present the two largest whole-genome expression studies from FFPE tissues to date, comprising 1,003 colorectal cancer (CRC) and 168 breast cancer samples, combined with a meta-analysis of 14 new and published FFPE microarray datasets. We develop and validate quality control (QC) methods through technical replication, independent samples, comparison to results from fresh-frozen tissue, and recovery of expected associations between gene expression and protein abundance. RESULTS Archival tissues from large, multicenter studies showed a much wider range of transcriptional data quality relative to smaller or frozen tissue studies and required stringent QC for subsequent analysis. We developed novel methods for such QC of archival tissue expression profiles based on sample dynamic range and per-study median profile. This enabled validated identification of gene signatures of microsatellite instability and additional features of CRC, and improved recovery of associations between gene expression and protein abundance of MLH1, FASN, CDX2, MGMT, and SIRT1 in CRC tumors. CONCLUSIONS These methods for large-scale QC of FFPE expression profiles enable study of the cancer transcriptome in relation to extensive clinicopathological information, tumor molecular biomarkers, and long-term lifestyle and outcome data.
Collapse
Affiliation(s)
- Levi Waldron
- Department of Biostatistics and Computational Biology and Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Barrans SL, Crouch S, Care MA, Worrillow L, Smith A, Patmore R, Westhead DR, Tooze R, Roman E, Jack AS. Whole genome expression profiling based on paraffin embedded tissue can be used to classify diffuse large B-cell lymphoma and predict clinical outcome. Br J Haematol 2012; 159:441-53. [PMID: 22970711 DOI: 10.1111/bjh.12045] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Accepted: 08/01/2012] [Indexed: 12/18/2022]
Abstract
This study tested the validity of whole-genome expression profiling (GEP) using RNA from formalin-fixed, paraffin-embedded (FFPE) tissue to sub-classify Diffuse Large B-cell Lymphoma (DLBCL), in a population based cohort of 172 patients. GEP was performed using Illumina Whole Genome cDNA-mediated Annealing, Selection, extension & Ligation, and tumours were classified into germinal centre (GCB), activated B-cell (ABC) and Type-III subtypes. The method was highly reproducible and reliably classified cell lines of known phenotype. GCB and ABC subtypes were each characterized by unique gene expression signatures consistent with previously published data. A significant relationship between subtype and survival was observed, with ABC having the worst clinical outcome and in a multivariate survival model only age and GEP class remained significant. This effect was not seen when tumours were classified by immunohistochemistry. There was a significant association between age and subtype (mean ages ABC - 72·8 years, GC - 68·4 years, Type-III - 64·5 years). Older patients with ABC subtype were also over-represented in patients who died soon after diagnosis. The relationship between prognosis and subtype improved when only patients assigned to the three categories with the highest level of confidence were analysed. This study demonstrates that GEP-based classification of DLBCL can be applied to RNA extracted from routine FFPE samples and has potential for use in stratified medicine trials and clinical practice.
Collapse
Affiliation(s)
- Sharon L Barrans
- Haematological Malignancy Diagnostic Service, St. James's Institute of Oncology, Leeds, UK.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Hall JS, Taylor J, Valentine HR, Irlam JJ, Eustace A, Hoskin PJ, Miller CJ, West CML. Enhanced stability of microRNA expression facilitates classification of FFPE tumour samples exhibiting near total mRNA degradation. Br J Cancer 2012; 107:684-94. [PMID: 22805332 PMCID: PMC3419950 DOI: 10.1038/bjc.2012.294] [Citation(s) in RCA: 108] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Revised: 06/08/2012] [Accepted: 06/12/2012] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND As degradation of formalin-fixed paraffin-embedded (FFPE) samples limits the ability to profile mRNA expression, we explored factors predicting the success of mRNA expression profiling of FFPE material and investigated an approach to overcome the limitation. METHODS Bladder (n=140, stored 3-8 years) and cervix (n=160, stored 8-23 years) carcinoma FFPE samples were hybridised to Affymetrix Exon 1.0ST arrays. Percentage detection above background (%DABG) measured technical success. Biological signal was assessed by distinguishing cervix squamous cell carcinoma (SCC) and adenocarcinoma (AC) using a gene signature. As miR-205 had been identified as a marker of SCC, precursor mir-205 was measured by Exon array and mature miR-205 by qRT-PCR. Genome-wide microRNA (miRNA) expression (Affymetrix miRNA v2.0 arrays) was compared in eight newer FFPE samples with biological signal and eight older samples without. RESULTS RNA quality controls (QCs) (e.g., RNA integrity (RIN) number) failed to predict profiling success, but sample age correlated with %DABG in bladder (R=-0.30, P<0.01) and cervix (R=-0.69, P<0.01). Biological signal was lost in older samples and neither a signature nor precursor mir-205 separated samples by histology. miR-205 qRT-PCR discriminated SCC from AC, validated by miRNA profiling (26-fold higher in SCC; P=1.10 × 10(-5)). Genome-wide miRNA (R=0.95) and small nucleolar RNA (R=0.97) expression correlated well in the eight newer vs older FFPE samples and better than mRNA expression (R=0.72). CONCLUSION Sample age is the best predictor of successful mRNA profiling of FFPE material, and miRNA profiling overcomes the limitation of age and copes well with older samples.
Collapse
Affiliation(s)
- J S Hall
- Translational Radiobiology Group, School of Cancer and Enabling Sciences, Manchester Academic Health Science Centre, The University of Manchester, Christie Hospital NHS Trust, Wilmslow Road, Manchester M20 4BX, UK
| | - J Taylor
- Translational Radiobiology Group, School of Cancer and Enabling Sciences, Manchester Academic Health Science Centre, The University of Manchester, Christie Hospital NHS Trust, Wilmslow Road, Manchester M20 4BX, UK
- Applied Computational Biology and Bioinformatics Group, Paterson Institute for Cancer Research, Wilmslow Road, Manchester M20 4BX, UK
| | - H R Valentine
- Translational Radiobiology Group, School of Cancer and Enabling Sciences, Manchester Academic Health Science Centre, The University of Manchester, Christie Hospital NHS Trust, Wilmslow Road, Manchester M20 4BX, UK
| | - J J Irlam
- Translational Radiobiology Group, School of Cancer and Enabling Sciences, Manchester Academic Health Science Centre, The University of Manchester, Christie Hospital NHS Trust, Wilmslow Road, Manchester M20 4BX, UK
| | - A Eustace
- Translational Radiobiology Group, School of Cancer and Enabling Sciences, Manchester Academic Health Science Centre, The University of Manchester, Christie Hospital NHS Trust, Wilmslow Road, Manchester M20 4BX, UK
| | - P J Hoskin
- Cancer Centre, Mount Vernon Hospital, Rickmansworth Road, Northwood HA6 2RN, UK
| | - C J Miller
- Applied Computational Biology and Bioinformatics Group, Paterson Institute for Cancer Research, Wilmslow Road, Manchester M20 4BX, UK
| | - C M L West
- Translational Radiobiology Group, School of Cancer and Enabling Sciences, Manchester Academic Health Science Centre, The University of Manchester, Christie Hospital NHS Trust, Wilmslow Road, Manchester M20 4BX, UK
| |
Collapse
|
43
|
Fountzilas E, Markou K, Vlachtsis K, Nikolaou A, Arapantoni-Dadioti P, Ntoula E, Tassopoulos G, Bobos M, Konstantinopoulos P, Fountzilas G, Spentzos D. Identification and validation of gene expression models that predict clinical outcome in patients with early-stage laryngeal cancer. Ann Oncol 2012; 23:2146-2153. [PMID: 22219018 PMCID: PMC3493135 DOI: 10.1093/annonc/mdr576] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2011] [Revised: 10/16/2011] [Accepted: 11/07/2011] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Despite improvement in therapeutic techniques, patients with early-stage laryngeal cancer still recur after treatment. Gene expression prognostic models could suggest which of these patients would be more appropriate for testing adjuvant strategies. MATERIALS AND METHODS Expression profiling using whole-genome DASL arrays was carried out on 56 formalin-fixed paraffin-embedded tumor samples of patients with early-stage laryngeal cancer. We split the samples into a training and a validation set. Using the supervised principal components survival analysis in the first cohort, we identified gene expression profiles that predict the risk of recurrence. These profiles were then validated in an independent cohort. RESULTS Gene models comprising different number of genes identified a subgroup of patients who were at high risk of recurrence. Of these, the best prognostic model distinguished between a high- and a low-risk group (log-rank P<0.005). The prognostic value of this model was reproduced in the validation cohort (median disease-free survival: 38 versus 161 months, log-rank P=0.018), hazard ratio=5.19 (95% confidence interval 1.14-23.57, P<0.05). CONCLUSIONS We have identified gene expression prognostic models that can refine the estimation of a patient's risk of recurrence. These findings, if further validated, should aid in patient stratification for testing adjuvant treatment strategies.
Collapse
Affiliation(s)
- E Fountzilas
- Division of Hematology/Oncology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, USA
| | - K Markou
- Department of Otorhinolaryngology, "AHEPA" Hospital, Aristotle University of Thessaloniki School of Medicine, Thessaloniki
| | - K Vlachtsis
- Department of Otorhinolaryngology, "AHEPA" Hospital, Aristotle University of Thessaloniki School of Medicine, Thessaloniki
| | - A Nikolaou
- Department of Otorhinolaryngology, "AHEPA" Hospital, Aristotle University of Thessaloniki School of Medicine, Thessaloniki
| | | | | | - G Tassopoulos
- Department of Otorhinolaryngology, "Metaxa" Cancer Hospital, Piraeus
| | - M Bobos
- Laboratory of Molecular Oncology, Hellenic Foundation for Cancer Research, Thessaloniki
| | - P Konstantinopoulos
- Division of Hematology/Oncology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, USA
| | - G Fountzilas
- Department of Medical Oncology, "Papageorgiou" Hospital, Aristotle University of Thessaloniki School of Medicine, Thessaloniki, Greece
| | - D Spentzos
- Division of Hematology/Oncology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, USA.
| |
Collapse
|
44
|
Fountzilas E, Kelly AD, Perez-Atayde AR, Goldsmith J, Konstantinopoulos PA, Francoeur N, Correll M, Rubio R, Hu L, Gebhardt MC, Quackenbush J, Spentzos D. A microRNA activity map of human mesenchymal tumors: connections to oncogenic pathways; an integrative transcriptomic study. BMC Genomics 2012; 13:332. [PMID: 22823907 PMCID: PMC3443663 DOI: 10.1186/1471-2164-13-332] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Accepted: 07/06/2012] [Indexed: 11/10/2022] Open
Abstract
Background MicroRNAs (miRNAs) are nucleic acid regulators of many human mRNAs, and are associated with many tumorigenic processes. miRNA expression levels have been used in profiling studies, but some evidence suggests that expression levels do not fully capture miRNA regulatory activity. In this study we integrate multiple gene expression datasets to determine miRNA activity patterns associated with cancer phenotypes and oncogenic pathways in mesenchymal tumors – a very heterogeneous class of malignancies. Results Using a computational method, we identified differentially activated miRNAs between 77 normal tissue specimens and 135 sarcomas and we validated many of these findings with microarray interrogation of an independent, paraffin-based cohort of 18 tumors. We also showed that miRNA activity is imperfectly correlated with miRNA expression levels. Using next-generation miRNA sequencing we identified potential base sequence alterations which may explain differential activity. We then analyzed miRNA activity changes related to the RAS-pathway and found 21 miRNAs that switch from silenced to activated status in parallel with RAS activation. Importantly, nearly half of these 21 miRNAs were predicted to regulate integral parts of the miRNA processing machinery, and our gene expression analysis revealed significant reductions of these transcripts in RAS-active tumors. These results suggest an association between RAS signaling and miRNA processing in which miRNAs may attenuate their own biogenesis. Conclusions Our study represents the first gene expression-based investigation of miRNA regulatory activity in human sarcomas, and our findings indicate that miRNA activity patterns derived from integrated transcriptomic data are reproducible and biologically informative in cancer. We identified an association between RAS signaling and miRNA processing, and demonstrated sequence alterations as plausible causes for differential miRNA activity. Finally, our study highlights the value of systems level integrative miRNA/mRNA assessment with high-throughput genomic data, and the applicability of paraffin-tissue-derived RNA for validation of novel findings.
Collapse
Affiliation(s)
- Elena Fountzilas
- Division of Hematology/Oncology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Dahlman-Wright K, Qiao Y, Jonsson P, Gustafsson JÅ, Williams C, Zhao C. Interplay between AP-1 and estrogen receptor α in regulating gene expression and proliferation networks in breast cancer cells. Carcinogenesis 2012; 33:1684-91. [PMID: 22791811 DOI: 10.1093/carcin/bgs223] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Estrogen receptor α (ERα) is a ligand-dependent transcription factor that plays an important role in breast cancer. Estrogen-dependent gene regulation by ERα can be mediated by interaction with other DNA-binding proteins, such as activator protein-1 (AP-1). The nature of such interactions in mediating the estrogen response in breast cancer cells remains unclear. Here we show that knockdown of c-Fos, a component of the transcription factor AP-1, attenuates the expression of 37% of all estrogen-regulated genes, suggesting that c-Fos is a fundamental factor for ERα-mediated transcription. Additionally, knockdown of c-Fos affected the expression of a number of genes that were not regulated by estrogen. Pathway analysis reveals that silencing of c-Fos downregulates an E2F1-dependent proproliferative gene network. Thus, modulation of the E2F1 pathway by c-Fos represents a novel mechanism by which c-Fos enhances breast cancer cell proliferation. Furthermore, we show that c-Fos and ERα can cooperate in regulating E2F1 gene expression by binding to regulatory elements in the E2F1 promoter. To start to dissect the molecular details of the cross talk between AP-1 and estrogen signaling, we identify a novel ERα/AP-1 target, PKIB (cAMP-dependent protein kinase inhibitor-β), which is overexpressed in ERα-positive breast cancer tissues. Knockdown of PKIB results in robust growth suppression of breast cancer cells. Collectively, our findings support c-Fos as a critical factor that governs estrogen-dependent gene expression and breast cancer proliferation programs.
Collapse
Affiliation(s)
- Karin Dahlman-Wright
- Department of Biosciences and Nutrition, Novum, Karolinska Institutet, S-141 83 Huddinge, Sweden
| | | | | | | | | | | |
Collapse
|
46
|
Yang M, Kozminski DJ, Wold LA, Modak R, Calhoun JD, Isom LL, Brackenbury WJ. Therapeutic potential for phenytoin: targeting Na(v)1.5 sodium channels to reduce migration and invasion in metastatic breast cancer. Breast Cancer Res Treat 2012; 134:603-15. [PMID: 22678159 PMCID: PMC3401508 DOI: 10.1007/s10549-012-2102-9] [Citation(s) in RCA: 151] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Accepted: 05/16/2012] [Indexed: 11/26/2022]
Abstract
Voltage-gated Na(+) channels (VGSCs) are heteromeric membrane protein complexes containing pore-forming α subunits and smaller, non-pore-forming β subunits. VGSCs are classically expressed in excitable cells, including neurons and muscle cells, where they mediate action potential firing, neurite outgrowth, pathfinding, and migration. VGSCs are also expressed in metastatic cells from a number of cancers. The Na(v)1.5 α subunit (encoded by SCN5A) is expressed in breast cancer (BCa) cell lines, where it enhances migration and invasion. We studied the expression of SCN5A in BCa array data, and tested the effect of the VGSC-blocking anticonvulsant phenytoin (5,5-diphenylhydantoin) on Na(+) current, migration, and invasion in BCa cells. SCN5A was up-regulated in BCa samples in several datasets, and was more highly expressed in samples from patients who had a recurrence, metastasis, or died within 5 years. SCN5A was also overexpressed as an outlier in a subset of samples, and associated with increased odds of developing metastasis. Phenytoin inhibited transient and persistent Na(+) current recorded from strongly metastatic MDA-MB-231 cells, and this effect was more potent at depolarized holding voltages. It may thus be an effective VGSC-blocking drug in cancer cells, which typically have depolarized membrane potentials. At a concentration within the therapeutic range used to treat epilepsy, phenytoin significantly inhibited the migration and invasion of MDA-MB-231 cells, but had no effect on weakly metastatic MCF-7 cells, which do not express Na(+) currents. We conclude that phenytoin suppresses Na(+) current in VGSC-expressing metastatic BCa cells, thus inhibiting VGSC-dependent migration and invasion. Together, our data support the hypothesis that SCN5A is up-regulated in BCa, favoring an invasive/metastatic phenotype. We therefore propose that repurposing existing VGSC-blocking therapeutic drugs should be further investigated as a potential new strategy to improve patient outcomes in metastatic BCa.
Collapse
Affiliation(s)
- Ming Yang
- Department of Biology, University of York, Heslington, York, YO10 5DD UK
| | - David J. Kozminski
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI 48109-5632 USA
| | - Lindsey A. Wold
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI 48109-5632 USA
| | - Rohan Modak
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI 48109-5632 USA
| | - Jeffrey D. Calhoun
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI 48109-5632 USA
| | - Lori L. Isom
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI 48109-5632 USA
| | | |
Collapse
|
47
|
Gene expression profiling of tumour epithelial and stromal compartments during breast cancer progression. Breast Cancer Res Treat 2012; 135:153-65. [DOI: 10.1007/s10549-012-2123-4] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Accepted: 05/28/2012] [Indexed: 12/21/2022]
|
48
|
Tan SH, Lee SC. An update on chemotherapy and tumor gene expression profiles in breast cancer. Expert Opin Drug Metab Toxicol 2012; 8:1083-113. [DOI: 10.1517/17425255.2012.694867] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
49
|
Abstract
Formalin is the most commonly used tissue fixative worldwide. While it offers excellent morphological preservation for routine histology, it has detrimental effects on nucleic acids. Most studies of nucleic acids have therefore used fresh frozen tissue, the collection and storage of which is resource intensive. The ability to use modern genomic, transcriptomic and epigenomic methods with nucleic acids derived from formalin-fixed, paraffin-embedded (FFPE) tissues would allow enormous archives of routinely stored tissues (usually with well-annotated clinical data) to be used for translational research. This paper outlines the effects of formalin on nucleic acids, describes ways of minimizing nucleic acid degradation and optimizing extraction, and reviews recent studies that have used contemporary techniques to analyse FFPE-derived nucleic acids (with a focus on malignant tissue sources). Simple tips are also offered to ensure the utility of your institution's samples for future studies, and broadly applicable guidelines are listed for those contemplating their own study using FFPE-derived material.
Collapse
Affiliation(s)
- Adam Frankel
- University of Queensland, Ipswich Road, Woolloongabba,Brisbane, Qld 4102, Australia.
| |
Collapse
|
50
|
Fischer MT, Sharma R, Lim JL, Haider L, Frischer JM, Drexhage J, Mahad D, Bradl M, van Horssen J, Lassmann H. NADPH oxidase expression in active multiple sclerosis lesions in relation to oxidative tissue damage and mitochondrial injury. ACTA ACUST UNITED AC 2012; 135:886-99. [PMID: 22366799 PMCID: PMC3286337 DOI: 10.1093/brain/aws012] [Citation(s) in RCA: 380] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Multiple sclerosis is a chronic inflammatory disease of the central nervous system, associated with demyelination and neurodegeneration. The mechanisms of tissue injury are poorly understood, but recent data suggest that mitochondrial injury may play an important role in this process. Mitochondrial injury can be triggered by reactive oxygen and nitric oxide species, and we recently provided evidence for oxidative damage of oligodendrocytes and dystrophic axons in early stages of active multiple sclerosis lesions. In this study, we identified potential sources of reactive oxygen and nitrogen species through gene expression in carefully staged and dissected lesion areas and by immunohistochemical analysis of protein expression. Genome-wide microarrays confirmed mitochondrial injury in active multiple sclerosis lesions, which may serve as an important source of reactive oxygen species. In addition, we found differences in the gene expression levels of various nicotinamide adenine dinucleotide phosphate oxidase subunits between initial multiple sclerosis lesions and control white matter. These results were confirmed at the protein level by means of immunohistochemistry, showing upregulation of the subunits gp91phox, p22phox, p47phox, nicotinamide adenine dinucleotide phosphate oxidase 1 and nicotinamide adenine dinucleotide phosphate oxidase organizer 1 in activated microglia in classical active as well as slowly expanding lesions. The subunits gp91phox and p22phox were constitutively expressed in microglia and were upregulated in the initial lesion. In contrast, p47phox, nicotinamide adenine dinucleotide phosphate oxidase 1 and nicotinamide adenine dinucleotide phosphate oxidase organizer 1 expression were more restricted to the zone of initial damage or to lesions from patients with acute or early relapsing/remitting multiple sclerosis. Double labelling showed co-expression of the nicotinamide adenine dinucleotide phosphate oxidase subunits in activated microglia and infiltrated macrophages, suggesting the assembly of functional complexes. Our data suggest that the inflammation-associated oxidative burst in activated microglia and macrophages plays an important role in demyelination and free radical-mediated tissue injury in the pathogenesis of multiple sclerosis.
Collapse
Affiliation(s)
- Marie T Fischer
- Centre for Brain Research, Medical University of Vienna, A-1090 Wien, Austria
| | | | | | | | | | | | | | | | | | | |
Collapse
|