1
|
Saquet A, Ying Z, Shi D, Grifone R. Knockout of rbm24a and rbm24b genes in zebrafish impairs skeletal and cardiac muscle integrity and function during development. Dev Dyn 2025; 254:420-435. [PMID: 39323318 PMCID: PMC12047425 DOI: 10.1002/dvdy.743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 07/23/2024] [Accepted: 08/23/2024] [Indexed: 09/27/2024] Open
Abstract
BACKGOUND Skeletal and cardiac muscles are contractile tissues whose development and function are dependent on genetic programs that must be precisely orchestrated in time and space. In addition to transcription factors, RNA-binding proteins tightly regulate gene expression by controlling the fate of RNA transcripts, thus specific proteins levels within the cell. Rbm24 has been identified as a key player of myogenesis and cardiomyogenesis in several vertebrates, by controlling various aspects of post-transcriptional regulation, including pre-mRNA alternative splicing and mRNA stabilization. In zebrafish, knockdown of rbm24a or rbm24b also causes skeletal and cardiac muscle phenotypes, but how their combined loss affects muscle integrity and function remains elusive. RESULTS By genome editing, we have generated rbm24a and rbm24b single mutants as well as double mutants. Structural analyses indicate that homozygous rbm24a and rbm24b double mutants exhibit severe somitic muscle and cardiac phenotypes, although rbm24b single mutants are obviously normal. We further show that the loss of rbm24a and rbm24b disrupts sarcomere organization, impairing functional contractility and motility of skeletal and cardiac muscles. CONCLUSION The rbm24 mutant zebrafish represents a new genetic tool for in-depth studies of Rbm24-mediated post-transcriptional regulation of skeletal and cardiac muscle development, disease and regeneration.
Collapse
Affiliation(s)
- Audrey Saquet
- Laboratory of Developmental Biology (LBD), CNRS UMR7622, Institut de Biologie Paris‐Seine (IBPS)Sorbonne UniversitéParisFrance
| | - Ziwei Ying
- Laboratory of Developmental Biology (LBD), CNRS UMR7622, Institut de Biologie Paris‐Seine (IBPS)Sorbonne UniversitéParisFrance
| | - De‐Li Shi
- Laboratory of Developmental Biology (LBD), CNRS UMR7622, Institut de Biologie Paris‐Seine (IBPS)Sorbonne UniversitéParisFrance
- Department of Medical ResearchAffiliated Hospital of Guangdong Medical UniversityZhanjiangChina
| | - Raphaëlle Grifone
- Laboratory of Developmental Biology (LBD), CNRS UMR7622, Institut de Biologie Paris‐Seine (IBPS)Sorbonne UniversitéParisFrance
| |
Collapse
|
2
|
del Rosario-Gilabert D, Valenzuela-Miralles A, Esquiva G. Advances in mechanotransduction and sonobiology: effects of audible acoustic waves and low-vibration stimulations on mammalian cells. Biophys Rev 2024; 16:783-812. [PMID: 39830129 PMCID: PMC11735818 DOI: 10.1007/s12551-024-01242-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 09/25/2024] [Indexed: 01/22/2025] Open
Abstract
In recent decades, research on mechanotransduction has advanced considerably, focusing on the effects of audible acoustic waves (AAWs) and low-vibration stimulation (LVS), which has propelled the field of sonobiology forward. Taken together, the current evidence demonstrates the influence of these biosignals on key cellular processes, such as growth, differentiation and migration in mammalian cells, emphasizing the determining role of specific physical parameters during stimulation, such as frequency, sound pressure level/amplitude and exposure time. These mechanical waves interact with various cellular elements, including ion channels, primary cilia, cell-cell adhesion receptors, cell-matrix and extracellular matrix proteins, and focal adhesion complexes. These components connect with the cytoskeletal fibre network, enabling the transmission of mechanical stimuli towards the nucleus. The nucleus, in turn, linked to the cytoskeleton via the linkers of the nucleoskeleton and cytoskeleton complex, acts as a mechanosensitive centre, not only responding to changes in cytoskeletal stiffness and nuclear tension but also regulating gene expression through the transcriptional co-activator YAP/TAZ and interactions between chromatin and the nuclear envelope. This intricate chain of mechanisms highlights the potential of sonobiology in various fields, including dentistry, regenerative medicine, tissue engineering and cancer research. However, progress in these fields requires the establishment of standardized measurement methodologies and biocompatible experimental setups to ensure the reproducibility of results.
Collapse
Affiliation(s)
- D. del Rosario-Gilabert
- Department of Optics, Pharmacology and Anatomy, University of Alicante, San Vicente del Raspeig, Spain
- Department of Physics, Systems Engineering and Signal Theory, University of Alicante, San Vicente del Raspeig, Spain
- Department of Computer Technology, University of Alicante, San Vicente del Raspeig, Spain
- Institute for Advanced Neuroscience of Barcelona (INAB), Barcelona, Spain
| | - A. Valenzuela-Miralles
- Department of Optics, Pharmacology and Anatomy, University of Alicante, San Vicente del Raspeig, Spain
| | - G. Esquiva
- Department of Optics, Pharmacology and Anatomy, University of Alicante, San Vicente del Raspeig, Spain
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Alicante, Spain
| |
Collapse
|
3
|
Gao C, Wen H, Dai D, Li Q, Zhou Y. Transcriptome analysis reveals the effects of Schizochytrium sp. on the meat quality attributes of Tan lambs. Meat Sci 2024; 216:109583. [PMID: 38944909 DOI: 10.1016/j.meatsci.2024.109583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 06/10/2024] [Accepted: 06/25/2024] [Indexed: 07/02/2024]
Abstract
Schizochytrium sp., a feed additive, positively affects the quality of animal meat. In this study, the molecular mechanisms through which dietary Schizochytrium sp. affects the meat quality characteristics of Tan lambs were investigated using transcriptomic techniques. The findings demonstrate that the lambs supplemented with Schizochytrium sp. had a larger loin eye area and a higher average daily gain and intramuscular fat content (P < 0.05). They also had lower drip loss (at 24 and 48 h) and shear force (P < 0.05). Further, 745 genes were differentially expressed between lambs supplemented with Schizochytrium and the control group. Moreover, KEGG pathway analysis showed that the ECM-receptor interaction pathway, which is related to muscle generation and intramuscular fat deposition, was significantly enriched in the lambs administered a diet containing Schizochytrium sp. Herein, we identified some pivotal genes linked to muscular system development and lipid metabolism. Thus, using Schizochytrium sp. may boost the meat quality of Tan lambs by modifying the expression of genes related to hub pathways. The results supply a new basis to determine the molecular mechanisms through which Schizochytrium sp. supplementation regulates the meat quality characteristics of sheep.
Collapse
Affiliation(s)
- Changpeng Gao
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Hongrui Wen
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Dongwen Dai
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Qingmin Li
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Yuxiang Zhou
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China.
| |
Collapse
|
4
|
Zarén P, Gawlik KI. Thrombospondin-4 deletion does not exacerbate muscular dystrophy in β-sarcoglycan-deficient and laminin α2 chain-deficient mice. Sci Rep 2024; 14:14757. [PMID: 38926599 PMCID: PMC11208443 DOI: 10.1038/s41598-024-65473-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 06/20/2024] [Indexed: 06/28/2024] Open
Abstract
Muscular dystrophy is a group of genetic disorders that lead to muscle wasting and loss of muscle function. Identifying genetic modifiers that alleviate symptoms or enhance the severity of a primary disease helps to understand mechanisms behind disease pathology and facilitates discovery of molecular targets for therapy. Several muscular dystrophies are caused by genetic defects in the components of the dystrophin-glycoprotein adhesion complex (DGC). Thrombospondin-4 overexpression has been shown to mitigate dystrophic disease in mouse models for Duchenne muscular dystrophy (dystrophin deficiency) and limb-girdle muscular dystrophy type 2F (LGMD2F, δ-sarcoglycan deficiency), while deletion of the thrombospondin-4 gene exacerbated the diseases. Hence, thrombospondin-4 has been considered a candidate molecule for therapy of muscular dystrophies involving the DGC. We have investigated whether thrombospondin-4 could act as a genetic modifier for other DGC-associated diseases: limb-girdle muscular dystrophy type 2E (LGMD2E, β-sarcoglycan deficiency) and laminin α2 chain-deficient muscular dystrophy (LAMA2-RD). Deletion of the thrombospondin-4 gene in mouse models for LGMD2E and LAMA2-RD, respectively, did not result in worsening of the dystrophic phenotype. Loss of thrombospondin-4 did not enhance sarcolemma damage and did not impair trafficking of transmembrane receptors integrin α7β1 and dystroglycan in double knockout muscles. Our results suggest that thrombospondin-4 might not be a relevant therapeutic target for all muscular dystrophies involving the DGC. This data also demonstrates that molecular pathology between very similar diseases like LGMD2E and 2F can differ significantly.
Collapse
Affiliation(s)
- Paula Zarén
- Muscle Biology Unit, Department of Experimental Medical Science, Lund University, BMC C12, 221 84, Lund, Sweden
| | - Kinga I Gawlik
- Muscle Biology Unit, Department of Experimental Medical Science, Lund University, BMC C12, 221 84, Lund, Sweden.
| |
Collapse
|
5
|
Josvai M, Polyak E, Kalluri M, Robertson S, Crone WC, Suzuki M. An engineered in vitro model of the human myotendinous junction. Acta Biomater 2024; 180:279-294. [PMID: 38604466 PMCID: PMC11088524 DOI: 10.1016/j.actbio.2024.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 03/12/2024] [Accepted: 04/03/2024] [Indexed: 04/13/2024]
Abstract
The myotendinous junction (MTJ) is a vulnerable region at the interface of skeletal muscle and tendon that forms an integrated mechanical unit. This study presents a technique for the spatially restrictive co-culture of human embryonic stem cell (hESC)-derived skeletal myocytes and primary tenocytes for two-dimensional modeling of the MTJ. Micropatterned lanes of extracellular matrix and a 2-well culture chamber define the initial regions of occupation. On day 1, both lines occupy less than 20 % of the initially vacant interstitial zone, referred to henceforth as the junction. Myocyte-tenocyte interdigitations are observed by day 7. Immunocytochemistry reveals enhanced organization and alignment of patterned myocyte and tenocyte features, as well as differential expression of multiple MTJ markers. On day 24, electrically stimulated junction myocytes demonstrate negative contractile strains, while positive tensile strains are exhibited by mechanically passive tenocytes at the junction. Unpatterned tenocytes distal to the junction experience significantly decreased strains in comparison to cells at the interface. Unpatterned myocytes have impaired organization and uncoordinated contractile behavior. These findings suggest that this platform is capable of inducing myocyte-tenocyte junction formation and mechanical coupling similar to the native MTJ, showing transduction of force across the cell-cell interface. STATEMENT OF SIGNIFICANCE: The myotendinous junction (MTJ) is an integrated structure that transduces force across the muscle-tendon boundary, making the region vulnerable to strain injury. Despite the clinical relevance, previous in vitro models of the MTJ lack the structure and mechanical accuracy of the native tissue and have difficulty transmitting force across the cell-cell interface. This study demonstrates an in vitro model of the MTJ, using spatially restrictive cues to inform human myocyte-tenocyte interactions and architecture. The model expressed MTJ markers and developed anisotropic myocyte-tenocyte integrations that resemble the native tissue and allow for force transduction from contracting myocytes to passive tenocyte regions. As such, this study presents a system capable of investigating development, injury, and pathology in the human MTJ.
Collapse
Affiliation(s)
- Mitchell Josvai
- Department of Biomedical Engineering, University of Wisconsin-Madison, Engineering Centers Building, 2126, 1550 Engineering Dr, Madison WI 53706, USA; Wisconsin Institute for Discovery, University of Wisconsin-Madison, 330 N Orchard St, Madison, WI 53715, USA
| | - Erzsebet Polyak
- Department of Comparative Biosciences, University of Wisconsin-Madison, Veterinary Medicine Bldg, 2015 Linden Dr, Madison, WI 53706, USA
| | - Meghana Kalluri
- Department of Biomedical Engineering, University of Wisconsin-Madison, Engineering Centers Building, 2126, 1550 Engineering Dr, Madison WI 53706, USA; Wisconsin Institute for Discovery, University of Wisconsin-Madison, 330 N Orchard St, Madison, WI 53715, USA
| | - Samantha Robertson
- Department of Comparative Biosciences, University of Wisconsin-Madison, Veterinary Medicine Bldg, 2015 Linden Dr, Madison, WI 53706, USA
| | - Wendy C Crone
- Department of Biomedical Engineering, University of Wisconsin-Madison, Engineering Centers Building, 2126, 1550 Engineering Dr, Madison WI 53706, USA; Wisconsin Institute for Discovery, University of Wisconsin-Madison, 330 N Orchard St, Madison, WI 53715, USA; The Stem Cell and Regenerative Medicine Center, University of Wisconsin-Madison, 1111 Highland Ave, Madison, WI 53705, USA; Department of Nuclear Engineering and Engineering Physics, University of Wisconsin-Madison, 1500 Engineering Drive, Madison, WI 53706, USA; Department of Mechanical Engineering, University of Wisconsin-Madison, 1513 University Avenue, Madison, WI 53706, USA.
| | - Masatoshi Suzuki
- Department of Biomedical Engineering, University of Wisconsin-Madison, Engineering Centers Building, 2126, 1550 Engineering Dr, Madison WI 53706, USA; Department of Comparative Biosciences, University of Wisconsin-Madison, Veterinary Medicine Bldg, 2015 Linden Dr, Madison, WI 53706, USA; The Stem Cell and Regenerative Medicine Center, University of Wisconsin-Madison, 1111 Highland Ave, Madison, WI 53705, USA.
| |
Collapse
|
6
|
Dennis C, Pouchin P, Richard G, Mirouse V. Basement membrane diversification relies on two competitive secretory routes defined by Rab10 and Rab8 and modulated by dystrophin and the exocyst complex. PLoS Genet 2024; 20:e1011169. [PMID: 38437244 PMCID: PMC10939200 DOI: 10.1371/journal.pgen.1011169] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/14/2024] [Accepted: 02/05/2024] [Indexed: 03/06/2024] Open
Abstract
The basement membrane (BM) is an essential structural element of tissues, and its diversification participates in organ morphogenesis. However, the traffic routes associated with BM formation and the mechanistic modulations explaining its diversification are still poorly understood. Drosophila melanogaster follicular epithelium relies on a BM composed of oriented BM fibrils and a more homogenous matrix. Here, we determined the specific molecular identity and cell exit sites of BM protein secretory routes. First, we found that Rab10 and Rab8 define two parallel routes for BM protein secretion. When both routes were abolished, BM production was fully blocked; however, genetic interactions revealed that these two routes competed. Rab10 promoted lateral and planar-polarized secretion, whereas Rab8 promoted basal secretion, leading to the formation of BM fibrils and homogenous BM, respectively. We also found that the dystrophin-associated protein complex (DAPC) and Rab10 were both present in a planar-polarized tubular compartment containing BM proteins. DAPC was essential for fibril formation and sufficient to reorient secretion towards the Rab10 route. Moreover, we identified a dual function for the exocyst complex in this context. First, the Exo70 subunit directly interacted with dystrophin to limit its planar polarization. Second, the exocyst complex was also required for the Rab8 route. Altogether, these results highlight important mechanistic aspects of BM protein secretion and illustrate how BM diversity can emerge from the spatial control of distinct traffic routes.
Collapse
Affiliation(s)
- Cynthia Dennis
- Université Clermont Auvergne, Institute of Genetics, Reproduction and Development (iGReD), UMR CNRS 6293—INSERM U1103, Faculté de Médecine, Clermont-Ferrand, France
| | - Pierre Pouchin
- Université Clermont Auvergne, Institute of Genetics, Reproduction and Development (iGReD), UMR CNRS 6293—INSERM U1103, Faculté de Médecine, Clermont-Ferrand, France
| | - Graziella Richard
- Université Clermont Auvergne, Institute of Genetics, Reproduction and Development (iGReD), UMR CNRS 6293—INSERM U1103, Faculté de Médecine, Clermont-Ferrand, France
| | - Vincent Mirouse
- Université Clermont Auvergne, Institute of Genetics, Reproduction and Development (iGReD), UMR CNRS 6293—INSERM U1103, Faculté de Médecine, Clermont-Ferrand, France
| |
Collapse
|
7
|
Ahmad K, Shaikh S, Chun HJ, Ali S, Lim JH, Ahmad SS, Lee EJ, Choi I. Extracellular matrix: the critical contributor to skeletal muscle regeneration-a comprehensive review. Inflamm Regen 2023; 43:58. [PMID: 38008778 PMCID: PMC10680355 DOI: 10.1186/s41232-023-00308-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 11/01/2023] [Indexed: 11/28/2023] Open
Abstract
The regenerative ability of skeletal muscle (SM) in response to damage, injury, or disease is a highly intricate process that involves the coordinated activities of multiple cell types and biomolecular factors. Of these, extracellular matrix (ECM) is considered a fundamental component of SM regenerative ability. This review briefly discusses SM myogenesis and regeneration, the roles played by muscle satellite cells (MSCs), other cells, and ECM components, and the effects of their dysregulations on these processes. In addition, we review the various types of ECM scaffolds and biomaterials used for SM regeneration, their applications, recent advances in ECM scaffold research, and their impacts on tissue engineering and SM regeneration, especially in the context of severe muscle injury, which frequently results in substantial muscle loss and impaired regenerative capacity. This review was undertaken to provide a comprehensive overview of SM myogenesis and regeneration, the stem cells used for muscle regeneration, the significance of ECM in SM regeneration, and to enhance understanding of the essential role of the ECM scaffold during SM regeneration.
Collapse
Affiliation(s)
- Khurshid Ahmad
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, 38541, South Korea
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, 38541, South Korea
| | - Sibhghatulla Shaikh
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, 38541, South Korea
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, 38541, South Korea
| | - Hee Jin Chun
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, 38541, South Korea
| | - Shahid Ali
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, 38541, South Korea
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, 38541, South Korea
| | - Jeong Ho Lim
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, 38541, South Korea
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, 38541, South Korea
| | - Syed Sayeed Ahmad
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, 38541, South Korea
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, 38541, South Korea
| | - Eun Ju Lee
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, 38541, South Korea.
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, 38541, South Korea.
| | - Inho Choi
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, 38541, South Korea.
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, 38541, South Korea.
| |
Collapse
|
8
|
Wang C, Zhao B, Zhai J, Wang A, Cao N, Liao T, Su R, He L, Li Y, Pei X, Jia Y, Yue W. Clinical-grade human umbilical cord-derived mesenchymal stem cells improved skeletal muscle dysfunction in age-associated sarcopenia mice. Cell Death Dis 2023; 14:321. [PMID: 37173309 PMCID: PMC10182022 DOI: 10.1038/s41419-023-05843-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 04/23/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023]
Abstract
With the expansion of the aging population, age-associated sarcopenia (AAS) has become a severe clinical disease of the elderly and a key challenge for healthy aging. Regrettably, no approved therapies currently exist for treating AAS. In this study, clinical-grade human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) were administrated to two classic mouse models (SAMP8 mice and D-galactose-induced aging mice), and their effects on skeletal muscle mass and function were investigated by behavioral tests, immunostaining, and western blotting. Core data results showed that hUC-MSCs significantly restored skeletal muscle strength and performance in both mouse models via mechanisms including raising the expression of crucial extracellular matrix proteins, activating satellite cells, enhancing autophagy, and impeding cellular aging. For the first time, the study comprehensively evaluates and demonstrates the preclinical efficacy of clinical-grade hUC-MSCs for AAS in two mouse models, which not only provides a novel model for AAS, but also highlights a promising strategy to improve and treat AAS and other age-associated muscle diseases. This study comprehensively evaluates the preclinical efficacy of clinical-grade hUC-MSCs in treating age-associated sarcopenia (AAS), and demonstrates that hUC-MSCs restore skeletal muscle strength and performance in two AAS mouse models via raising the expression of extracellular matrix proteins, activating satellite cells, enhancing autophagy, and impeding cellular aging, which highlights a promising strategy for AAS and other age-associated muscle diseases.
Collapse
Affiliation(s)
- Chao Wang
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Bichun Zhao
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Jinglei Zhai
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Ailin Wang
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Ning Cao
- 920th Hospital of Joint Logistics Support Force, Kunming, 650032, China
| | - Tuling Liao
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Ruyu Su
- South China Institute of Biomedicine, Guangzhou, 510005, China
| | - Lijuan He
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Radiation Medicine, Beijing, 100850, China
- South China Institute of Biomedicine, Guangzhou, 510005, China
| | - Yanhua Li
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Radiation Medicine, Beijing, 100850, China
- South China Institute of Biomedicine, Guangzhou, 510005, China
| | - Xuetao Pei
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Radiation Medicine, Beijing, 100850, China.
- South China Institute of Biomedicine, Guangzhou, 510005, China.
| | - Yali Jia
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Radiation Medicine, Beijing, 100850, China.
- South China Institute of Biomedicine, Guangzhou, 510005, China.
| | - Wen Yue
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Radiation Medicine, Beijing, 100850, China.
- South China Institute of Biomedicine, Guangzhou, 510005, China.
| |
Collapse
|
9
|
Giha HA, Sater MS, Alamin OAO. Diabetes mellitus tendino-myopathy: epidemiology, clinical features, diagnosis and management of an overlooked diabetic complication. Acta Diabetol 2022; 59:871-883. [PMID: 35291027 DOI: 10.1007/s00592-022-01860-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 01/22/2022] [Indexed: 12/13/2022]
Abstract
Tendino-myopathy, an unexplored niche, is a non-vascular unstated T2DM complication, which is largely disregarded in clinical practice, thus, we aim to explore it in this review. Literature search using published data from different online resources. Epidemiologically, reported prevalence varies around 10-90%, which is marked variable and unreliable. Clinically, diabetic tendino-myopathy is typified by restriction of movement, pain/tenderness, cramps and decreased functions. Moreover, myopathy is characterized by muscle atrophy, weakness and ischemia, and tendinopathy by deformities and reduced functions/precision. In tendonapthy, the three most affected regions are: the hand (cheiroarthropathy, Dupuytren's contracture, flexor tenosynovitis and carpel tunnel syndrome), shoulder (adhesive capsulitis, rotator cuff tendinopathy and tenosynovitis) and foot (Achilles tendinopathy with the risk of tear/rupture), in addition to diffuse idiopathic skeletal hyperostosis. Pathologically, it is characterized by decreased muscle fiber mass and increased fibrosis, with marked extracellular matrix remodeling and deposition of collagens. The tendon changes include decreased collagen fibril diameter, changed morphology, increased packing and disorganization, with overall thickening, and calcification. Diagnosis is basically clinical and radiological, while diagnostic biomarkers are awaited. Management is done by diabetes control, special nutrition and physiotherapy, while analgesics, steroids and surgery are used in tendinopathy. Several antisarcopenic drugs are in the pipeline. This review aims to bridge clinical practice with research and update routine diabetic checkup by inclusion of tendino-myopathies in the list with an emphasis on management.
Collapse
Affiliation(s)
- Hayder A Giha
- Medical Biochemistry and Molecular Biology, Khartoum, Sudan.
| | - Mai S Sater
- Department of Biochemistry, College of Medicine and Medical Sciences (CMMS), Arabian Gulf University (AGU), Manama, Kingdom of Bahrain
| | - Osman A O Alamin
- Department of Internal Medicine, Faculty of Medicine and Health Sciences, Alneelain University, Khartoum, Sudan
- Interventional Cardiology, Ahmad Gasim Cardiac Centre, Ahmad Gasim Hospital, Khartoum North, Sudan
| |
Collapse
|
10
|
Smith SJ, Fabian L, Sheikh A, Noche R, Cui X, Moore SA, Dowling JJ. Lysosomes and the pathogenesis of merosin-deficient congenital muscular dystrophy. Hum Mol Genet 2022; 31:733-747. [PMID: 34568901 PMCID: PMC9989739 DOI: 10.1093/hmg/ddab278] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 09/01/2021] [Accepted: 09/14/2021] [Indexed: 11/14/2022] Open
Abstract
Congenital muscular dystrophy type 1A (MDC1A), the most common congenital muscular dystrophy in Western countries, is caused by recessive mutations in LAMA2, the gene encoding laminin alpha 2. Currently, no cure or disease modifying therapy has been successfully developed for MDC1A. Examination of patient muscle biopsies revealed altered distribution of lysosomes. We hypothesized that this redistribution was a novel and potentially druggable aspect of disease pathogenesis. We explored this hypothesis using candyfloss (caf), a zebrafish model of MDC1A. We found that lysosome distribution in caf zebrafish was also abnormal. This altered localization was significantly associated with fiber detachment and could be prevented by blocking myofiber detachment. Overexpression of transcription factor EB, a transcription factor that promotes lysosomal biogenesis, led to increased lysosome content and decreased fiber detachment. We conclude that genetic manipulation of the lysosomal compartment is able to alter the caf zebrafish disease process, suggesting that lysosome function may be a target for disease modification.
Collapse
Affiliation(s)
- Sarah J Smith
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
- Program for Genetics & Genome Biology, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Department of Family Medicine, University of Calgary, Calgary T2R 0X7, Alberta
| | - Lacramioara Fabian
- Program for Genetics & Genome Biology, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Adeel Sheikh
- Program for Genetics & Genome Biology, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5C1, Canada
| | - Ramil Noche
- Program for Genetics & Genome Biology, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Zebrafish Genetics and Disease Models Core Facility, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Xiucheng Cui
- Zebrafish Genetics and Disease Models Core Facility, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Steven A Moore
- Department of Pathology, University of Iowa Medical Center, Iowa City, IA, USA
| | - James J Dowling
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
- Program for Genetics & Genome Biology, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Division of Neurology, Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
- Department of Paediatrics, University of Toronto, Toronto, ON M5G 1X8, Canada
| |
Collapse
|
11
|
Ebrahimi M, Lad H, Fusto A, Tiper Y, Datye A, Nguyen CT, Jacques E, Moyle LA, Nguyen T, Musgrave B, Chávez-Madero C, Bigot A, Chen C, Turner S, Stewart BA, Pegoraro E, Vitiello L, Gilbert PM. De novo revertant fiber formation and therapy testing in a 3D culture model of Duchenne muscular dystrophy skeletal muscle. Acta Biomater 2021; 132:227-244. [PMID: 34048976 DOI: 10.1016/j.actbio.2021.05.020] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 05/16/2021] [Accepted: 05/18/2021] [Indexed: 12/18/2022]
Abstract
The biological basis of Duchenne muscular dystrophy (DMD) pathology is only partially characterized and there are still few disease-modifying therapies available, therein underlying the value of strategies to model and study DMD. Dystrophin, the causative gene of DMD, is responsible for linking the cytoskeleton of muscle fibers to the extracellular matrix beyond the sarcolemma. We posited that disease-associated phenotypes not yet captured by two-dimensional culture methods would arise by generating multinucleated muscle cells within a three-dimensional (3D) extracellular matrix environment. Herein we report methods to produce 3D human skeletal muscle microtissues (hMMTs) using clonal, immortalized myoblast lines established from healthy and DMD donors. We also established protocols to evaluate immortalized hMMT self-organization and myotube maturation, as well as calcium handling, force generation, membrane stability (i.e., creatine kinase activity and Evans blue dye permeability) and contractile apparatus organization following electrical-stimulation. In examining hMMTs generated with a cell line wherein the dystrophin gene possessed a duplication of exon 2, we observed rare dystrophin-positive myotubes, which were not seen in 2D cultures. Further, we show that treating DMD hMMTs with a β1-integrin activating antibody, improves contractile apparatus maturation and stability. Hence, immortalized myoblast-derived DMD hMMTs offer a pre-clinical system with which to investigate the potential of duplicated exon skipping strategies and those that protect muscle cells from contraction-induced injury. STATEMENT OF SIGNIFICANCE: Duchenne muscular dystrophy (DMD) is a progressive muscle-wasting disorder that is caused by mutation of the dystrophin gene. The biological basis of DMD pathology is only partially characterized and there is no cure for this fatal disease. Here we report a method to produce 3D human skeletal muscle microtissues (hMMTs) using immortalized human DMD and healthy myoblasts. Morphological and functional assessment revealed DMD-associated pathophysiology including impaired calcium handling and de novo formation of dystrophin-positive revertant muscle cells in immortalized DMD hMMTs harbouring an exon 2 duplication, a feature of many DMD patients that has not been recapitulated in culture prior to this report. We further demonstrate that this "DMD in a dish" system can be used as a pre-clinical assay to test a putative DMD therapeutic and study the mechanism of action.
Collapse
Affiliation(s)
- Majid Ebrahimi
- Donnelly Centre, University of Toronto, Toronto, ON M5S3E1, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S3G9, Canada
| | - Heta Lad
- Donnelly Centre, University of Toronto, Toronto, ON M5S3E1, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S3G9, Canada
| | - Aurora Fusto
- Department of Neuroscience, University of Padua, Padua, 35128, Italy
| | - Yekaterina Tiper
- Donnelly Centre, University of Toronto, Toronto, ON M5S3E1, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S3G9, Canada
| | - Asiman Datye
- Donnelly Centre, University of Toronto, Toronto, ON M5S3E1, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S3G9, Canada
| | - Christine T Nguyen
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S3G5, Canada; Department of Biology, University of Toronto Mississauga, Mississauga, ON L5L1C6, Canada
| | - Erik Jacques
- Donnelly Centre, University of Toronto, Toronto, ON M5S3E1, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S3G9, Canada
| | - Louise A Moyle
- Donnelly Centre, University of Toronto, Toronto, ON M5S3E1, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S3G9, Canada
| | - Thy Nguyen
- Donnelly Centre, University of Toronto, Toronto, ON M5S3E1, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S3G9, Canada
| | - Brennen Musgrave
- Donnelly Centre, University of Toronto, Toronto, ON M5S3E1, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S3G9, Canada
| | - Carolina Chávez-Madero
- Donnelly Centre, University of Toronto, Toronto, ON M5S3E1, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S3G9, Canada
| | - Anne Bigot
- Sorbonne Universite, INSERM, Association Institut de Myologie, Centre de Recherche en Myologie, Paris UMRS974, France
| | - Chun Chen
- Pliant Therapeutics, Inc, South San Francisco, California 94080, USA
| | - Scott Turner
- Pliant Therapeutics, Inc, South San Francisco, California 94080, USA
| | - Bryan A Stewart
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S3G5, Canada; Department of Biology, University of Toronto Mississauga, Mississauga, ON L5L1C6, Canada
| | - Elena Pegoraro
- Department of Neuroscience, University of Padua, Padua, 35128, Italy
| | - Libero Vitiello
- Department of Biology, University of Padua, Padua 35131, Italy; Interuniversity Institute of Myology (IIM), Italy
| | - Penney M Gilbert
- Donnelly Centre, University of Toronto, Toronto, ON M5S3E1, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S3G9, Canada; Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S3G5, Canada.
| |
Collapse
|
12
|
Dowling P, Gargan S, Murphy S, Zweyer M, Sabir H, Swandulla D, Ohlendieck K. The Dystrophin Node as Integrator of Cytoskeletal Organization, Lateral Force Transmission, Fiber Stability and Cellular Signaling in Skeletal Muscle. Proteomes 2021; 9:9. [PMID: 33540575 PMCID: PMC7931087 DOI: 10.3390/proteomes9010009] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/22/2021] [Accepted: 01/27/2021] [Indexed: 12/13/2022] Open
Abstract
The systematic bioanalytical characterization of the protein product of the DMD gene, which is defective in the pediatric disorder Duchenne muscular dystrophy, led to the discovery of the membrane cytoskeletal protein dystrophin. Its full-length muscle isoform Dp427-M is tightly linked to a sarcolemma-associated complex consisting of dystroglycans, sarcoglyans, sarcospan, dystrobrevins and syntrophins. Besides these core members of the dystrophin-glycoprotein complex, the wider dystrophin-associated network includes key proteins belonging to the intracellular cytoskeleton and microtubular assembly, the basal lamina and extracellular matrix, various plasma membrane proteins and cytosolic components. Here, we review the central role of the dystrophin complex as a master node in muscle fibers that integrates cytoskeletal organization and cellular signaling at the muscle periphery, as well as providing sarcolemmal stabilization and contractile force transmission to the extracellular region. The combination of optimized tissue extraction, subcellular fractionation, advanced protein co-purification strategies, immunoprecipitation, liquid chromatography and two-dimensional gel electrophoresis with modern mass spectrometry-based proteomics has confirmed the composition of the core dystrophin complex at the sarcolemma membrane. Importantly, these biochemical and mass spectrometric surveys have identified additional members of the wider dystrophin network including biglycan, cavin, synemin, desmoglein, tubulin, plakoglobin, cytokeratin and a variety of signaling proteins and ion channels.
Collapse
Affiliation(s)
- Paul Dowling
- Department of Biology, Maynooth University, National University of Ireland, W23F2H6 Maynooth, Co. Kildare, Ireland; (P.D.); (S.G.)
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, W23F2H6 Maynooth, Co. Kildare, Ireland
| | - Stephen Gargan
- Department of Biology, Maynooth University, National University of Ireland, W23F2H6 Maynooth, Co. Kildare, Ireland; (P.D.); (S.G.)
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, W23F2H6 Maynooth, Co. Kildare, Ireland
| | - Sandra Murphy
- Newcastle Fibrosis Research Group, Newcastle University Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE24HH, UK;
| | - Margit Zweyer
- Department of Neonatology and Paediatric Intensive Care, Children’s Hospital, University of Bonn, D53113 Bonn, Germany; (M.Z.); (H.S.)
| | - Hemmen Sabir
- Department of Neonatology and Paediatric Intensive Care, Children’s Hospital, University of Bonn, D53113 Bonn, Germany; (M.Z.); (H.S.)
| | - Dieter Swandulla
- Institute of Physiology II, University of Bonn, D53115 Bonn, Germany;
| | - Kay Ohlendieck
- Department of Biology, Maynooth University, National University of Ireland, W23F2H6 Maynooth, Co. Kildare, Ireland; (P.D.); (S.G.)
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, W23F2H6 Maynooth, Co. Kildare, Ireland
| |
Collapse
|
13
|
Zhu Y, Wu X, Liu Y, Zhang J, Lin D. Synergistic growth inhibition effect of TiO 2 nanoparticles and tris(1,3-dichloro-2-propyl) phosphate on earthworms in soil. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111462. [PMID: 33069946 DOI: 10.1016/j.ecoenv.2020.111462] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 10/01/2020] [Accepted: 10/03/2020] [Indexed: 06/11/2023]
Abstract
The co-existence of organic pollutants and nanoparticles in the environment may lead to combined biological effects. The joint toxicity of pollutants and nanoparticles has been receiving increasing attention from researchers, but few studies have focused on soil biota due to the complexity of soil matrices. This study investigated the effects of tris(1,3-dichloro-2-propyl) phosphate (TDCIPP) at 0, 5, and 25 mg/kg and nanoparticulate TiO2 (nTiO2) at 0, 500, and 2500 mg/kg in a 3 × 3 factorial arrangement of treatments for 28 days (d) on Eisenia fetida (earthworm). Compared with the control group (the 0 mg/kg TDCIPP + 0 mg/kg nTiO2 treatment), all other single (TDCIPP or nTiO2) and binary (TDCIPP + nTiO2) treatments except for the single 500 mg/kg nTiO2 treatment significantly reduced the weight gain rate of E. fetida. The binary treatments had significantly greater such effect than their corresponding single treatments, exhibiting a synergistic toxicity between TDCIPP and nTiO2 on the growth of E. fetida. Since TDCIPP and nTiO2 had no significant effect on their concentrations in the soil or in E. fetida during binary exposure, the synergistic toxicity could be a result of the superimposition of the toxicity pathways of TDCIPP and nTiO2. Transcriptomic analysis of E. fetida intestinal region revealed that exposure to 25 mg/kg TDCIPP or 2500 mg/kg nTiO2 affected nutrient-related or cell apoptosis and DNA damage related genes, respectively; their co-exposure greatly inhibited genes related to nutrient digestion and absorption, while causing abnormal transcription of genes related to the development and maintenance of E. fetida's muscles, leading to synergistic toxicity. These findings provide new insights into the environmental risks of organophosphorus flame retardants, nanoparticles, and their co-exposure.
Collapse
Affiliation(s)
- Ya Zhu
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Watershed Science and Health, School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China
| | - Xinyue Wu
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Yaoxuan Liu
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Jianying Zhang
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Zhejiang University, Hangzhou 310058, China
| | - Daohui Lin
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
14
|
Martinelli A, Andreo L, Alves AN, Terena SML, Santos TC, Bussadori SK, Fernandes KPS, Mesquita-Ferrari RA. Photobiomodulation modulates the expression of inflammatory cytokines during the compensatory hypertrophy process in skeletal muscle. Lasers Med Sci 2020; 36:791-802. [PMID: 32638240 DOI: 10.1007/s10103-020-03095-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 07/01/2020] [Indexed: 02/06/2023]
Abstract
Compensatory hypertrophy (CH) occurs due to excessive mechanical load on a muscle, promoting an increase in the size of muscle fibers. In clinical practice, situations such as partial nerve injuries, denervation, and muscle imbalance caused by trauma to muscles and nerves or diseases that promote the loss of nerve conduction can induce CH in muscle fibers. Photobiomodulation (PBM) has demonstrated beneficial effects on muscle tissue during CH. The aim of the present study was to evaluate the effect of PBM on the inflammatory cytokines interleukin-6 (IL-6) and tumor necrosis factor alpha (TNF-α) as well as type 2 metalloproteinases (MMP-2) during the process of CH due to excessive load on the plantaris muscle in rats. Forty-five Wistar rats weighing 250 g were divided into three groups: control group (n = 10), hypertrophy (H) group (n = 40), and H + PBM group (n = 40). CH was induced through the ablation of synergist muscles of the plantaris muscle. The tendons of the gastrocnemius and soleus muscles were isolated and sectioned to enable the partial removal of each of muscle. The preserved plantaris muscle below the removed muscles was submitted to excessive functional load. PBM was performed with low-level laser (AsGaAl, λ = 780 nm; 40 mW; energy density: 10 J/cm2; 10 s on each point, 8 points; 3.2 J). Animals from each group were euthanized after 7 and 14 days. The plantaris muscles were carefully removed and sent for analysis of the gene and protein expression of IL-6 and TNF-α using qPCR and ELISA, respectively. MMP-2 activity was analyzed using zymography. The results were submitted to statistical analysis (ANOVA + Tukey's test, p < 0.05). The protein expression analysis revealed an increase in IL-6 levels in the H + PBM group compared to the H group and a reduction in the H group compared to the control group. A reduction in TNF-α was found in the H and H + PBM groups compared to the control group at 7 days. The gene expression analysis revealed an increase in IL-6 in the H + PBM group compared to the H group at 14 days as well as an increase in TNF-α in the H + PBM group compared to the H group at 7 days. Increases in MMP-2 were found in the H and H + PBM groups compared to the control group at both 7 and 14 days. Based on findings in the present study, it is concluded that PBM was able to modulate pro-inflammatory cytokines that are essential for the compensatory hypertrophy process. However, it has not shown a modulation effect directly in MMP-2 activity during the same period evaluated.
Collapse
Affiliation(s)
- A Martinelli
- Postgraduate Program in Rehabilitation Sciences, Universidade Nove de Julho (UNINOVE), Rua Vergueiro, 349, São Paulo, SP, 01504001, Brazil
| | - L Andreo
- Postgraduate Program in Biophotonics Applied to Health Sciences, Universidade Nove de Julho (UNINOVE), Rua Vergueiro, 349, São Paulo, SP, 01504001, Brazil
| | - A N Alves
- Postgraduate Program in Biophotonics Applied to Health Sciences, Universidade Nove de Julho (UNINOVE), Rua Vergueiro, 349, São Paulo, SP, 01504001, Brazil
| | - S M L Terena
- Postgraduate Program in Biophotonics Applied to Health Sciences, Universidade Nove de Julho (UNINOVE), Rua Vergueiro, 349, São Paulo, SP, 01504001, Brazil
| | - T C Santos
- Postgraduate Program in Biophotonics Applied to Health Sciences, Universidade Nove de Julho (UNINOVE), Rua Vergueiro, 349, São Paulo, SP, 01504001, Brazil
| | - S K Bussadori
- Postgraduate Program in Rehabilitation Sciences, Universidade Nove de Julho (UNINOVE), Rua Vergueiro, 349, São Paulo, SP, 01504001, Brazil.,Postgraduate Program in Biophotonics Applied to Health Sciences, Universidade Nove de Julho (UNINOVE), Rua Vergueiro, 349, São Paulo, SP, 01504001, Brazil
| | - K P S Fernandes
- Postgraduate Program in Biophotonics Applied to Health Sciences, Universidade Nove de Julho (UNINOVE), Rua Vergueiro, 349, São Paulo, SP, 01504001, Brazil
| | - Raquel Agnelli Mesquita-Ferrari
- Postgraduate Program in Rehabilitation Sciences, Universidade Nove de Julho (UNINOVE), Rua Vergueiro, 349, São Paulo, SP, 01504001, Brazil. .,Postgraduate Program in Biophotonics Applied to Health Sciences, Universidade Nove de Julho (UNINOVE), Rua Vergueiro, 349, São Paulo, SP, 01504001, Brazil.
| |
Collapse
|
15
|
Ahmad K, Shaikh S, Ahmad SS, Lee EJ, Choi I. Cross-Talk Between Extracellular Matrix and Skeletal Muscle: Implications for Myopathies. Front Pharmacol 2020; 11:142. [PMID: 32184725 PMCID: PMC7058629 DOI: 10.3389/fphar.2020.00142] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Accepted: 02/04/2020] [Indexed: 12/13/2022] Open
Abstract
Skeletal muscle (SM) comprises around 40% of total body weight and is among the most important plastic tissues, as it supports skeletal development, controls body temperature, and manages glucose levels. Extracellular matrix (ECM) maintains the integrity of SM, enables biochemical signaling, provides structural support, and plays a vital role during myogenesis. Several human diseases are coupled with dysfunctions of the ECM, and several ECM components are involved in disease pathologies that affect almost all organ systems. Thus, mutations in ECM genes that encode proteins and their transmembrane receptors can result in diverse SM diseases, a large proportion of which are types of fibrosis and muscular dystrophy. In this review, we present major ECM components of SMs related to muscle-associated diseases, and discuss two major ECM myopathies, namely, collagen myopathy and laminin myopathies, and their therapeutic managements. A comprehensive understanding of the mechanisms underlying these ECM-related myopathies would undoubtedly aid the discovery of novel treatments for these devastating diseases.
Collapse
Affiliation(s)
- Khurshid Ahmad
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, South Korea
| | - Sibhghatulla Shaikh
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, South Korea
| | - Syed Sayeed Ahmad
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, South Korea
| | - Eun Ju Lee
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, South Korea
| | - Inho Choi
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, South Korea
| |
Collapse
|
16
|
Mukund K, Subramaniam S. Skeletal muscle: A review of molecular structure and function, in health and disease. WILEY INTERDISCIPLINARY REVIEWS. SYSTEMS BIOLOGY AND MEDICINE 2020; 12:e1462. [PMID: 31407867 PMCID: PMC6916202 DOI: 10.1002/wsbm.1462] [Citation(s) in RCA: 285] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 07/03/2019] [Accepted: 07/03/2019] [Indexed: 12/11/2022]
Abstract
Decades of research in skeletal muscle physiology have provided multiscale insights into the structural and functional complexity of this important anatomical tissue, designed to accomplish the task of generating contraction, force and movement. Skeletal muscle can be viewed as a biomechanical device with various interacting components including the autonomic nerves for impulse transmission, vasculature for efficient oxygenation, and embedded regulatory and metabolic machinery for maintaining cellular homeostasis. The "omics" revolution has propelled a new era in muscle research, allowing us to discern minute details of molecular cross-talk required for effective coordination between the myriad interacting components for efficient muscle function. The objective of this review is to provide a systems-level, comprehensive mapping the molecular mechanisms underlying skeletal muscle structure and function, in health and disease. We begin this review with a focus on molecular mechanisms underlying muscle tissue development (myogenesis), with an emphasis on satellite cells and muscle regeneration. We next review the molecular structure and mechanisms underlying the many structural components of the muscle: neuromuscular junction, sarcomere, cytoskeleton, extracellular matrix, and vasculature surrounding muscle. We highlight aberrant molecular mechanisms and their possible clinical or pathophysiological relevance. We particularly emphasize the impact of environmental stressors (inflammation and oxidative stress) in contributing to muscle pathophysiology including atrophy, hypertrophy, and fibrosis. This article is categorized under: Physiology > Mammalian Physiology in Health and Disease Developmental Biology > Developmental Processes in Health and Disease Models of Systems Properties and Processes > Cellular Models.
Collapse
Affiliation(s)
- Kavitha Mukund
- Department of BioengineeringUniversity of CaliforniaSan DiegoCalifornia
| | - Shankar Subramaniam
- Department of Bioengineering, Bioinformatics & Systems BiologyUniversity of CaliforniaSan DiegoCalifornia
- Department of Computer Science and EngineeringUniversity of CaliforniaSan DiegoCalifornia
- Department of Cellular and Molecular Medicine and NanoengineeringUniversity of CaliforniaSan DiegoCalifornia
| |
Collapse
|
17
|
Labelle-Dumais C, Schuitema V, Hayashi G, Hoff K, Gong W, Dao DQ, Ullian EM, Oishi P, Margeta M, Gould DB. COL4A1 Mutations Cause Neuromuscular Disease with Tissue-Specific Mechanistic Heterogeneity. Am J Hum Genet 2019; 104:847-860. [PMID: 31051113 DOI: 10.1016/j.ajhg.2019.03.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 03/05/2019] [Indexed: 01/18/2023] Open
Abstract
Collagen type IV alpha 1 and alpha 2 chains form heterotrimers ([α1(IV)]2α2(IV)) that represent a fundamental basement membrane constituent. Dominant COL4A1 and COL4A2 mutations cause a multisystem disorder that is marked by clinical heterogeneity and variable expressivity and that is generally characterized by the presence of cerebrovascular disease with ocular, renal, and muscular involvement. Despite the fact that muscle pathology is reported in up to one-third of individuals with COL4A1 and COL4A2 mutations and in animal models with mutations in COL4A1 and COL4A2 orthologs, the pathophysiological mechanisms underlying COL4A1-related myopathy are unknown. In general, mutations are thought to impair [α1(IV)]2α2(IV) secretion. Whether pathogenesis results from intracellular retention, extracellular deficiency, or the presence of mutant proteins in basement membranes represents an important gap in knowledge and a major obstacle for developing targeted interventions. We report that Col4a1 mutant mice develop progressive neuromuscular pathology that models human disease. We demonstrate that independent muscular, neural, and vascular insults contribute to neuromyopathy and that there is mechanistic heterogeneity among tissues. Importantly, we provide evidence of a COL4A1 functional subdomain with disproportionate significance for tissue-specific pathology and demonstrate that a potential therapeutic strategy aimed at promoting [α1(IV)]2α2(IV) secretion can ameliorate or exacerbate myopathy in a mutation-dependent manner. These data have important translational implications for prediction of clinical outcomes based on genotype, development of mechanism-based interventions, and genetic stratification for clinical trials. Collectively, our data underscore the importance of the [α1(IV)]2α2(IV) network as a multifunctional signaling platform and show that allelic and tissue-specific mechanistic heterogeneities contribute to the variable expressivity of COL4A1 and COL4A2 mutations.
Collapse
|
18
|
Lionello VM, Nicot AS, Sartori M, Kretz C, Kessler P, Buono S, Djerroud S, Messaddeq N, Koebel P, Prokic I, Hérault Y, Romero NB, Laporte J, Cowling BS. Amphiphysin 2 modulation rescues myotubular myopathy and prevents focal adhesion defects in mice. Sci Transl Med 2019; 11:11/484/eaav1866. [DOI: 10.1126/scitranslmed.aav1866] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 11/14/2018] [Accepted: 02/28/2019] [Indexed: 12/13/2022]
Abstract
Centronuclear myopathies (CNMs) are severe diseases characterized by muscle weakness and myofiber atrophy. Currently, there are no approved treatments for these disorders. Mutations in the phosphoinositide 3-phosphatase myotubularin (MTM1) are responsible for X-linked CNM (XLCNM), also called myotubular myopathy, whereas mutations in the membrane remodeling Bin/amphiphysin/Rvs protein amphiphysin 2 [bridging integrator 1 (BIN1)] are responsible for an autosomal form of the disease. Here, we investigated the functional relationship between MTM1 and BIN1 in healthy skeletal muscle and in the physiopathology of CNM. Genetic overexpression of human BIN1 efficiently rescued the muscle weakness and life span in a mouse model of XLCNM. Exogenous human BIN1 expression with adeno-associated virus after birth also prevented the progression of the disease, suggesting that human BIN1 overexpression can compensate for the lack of MTM1 expression in this mouse model. Our results showed that MTM1 controls cell adhesion and integrin localization in mammalian muscle. Alterations in this pathway in Mtm1−/y mice were associated with defects in myofiber shape and size. BIN1 expression rescued integrin and laminin alterations and restored myofiber integrity, supporting the idea that MTM1 and BIN1 are functionally linked and necessary for focal adhesions in skeletal muscle. The results suggest that BIN1 modulation might be an effective strategy for treating XLCNM.
Collapse
|
19
|
Petrosino JM, Leask A, Accornero F. Genetic manipulation of CCN2/CTGF unveils cell-specific ECM-remodeling effects in injured skeletal muscle. FASEB J 2019; 33:2047-2057. [PMID: 30216109 PMCID: PMC6338641 DOI: 10.1096/fj.201800622rr] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 08/20/2018] [Indexed: 01/03/2023]
Abstract
In skeletal muscle, extracellular matrix (ECM) remodeling can either support the complete regeneration of injured muscle or facilitate pathologic fibrosis and muscle degeneration. Muscular dystrophy (MD) is a group of genetic disorders that results in a progressive decline in muscle function and is characterized by the abundant deposition of fibrotic tissue. Unlike acute injury, where ECM remodeling is acute and transient, in MD, remodeling persists until fibrosis obstructs the regenerative efforts of diseased muscles. Thus, understanding how ECM is deposited and organized is critical in the context of muscle repair. Connective tissue growth factor (CTGF or CCN2) is a matricellular protein expressed by multiple cell types in response to tissue injury. Although used as a general marker of fibrosis, the cell type-dependent role of CTGF in dystrophic muscle has not been elucidated. To address this question, a conditional Ctgf myofiber and fibroblast-knockout mouse lines were generated and crossed to a dystrophic background. Only myofiber-selective inhibition of CTGF protected δ-sarcoglycan-null ( Sgcd-/-) mice from the dystrophic phenotype, and it did so by affecting collagen organization in a way that allowed for improvements in dystrophic muscle regeneration and function. To confirm that muscle-specific CTGF functions to mediate collagen organization, we generated mice with transgenic muscle-specific overexpression of CTGF. Again, genetic modulation of CTGF in muscle was not sufficient to drive fibrosis, but altered collagen content and organization after injury. Our results show that the myofibers are critical mediators of the deleterious effects associated with CTGF in MD and acutely injured skeletal muscle.-Petrosino, J. M., Leask, A., Accornero, F. Genetic manipulation of CCN2/CTGF unveils cell-specific ECM-remodeling effects in injured skeletal muscle.
Collapse
Affiliation(s)
- Jennifer M. Petrosino
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, USA
| | - Andrew Leask
- Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Federica Accornero
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
20
|
CBP and P300 regulate distinct gene networks required for human primary myoblast differentiation and muscle integrity. Sci Rep 2018; 8:12629. [PMID: 30135524 PMCID: PMC6105712 DOI: 10.1038/s41598-018-31102-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 08/06/2018] [Indexed: 01/01/2023] Open
Abstract
The acetyltransferases CBP and P300 have been implicated in myogenesis in mouse immortalized cell lines but these studies focused only on the expression of a handful of myogenic factors. Hence, the respective role of these two related cofactors and their impact at global scale on gene expression rewiring during primary myoblast differentiation remain unknown. Here, we characterised the gene networks regulated by these two epigenetic enzymes during human primary myoblast differentiation (HPM). We found that CBP and p300 play a critical role in the activation of the myogenic program and mostly regulate distinct gene sets to control several aspects of HPM biology, even though they also exhibit some degree of redundancy. Moreover, CBP or P300 knockdown strongly impaired muscle cell adhesion and resulted in the activation of inflammation markers, two hallmarks of dystrophic disease. This was further validated in zebrafish where inhibition of CBP and P300 enzymatic activities led to cell adhesion defects and muscle fiber detachment. Our data highlight an unforeseen link between CBP/P300 activity and the emergence of dystrophic phenotypes. They thereby identify CBP and P300 as mediators of adult muscle integrity and suggest a new lead for intervention in muscular dystrophy.
Collapse
|
21
|
Thomas JD, Oliveira R, Sznajder ŁJ, Swanson MS. Myotonic Dystrophy and Developmental Regulation of RNA Processing. Compr Physiol 2018; 8:509-553. [PMID: 29687899 PMCID: PMC11323716 DOI: 10.1002/cphy.c170002] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Myotonic dystrophy (DM) is a multisystemic disorder caused by microsatellite expansion mutations in two unrelated genes leading to similar, yet distinct, diseases. DM disease presentation is highly variable and distinguished by differences in age-of-onset and symptom severity. In the most severe form, DM presents with congenital onset and profound developmental defects. At the molecular level, DM pathogenesis is characterized by a toxic RNA gain-of-function mechanism that involves the transcription of noncoding microsatellite expansions. These mutant RNAs disrupt key cellular pathways, including RNA processing, localization, and translation. In DM, these toxic RNA effects are predominantly mediated through the modulation of the muscleblind-like and CUGBP and ETR-3-like factor families of RNA binding proteins (RBPs). Dysfunction of these RBPs results in widespread RNA processing defects culminating in the expression of developmentally inappropriate protein isoforms in adult tissues. The tissue that is the focus of this review, skeletal muscle, is particularly sensitive to mutant RNA-responsive perturbations, as patients display a variety of developmental, structural, and functional defects in muscle. Here, we provide a comprehensive overview of DM1 and DM2 clinical presentation and pathology as well as the underlying cellular and molecular defects associated with DM disease onset and progression. Additionally, fundamental aspects of skeletal muscle development altered in DM are highlighted together with ongoing and potential therapeutic avenues to treat this muscular dystrophy. © 2018 American Physiological Society. Compr Physiol 8:509-553, 2018.
Collapse
Affiliation(s)
- James D. Thomas
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, University of Florida, College of Medicine, Gainesville, Florida, USA
| | - Ruan Oliveira
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, University of Florida, College of Medicine, Gainesville, Florida, USA
| | - Łukasz J. Sznajder
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, University of Florida, College of Medicine, Gainesville, Florida, USA
| | - Maurice S. Swanson
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, University of Florida, College of Medicine, Gainesville, Florida, USA
| |
Collapse
|
22
|
Rayagiri SS, Ranaldi D, Raven A, Mohamad Azhar NIF, Lefebvre O, Zammit PS, Borycki AG. Basal lamina remodeling at the skeletal muscle stem cell niche mediates stem cell self-renewal. Nat Commun 2018. [PMID: 29540680 PMCID: PMC5852002 DOI: 10.1038/s41467-018-03425-3] [Citation(s) in RCA: 139] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
A central question in stem cell biology is the relationship between stem cells and their niche. Although previous reports have uncovered how signaling molecules released by niche cells support stem cell function, the role of the extra-cellular matrix (ECM) within the niche is unclear. Here, we show that upon activation, skeletal muscle stem cells (satellite cells) induce local remodeling of the ECM and the deposition of laminin-α1 and laminin-α5 into the basal lamina of the satellite cell niche. Genetic ablation of laminin-α1, disruption of integrin-α6 signaling or blocking matrix metalloproteinase activity impairs satellite cell expansion and self-renewal. Collectively, our findings establish that remodeling of the ECM is an integral process of stem cell activity to support propagation and self-renewal, and may explain the effect laminin-α1-containing supports have on embryonic and adult stem cells, as well as the regenerative activity of exogenous laminin-111 therapy. Extracellular matrix (ECM) remodelling is thought to have effects on muscle stem cells that support muscle homeostasis. Here the authors show ECM remodeling controls satellite cell self-renewal through deposition of laminin-α1 into the satellite cell niche.
Collapse
Affiliation(s)
- Shantisree Sandeepani Rayagiri
- Department of Biomedical Science, University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, UK.,Biotherapeutics Development Unit, Cancer Research UK, Clare Hall laboratories, Blanche Lane, South Mimms, Hertfordshire, EN6 3LD, UK
| | - Daniele Ranaldi
- Department of Biomedical Science, University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, UK
| | - Alexander Raven
- Department of Biomedical Science, University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, UK.,MRC Centre for Regenerative Medicine, SCRM Building, University of Edinburgh, 5 Little France Drive, Edinburgh, EH16 4UU, UK
| | - Nur Izzah Farhana Mohamad Azhar
- Department of Biomedical Science, University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, UK.,Oxford Publishing (Malaysia), Shah Alam, 40150, Selangor Darul Ehsan, Malaysia
| | - Olivier Lefebvre
- Inserm U1109 MN3T, F-67200, Strasbourg, France.,Université de Strasbourg, F-67000, Strasbourg, France.,LabEx Medalis Université de Strasbourg, F-67000, Strasbourg, France.,Fédération de Médecine Translationnelle de Strasbourg (FMTS), F-67000, Strasbourg, France
| | - Peter S Zammit
- Randall Centre for Cell and Molecular Biophysics, Faculty of Life Sciences & Medicine King's College London, New Hunt's House, Guy's Campus, London, SE1 1UL, UK
| | - Anne-Gaëlle Borycki
- Department of Biomedical Science, University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, UK.
| |
Collapse
|
23
|
Ba MA, Surina J, Singer CA, Valencik ML. Knockdown of subunit 3 of the COP9 signalosome inhibits C2C12 myoblast differentiation via NF-KappaB signaling pathway. BMC Pharmacol Toxicol 2017. [PMID: 28623958 PMCID: PMC5474012 DOI: 10.1186/s40360-017-0154-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Background The COP9 signalosome (CSN) is a conserved protein complex composed of 8 subunits designated CSN1-CSN8. CSN3 represents the third subunit of the CSN and maintains the integrity of the complex. CSN3 binds to the striated muscle-specific β1D integrin tail, and its subcellular localization is altered in differentiated skeletal muscle cells. However, the role of CSN3 in skeletal muscle differentiation is unknown. The main goal of this study was to identify whether CSN3 participates in myoblast differentiation and the signalling mechanisms involved using C2C12 cells as a skeletal muscle cell model. Methods Small-hairpin (shRNA) was used to knockdown CSN3 in C2C12 cells. Differentiation was evaluated by immunostaining and confocal microscopy. Markers of differentiation, NF-κB signaling and CSN subunits expression, were assessed by immunoblotting and/or immunostaining. Cell proliferation was analysed by cell counting, flow cytometry and a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Data were analyzed by one or two-way analysis of variance (ANOVA) followed by post-hoc testing. Results Transduction of C2C12 cells with two distinct CSN3 shRNAs led to the production of two cells lines expressing 7% of CSN3 protein (shCSN3-Low) and 43% of CSN3 protein (CSN3-Med) compared to controls. Knockdown of CSN3 was accompanied by destabilization of several CSN subunits and increased nuclear NF-κB localization. shCSN3-Med cells expressed less myogenin and formed shorter and thinner myotubes. In contrast, the shCSN3-Low cells expressed higher levels of myogenin prior and during the differentiation and remained mononucleated throughout the differentiation period. Both CSN3 knockdown cell lines failed to express sarcomeric myosin heavy chain (MHC) protein during differentiation. The fusion index was significantly higher in control cells than in shCSN3-Med cells, whereas shCSN3-Low cells showed no cell fusion. Interestingly, CSN3 knockdown cells exhibited a significantly slower growth rate relative to the control cells. Cell cycle analysis revealed that CSN3 knockdowns delayed in S phase and had increased levels of nuclear p21/Cip1 and p27/Kip1. Conclusions This study clarifies the first step toward unrevealing the CSN3/CSN-mediated pathways that controls C2C12 differentiation and proliferation. Further in vivo characterization of CSN/CSN3 may lead to the discovery of novel therapeutic target of skeletal muscle diseases such as muscular dystrophies.
Collapse
Affiliation(s)
- Mariam A Ba
- Department of Pharmacology, University of Nevada School of Medicine, Reno, NV, USA.
| | - Jeffrey Surina
- Department of Pharmacology, University of Nevada School of Medicine, Reno, NV, USA
| | - Cherie A Singer
- Department of Pharmacology, University of Nevada School of Medicine, Reno, NV, USA
| | - Maria L Valencik
- Department of Pharmacology, University of Nevada School of Medicine, Reno, NV, USA
| |
Collapse
|
24
|
Doe J, Kaindl AM, Jijiwa M, de la Vega M, Hu H, Griffiths GS, Fontelonga TM, Barraza P, Cruz V, Van Ry P, Ramos JW, Burkin DJ, Matter ML. PTRH2 gene mutation causes progressive congenital skeletal muscle pathology. Hum Mol Genet 2017; 26:1458-1464. [PMID: 28175314 DOI: 10.1093/hmg/ddx048] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 02/03/2017] [Indexed: 11/13/2022] Open
Abstract
Peptidyl-tRNA hydrolase 2 (PTRH2) regulates integrin-mediated pro-survival and apoptotic signaling. PTRH2 is critical in muscle development and regulates myogenic differentiation. In humans a biallelic mutation in the PTRH2 gene causes infantile-onset multisystem disease with progressive muscle weakness. We report here that the Ptrh2 knockout mouse model recapitulates the progressive congenital muscle pathology observed in patients. Ptrh2 null mice demonstrate multiple degenerating and regenerating muscle fibers, increased central nuclei, elevated creatine kinase activity and endomysial fibrosis. This progressive muscle pathology resembles the muscular dystrophy phenotype in humans and mice lacking the α7 integrin. We demonstrate that in normal muscle Ptrh2 associates in a complex with the α7β1 integrin at the sarcolemma and Ptrh2 expression is decreased in α7 integrin null muscle. Furthermore, Ptrh2 expression is altered in skeletal muscle of classical congenital muscular dystrophy mouse models. Ptrh2 levels were up-regulated in dystrophin deficient mdx muscle, which correlates with the elevated levels of the α7β1 integrin observed in mdx muscle and Duchenne muscular dystrophy patients. Similar to the α7 integrin, Ptrh2 expression was decreased in laminin-α2 dyW null gastrocnemius muscle. Our data establishes a PTRH2 mutation as a novel driver of congenital muscle degeneration and identifies a potential novel target to treat muscle myopathies.
Collapse
Affiliation(s)
- Jinger Doe
- Department of Pharmacology, University of Nevada School of Medicine, Reno, NV 89557, USA
| | - Angela M Kaindl
- Institute of Cell Biology and Neurobiology.,Department of Pediatric Neurology, Charité -Universitätsmedizin, 13353 Berlin, Germany
| | - Mayumi Jijiwa
- The University of Hawaii Cancer Center, Honolulu, HI 96813, USA
| | | | - Hao Hu
- Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | | | - Tatiana M Fontelonga
- Department of Pharmacology, University of Nevada School of Medicine, Reno, NV 89557, USA
| | - Pamela Barraza
- Department of Pharmacology, University of Nevada School of Medicine, Reno, NV 89557, USA
| | - Vivian Cruz
- Department of Pharmacology, University of Nevada School of Medicine, Reno, NV 89557, USA
| | - Pam Van Ry
- Department of Pharmacology, University of Nevada School of Medicine, Reno, NV 89557, USA
| | - Joe W Ramos
- The University of Hawaii Cancer Center, Honolulu, HI 96813, USA
| | - Dean J Burkin
- Department of Pharmacology, University of Nevada School of Medicine, Reno, NV 89557, USA
| | | |
Collapse
|
25
|
Simões IN, Vale P, Soker S, Atala A, Keller D, Noiva R, Carvalho S, Peleteiro C, Cabral JMS, Eberli D, da Silva CL, Baptista PM. Acellular Urethra Bioscaffold: Decellularization of Whole Urethras for Tissue Engineering Applications. Sci Rep 2017; 7:41934. [PMID: 28165009 PMCID: PMC5292742 DOI: 10.1038/srep41934] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 01/03/2017] [Indexed: 11/16/2022] Open
Abstract
Patients with stress urinary incontinence mainly suffer from malfunction of the urethra closure mechanism. We established the decellularization of porcine urethras to produce acellular urethra bioscaffolds for future tissue engineering applications, using bioscaffolds or bioscaffold-derived soluble products. Cellular removal was evaluated by H&E, DAPI and DNA quantification. The presence of specific ECM proteins was assessed through immunofluorescence staining and colorimetric assay kits. Human skeletal muscle myoblasts, muscle progenitor cells and adipose-derived stromal vascular fractions were used to evaluate the recellularization of the acellular urethra bioscaffolds. The mechanochemical decellularization system removed ~93% of tissue's DNA, generally preserving ECM's components and microarchitecture. Recellularization was achieved, though methodological advances are required regarding cell seeding strategies and functional assessment. Through microdissection and partial digestion, different urethra ECM-derived coating substrates were formulated (i.e. containing smooth or skeletal muscle ECM) and used to culture MPCs in vitro. The skeletal muscle ECM substrates enhanced fiber formation leading to the expression of the main skeletal muscle-related proteins and genes, as confirmed by immunofluorescence and RT-qPCR. The described methodology produced a urethra bioscaffold that retained vital ECM proteins and was liable to cell repopulation, a crucial first step towards the generation of urethra bioscaffold-based Tissue Engineering products.
Collapse
Affiliation(s)
- Irina N. Simões
- Department of Bioengineering and iBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
- Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC USA
- Laboratory for Tissue Engineering and Stem Cell Therapy, Department of Urology, University Hospital Zurich, Zurich, Switzerland
| | - Paulo Vale
- Serviço Urologia, Hospital Garcia de Orta, Almada, Portugal
| | - Shay Soker
- Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC USA
| | - Anthony Atala
- Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC USA
| | - Daniel Keller
- Laboratory for Tissue Engineering and Stem Cell Therapy, Department of Urology, University Hospital Zurich, Zurich, Switzerland
| | - Rute Noiva
- Faculdade de Medicina Veterinária, The Interdisciplinary Centre of Research in Animal Health (CIISA), Universidade de Lisboa, Lisboa, Portugal
| | - Sandra Carvalho
- Faculdade de Medicina Veterinária, The Interdisciplinary Centre of Research in Animal Health (CIISA), Universidade de Lisboa, Lisboa, Portugal
| | - Conceição Peleteiro
- Faculdade de Medicina Veterinária, The Interdisciplinary Centre of Research in Animal Health (CIISA), Universidade de Lisboa, Lisboa, Portugal
| | - Joaquim M. S. Cabral
- Department of Bioengineering and iBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Daniel Eberli
- Laboratory for Tissue Engineering and Stem Cell Therapy, Department of Urology, University Hospital Zurich, Zurich, Switzerland
| | - Cláudia L. da Silva
- Department of Bioengineering and iBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Pedro M. Baptista
- Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC USA
- Instituto de Investigacion Sanitaria de Aragón (IIS Aragon), Zaragoza, Spain
- CIBERehd, Zaragoza, Spain
| |
Collapse
|
26
|
Karimov DD, Erdman VV, Nasibullin TR, Tuktarova IA, Somova RS, Timasheva YR, Mustafina OE. Alu insertion-deletion polymorphism of COL13A1 and LAMA2 genes: The analysis of association with longevity. RUSS J GENET+ 2016. [DOI: 10.1134/s1022795416100033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
27
|
Xie R, Hu J, Guo X, Ng F, Qin T. Topographical Control of Preosteoblast Culture by Shape Memory Foams. ADVANCED ENGINEERING MATERIALS 2016. [DOI: 10.1002/adem.201600343] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Ruiqi Xie
- Institute of Textiles and Clothing; The Hong Kong Polytechnic University; Hung Hom Hong Kong 999077 China
| | - Jinlian Hu
- Smart Polymeric Materials Research Center for Biomedical Applications; Shenzhen Base; The Hong Kong Polytechnic University; Shen Zhen 518000 China
- Institute of Textiles and Clothing; The Hong Kong Polytechnic University; Hung Hom Hong Kong 999077 China
| | - Xia Guo
- Department of Rehabilitation Sciences; The Hong Kong Polytechnic University; Hung Hom Hong Kong 999077 China
| | - Frankie Ng
- Institute of Textiles and Clothing; The Hong Kong Polytechnic University; Hung Hom Hong Kong 999077 China
| | - Tingwu Qin
- Division of Stem Cell and Tissue Engineering; State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy; West China Hospital, Sichuan University; Chengdu Sichuan 610000 China
| |
Collapse
|
28
|
Subramanian A, Schilling TF. Tendon development and musculoskeletal assembly: emerging roles for the extracellular matrix. Development 2016; 142:4191-204. [PMID: 26672092 DOI: 10.1242/dev.114777] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Tendons and ligaments are extracellular matrix (ECM)-rich structures that interconnect muscles and bones. Recent work has shown how tendon fibroblasts (tenocytes) interact with muscles via the ECM to establish connectivity and strengthen attachments under tension. Similarly, ECM-dependent interactions between tenocytes and cartilage/bone ensure that tendon-bone attachments form with the appropriate strength for the force required. Recent studies have also established a close lineal relationship between tenocytes and skeletal progenitors, highlighting the fact that defects in signals modulated by the ECM can alter the balance between these fates, as occurs in calcifying tendinopathies associated with aging. The dynamic fine-tuning of tendon ECM composition and assembly thus gives rise to the remarkable characteristics of this unique tissue type. Here, we provide an overview of the functions of the ECM in tendon formation and maturation that attempts to integrate findings from developmental genetics with those of matrix biology.
Collapse
Affiliation(s)
- Arul Subramanian
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697-2300, USA
| | - Thomas F Schilling
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697-2300, USA
| |
Collapse
|
29
|
Praissman JL, Willer T, Sheikh MO, Toi A, Chitayat D, Lin YY, Lee H, Stalnaker SH, Wang S, Prabhakar PK, Nelson SF, Stemple DL, Moore SA, Moremen KW, Campbell KP, Wells L. The functional O-mannose glycan on α-dystroglycan contains a phospho-ribitol primed for matriglycan addition. eLife 2016; 5. [PMID: 27130732 PMCID: PMC4924997 DOI: 10.7554/elife.14473] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Accepted: 04/28/2016] [Indexed: 12/24/2022] Open
Abstract
Multiple glycosyltransferases are essential for the proper modification of alpha-dystroglycan, as mutations in the encoding genes cause congenital/limb-girdle muscular dystrophies. Here we elucidate further the structure of an O-mannose-initiated glycan on alpha-dystroglycan that is required to generate its extracellular matrix-binding polysaccharide. This functional glycan contains a novel ribitol structure that links a phosphotrisaccharide to xylose. ISPD is a CDP-ribitol (ribose) pyrophosphorylase that generates the reduced sugar nucleotide for the insertion of ribitol in a phosphodiester linkage to the glycoprotein. TMEM5 is a UDP-xylosyl transferase that elaborates the structure. We demonstrate in a zebrafish model as well as in a human patient that defects in TMEM5 result in muscular dystrophy in combination with abnormal brain development. Thus, we propose a novel structure—a ribitol in a phosphodiester linkage—for the moiety on which TMEM5, B4GAT1, and LARGE act to generate the functional receptor for ECM proteins having LG domains. DOI:http://dx.doi.org/10.7554/eLife.14473.001
Collapse
Affiliation(s)
- Jeremy L Praissman
- Complex Carbohydrate Research Center, University of Georgia, Athens, United States
| | - Tobias Willer
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, United States.,Howard Hughes Medical Institute, University of Iowa, Iowa City, United States.,Department of Neurology, Carver College of Medicine, University of Iowa, Iowa City, United States.,Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, United States
| | - M Osman Sheikh
- Complex Carbohydrate Research Center, University of Georgia, Athens, United States
| | - Ants Toi
- Department of Medical Imaging, Mount Sinai Hospital, Toronto, Canada
| | - David Chitayat
- Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, University of Toronto, Toronto, Canada.,The Prenatal Diagnosis and Medical Genetics Program, Mount Sinai Hospital, Toronto, Canada.,Department of Obstetrics and Gynecology, University of Toronto, Toronto, Canada
| | - Yung-Yao Lin
- Blizard Institute, London, United Kingdom.,Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom.,Wellcome Trust Genome Campus, Wellcome Trust Sanger Institute, Hinxton, United Kingdom
| | - Hane Lee
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, United States.,David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, United States.,Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, United States
| | | | - Shuo Wang
- Complex Carbohydrate Research Center, University of Georgia, Athens, United States
| | | | - Stanley F Nelson
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, United States.,David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, United States.,Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, United States
| | - Derek L Stemple
- Wellcome Trust Genome Campus, Wellcome Trust Sanger Institute, Hinxton, United Kingdom
| | - Steven A Moore
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, United States
| | - Kelley W Moremen
- Complex Carbohydrate Research Center, University of Georgia, Athens, United States.,Department of Biochemistry and Molecular Biology, University of Georgia, Athens, United States
| | - Kevin P Campbell
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, United States.,Howard Hughes Medical Institute, University of Iowa, Iowa City, United States.,Department of Neurology, Carver College of Medicine, University of Iowa, Iowa City, United States.,Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, United States
| | - Lance Wells
- Complex Carbohydrate Research Center, University of Georgia, Athens, United States.,Department of Biochemistry and Molecular Biology, University of Georgia, Athens, United States
| |
Collapse
|
30
|
Grefte S, Adjobo-Hermans M, Versteeg E, Koopman W, Daamen W. Impaired primary mouse myotube formation on crosslinked type I collagen films is enhanced by laminin and entactin. Acta Biomater 2016; 30:265-276. [PMID: 26555376 DOI: 10.1016/j.actbio.2015.11.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 10/16/2015] [Accepted: 11/06/2015] [Indexed: 02/05/2023]
Abstract
In skeletal muscle, the stem cell niche is important for controlling the quiescent, proliferation and differentiation states of satellite cells, which are key for skeletal muscle regeneration after wounding. It has been shown that type I collagen, often used as 3D-scaffolds for regenerative medicine purposes, impairs myoblast differentiation. This is most likely due to the absence of specific extracellular matrix proteins providing attachment sites for myoblasts and/or myotubes. In this study we investigated the differentiation capacity of primary murine myoblasts on type I collagen films either untreated or modified with elastin, laminin, type IV collagen, laminin/entactin complex, combinations thereof, and Matrigel as a positive control. Additionally, increased reactive oxygen species (ROS) and ROCK signaling might also be involved. To measure ROS levels with live-cell microscopy, fibronectin-coated glass coverslips were additionally coated with type I collagen and Matrigel onto which myoblasts were differentiated. On type I collagen-coated coverslips, myotube formation was impaired while ROS levels were increased. However, anti-oxidant treatment did not enhance myotube formation. ROCK inhibition, which generally improve cellular attachment to uncoated surfaces or type I collagen, enhanced myoblast attachment to type I collagen-coated coverslips and -films, but slightly enhanced myotube formation. Only modification of type I collagen films by Matrigel and a combination of laminin/entactin significantly improved myotube formation. Our results indicate that type I collagen scaffolds can be modified by satellite cell niche factors of which specifically laminin and entactin enhanced myotube formation. This offers a promising approach for regenerative medicine purposes to heal skeletal muscle wounds. STATEMENT OF SIGNIFICANCE In this manuscript we show for the first time that impaired myotube formation on type I collagen scaffolds can be completely restored by modification with laminin and entactin, two extracellular proteins from the satellite cell niche. This offers a promising approach for regenerative medicine approaches to heal skeletal muscle wounds.
Collapse
|
31
|
Webster MT, Manor U, Lippincott-Schwartz J, Fan CM. Intravital Imaging Reveals Ghost Fibers as Architectural Units Guiding Myogenic Progenitors during Regeneration. Cell Stem Cell 2015; 18:243-52. [PMID: 26686466 DOI: 10.1016/j.stem.2015.11.005] [Citation(s) in RCA: 151] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 10/24/2015] [Accepted: 11/06/2015] [Indexed: 12/16/2022]
Abstract
How resident stem cells and their immediate progenitors rebuild tissues of pre-injury organization and size for proportional regeneration is not well understood. Using 3D, time-lapse intravital imaging for direct visualization of the muscle regeneration process in live mice, we report that extracellular matrix remnants from injured skeletal muscle fibers, "ghost fibers," govern muscle stem/progenitor cell behaviors during proportional regeneration. Stem cells were immobile and quiescent without injury whereas their activated progenitors migrated and divided after injury. Unexpectedly, divisions and migration were primarily bi-directionally oriented along the ghost fiber longitudinal axis, allowing for spreading of progenitors throughout ghost fibers. Re-orienting ghost fibers impacted myogenic progenitors' migratory paths and division planes, causing disorganization of regenerated muscle fibers. We conclude that ghost fibers are autonomous, architectural units necessary for proportional regeneration after tissue injury. This finding reinforces the need to fabricate bioengineered matrices that mimic living tissue matrices for tissue regeneration therapy.
Collapse
Affiliation(s)
- Micah T Webster
- Department of Embryology, Carnegie Institution of Washington, 3520 San Martin Drive, Baltimore, MD 21218, USA
| | - Uri Manor
- Cell Biology and Metabolism Branch, Eunice Kennedy Shriver National Institutes of Child Health and Human Development, National Institute of Health, Building 35A, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | - Jennifer Lippincott-Schwartz
- Cell Biology and Metabolism Branch, Eunice Kennedy Shriver National Institutes of Child Health and Human Development, National Institute of Health, Building 35A, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | - Chen-Ming Fan
- Department of Embryology, Carnegie Institution of Washington, 3520 San Martin Drive, Baltimore, MD 21218, USA.
| |
Collapse
|
32
|
Wiese S, Faissner A. The role of extracellular matrix in spinal cord development. Exp Neurol 2015; 274:90-9. [DOI: 10.1016/j.expneurol.2015.05.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 05/13/2015] [Accepted: 05/25/2015] [Indexed: 01/06/2023]
|
33
|
Gawlik KI, Durbeej M. Deletion of integrin α7 subunit does not aggravate the phenotype of laminin α2 chain-deficient mice. Sci Rep 2015; 5:13916. [PMID: 26355035 PMCID: PMC4564817 DOI: 10.1038/srep13916] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 08/10/2015] [Indexed: 11/09/2022] Open
Abstract
Laminin-211 is a major constituent of the skeletal muscle basement membrane, exerting its biological functions by binding to cell surface receptors integrin α7β1 and dystroglycan (the latter is part of the dystrophin-glycoprotein complex). The importance of these molecules for normal muscle function is underscored by the fact that their respective deficiency leads to different forms of muscular dystrophy with different severity in humans and animal models. We recently demonstrated that laminin α2 chain and members of the dystrophin-glycoprotein complex have overlapping but non-redundant roles despite being part of the same adhesion complex. To analyse whether laminin-211 and integrin α7 subunit have non-redundant functions we generated mice deficient in laminin α2 chain and integrin α7 subunit (dy3K/itga7). We show that lack of both molecules did not exacerbate the severe phenotype of laminin α2-chain deficient animals. They displayed the same weight, survival and dystrophic pattern of muscle biopsy, with similar degree of inflammation and fibrosis. These data suggest that laminin-211 and integrin α7β1 have intersecting roles in skeletal muscle.
Collapse
Affiliation(s)
- Kinga I Gawlik
- Department of Experimental Medical Science, Muscle Biology Unit, Lund University, Sweden
| | - Madeleine Durbeej
- Department of Experimental Medical Science, Muscle Biology Unit, Lund University, Sweden
| |
Collapse
|
34
|
Ribeiro BG, Alves AN, Santos LADD, Fernandes KPS, Cantero TM, Gomes MT, França CM, de Fátima Teixeira da Silva D, Bussadori SK, Mesquita-Ferrari RA. The effect of low-level laser therapy (LLLT) applied prior to muscle injury. Lasers Surg Med 2015; 47:571-578. [DOI: 10.1002/lsm.22381] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/29/2015] [Indexed: 01/01/2023]
Affiliation(s)
| | - Agnelo Neves Alves
- Rehabilitation Sciences; Universidade Nove de Julho - UNINOVE; São Paulo - SP Brazil
| | | | - Kristianne Porta Santos Fernandes
- Rehabilitation Sciences; Universidade Nove de Julho - UNINOVE; São Paulo - SP Brazil
- Biophotonics Applied to Health Sciences; Universidade Nove de Julho - UNINOVE; São Paulo - SP Brazil
| | | | - Mariana Teixeira Gomes
- Biophotonics Applied to Health Sciences; Universidade Nove de Julho - UNINOVE; São Paulo - SP Brazil
| | - Cristiane Miranda França
- Biophotonics Applied to Health Sciences; Universidade Nove de Julho - UNINOVE; São Paulo - SP Brazil
| | | | - Sandra Kalil Bussadori
- Rehabilitation Sciences; Universidade Nove de Julho - UNINOVE; São Paulo - SP Brazil
- Biophotonics Applied to Health Sciences; Universidade Nove de Julho - UNINOVE; São Paulo - SP Brazil
| | - Raquel Agnelli Mesquita-Ferrari
- Rehabilitation Sciences; Universidade Nove de Julho - UNINOVE; São Paulo - SP Brazil
- Biophotonics Applied to Health Sciences; Universidade Nove de Julho - UNINOVE; São Paulo - SP Brazil
| |
Collapse
|
35
|
Steiner JL, Pruznak AM, Navaratnarajah M, Lang CH. Alcohol Differentially Alters Extracellular Matrix and Adhesion Molecule Expression in Skeletal Muscle and Heart. Alcohol Clin Exp Res 2015; 39:1330-40. [PMID: 26108259 DOI: 10.1111/acer.12771] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 05/01/2015] [Indexed: 02/06/2023]
Abstract
BACKGROUND The production of fibrosis in response to chronic alcohol abuse is well recognized in liver but has not been fully characterized in striated muscle and may contribute to functional impairment. Therefore, the purpose of this study was to use an unbiased discovery-based approach to determine the effect of chronic alcohol consumption on the expression profile of genes important for cell-cell and cell-extracellular matrix (ECM) interactions in both skeletal and cardiac muscle. METHODS Adult male rats were pair-fed an alcohol-containing liquid diet or control diet for 24 weeks, and skeletal muscle (gastrocnemius) and heart were collected in the freely fed state. A pathway-focused gene expression polymerase chain reaction array was performed on these tissues to assess mRNA content for 84 ECM proteins, and selected proteins were confirmed by Western blot analysis. RESULTS In gastrocnemius, alcohol feeding up-regulated the expression of 11 genes and down-regulated the expression of 1 gene. Alcohol increased fibrosis as indicated by increased mRNA and/or protein for collagens α1(I), α2(I), α1(III), and α2(IV) as well as hydroxyproline. Alcohol also increased α-smooth muscle actin protein, an index of myofibroblast activation, but no concomitant change in transforming growth factor-β was detected. The mRNA and protein content for other ECM components, such as integrin-α5, L-selectin, PECAM, SPARC, and ADAMTS2, were also increased by alcohol. Only laminin-α3 mRNA was decreased in gastrocnemius from alcohol-fed rats, while 66 ECM- or cell adhesion-related mRNAs were unchanged by alcohol. For heart, expression of 16 genes was up-regulated, expression of 3 genes was down-regulated, and 65 mRNAs were unchanged by alcohol; there were no common alcohol-induced gene expression changes between heart and skeletal muscle. Finally, alcohol increased tumor necrosis factor-α and interleukin (IL)-12 mRNA in both skeletal and cardiac muscle, but IL-6 mRNA was increased and IL-10 mRNA decreased only in skeletal muscle. CONCLUSIONS These data demonstrate a fibrotic response in striated muscle from chronic alcohol-fed rats which is tissue specific in nature, suggesting different regulatory mechanisms.
Collapse
Affiliation(s)
- Jennifer L Steiner
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, Pennsylvania
| | - Anne M Pruznak
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, Pennsylvania
| | - Maithili Navaratnarajah
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, Pennsylvania
| | - Charles H Lang
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, Pennsylvania
| |
Collapse
|
36
|
de Rezende Pinto WBV, de Souza PVS, Oliveira ASB. Normal muscle structure, growth, development, and regeneration. Curr Rev Musculoskelet Med 2015; 8:176-81. [PMID: 25860794 PMCID: PMC4596171 DOI: 10.1007/s12178-015-9267-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Knowledge about biochemical, structural and physiological aspects, and properties regarding the skeletal muscle has been widely obtained in the last decades. Muscle disorders, mainly represented in neuromuscular clinical practice by acquired and hereditary myopathies, are well-recognized and frequently diagnosed in practice. Most clinical complaints and biochemical characterizations of each myopathy depends on the appropriate knowledge and interpretation of pathological findings and their comparison with normal muscle findings. Great improvement has been obtained in the last decades mainly involving the mechanisms of normal muscle architecture and physiological function in the healthy individuals. Genetic mechanisms have also been widely studied. We provide an extensive literature review involving current knowledge regarding muscle cell structure and function and embryological and regenerative processes linked to muscle lesion. An updated comprehensive description involving the main nuclear genomic regulatory mechanisms of muscle regeneration and embryogenesis is provided in this review.
Collapse
Affiliation(s)
- Wladimir Bocca Vieira de Rezende Pinto
- Division of Neuromuscular Diseases, Department of Neurology and Neurosurgery, Federal University of São Paulo (UNIFESP), Estado de Israel Street, 899. Vila Clementino, São Paulo, SP 04022-002 Brazil
| | - Paulo Victor Sgobbi de Souza
- Division of Neuromuscular Diseases, Department of Neurology and Neurosurgery, Federal University of São Paulo (UNIFESP), Estado de Israel Street, 899. Vila Clementino, São Paulo, SP 04022-002 Brazil
| | - Acary Souza Bulle Oliveira
- Division of Neuromuscular Diseases, Department of Neurology and Neurosurgery, Federal University of São Paulo (UNIFESP), Estado de Israel Street, 899. Vila Clementino, São Paulo, SP 04022-002 Brazil
| |
Collapse
|
37
|
Jessen JR. Recent advances in the study of zebrafish extracellular matrix proteins. Dev Biol 2015; 401:110-21. [DOI: 10.1016/j.ydbio.2014.12.022] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 12/17/2014] [Accepted: 12/18/2014] [Indexed: 10/24/2022]
|
38
|
The dystroglycan: Nestled in an adhesome during embryonic development. Dev Biol 2015; 401:132-42. [DOI: 10.1016/j.ydbio.2014.07.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 06/23/2014] [Accepted: 07/08/2014] [Indexed: 01/11/2023]
|
39
|
Faissner A, Reinhard J. The extracellular matrix compartment of neural stem and glial progenitor cells. Glia 2015; 63:1330-49. [DOI: 10.1002/glia.22839] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 03/25/2015] [Accepted: 03/30/2015] [Indexed: 12/21/2022]
Affiliation(s)
- Andreas Faissner
- Department of Cell Morphology and Molecular Neurobiology; Ruhr-University Bochum; Germany
| | - Jacqueline Reinhard
- Department of Cell Morphology and Molecular Neurobiology; Ruhr-University Bochum; Germany
| |
Collapse
|
40
|
Holland A, Dowling P, Meleady P, Henry M, Zweyer M, Mundegar RR, Swandulla D, Ohlendieck K. Label-free mass spectrometric analysis of the mdx-4cv diaphragm identifies the matricellular protein periostin as a potential factor involved in dystrophinopathy-related fibrosis. Proteomics 2015; 15:2318-31. [PMID: 25737063 DOI: 10.1002/pmic.201400471] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 12/19/2014] [Accepted: 02/26/2015] [Indexed: 01/17/2023]
Abstract
Proteomic profiling plays a decisive role in the identification of novel biomarkers of muscular dystrophy and the elucidation of new pathobiochemical mechanisms that underlie progressive muscle wasting. Building on the findings of recent comparative analyses of tissue samples and body fluids from dystrophic animals and patients afflicted with Duchenne muscular dystrophy, we have used here label-free MS to study the severely dystrophic diaphragm from the not extensively characterized mdx-4cv mouse. This animal model of progressive muscle wasting exhibits less dystrophin-positive revertant fibers than the conventional mdx mouse, making it ideal for the future monitoring of experimental therapies. The pathoproteomic signature of the mdx-4cv diaphragm included a significant increase in the fibrosis marker collagen and related extracellular matrix proteins (asporin, decorin, dermatopontin, prolargin) and cytoskeletal proteins (desmin, filamin, obscurin, plectin, spectrin, tubulin, vimentin, vinculin), as well as decreases in proteins of ion homeostasis (parvalbumin) and the contractile apparatus (myosin-binding protein). Importantly, one of the most substantially increased proteins was identified as periostin, a matricellular component and apparent marker of fibrosis and tissue damage. Immunoblotting confirmed a considerable increase of periostin in the dystrophin-deficient diaphragm from both mdx and mdx-4cv mice, suggesting an involvement of this matricellular protein in dystrophinopathy-related fibrosis.
Collapse
Affiliation(s)
- Ashling Holland
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, County Kildare, Ireland
| | - Paul Dowling
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, County Kildare, Ireland
| | - Paula Meleady
- National Institute for Cellular Biotechnology, Dublin City University, Dublin, Ireland
| | - Michael Henry
- National Institute for Cellular Biotechnology, Dublin City University, Dublin, Ireland
| | - Margit Zweyer
- Department of Physiology II, University of Bonn, Bonn, Germany
| | | | | | - Kay Ohlendieck
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, County Kildare, Ireland
| |
Collapse
|
41
|
Marshall JL, Oh J, Chou E, Lee JA, Holmberg J, Burkin DJ, Crosbie-Watson RH. Sarcospan integration into laminin-binding adhesion complexes that ameliorate muscular dystrophy requires utrophin and α7 integrin. Hum Mol Genet 2015; 24:2011-22. [PMID: 25504048 PMCID: PMC4355028 DOI: 10.1093/hmg/ddu615] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 11/15/2014] [Accepted: 12/08/2014] [Indexed: 11/14/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is caused by mutations in the dystrophin gene that result in loss of the dystrophin-glycoprotein complex, a laminin receptor that connects the myofiber to its surrounding extracellular matrix. Utrophin, a dystrophin ortholog that is normally localized to the neuromuscular junction, is naturally upregulated in DMD muscle, which partially compensates for the loss of dystrophin. Transgenic overexpression of utrophin causes broad sarcolemma localization of utrophin, restoration of laminin binding and amelioration of disease in the mdx mouse model of DMD. We previously demonstrated that overexpression of sarcospan, a dystrophin- and utrophin-binding protein, ameliorates mdx muscular dystrophy. Sarcospan boosts levels of utrophin to therapeutic levels at the sarcolemma, where attachment to laminin is restored. However, understanding the compensatory mechanism is complicated by concomitant upregulation of α7β1 integrin, which also binds laminin. Similar to the effects of utrophin, transgenic overexpression of α7 integrin prevents DMD disease in mice and is accompanied by increased abundance of utrophin around the extra-synaptic sarcolemma. In order to investigate the mechanisms underlying sarcospan 'rescue' of muscular dystrophy, we created double-knockout mice to test the contributions of utrophin or α7 integrin. We show that sarcospan-mediated amelioration of muscular dystrophy in DMD mice is dependent on the presence of both utrophin and α7β1 integrin, even when they are individually expressed at therapeutic levels. Furthermore, we found that association of sarcospan into laminin-binding complexes is dependent on utrophin and α7β1 integrin.
Collapse
Affiliation(s)
- Jamie L Marshall
- Department of Integrative Biology and Physiology, Center for Duchenne Muscular Dystrophy
| | - Jennifer Oh
- Department of Integrative Biology and Physiology, Center for Duchenne Muscular Dystrophy
| | - Eric Chou
- Department of Integrative Biology and Physiology, Center for Duchenne Muscular Dystrophy
| | - Joy A Lee
- Department of Integrative Biology and Physiology, Center for Duchenne Muscular Dystrophy
| | - Johan Holmberg
- Department of Integrative Biology and Physiology, Center for Duchenne Muscular Dystrophy
| | - Dean J Burkin
- Department of Pharmacology, Center for Molecular Medicine, University of Nevada School of Medicine, Reno, NV 89557, USA
| | - Rachelle H Crosbie-Watson
- Department of Integrative Biology and Physiology, Center for Duchenne Muscular Dystrophy, Molecular Biology Institute, Department of Neurology, University of California, Los Angeles, CA 90095, USA and
| |
Collapse
|
42
|
Slimani L, Vazeille E, Deval C, Meunier B, Polge C, Dardevet D, Béchet D, Taillandier D, Micol D, Listrat A, Attaix D, Combaret L. The delayed recovery of the remobilized rat tibialis anterior muscle reflects a defect in proliferative and terminal differentiation that impairs early regenerative processes. J Cachexia Sarcopenia Muscle 2015; 6:73-83. [PMID: 26136414 PMCID: PMC4435099 DOI: 10.1002/jcsm.12011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 10/09/2014] [Accepted: 10/15/2014] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND The immobilization-induced tibialis anterior (TA) muscle atrophy worsens after cast removal and is associated with altered extracellular matrix (ECM) composition. The secreted protein acidic and rich in cysteine (Sparc) is an ECM component involved in Akt activation and in β-catenin stabilization, which controls protein turnover and induces muscle regulatory factors (MRFs), respectively. We hypothesized that ECM alterations may influence these intracellular signalling pathways controlling TA muscle mass. METHODS Six-month-old Wistar rats were subjected to hindlimb cast immobilization for 8 days (I8) or not (I0) and allowed to recover for 1 to 10 days (R1-10). RESULTS The TA atrophy during remobilization correlated with reduced fibre cross-sectional area and thickening of endomysium. mRNA levels for Sparc increased during remobilization until R10 and for integrin-α7 and -β1 at I8 and R1. Integrin-linked kinase protein levels increased during immobilization and remobilization until R10. This was inversely correlated with changes in Akt phosphorylation. β-Catenin protein levels increased in the remobilized TA at R1 and R10. mRNA levels of the proliferative MRFs (Myf5 and MyoD) increased at I8 and R1, respectively, without changes in Myf5 protein levels. In contrast, myogenin mRNA levels (a terminal differentiation MRF) decreased at R1, but only increased at R10 in remobilized muscles, as for protein levels. CONCLUSIONS Altogether, this suggests that the TA inefficiently attempted to preserve regeneration during immobilization by increasing transcription of proliferative MRFs, and that the TA could engage recovery during remobilization only when the terminal differentiation step of regeneration is enhanced.
Collapse
Affiliation(s)
- Lamia Slimani
- INRA, UMR 1019, UNH, CRNH, F-63000, Auvergne, Clermont-Ferrand, France.,Clermont Université, Université d'Auvergne, Unité de Nutrition Humaine, BP 10448, F-63000, Clermont-Ferrand, France
| | - Emilie Vazeille
- Centre Hospitalier Universitaire, 63000, Clermont-Ferrand, France
| | - Christiane Deval
- INRA, UMR 1019, UNH, CRNH, F-63000, Auvergne, Clermont-Ferrand, France.,Clermont Université, Université d'Auvergne, Unité de Nutrition Humaine, BP 10448, F-63000, Clermont-Ferrand, France
| | - Bruno Meunier
- INRA, UMR 1213 Herbivores, 63122, Saint Genès Champanelle, France
| | - Cécile Polge
- INRA, UMR 1019, UNH, CRNH, F-63000, Auvergne, Clermont-Ferrand, France.,Clermont Université, Université d'Auvergne, Unité de Nutrition Humaine, BP 10448, F-63000, Clermont-Ferrand, France
| | - Dominique Dardevet
- INRA, UMR 1019, UNH, CRNH, F-63000, Auvergne, Clermont-Ferrand, France.,Clermont Université, Université d'Auvergne, Unité de Nutrition Humaine, BP 10448, F-63000, Clermont-Ferrand, France
| | - Daniel Béchet
- INRA, UMR 1019, UNH, CRNH, F-63000, Auvergne, Clermont-Ferrand, France.,Clermont Université, Université d'Auvergne, Unité de Nutrition Humaine, BP 10448, F-63000, Clermont-Ferrand, France
| | - Daniel Taillandier
- INRA, UMR 1019, UNH, CRNH, F-63000, Auvergne, Clermont-Ferrand, France.,Clermont Université, Université d'Auvergne, Unité de Nutrition Humaine, BP 10448, F-63000, Clermont-Ferrand, France
| | - Didier Micol
- INRA, UMR 1213 Herbivores, 63122, Saint Genès Champanelle, France
| | - Anne Listrat
- INRA, UMR 1213 Herbivores, 63122, Saint Genès Champanelle, France
| | - Didier Attaix
- INRA, UMR 1019, UNH, CRNH, F-63000, Auvergne, Clermont-Ferrand, France.,Clermont Université, Université d'Auvergne, Unité de Nutrition Humaine, BP 10448, F-63000, Clermont-Ferrand, France
| | - Lydie Combaret
- INRA, UMR 1019, UNH, CRNH, F-63000, Auvergne, Clermont-Ferrand, France.,Clermont Université, Université d'Auvergne, Unité de Nutrition Humaine, BP 10448, F-63000, Clermont-Ferrand, France
| |
Collapse
|
43
|
Abstract
Increasing evidence points to extracellular matrix (ECM) components playing integral roles in regulating the muscle satellite cell (SC) niche. Even small alterations to the niche ECM can have profound effects on SC localization, activation, self-renewal, proliferation and differentiation. This review will focus on the ECM components that comprise the niche, how they are modulated in health and disease and how these changes are thought to affect SC function. Particular emphasis will be placed on the pathological niche and interventions that aim to restore healthy structure and function, as a better understanding of the interplay between the SC and its environment will drive more targeted and effective therapies.
Collapse
Affiliation(s)
- Kelsey Thomas
- Department of Biomedical Sciences, University of California, San Diego, La Jolla, CA 92093
| | - Adam J. Engler
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093
| | - Gretchen A. Meyer
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093,Program in Physical Therapy & Department of Neurology, Washington University School of Medicine, St. Louis, MO 63108
| |
Collapse
|
44
|
Goody MF, Sher RB, Henry CA. Hanging on for the ride: adhesion to the extracellular matrix mediates cellular responses in skeletal muscle morphogenesis and disease. Dev Biol 2015; 401:75-91. [PMID: 25592225 DOI: 10.1016/j.ydbio.2015.01.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 12/31/2014] [Accepted: 01/02/2015] [Indexed: 10/24/2022]
Abstract
Skeletal muscle specification and morphogenesis during early development are critical for normal physiology. In addition to mediating locomotion, skeletal muscle is a secretory organ that contributes to metabolic homeostasis. Muscle is a highly adaptable tissue, as evidenced by the ability to increase muscle cell size and/or number in response to weight bearing exercise. Conversely, muscle wasting can occur during aging (sarcopenia), cancer (cancer cachexia), extended hospital stays (disuse atrophy), and in many genetic diseases collectively known as the muscular dystrophies and myopathies. It is therefore of great interest to understand the cellular and molecular mechanisms that mediate skeletal muscle development and adaptation. Muscle morphogenesis transforms short muscle precursor cells into long, multinucleate myotubes that anchor to tendons via the myotendinous junction. This process requires carefully orchestrated interactions between cells and their extracellular matrix microenvironment. These interactions are dynamic, allowing muscle cells to sense biophysical, structural, organizational, and/or signaling changes within their microenvironment and respond appropriately. In many musculoskeletal diseases, these cell adhesion interactions are disrupted to such a degree that normal cellular adaptive responses are not sufficient to compensate for accumulating damage. Thus, one major focus of current research is to identify the cell adhesion mechanisms that drive muscle morphogenesis, with the hope that understanding how muscle cell adhesion promotes the intrinsic adaptability of muscle tissue during development may provide insight into potential therapeutic approaches for muscle diseases. Our objectives in this review are to highlight recent studies suggesting conserved roles for cell-extracellular matrix adhesion in vertebrate muscle morphogenesis and cellular adaptive responses in animal models of muscle diseases.
Collapse
Affiliation(s)
- Michelle F Goody
- School of Biology and Ecology, University of Maine, Orono, ME 04469, United States
| | - Roger B Sher
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME 04469, United States; Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME 04469, United States
| | - Clarissa A Henry
- School of Biology and Ecology, University of Maine, Orono, ME 04469, United States; Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME 04469, United States; Institute for Molecular Biophysics, University of Maine, Orono, ME 04469, United States.
| |
Collapse
|
45
|
Subramanian A, Schilling TF. Thrombospondin-4 controls matrix assembly during development and repair of myotendinous junctions. eLife 2014; 3. [PMID: 24941943 PMCID: PMC4096842 DOI: 10.7554/elife.02372] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 06/17/2014] [Indexed: 12/13/2022] Open
Abstract
Tendons are extracellular matrix (ECM)-rich structures that mediate muscle attachments with the skeleton, but surprisingly little is known about molecular mechanisms of attachment. Individual myofibers and tenocytes in Drosophila interact through integrin (Itg) ligands such as Thrombospondin (Tsp), while vertebrate muscles attach to complex ECM fibrils embedded with tenocytes. We show for the first time that a vertebrate thrombospondin, Tsp4b, is essential for muscle attachment and ECM assembly at myotendinous junctions (MTJs). Tsp4b depletion in zebrafish causes muscle detachment upon contraction due to defects in laminin localization and reduced Itg signaling at MTJs. Mutation of its oligomerization domain renders Tsp4b unable to rescue these defects, demonstrating that pentamerization is required for ECM assembly. Furthermore, injected human TSP4 localizes to zebrafish MTJs and rescues muscle detachment and ECM assembly in Tsp4b-deficient embryos. Thus Tsp4 functions as an ECM scaffold at MTJs, with potential therapeutic uses in tendon strengthening and repair. DOI:http://dx.doi.org/10.7554/eLife.02372.001 Tendons, the tough connective tissues that link muscles to bones, are essential for lifting, running and other movements in animals. A matrix of proteins, called the extracellular matrix, connects the cells in a tendon, giving it the strength it needs to prevent muscles from detaching from bones during strenuous activities. To achieve this strength, extracellular matrix proteins bind to one another and to receptors on the muscle cell surface that are linked to its internal scaffolding, thereby organizing other proteins into a structure called a myotendinous junction. However, despite the essential roles of tendons, scientists do not fully understand how this organization occurs, or how it can go awry. Subramanian and Schilling screened zebrafish for genes that are essential for proper muscle attachment, and zeroed in on a gene encoding a protein called Thrombospondin-4b (Tsp4b). A similar protein helps to connect muscle and tendon cells in fruit flies. Without Tsp4b, zebrafish are able to form connections between muscles and tendons, but the muscles detach easily during movement. This weakened connection is caused by disorganization of the proteins in the extracellular matrix, which results in reduced signaling from the muscle cell receptors. When a human form of this protein was injected into zebrafish embryos lacking Tsp4b, it settled into the junctions between muscle and tendon cells. The human protein repaired the detached muscles and restored the proper organization of the matrix. This improved the strength of the muscle-tendon attachment in the treated fish embryos, suggesting that similar injections could also help to strengthen and repair muscles and tendons in people. DOI:http://dx.doi.org/10.7554/eLife.02372.002
Collapse
Affiliation(s)
- Arul Subramanian
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, United States
| | - Thomas F Schilling
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, United States
| |
Collapse
|
46
|
Teodori L, Costa A, Marzio R, Perniconi B, Coletti D, Adamo S, Gupta B, Tarnok A. Native extracellular matrix: a new scaffolding platform for repair of damaged muscle. Front Physiol 2014; 5:218. [PMID: 24982637 PMCID: PMC4058757 DOI: 10.3389/fphys.2014.00218] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Accepted: 05/22/2014] [Indexed: 11/17/2022] Open
Abstract
Effective clinical treatments for volumetric muscle loss resulting from traumatic injury or resection of a large amount of muscle mass are not available to date. Tissue engineering may represent an alternative treatment approach. Decellularization of tissues and whole organs is a recently introduced platform technology for creating scaffolding materials for tissue engineering and regenerative medicine. The muscle stem cell niche is composed of a three-dimensional architecture of fibrous proteins, proteoglycans, and glycosaminoglycans, synthesized by the resident cells that form an intricate extracellular matrix (ECM) network in equilibrium with the surrounding cells and growth factors. A consistent body of evidence indicates that ECM proteins regulate stem cell differentiation and renewal and are highly relevant to tissue engineering applications. The ECM also provides a supportive medium for blood or lymphatic vessels and for nerves. Thus, the ECM is the nature's ideal biological scaffold material. ECM-based bioscaffolds can be recellularized to create potentially functional constructs as a regenerative medicine strategy for organ replacement or tissue repopulation. This article reviews current strategies for the repair of damaged muscle using bioscaffolds obtained from animal ECM by decellularization of small intestinal submucosa (SIS), urinary bladder mucosa (UB), and skeletal muscle, and proposes some innovative approaches for the application of such strategies in the clinical setting.
Collapse
Affiliation(s)
- Laura Teodori
- UTAPRAD-DIM, ENEA Frascati Rome, Italy ; Fondazione San Raffaele Ceglie Messapica, Italy
| | - Alessandra Costa
- Fondazione San Raffaele Ceglie Messapica, Italy ; Department of Surgery, McGowan Institute, University of Pittsburgh Medical Center Pittsburgh, PA, USA
| | - Rosa Marzio
- Fondazione San Raffaele Ceglie Messapica, Italy
| | - Barbara Perniconi
- UMR 8256 CNRS Biology of Adaptation and Aging, University Pierre et Marie Curie Paris 06 Paris, France
| | - Dario Coletti
- UMR 8256 CNRS Biology of Adaptation and Aging, University Pierre et Marie Curie Paris 06 Paris, France ; Section of Histology and Medical Embryology, Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome Rome, Italy
| | - Sergio Adamo
- Section of Histology and Medical Embryology, Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome Rome, Italy
| | - Bhuvanesh Gupta
- Department of Textile Technology, Indian Institute of Technology New Delhi, India
| | - Attila Tarnok
- Department of Pediatric Cardiology, Heart Centre Leipzig, and Translational Centre for Regenerative Medicine, University of Leipzig Leipzig, Germany
| |
Collapse
|
47
|
Ducceschi M, Clifton LG, Stimpson SA, Billin AN. Post-transcriptional regulation of ITGB6 protein levels in damaged skeletal muscle. J Mol Histol 2014; 45:329-36. [PMID: 24488487 PMCID: PMC3983900 DOI: 10.1007/s10735-014-9567-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2013] [Accepted: 01/23/2014] [Indexed: 12/02/2022]
Abstract
We have identified integrin beta 6 (Itgb6) as a transcript highly enriched in skeletal muscle. This finding is unexpected because Itgb6 is typically associated with epithelial expression domains in normal tissue. Further we find that ITGB6 protein expression in muscle is post-transcriptionally regulated. Uninjured muscle expresses Itgb6 RNA but no ITGB6 protein is detectable. Muscle injury induces ITGB6 protein accumulation rapidly post-injury in myofibers adjacent to the site of injury. As regeneration of the injured muscle tissue progresses ITGB6 protein is found in newly formed fibers up to at least 15 days post-injury.
Collapse
Affiliation(s)
- Melissa Ducceschi
- Target and Pathway Validation, Molecular Discovery Research, GlaxoSmithKline, Research Triangle Park, NC, USA
| | | | | | | |
Collapse
|
48
|
Kuo DS, Labelle-Dumais C, Mao M, Jeanne M, Kauffman WB, Allen J, Favor J, Gould DB. Allelic heterogeneity contributes to variability in ocular dysgenesis, myopathy and brain malformations caused by Col4a1 and Col4a2 mutations. Hum Mol Genet 2013; 23:1709-22. [PMID: 24203695 PMCID: PMC3943517 DOI: 10.1093/hmg/ddt560] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Collagen type IV alpha 1 and 2 (COL4A1 and COL4A2) are present in nearly all basement membranes. COL4A1 and COL4A2 mutations are pleiotropic, affecting multiple organ systems to differing degrees, and both genetic-context and environmental factors influence this variable expressivity. Here, we report important phenotypic and molecular differences in an allelic series of Col4a1 and Col4a2 mutant mice that are on a uniform genetic background. We evaluated three organs commonly affected by COL4A1 and COL4A2 mutations and discovered allelic heterogeneity in the penetrance and severity of ocular dysgenesis, myopathy and brain malformations. Similarly, we show allelic heterogeneity in COL4A1 and COL4A2 biosynthesis. While most mutations that we examined caused increased intracellular and decreased extracellular COL4A1 and COL4A2, we identified three mutations with distinct biosynthetic signatures. Reduced temperature or presence of 4-phenylbutyrate ameliorated biosynthetic defects in primary cell lines derived from mutant mice. Together, our data demonstrate the effects and clinical implications of allelic heterogeneity in Col4a1- and Col4a2-related diseases. Understanding allelic differences will be valuable for increasing prognostic accuracy and for the development of therapeutic interventions that consider the nature of the molecular cause in patients with COL4A1 and COL4A2 mutations.
Collapse
|
49
|
Fontes-Oliveira CC, Busquets S, Fuster G, Ametller E, Figueras M, Olivan M, Toledo M, López-Soriano FJ, Qu X, Demuth J, Stevens P, Varbanov A, Wang F, Isfort RJ, Argilés JM. A differential pattern of gene expression in skeletal muscle of tumor-bearing rats reveals dysregulation of excitation-contraction coupling together with additional muscle alterations. Muscle Nerve 2013; 49:233-48. [DOI: 10.1002/mus.23893] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Revised: 04/19/2013] [Accepted: 04/24/2013] [Indexed: 12/31/2022]
Affiliation(s)
- Cibely Cristine Fontes-Oliveira
- Cancer Research Group, Departament de Bioquímica i Biologia Molecular, Facultat de Biologia; Universitat de Barcelona; Diagonal 643 Barcelona 08028 Spain
| | - Sílvia Busquets
- Cancer Research Group, Departament de Bioquímica i Biologia Molecular, Facultat de Biologia; Universitat de Barcelona; Diagonal 643 Barcelona 08028 Spain
- Institut de Biomedicina de la Universitat de Barcelona; Barcelona Spain
| | - Gemma Fuster
- Cancer Research Group, Departament de Bioquímica i Biologia Molecular, Facultat de Biologia; Universitat de Barcelona; Diagonal 643 Barcelona 08028 Spain
| | - Elisabet Ametller
- Cancer Research Group, Departament de Bioquímica i Biologia Molecular, Facultat de Biologia; Universitat de Barcelona; Diagonal 643 Barcelona 08028 Spain
| | - Maite Figueras
- Cancer Research Group, Departament de Bioquímica i Biologia Molecular, Facultat de Biologia; Universitat de Barcelona; Diagonal 643 Barcelona 08028 Spain
| | - Mireia Olivan
- Cancer Research Group, Departament de Bioquímica i Biologia Molecular, Facultat de Biologia; Universitat de Barcelona; Diagonal 643 Barcelona 08028 Spain
| | - Míriam Toledo
- Cancer Research Group, Departament de Bioquímica i Biologia Molecular, Facultat de Biologia; Universitat de Barcelona; Diagonal 643 Barcelona 08028 Spain
| | - Francisco J. López-Soriano
- Cancer Research Group, Departament de Bioquímica i Biologia Molecular, Facultat de Biologia; Universitat de Barcelona; Diagonal 643 Barcelona 08028 Spain
- Institut de Biomedicina de la Universitat de Barcelona; Barcelona Spain
| | - Xiaoyan Qu
- Procter & Gamble; Mason Business Center; 8700 Mason-Montgomery Road Mason Ohio 45040 USA
| | - Jeffrey Demuth
- Procter & Gamble; Mason Business Center; 8700 Mason-Montgomery Road Mason Ohio 45040 USA
| | - Paula Stevens
- Procter & Gamble; Mason Business Center; 8700 Mason-Montgomery Road Mason Ohio 45040 USA
| | - Alex Varbanov
- Procter & Gamble; Mason Business Center; 8700 Mason-Montgomery Road Mason Ohio 45040 USA
| | - Feng Wang
- Procter & Gamble; Mason Business Center; 8700 Mason-Montgomery Road Mason Ohio 45040 USA
| | - Robert J. Isfort
- Procter & Gamble; Mason Business Center; 8700 Mason-Montgomery Road Mason Ohio 45040 USA
| | - Josep M. Argilés
- Cancer Research Group, Departament de Bioquímica i Biologia Molecular, Facultat de Biologia; Universitat de Barcelona; Diagonal 643 Barcelona 08028 Spain
- Institut de Biomedicina de la Universitat de Barcelona; Barcelona Spain
| |
Collapse
|
50
|
Yang AC, Ng BG, Moore SA, Rush J, Waechter CJ, Raymond KM, Willer T, Campbell KP, Freeze HH, Mehta L. Congenital disorder of glycosylation due to DPM1 mutations presenting with dystroglycanopathy-type congenital muscular dystrophy. Mol Genet Metab 2013; 110:345-351. [PMID: 23856421 PMCID: PMC3800268 DOI: 10.1016/j.ymgme.2013.06.016] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2013] [Revised: 06/20/2013] [Accepted: 06/20/2013] [Indexed: 11/18/2022]
Abstract
Congenital disorders of glycosylation (CDG) are rare genetic defects mainly in the post-translational modification of proteins via attachment of carbohydrate chains. We describe an infant with the phenotype of a congenital muscular dystrophy, with borderline microcephaly, hypotonia, camptodactyly, severe motor delay, and elevated creatine kinase. Muscle biopsy showed muscular dystrophy and reduced α-dystroglycan immunostaining with glycoepitope-specific antibodies in a pattern diagnostic of dystroglycanopathy. Carbohydrate deficient transferrin testing showed a pattern pointing to a CDG type I. Sanger sequencing of DPM1 (dolichol-P-mannose synthase subunit 1) revealed a novel Gly > Val change c.455G > T missense mutation resulting in p.Gly152Val) of unknown pathogenicity and deletion/duplication analysis revealed an intragenic deletion from exons 3 to 7 on the other allele. DPM1 activity in fibroblasts was reduced by 80%, while affinity for the substrate was not depressed, suggesting a decrease in the amount of active enzyme. Transfected cells expressing tagged versions of wild type and the p.Gly152Val mutant displayed reduced binding to DPM3, an essential, non-catalytic subunit of the DPM complex, suggesting a mechanism for pathogenicity. The present case is the first individual described with DPM1-CDG (CDG-Ie) to also have clinical and muscle biopsy findings consistent with dystroglycanopathy.
Collapse
Affiliation(s)
- Amy C. Yang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
- Correspondence to: Amy C. Yang, MD Icahn School of Medicine at Mount Sinai One Gustave L. Levy Place, Box 1497 New York, NY 10029
| | - Bobby G. Ng
- Sanford Children's Health Research Center, Sanford-Burnham Medical Research Institute, La Jolla, CA
| | - Steven A. Moore
- Department of Pathology, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA
| | - Jeffrey Rush
- Department of Molecular and Cellular Biochemistry, Chandler Medical Center, College of Medicine, University of Kentucky, Lexington, KY
| | - Charles J. Waechter
- Department of Molecular and Cellular Biochemistry, Chandler Medical Center, College of Medicine, University of Kentucky, Lexington, KY
| | - Kimiyo M. Raymond
- Department of Laboratory Medicine and Pathology, Mayo Clinic School of Medicine, Rochester, MN
| | - Tobias Willer
- Howard Hughes Medical Institute, Department of Molecular Physiology and Biophysics, Department of Neurology, Department of Internal Medicine, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA
| | - Kevin P. Campbell
- Howard Hughes Medical Institute, Department of Molecular Physiology and Biophysics, Department of Neurology, Department of Internal Medicine, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA
| | - Hudson H. Freeze
- Sanford Children's Health Research Center, Sanford-Burnham Medical Research Institute, La Jolla, CA
| | - Lakshmi Mehta
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| |
Collapse
|