1
|
Padilla J, Lee BS, Kim A, Park YI, Bansal A, Lee J. Tumor Regulatory Effect of 15-Hydroxyprostaglandin Dehydrogenase (HPGD) in Triple-Negative Breast Cancer. Int J Mol Sci 2025; 26:1912. [PMID: 40076539 PMCID: PMC11899648 DOI: 10.3390/ijms26051912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/18/2025] [Accepted: 02/20/2025] [Indexed: 03/14/2025] Open
Abstract
Prostaglandin regulation is known to play a pivotal role in tumorigenesis; however, the contributions of the prostaglandin-metabolizing enzyme 15-hydroxyprostaglandin dehydrogenase (HPGD) to cancer development remain poorly understood. In this study, we investigate the effects of HPGD on cell viability, proliferation, anchorage-independent growth, and migration in triple-negative breast cancer (TNBC), an aggressive subtype of breast cancer. Overexpression of HPGD in human TNBC cells resulted in both positive and negative regulation of cell proliferation and colony formation, with these effects occurring independent of prostaglandin E2 (PGE2). In contrast, overexpression of the mouse homolog, Hpgd, in murine TNBC cells led to a consistent but modest reduction in cell viability and colony formation, indicating that HPGD activity varies depending on species and cell line context. Notably, TNBC cells expressing a mutant form of Hpgd (Hpgdmut), which lacks the ability to bind PGE2, exhibited similar functional outcomes in cell viability and colony formation as those expressing wild-type Hpgd (HpgdWT). These findings suggest that HPGD may exert its tumorigenic effects through non-enzymatic mechanisms, potentially by involving modulation of KRAS signaling in human TNBC cells. Our results highlight the diverse roles of HPGD in cancer biology, particularly in the context of TNBC, and point to non-enzymatic pathways as a significant aspect of its tumorigenic activity.
Collapse
Affiliation(s)
- Joselyn Padilla
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC 20037, USA; (J.P.); (Y.-I.P.)
| | - Bok-Soon Lee
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC 20037, USA; (J.P.); (Y.-I.P.)
- Department of Otolaryngology, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | - Allen Kim
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC 20037, USA; (J.P.); (Y.-I.P.)
| | - Yea-In Park
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC 20037, USA; (J.P.); (Y.-I.P.)
| | - Avani Bansal
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC 20037, USA; (J.P.); (Y.-I.P.)
| | - Jiyoung Lee
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC 20037, USA; (J.P.); (Y.-I.P.)
- GW Cancer Center, School of Medicine and Health Sciences, The George Washington University, Washington, DC 20037, USA
| |
Collapse
|
2
|
Castro V, Calvo G, Oliveros JC, Pérez-Del-Pulgar S, Gastaminza P. Hepatitis C virus-induced differential transcriptional traits in host cells after persistent infection elimination by direct-acting antivirals in cell culture. J Med Virol 2024; 96:e29787. [PMID: 38988177 DOI: 10.1002/jmv.29787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/11/2024] [Accepted: 07/02/2024] [Indexed: 07/12/2024]
Abstract
Chronic hepatitis C virus infection (HCV) causes liver inflammation and fibrosis, leading to the development of severe liver disease, such as cirrhosis or hepatocellular carcinoma (HCC). Approval of direct-acting antiviral drug combinations has revolutionized chronic HCV therapy, with virus eradication in >98% of the treated patients. The efficacy of these treatments is such that it is formally possible for cured patients to carry formerly infected cells that display irreversible transcriptional alterations directly caused by chronic HCV Infection. Combining differential transcriptomes from two different persistent infection models, we observed a major reversion of infection-related transcripts after complete infection elimination. However, a small number of transcripts were abnormally expressed in formerly infected cells. Comparison of the results obtained in proliferating and growth-arrested cell culture models suggest that permanent transcriptional alterations may be established by several mechanisms. Interestingly, some of these alterations were also observed in the liver biopsies of virologically cured patients. Overall, our data suggest a direct and permanent impact of persistent HCV infection on the host cell transcriptome even after virus elimination, possibly contributing to the development of HCC.
Collapse
Affiliation(s)
- Victoria Castro
- Department of Cellular and Molecular Biology, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Gema Calvo
- Department of Cellular and Molecular Biology, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Juan Carlos Oliveros
- Bioinformatics for Genomics and Proteomics Unit, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | | | - Pablo Gastaminza
- Department of Cellular and Molecular Biology, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas, Madrid, Spain
| |
Collapse
|
3
|
Tabaei S, Haghshenas MR, Ariafar A, Gilany K, Stensballe A, Farjadian S, Ghaderi A. Comparative proteomics analysis in different stages of urothelial bladder cancer for identification of potential biomarkers: highlighted role for antioxidant activity. Clin Proteomics 2023; 20:28. [PMID: 37501157 PMCID: PMC10373361 DOI: 10.1186/s12014-023-09419-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 07/10/2023] [Indexed: 07/29/2023] Open
Abstract
BACKGROUND Non-muscle-invasive bladder cancer (NMIBC) has a high recurrence rate and muscle-invasive bladder cancer (MIBC) has unfavorable outcomes in urothelial bladder cancer (UBC) patients. Complex UBC-related protein biomarkers for outcome prediction may provide a more efficient management approach with an improved clinical outcome. The aim of this study is to recognize tumor-associated proteins, which are differentially expressed in different stages of UBC patients compared non-cancerous tissues. METHODS The proteome of tissue samples of 42 UBC patients (NMIBC n = 25 and MIBC n = 17) was subjected to two-dimensional electrophoresis (2-DE) combined with Liquid chromatography-mass spectrometry (LC-MS) system to identify differentially expressed proteins. The intensity of protein spots was quantified and compared with Prodigy SameSpots software. Functional, pathway, and interaction analyses of identified proteins were performed using geneontology (GO), PANTHER, Reactome, Gene MANIA, and STRING databases. RESULTS Twelve proteins identified by LC-MS showed differential expression (over 1.5-fold, p < 0.05) by LC-MS, including 9 up-regulated in NMIBC and 3 up-regulated in MIBC patients. Proteins involved in the detoxification of reactive oxygen species and cellular responses to oxidative stress showed the most significant changes in UBC patients. Additionally, the most potential functions related to these detected proteins were associated with peroxidase, oxidoreductase, and antioxidant activity. CONCLUSION We identified several alterations in protein expression involved in canonical pathways which were correlated with the clinical outcomes suggested might be useful as promising biomarkers for early detection, monitoring, and prognosis of UBC.
Collapse
Affiliation(s)
- Samira Tabaei
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Reza Haghshenas
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Ariafar
- Department of Urology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Kambiz Gilany
- Integrative Oncology Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Allan Stensballe
- Department of Health Science and Technology, Aalborg University, Gistrup, 9260, Denmark
- Clinical Cancer Research Center, Aalborg University hospital, Gistrup, 9260, Denmark
| | - Shirin Farjadian
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Abbas Ghaderi
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
4
|
Yuan D, Liu J, Sang W, Li Q. Comprehensive analysis of the role of SFXN family in breast cancer. Open Med (Wars) 2023; 18:20230685. [PMID: 37020524 PMCID: PMC10068752 DOI: 10.1515/med-2023-0685] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 03/02/2023] [Accepted: 03/08/2023] [Indexed: 04/04/2023] Open
Abstract
Abstract
The sideroflexin (SFXN) family is a group of mitochondrial membrane proteins. Although the function of the SFXN family in mitochondria has been widely recognized, the expression levels, role, and prognostic value of this family in breast cancer (BC) have not been clearly articulated and systematically analysed. In our research, SFXN1 and SFXN2 were significantly upregulated in BC versus normal samples based on Gene Expression Profiling Interactive Analysis 2 and the Human Protein Atlas databases. We found that high SFXN1 expression was significantly related to poor prognosis in BC patients and that high SFXN2 expression was significantly associated with good prognosis in BC patients. Gene Ontology analysis of the SFXN family was performed based on the STRING database to explore the potential functions of this family, including biological processes, cellular components, and molecular functions. Based on the MethSurv database, we found that two SFXN1 CpG sites (5′-UTR-S_Shelf-cg06573254 and TSS200-Island-cg17647431), two SFXN2 CpG sites (3′-UTR-Open_Sea-cg04774043 and Body-Open_Sea-cg18994254), one SFXN3 CpG site (Body-S_Shelf-cg17858697), and nine SFXN5 CpG sites (1stExon;5′-UTR-Island-cg03856450, Body-Open_Sea-cg04016113, Body-Open_Sea-cg04197631, Body-Open_Sea-cg07558704, Body-Open_Sea-cg08383863, Body-Open_Sea-cg10040131, Body-Open_Sea-cg10588340, Body-Open_Sea-cg17046766, and Body-Open_Sea-cg22830638) were significantly related to the prognosis of BC patients. According to the ENCORI database, four negative regulatory miRNAs for SFXN1 (hsa-miR-22-3p, hsa-miR-140-5p, hsa-miR-532-5p, and hsa-miR-582-3p) and four negative regulatory miRNAs for SFXN2 (hsa-miR-9-5p, hsa-miR-34a-5p, hsa-miR-532-5p, and hsa-miR-885-5p) were related to poor prognosis for BC patients. This study suggests that SFXN1 and SFXN2 are valuable biomarkers and treatment targets for patients with BC.
Collapse
Affiliation(s)
- Ding Yuan
- Department of General Surgery, Shouguang City People’s Hospital , Shouguang , 262700 , China
| | - Jialiang Liu
- Department of General Surgery, Shouguang City People’s Hospital , Shouguang , 262700 , China
| | - Wenbo Sang
- Department of General Surgery, Shouguang City People’s Hospital , Shouguang , 262700 , China
| | - Qing Li
- Department of General Surgery, Shouguang City People’s Hospital , Shouguang , 262700 , China
| |
Collapse
|
5
|
Wu X, Xie W, Gong B, Fu B, Chen W, Zhou L, Luo L. Development of a TGF-β signaling-related genes signature to predict clinical prognosis and immunotherapy responses in clear cell renal cell carcinoma. Front Oncol 2023; 13:1124080. [PMID: 36776317 PMCID: PMC9911835 DOI: 10.3389/fonc.2023.1124080] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 01/16/2023] [Indexed: 01/28/2023] Open
Abstract
Background Transforming growth factor (TGF)-β signaling is strongly related to the development and progression of tumor. We aimed to construct a prognostic gene signature based on TGF-β signaling-related genes for predicting clinical prognosis and immunotherapy responses of patients with clear cell renal cell carcinoma (ccRCC). Methods The gene expression profiles and corresponding clinical information of ccRCC were collected from the TCGA and the ArrayExpress (E-MTAB-1980) databases. LASSO, univariate and multivariate Cox regression analyses were conducted to construct a prognostic signature in the TCGA cohort. The E-MTAB-1980 cohort were used for validation. Kaplan-Meier (K-M) survival and time-dependent receiver operating characteristic (ROC) were conducted to assess effectiveness and reliability of the signature. The differences in gene enrichments, immune cell infiltration, and expression of immune checkpoints in ccRCC patients showing different risks were investigated. Results We constructed a seven gene (PML, CDKN2B, COL1A2, CHRDL1, HPGD, CGN and TGFBR3) signature, which divided the ccRCC patients into high risk group and low risk group. The K-M analysis indicated that patients in the high risk group had a significantly shorter overall survival (OS) time than that in the low risk group in the TCGA (p < 0.001) and E-MTAB-1980 (p = 0.012). The AUC of the signature reached 0.77 at 1 year, 0.7 at 3 years, and 0.71 at 5 years in the TCGA, respectively, and reached 0.69 at 1 year, 0.72 at 3 years, and 0.75 at 5 years in the E-MTAB-1980, respectively. Further analyses confirmed the risk score as an independent prognostic factor for ccRCC (p < 0.001). The results of ssGSEA that immune cell infiltration degree and the scores of immune-related functions were significantly increased in the high risk group. The CIBERSORT analysis indicated that the abundance of immune cell were significantly different between two risk groups. Furthermore, The risk score was positively related to the expression of PD-1, CTLA4 and LAG3.These results indicated that patients in the high risk group benefit more from immunotherapy. Conclusion We constructed a novel TGF-β signaling-related genes signature that could serve as an promising independent factor for predicting clinical prognosis and immunotherapy responses in ccRCC patients.
Collapse
|
6
|
Fan L, Li Y, Zhang X, Wu Y, Song Y, Zhang F, Zhang J, Sun H. Time-resolved proteome and transcriptome of paraquat-induced pulmonary fibrosis. Pulm Pharmacol Ther 2022; 75:102145. [PMID: 35817254 DOI: 10.1016/j.pupt.2022.102145] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 05/31/2022] [Accepted: 07/05/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUNDS Pulmonary fibrosis (PF) is a pathological state presenting at the progressive stage of heterogeneous interstitial lung disease (ILD). The current understanding of the molecular mechanisms involved is incomplete. This clinical toxicology study focused on the pulmonary fibrosis induced by paraquat (PQ), a widely-used herbicide. Using proteo-transcriptome analysis, we identified differentially expressed proteins (DEPs) derived from the initial development of fibrosis to the dissolved stage and provided further functional analysis. METHODS We established a mouse model of progressive lung fibrosis via intratracheal instillation of paraquat. To acquire a comprehensive and unbiased understanding of the onset of pulmonary fibrosis, we performed time-series proteomics profiling (iTRAQ) and RNA sequencing (RNA-Seq) on lung samples from paraquat-treated mice and saline control. The biological functions and pathways involved were evaluated through Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) Pathway analysis. Correlation tests were conducted on comparable groups 7 days and 28 days post-exposure. Differentially expressed proteins and genes following the same trend on the protein and mRNA levels were selected for validation. The functions of the selected molecules were identified in vitro. The protein level was overexpressed by transfecting gene-containing plasmid or suppressed by transfecting specific siRNA in A549 cells. The levels of endothlial-mesenchymal transition (EMT) markers, including E-cadherin, vimentin, FN1, and α-SMA, were determined via western blot to evaluate the fibrotic process. RESULTS We quantified 1358 DEPs on day 7 and 426 DEPs on day 28 post exposure (Fold change >1.2; Q value < 0.05). The top 5 pathways - drug metabolism-cytochrome P450, metabolism of xenobiotics by cytochrome P450, complement and coagulation cascades, chemical carcinogenesis, protein digestion and absorption - were involved on both day 7 and day 28. Several pathways, including tight junction, focal adhesion, platelet activation, and ECM-receptor interaction, were more enriched on day 28 than on day 7. Integrative analysis of the proteome and transcriptome revealed a moderate correlation of quantitative protein abundance ratios with RNA abundance ratios (Spearman R = 0.3950 and 0.2477 on days 7 and 28, respectively), indicating that post-transcriptional regulation plays an important role in lung injury and repair. Western blot identified that the protein expressions of FN1, S100A4, and RBM3 were significantly upregulated while that of CYP1A1, FMO3, and PGDH were significantly downregulated on day 7. All proteins generally recovered to baseline on day 28. qPCR showed the mRNA levels of Fn1, S100a4, Rbm3, Cyp1a1, Fmo3, and Hpgd changed following the same trend as the levels of their respective proteins. Further, in vitro experiments showed that RBM3 was upregulated while PGDH was downregulated in an EMT model established in human lung epithelial A549 cells. RBM3 overexpression and PGDH knockout could both induce EMT in A549 cells. RBM3 knockout or PGDH overexpression had no reverse effect on EMT in A549 cells. CONCLUSIONS Our proteo-transcriptomic study determined the proteins responsible for fibrogenesis and uncovers their dynamic regulation from lung injury to repair, providing new insights for the development of biomarkers for diagnosis and treatment of fibrotic diseases.
Collapse
Affiliation(s)
- Lu Fan
- Department of Emergency, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Nanjing, PR China; Department of Emergency, Clinical Medical College, Yangzhou University, Yangzhou, PR China.
| | - Yuan Li
- Department of Emergency, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Nanjing, PR China.
| | - Xiaomin Zhang
- Department of Emergency, The Second People's Hospital of Wuxi, Affiliated to Nanjing Medical University, Wuxi, PR China.
| | - Yuxuan Wu
- Department of Emergency, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Nanjing, PR China.
| | - Yang Song
- Department of Emergency, Nanjing Jiangbei Hospital, Affiliated to Southeast University, Nanjing, PR China.
| | - Feng Zhang
- Department of Emergency, Jiangsu Province Hospital of Chinese Medicine, Affiliated to Nanjing University of Chinese Medicine, Nanjing, PR China.
| | - Jinsong Zhang
- Department of Emergency, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Nanjing, PR China.
| | - Hao Sun
- Department of Emergency, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Nanjing, PR China.
| |
Collapse
|
7
|
Stavast CJ, van Zuijen I, Karkoulia E, Özçelik A, van Hoven-Beijen A, Leon LG, Voerman JSA, Janssen GMC, van Veelen PA, Burocziova M, Brouwer RWW, van IJcken WFJ, Maas A, Bindels EM, van der Velden VHJ, Schliehe C, Katsikis PD, Alberich-Jorda M, Erkeland SJ. The tumor suppressor MIR139 is silenced by POLR2M to promote AML oncogenesis. Leukemia 2022; 36:687-700. [PMID: 34741119 PMCID: PMC8885418 DOI: 10.1038/s41375-021-01461-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 10/18/2021] [Accepted: 10/20/2021] [Indexed: 12/03/2022]
Abstract
MIR139 is a tumor suppressor and is commonly silenced in acute myeloid leukemia (AML). However, the tumor-suppressing activities of miR-139 and molecular mechanisms of MIR139-silencing remain largely unknown. Here, we studied the poorly prognostic MLL-AF9 fusion protein-expressing AML. We show that MLL-AF9 expression in hematopoietic precursors caused epigenetic silencing of MIR139, whereas overexpression of MIR139 inhibited in vitro and in vivo AML outgrowth. We identified novel miR-139 targets that mediate the tumor-suppressing activities of miR-139 in MLL-AF9 AML. We revealed that two enhancer regions control MIR139 expression and found that the polycomb repressive complex 2 (PRC2) downstream of MLL-AF9 epigenetically silenced MIR139 in AML. Finally, a genome-wide CRISPR-Cas9 knockout screen revealed RNA Polymerase 2 Subunit M (POLR2M) as a novel MIR139-regulatory factor. Our findings elucidate the molecular control of tumor suppressor MIR139 and reveal a role for POLR2M in the MIR139-silencing mechanism, downstream of MLL-AF9 and PRC2 in AML. In addition, we confirmed these findings in human AML cell lines with different oncogenic aberrations, suggesting that this is a more common oncogenic mechanism in AML. Our results may pave the way for new targeted therapy in AML.
Collapse
Affiliation(s)
- Christiaan J Stavast
- Erasmus MC, University Medical Center Rotterdam, Department of Immunology, Rotterdam, the Netherlands
| | - Iris van Zuijen
- Erasmus MC, University Medical Center Rotterdam, Department of Immunology, Rotterdam, the Netherlands
| | - Elena Karkoulia
- Department of Hemato-Oncology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
- Childhood Leukemia Investigation Prague, Department of Pediatric Haematology and Oncology, 2nd Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | - Arman Özçelik
- Erasmus MC, University Medical Center Rotterdam, Department of Immunology, Rotterdam, the Netherlands
| | | | - Leticia G Leon
- Erasmus MC, University Medical Center Rotterdam, Department of Immunology, Rotterdam, the Netherlands
| | - Jane S A Voerman
- Erasmus MC, University Medical Center Rotterdam, Department of Immunology, Rotterdam, the Netherlands
| | - George M C Janssen
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, the Netherlands
| | - Peter A van Veelen
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, the Netherlands
| | - Monika Burocziova
- Department of Hemato-Oncology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Rutger W W Brouwer
- Erasmus MC, University Medical Center Rotterdam, Center for Biomics, Rotterdam, the Netherlands
- Erasmus MC, University Medical Center Rotterdam, Department of Cell Biology, Rotterdam, the Netherlands
| | - Wilfred F J van IJcken
- Erasmus MC, University Medical Center Rotterdam, Center for Biomics, Rotterdam, the Netherlands
- Erasmus MC, University Medical Center Rotterdam, Department of Cell Biology, Rotterdam, the Netherlands
| | - Alex Maas
- Erasmus MC, University Medical Center Rotterdam, Department of Cell Biology, Rotterdam, the Netherlands
| | - Eric M Bindels
- Erasmus MC, University Medical Center Rotterdam, Department of Hematology, Rotterdam, the Netherlands
| | | | - Christopher Schliehe
- Erasmus MC, University Medical Center Rotterdam, Department of Immunology, Rotterdam, the Netherlands
| | - Peter D Katsikis
- Erasmus MC, University Medical Center Rotterdam, Department of Immunology, Rotterdam, the Netherlands
| | - Meritxell Alberich-Jorda
- Department of Hemato-Oncology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
- Childhood Leukemia Investigation Prague, Department of Pediatric Haematology and Oncology, 2nd Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | - Stefan J Erkeland
- Erasmus MC, University Medical Center Rotterdam, Department of Immunology, Rotterdam, the Netherlands.
| |
Collapse
|
8
|
Sun CC, Zhou ZQ, Yang D, Chen ZL, Zhou YY, Wen W, Feng C, Zheng L, Peng XY, Tang CF. Recent advances in studies of 15-PGDH as a key enzyme for the degradation of prostaglandins. Int Immunopharmacol 2021; 101:108176. [PMID: 34655851 DOI: 10.1016/j.intimp.2021.108176] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 09/14/2021] [Accepted: 09/17/2021] [Indexed: 02/06/2023]
Abstract
15-hydroxyprostaglandin dehydrogenase (15-PGDH; encoded by HPGD) is ubiquitously expressed in mammalian tissues and catalyzes the degradation of prostaglandins (PGs; mainly PGE2, PGD2, and PGF2α) in a process mediated by solute carrier organic anion transport protein family member 2A1 (SLCO2A1; also known as PGT, OATP2A1, PHOAR2, or SLC21A2). As a key enzyme, 15-PGDH catalyzes the rapid oxidation of 15-hydroxy-PGs into 15-keto-PGs with lower biological activity. Increasing evidence suggests that 15-PGDH plays a key role in many physiological and pathological processes in mammals and is considered a potential pharmacological target for preventing organ damage, promoting bone marrow graft recovery, and enhancing tissue regeneration. Additionally, results of whole-exome analyses suggest that recessive inheritance of an HPGD mutation is associated with idiopathic hypertrophic osteoarthropathy. Interestingly, as a tumor suppressor, 15-PGDH inhibits proliferation and induces the differentiation of cancer cells (including those associated with colorectal, lung, and breast cancers). Furthermore, a recent study identified 15-PGDH as a marker of aging tissue and a potential novel therapeutic target for resisting the complex pathology of aging-associated diseases. Here, we review and summarise recent information on the molecular functions of 15-PGDH and discuss its pathophysiological implications.
Collapse
Affiliation(s)
- Chen-Chen Sun
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of the Hunan Province, College of Physical Education, Hunan Normal University, Changsha, Hunan 410012, China
| | - Zuo-Qiong Zhou
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of the Hunan Province, College of Physical Education, Hunan Normal University, Changsha, Hunan 410012, China
| | - Dong Yang
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of the Hunan Province, College of Physical Education, Hunan Normal University, Changsha, Hunan 410012, China
| | - Zhang-Lin Chen
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of the Hunan Province, College of Physical Education, Hunan Normal University, Changsha, Hunan 410012, China
| | - Yun-Yi Zhou
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of the Hunan Province, College of Physical Education, Hunan Normal University, Changsha, Hunan 410012, China
| | - Wei Wen
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of the Hunan Province, College of Physical Education, Hunan Normal University, Changsha, Hunan 410012, China
| | - Chen Feng
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of the Hunan Province, College of Physical Education, Hunan Normal University, Changsha, Hunan 410012, China
| | - Lan Zheng
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of the Hunan Province, College of Physical Education, Hunan Normal University, Changsha, Hunan 410012, China
| | - Xi-Yang Peng
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of the Hunan Province, College of Physical Education, Hunan Normal University, Changsha, Hunan 410012, China.
| | - Chang-Fa Tang
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of the Hunan Province, College of Physical Education, Hunan Normal University, Changsha, Hunan 410012, China.
| |
Collapse
|
9
|
Kim SJ, Lee JH, Park WJ, Kim S. Bioinformatic Exploration for Prognostic Significance of Sphingolipid Metabolism-Related Genes in Invasive Ductal Carcinoma Using the Cancer Genome Atlas Cohort. Int J Gen Med 2021; 14:4423-4434. [PMID: 34413672 PMCID: PMC8370849 DOI: 10.2147/ijgm.s328376] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 07/29/2021] [Indexed: 12/24/2022] Open
Abstract
INTRODUCTION Sphingolipid metabolism is a highly controlled process that is involved in regulating bioactive lipid signaling pathways and serves important roles in several cellular processes in breast cancer. Invasive ductal carcinoma (IDC), which is characterized by the malignant proliferation of the ductal epithelium and stromal invasion, is the most common type of breast cancer. Recent advances in genetic research have accelerated the discovery of novel prognostic factors and therapeutic targets for the disease. The aim of the present study was to investigate the expression and prognostic significance of sphingolipid metabolism-related genes in female IDC. METHODS The present study used gene expression RNAseq data obtained from The Cancer Genome Atlas breast invasive carcinoma (TCGA BRCA) datasets. RESULTS Sphingolipid metabolism-related genes exhibited dysregulated mRNA expression levels in IDC. The Student's t-test revealed that SMPDL3B, B4GALNT1, LPAR2, and LASS2 were significantly upregulated, while LASS3, LPAR1, B4GALT6, GAL3ST1, HPGD, ST8SIA1, UGT8, and S1PR1 were significantly downregulated in female IDC tissues compared with normal solid tissues. Kaplan-Meier survival analyses revealed that high SMPDL3B mRNA expression levels were associated with good prognosis in female IDC, suggesting that SMPDL3B plays a tumor suppressor role. To the best of our knowledge, the present study was the first to report that dysregulated expressions of SMPDL3B are significantly associated with age, estrogen receptor status, progesterone receptor status, and histological subtype. CONCLUSION Taken together, our study indicated that SMPDL3B may have a pathophysiological role and serve as a novel prognostic biomarker in IDC.
Collapse
Affiliation(s)
- Su-Jeong Kim
- Department of Biochemistry, College of Medicine, Gachon University, Yeonsu-gu, Incheon, 21999, Republic of Korea
| | - Jae-Ho Lee
- Department of Anatomy, School of Medicine, Keimyung University, Dalseo-gu, Daegu, 42601, Republic of Korea
| | - Woo-Jae Park
- Department of Biochemistry, College of Medicine, Gachon University, Yeonsu-gu, Incheon, 21999, Republic of Korea
| | - Shin Kim
- Department of Immunology, School of Medicine, Keimyung University, Dalseo-gu, Daegu, 42601, Republic of Korea
- Institute of Medical Science, Keimyung University, Dalseo-gu, Daegu, 42601, Republic of Korea
- Institute for Cancer Research, Keimyung University Dongsan Medical Center, Dalseo-gu, Daegu, 42601, Republic of Korea
| |
Collapse
|
10
|
Pantano F, Croset M, Driouch K, Bednarz-Knoll N, Iuliani M, Ribelli G, Bonnelye E, Wikman H, Geraci S, Bonin F, Simonetti S, Vincenzi B, Hong SS, Sousa S, Pantel K, Tonini G, Santini D, Clézardin P. Integrin alpha5 in human breast cancer is a mediator of bone metastasis and a therapeutic target for the treatment of osteolytic lesions. Oncogene 2021; 40:1284-1299. [PMID: 33420367 PMCID: PMC7892344 DOI: 10.1038/s41388-020-01603-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 11/26/2020] [Accepted: 12/03/2020] [Indexed: 02/07/2023]
Abstract
Bone metastasis remains a major cause of mortality and morbidity in breast cancer. Therefore, there is an urgent need to better select high-risk patients in order to adapt patient's treatment and prevent bone recurrence. Here, we found that integrin alpha5 (ITGA5) was highly expressed in bone metastases, compared to lung, liver, or brain metastases. High ITGA5 expression in primary tumors correlated with the presence of disseminated tumor cells in bone marrow aspirates from early stage breast cancer patients (n = 268; p = 0.039). ITGA5 was also predictive of poor bone metastasis-free survival in two separate clinical data sets (n = 855, HR = 1.36, p = 0.018 and n = 427, HR = 1.62, p = 0.024). This prognostic value remained significant in multivariate analysis (p = 0.028). Experimentally, ITGA5 silencing impaired tumor cell adhesion to fibronectin, migration, and survival. ITGA5 silencing also reduced tumor cell colonization of the bone marrow and formation of osteolytic lesions in vivo. Conversely, ITGA5 overexpression promoted bone metastasis. Pharmacological inhibition of ITGA5 with humanized monoclonal antibody M200 (volociximab) recapitulated inhibitory effects of ITGA5 silencing on tumor cell functions in vitro and tumor cell colonization of the bone marrow in vivo. M200 also markedly reduced tumor outgrowth in experimental models of bone metastasis or tumorigenesis, and blunted cancer-associated bone destruction. ITGA5 was not only expressed by tumor cells but also osteoclasts. In this respect, M200 decreased human osteoclast-mediated bone resorption in vitro. Overall, this study identifies ITGA5 as a mediator of breast-to-bone metastasis and raises the possibility that volociximab/M200 could be repurposed for the treatment of ITGA5-positive breast cancer patients with bone metastases.
Collapse
Affiliation(s)
- Francesco Pantano
- grid.503384.90000 0004 0450 3721INSERM, UMR_S1033, LYOS, Lyon, France ,grid.7849.20000 0001 2150 7757Univ Lyon, Villeurbanne, France ,grid.9657.d0000 0004 1757 5329Medical Oncology Department, Campus Bio-Medico University of Rome, Rome, Italy
| | - Martine Croset
- grid.503384.90000 0004 0450 3721INSERM, UMR_S1033, LYOS, Lyon, France ,grid.7849.20000 0001 2150 7757Univ Lyon, Villeurbanne, France
| | - Keltouma Driouch
- grid.418596.70000 0004 0639 6384Institut Curie, Service de Génétique, Unité de Pharmacogénomique, Paris, France
| | - Natalia Bednarz-Knoll
- grid.13648.380000 0001 2180 3484Department of Tumor Biology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany ,grid.11451.300000 0001 0531 3426Laboratory of Translational Oncology, Medical University of Gdansk, Gdansk, Poland
| | - Michele Iuliani
- grid.9657.d0000 0004 1757 5329Medical Oncology Department, Campus Bio-Medico University of Rome, Rome, Italy
| | - Giulia Ribelli
- grid.9657.d0000 0004 1757 5329Medical Oncology Department, Campus Bio-Medico University of Rome, Rome, Italy
| | - Edith Bonnelye
- grid.503384.90000 0004 0450 3721INSERM, UMR_S1033, LYOS, Lyon, France ,grid.7849.20000 0001 2150 7757Univ Lyon, Villeurbanne, France
| | - Harriet Wikman
- grid.13648.380000 0001 2180 3484Department of Tumor Biology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Sandra Geraci
- grid.503384.90000 0004 0450 3721INSERM, UMR_S1033, LYOS, Lyon, France ,grid.7849.20000 0001 2150 7757Univ Lyon, Villeurbanne, France
| | - Florian Bonin
- grid.418596.70000 0004 0639 6384Institut Curie, Service de Génétique, Unité de Pharmacogénomique, Paris, France
| | - Sonia Simonetti
- grid.9657.d0000 0004 1757 5329Medical Oncology Department, Campus Bio-Medico University of Rome, Rome, Italy
| | - Bruno Vincenzi
- grid.9657.d0000 0004 1757 5329Medical Oncology Department, Campus Bio-Medico University of Rome, Rome, Italy
| | - Saw See Hong
- grid.7849.20000 0001 2150 7757Univ Lyon, Villeurbanne, France ,grid.507621.7INRA, UMR-754, Lyon, France
| | - Sofia Sousa
- grid.503384.90000 0004 0450 3721INSERM, UMR_S1033, LYOS, Lyon, France ,grid.7849.20000 0001 2150 7757Univ Lyon, Villeurbanne, France
| | - Klaus Pantel
- grid.13648.380000 0001 2180 3484Department of Tumor Biology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Giuseppe Tonini
- grid.9657.d0000 0004 1757 5329Medical Oncology Department, Campus Bio-Medico University of Rome, Rome, Italy
| | - Daniele Santini
- grid.9657.d0000 0004 1757 5329Medical Oncology Department, Campus Bio-Medico University of Rome, Rome, Italy
| | - Philippe Clézardin
- grid.503384.90000 0004 0450 3721INSERM, UMR_S1033, LYOS, Lyon, France ,grid.7849.20000 0001 2150 7757Univ Lyon, Villeurbanne, France ,grid.11835.3e0000 0004 1936 9262Oncology and Metabolism Department, University of Sheffield, Sheffield, UK
| |
Collapse
|
11
|
Volpato M, Cummings M, Shaaban AM, Abderrahman B, Hull MA, Maximov PY, Broom BM, Hoppe R, Fan P, Brauch H, Jordan VC, Speirs V. Downregulation of 15-hydroxyprostaglandin dehydrogenase during acquired tamoxifen resistance and association with poor prognosis in ERα-positive breast cancer. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2020; 1:355-371. [PMID: 33210098 PMCID: PMC7116369 DOI: 10.37349/etat.2020.00021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Aim: Tamoxifen (TAM) resistance remains a clinical issue in breast cancer. The authors previously reported that 15-hydroxyprostaglandin dehydrogenase (HPGD) was significantly downregulated in tamoxifen-resistant (TAMr) breast cancer cell lines. Here, the authors investigated the relationship between HPGD expression, TAM resistance and prediction of outcome in breast cancer. Methods: HPGD overexpression and silencing studies were performed in isogenic TAMr and parental human breast cancer cell lines to establish the impact of HPGD expression on TAM resistance. HPGD expression and clinical outcome relationships were explored using immunohistochemistry and in silico analysis. Results: Restoration of HPGD expression and activity sensitised TAMr MCF-7 cells to TAM and 17β-oestradiol, whilst HPGD silencing in parental MCF-7 cells reduced TAM sensitivity. TAMr cells released more prostaglandin E2 (PGE2) than controls, which was reduced in TAMr cells stably transfected with HPGD. Exogenous PGE2 signalled through the EP4 receptor to reduce breast cancer cell sensitivity to TAM. Decreased HPGD expression was associated with decreased overall survival in ERα-positive breast cancer patients. Conclusions: HPGD downregulation in breast cancer is associated with reduced response to TAM therapy via PGE2-EP4 signalling and decreases patient survival. The data offer a potential target to develop combination therapies that may overcome acquired tamoxifen resistance.
Collapse
Affiliation(s)
- Milene Volpato
- Leeds Institute of Medical Research, University of Leeds, St James's University Hospital, LS9 7TF Leeds, UK
| | - Michele Cummings
- Leeds Institute of Medical Research, University of Leeds, St James's University Hospital, LS9 7TF Leeds, UK
| | - Abeer M Shaaban
- Institute of Cancer and Genomic Sciences, University of Birmingham, B15 2TT Birmingham, UK
| | - Balkees Abderrahman
- Leeds Institute of Medical Research, University of Leeds, St James's University Hospital, LS9 7TF Leeds, UK.,Department of Breast Medical Oncology, UT MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Mark A Hull
- Leeds Institute of Medical Research, University of Leeds, St James's University Hospital, LS9 7TF Leeds, UK
| | - Philipp Y Maximov
- Department of Breast Medical Oncology, UT MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Bradley M Broom
- Department of Bioinformatics and Computational Biology, UT MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Reiner Hoppe
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology and University of Tübingen, Auerbachstr. 112, D-70376 Stuttgart, Germany.,Germany iFIT Cluster of Excellence, University of Tübingen, Auerbachstr. 112, D-70376 Stuttgart, Germany
| | - Ping Fan
- Department of Breast Medical Oncology, UT MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Hiltrud Brauch
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology and University of Tübingen, Auerbachstr. 112, D-70376 Stuttgart, Germany.,Germany iFIT Cluster of Excellence, University of Tübingen, Auerbachstr. 112, D-70376 Stuttgart, Germany.,German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - V Craig Jordan
- Department of Bioinformatics and Computational Biology, UT MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Valerie Speirs
- Leeds Institute of Medical Research, University of Leeds, St James's University Hospital, LS9 7TF Leeds, UK.,Institute of Medical Sciences, University of Aberdeen, Foresterhill, AB25 2ZD Aberdeen, UK
| |
Collapse
|
12
|
Li H, Ma Z, Che Z, Li Q, Fan J, Zhou Z, Wu Y, Jin Y, Liang P, Che X. Comprehensive role of prostate-specific antigen identified with proteomic analysis in prostate cancer. J Cell Mol Med 2020; 24:10202-10215. [PMID: 33107155 PMCID: PMC7520270 DOI: 10.1111/jcmm.15634] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 06/25/2020] [Indexed: 12/11/2022] Open
Abstract
Current treatments including androgen deprivation fail to prevent prostate cancer (PrCa) from progressing to castration-resistant PrCa (CRPC). Accumulating evidence highlights the relevance of prostate-specific antigen (PSA) in the development and progression of PrCa. The underlying mechanism whereby PSA functions in PrCa, however, has yet been elucidated. We demonstrated that PSA knockdown attenuated tumorigenesis and metastasis of PrCa C4-2 cells in vitro and in vivo, whereas promoted the apoptosis in vitro. To illuminate the comprehensive role of PSA in PrCa, we performed an isobaric tag for relative and absolute quantitation (iTRAQ)-based proteomic analysis to explore the proteomic change induced by PSA knockdown. Among 121 differentially expressed proteins, 67 proteins were up-regulated, while 54 proteins down-regulated. Bioinformatics analysis was used to explore the mechanism through which PSA exerts influence on PrCa. Protein-protein interaction analysis showed that PSA may mediate POTEF, EPHA3, RAD51C, HPGD and MCM4 to promote the initiation and progression of PrCa. We confirmed that PSA knockdown induced the up-regulation of MCM4 and RAD51C, while it down-regulated POTEF and EPHA3; meanwhile, MCM4 was higher in PrCa para-cancerous tissue than in cancerous tissue, suggesting that PSA may facilitate the tumorigenesis by mediating MCM4. Our findings suggest that PSA plays a comprehensive role in the development and progression of PrCa.
Collapse
Affiliation(s)
- Haoyong Li
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhe Ma
- Department of Urology, the First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Zhifei Che
- Department of Urology, the First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Qi Li
- Department of Urology, the First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Jinfeng Fan
- Department of Urology, the First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Zhiyan Zhou
- Department of Urology, the First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Yaoxi Wu
- Department of Urology, the First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Yingxia Jin
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Peiyu Liang
- Department of Urology, the First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Xianping Che
- Department of Urology, The Second Affiliated Hospital of Hainan Medical University, Haikou, China
| |
Collapse
|
13
|
Integrated Chip-Seq and RNA-Seq Data Analysis Coupled with Bioinformatics Approaches to Investigate Regulatory Landscape of Transcription Modulators in Breast Cancer Cells. Methods Mol Biol 2020; 2102:35-59. [PMID: 31989549 DOI: 10.1007/978-1-0716-0223-2_3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The objective of this chapter is to describe step-by-step bioinformatics and functional genomics solutions for analyzing ChIP-Seq and RNA-Seq data for understanding the regulatory mechanisms of chromatin modifiers and transcription factors that can drive pathogenesis of chronic complex human diseases, such as cancer. Here we have used two transcription regulatory proteins: nuclear respiratory factor 1 (NRF1) and inhibitor of differentiation protein 3 (ID3) for ChIP-Seq and RNA-Seq data as examples for discussing the importance of selecting the appropriate computational analysis methods, software, and parameters for the processing of raw data as well as their integrative regulatory landscape analysis to obtain accurate and reliable results. Both ChIP-Seq and RNA-Seq analytic methodologies are used as instructional examples to identify NRF1 or ID3 binding to the promoters and enhancers in the genome and their effects on the activity as well as to discover target genes that can drive breast cancer.
Collapse
|
14
|
Tang FH, Chang WA, Tsai EM, Tsai MJ, Kuo PL. Investigating Novel Genes Potentially Involved in Endometrial Adenocarcinoma using Next-Generation Sequencing and Bioinformatic Approaches. Int J Med Sci 2019; 16:1338-1348. [PMID: 31692912 PMCID: PMC6818189 DOI: 10.7150/ijms.38219] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Accepted: 08/22/2019] [Indexed: 12/26/2022] Open
Abstract
Endometrial cancer is one of the most common cancers in women worldwide, affecting more than 300,000 women annually. Dysregulated gene expression, especially those mediated by microRNAs, play important role in the development and progression of cancer. This study aimed to investigate differentially expressed genes in endometrial adenocarcinoma using next generation sequencing (NGS) and bioinformatics. The gene expression profiles and microRNA profiles of endometrial adenocarcinoma (cancer part) and normal endometrial tissue (non-cancer part) were assessed with NGS. We identified 56 significantly dysregulated genes, including 47 upregulated and 9 downregulated genes, in endometrial adenocarcinoma. Most of these genes were associated with defense response, response to stimulus, and immune system process, and further pathway analysis showed that human papillomavirus infection was the most significant pathway in endometrial adenocarcinoma. In addition, these genes were also associated with decreased cell death and survival as well as increased cellular movement. The analyses using Human Protein Atlas, identified 6 genes (PEG10, CLDN1, ASS1, WNT7A, GLDC, and RSAD2) significantly associated with poorer prognosis and 3 genes (SFN, PIGR, and CDKN1A) significantly associated with better prognosis. Combining with the data of microRNA profiles using microRNA target predicting tools, two significantly dysregulated microRNA-mediated gene expression changes in endometrial adenocarcinoma were identified: downregulated hsa-miR-127-5p with upregulated CSTB and upregulated hsa-miR-218-5p with downregulated HPGD. These findings may contribute important new insights into possible novel diagnostic or therapeutic strategies for endometrial adenocarcinoma.
Collapse
Affiliation(s)
- Feng-Hsiang Tang
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Obstetrics and Gynecology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Obstetrics and Gynecology, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Wei-An Chang
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Division of Pulmonary and Critical Care Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
- Department of Internal Medicine, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Eing-Mei Tsai
- Department of Obstetrics and Gynecology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Ming-Ju Tsai
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Division of Pulmonary and Critical Care Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
- Department of Internal Medicine, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Respiratory Therapy, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Po-Lin Kuo
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Institute of Medical Science and Technology, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| |
Collapse
|
15
|
Targeted exome sequencing identified a novel mutation hotspot and a deletion in Chinese primary hypertrophic osteoarthropathy patients. Clin Chim Acta 2018; 487:264-269. [DOI: 10.1016/j.cca.2018.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 10/03/2018] [Indexed: 11/18/2022]
|
16
|
Qi X, Wang Y, Hou J, Huang Y. A Single Nucleotide Polymorphism in HPGD Gene Is Associated with Prostate Cancer Risk. J Cancer 2017; 8:4083-4086. [PMID: 29187884 PMCID: PMC5706011 DOI: 10.7150/jca.22025] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 08/26/2017] [Indexed: 01/18/2023] Open
Abstract
Introduction: The HPGD gene was associated with some cancers, such as colorectal, breast, prostate, and bladder. However, detailed role of 15-hydroxyprostaglandin dehydrogenase (HPGD) gene remain unclear in prostate cancer. The study was to investigate the correlation between rs8752 that located in the 3'untranslated region (UTR) of the 15-hydroxyprostaglandin dehydrogenase (HPGD) gene and prostate cancer (PCa) risk. Materials and Methods: 109 patients from the First Affiliate Hospital of Soochow University were recruited. According to the results of pathologic diagnosis, all patients were divided into two groups (prostate cancer and benign prostatic hyperplasia). The single-nucleotide polymorphism (SNP) rs8752 was genotyped in all samples by direct sequencing. Results: 54 prostate cancer and 55 BPH patients were included with a median age of 70.41 and 67.62 years, respectively. No statistically significant difference between two groups in patient criteria. The frequency of the GG homozygote and AG+GG genotype were 37.74% and 62.26% in 54 prostate cancer samples, while in 55BPH patients, values were 62.50% and 37.50%. Compared with the GG genotype, the combined GA+AA genotypes had a significantly higher risk of prostate cancer (OR = 2.750; 95% CI: 1.266-5.971, p = 0.011). Furthermore, the risk effect was obtained in subgroups of PCa patient group, the AA+AG genotypes significantly associated with the higher Gleason score samples (AA+AG vs GG: OR = 3.50, 95%CI = 1.106-11.072, p = 0.033) and the risk of pathological stage (AA+AG vs GG: OR = 4.00, 95%CI = 1.253-12.767, p = 0.019). Conclusions: rs8752 in the 3'untranslated region (UTR) of the 15-hydroxyprostaglandin dehydrogenase (HPGD) gene was found to be responsible for the susceptibility to prostate cancer in Chinese individuals.
Collapse
Affiliation(s)
- Xiaofei Qi
- Department of Urology, the First Affiliate Hospital of Soochow University, Suzhou, China
| | - Yu Wang
- Department of Urology, the First Affiliate Hospital of Soochow University, Suzhou, China
| | - Jianquan Hou
- Department of Urology, the First Affiliate Hospital of Soochow University, Suzhou, China
| | - Yuhua Huang
- Department of Urology, the First Affiliate Hospital of Soochow University, Suzhou, China
| |
Collapse
|
17
|
Wu R, Liu T, Yang P, Liu X, Liu F, Wang Y, Xiong H, Yu S, Huang X, Zhuang L. Association of 15-hydroxyprostaglandin dehydrogenate and poor prognosis of obese breast cancer patients. Oncotarget 2017; 8:22842-22853. [PMID: 28206964 PMCID: PMC5410267 DOI: 10.18632/oncotarget.15280] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 01/27/2017] [Indexed: 01/04/2023] Open
Abstract
In order to explore the new mechanism that obesity worsens the prognosis of breast cancer, we reanalyzed the data about gene expression of normal, overweight, and obese breast cancer patients to explore potential genes and validate its function by clinical and experimental data. The fold change of 15-hydroxyprostaglandin dehydrogenate (HPGD) gene which displayed declining trend with BMI increase was 0.46 in obese versus normal weight patients. HPGD protein was highest expressed in normal weight group and lowest expressed in obese group. The rate of positive lymph nodes was 67% in low expression of HPGD group and 35% in high expression of HPGD group. The recurrence-free survival (RFS) rate and overall survival (OS) rate of 5 years had significant difference between low expression of HPGD group and high expression of HPGD group. Obesity dramatically decreased the RFS rate and OS rate of 5 years. Down regulation of HPGD expression could increase the migration and proliferation ability of breast cancer cell line MCF-7. Taken together, our results indicate that low expression of HPGD may be a reason for poor prognosis of obese breast cancer patients.
Collapse
Affiliation(s)
- Ruxing Wu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tao Liu
- Department of Pediatrics, Aflac Cancer Center and Blood Disorders Service, Emory University School of Medicine, Atlanta, GA, USA
| | - Peiwen Yang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiyou Liu
- Cancer Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fei Liu
- Cancer Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ya Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huihua Xiong
- Cancer Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shiying Yu
- Cancer Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoyuan Huang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liang Zhuang
- Cancer Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
18
|
Lehtinen L, Vainio P, Wikman H, Huhtala H, Mueller V, Kallioniemi A, Pantel K, Kronqvist P, Kallioniemi O, Carpèn O, Iljin K. PLA2G7 associates with hormone receptor negativity in clinical breast cancer samples and regulates epithelial-mesenchymal transition in cultured breast cancer cells. JOURNAL OF PATHOLOGY CLINICAL RESEARCH 2017; 3:123-138. [PMID: 28451461 PMCID: PMC5402179 DOI: 10.1002/cjp2.69] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Accepted: 03/10/2017] [Indexed: 12/12/2022]
Abstract
Breast cancer is the leading cause of cancer‐related deaths in women due to distinct cancer subtypes associated with early recurrence and aggressive metastatic progression. High lipoprotein‐associated phospholipase A2 (PLA2G7) expression has previously been associated with aggressive disease and metastasis in prostate cancer. Here, we explore the expression pattern and functional role of PLA2G7 in breast cancer. First, a bioinformatic analysis of genome‐wide gene expression data from 970 breast samples was carried out to evaluate the expression pattern of PLA2G7 mRNA in breast cancer. Second, the expression profile of PLA2G7 was studied in 1042 breast cancer samples including 89 matched lymph node metastasis samples using immunohistochemistry. Third, the effect of PLA2G7 silencing on genome‐wide gene expression profile was studied and validated in cultured breast cancer cells expressing PLA2G7 at high level. Last, the expression pattern of PLA2G7 mRNA was investigated in 24 nonmalignant tissue samples and 65 primary and 7 metastatic tumour samples derived from various organs using qRT‐PCR. The results from clinical breast cancer samples indicated that PLA2G7 is overexpressed in a subset of breast cancer samples compared to its expression in benign breast tissue samples and that high PLA2G7 expression associated with hormone receptor negativity as well as with poor prognosis in a subset of breast cancer samples. In vitro functional studies highlighted the putative role of PLA2G7 in the regulation of epithelial‐mesenchymal transition (EMT)‐related signalling pathways, vimentin and E‐cadherin protein expression as well as cell migration in cultured breast cancer cells. Furthermore, supporting the findings in breast and prostate cancer, high PLA2G7 mRNA expression was associated with metastatic cancer in four additional organs of origin. In conclusion, our results indicate that PLA2G7 is highly expressed in a subset of metastatic and aggressive breast cancers and in metastatic samples of various tissues of origin and promotes EMT and migration in cultured breast cancer cells.
Collapse
Affiliation(s)
- Laura Lehtinen
- Department of PathologyTurku University and Turku University HospitalTurkuFinland
| | - Paula Vainio
- Department of PathologyTurku University and Turku University HospitalTurkuFinland
| | - Harriet Wikman
- Institute of Tumour Biology, Centre of Experimental MedicineUniversity Medical Centre Hamburg-EppendorfGermany
| | - Heini Huhtala
- School of Health SciencesUniversity of TampereTampereFinland
| | - Volkmar Mueller
- Department of GynecologyUniversity Medical Center Hamburg-EppendorfHamburgGermany
| | | | - Klaus Pantel
- Institute of Tumour Biology, Centre of Experimental MedicineUniversity Medical Centre Hamburg-EppendorfGermany
| | - Pauliina Kronqvist
- Department of PathologyTurku University and Turku University HospitalTurkuFinland
| | - Olli Kallioniemi
- FIMM, Institute for Molecular Medicine FinlandUniversity of HelsinkiFinland.,Present address: Department of Oncology-Pathology, Science for Life LaboratoryKarolinska InstitutetSolnaSweden
| | - Olli Carpèn
- Department of PathologyTurku University and Turku University HospitalTurkuFinland.,Present address: Department of PathologyUniversity of Helsinki and Helsinki University HospitalHelsinkiFinland
| | | |
Collapse
|
19
|
Mehdawi LM, Prasad CP, Ehrnström R, Andersson T, Sjölander A. Non-canonical WNT5A signaling up-regulates the expression of the tumor suppressor 15-PGDH and induces differentiation of colon cancer cells. Mol Oncol 2016; 10:1415-1429. [PMID: 27522468 DOI: 10.1016/j.molonc.2016.07.011] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 07/22/2016] [Accepted: 07/23/2016] [Indexed: 12/11/2022] Open
Abstract
The tumor suppressor 15-hydroxyprostaglandin dehydrogenase (15-PGDH) is the key enzyme in prostaglandin E2 catabolism and is down-regulated in colorectal cancer (CRC) tissue. Canonical Wnt signaling is frequently elevated in colon cancers and has been shown to down-regulate 15-PGDH expression. Therefore, we have in the current study investigated if the non-canonical ligand WNT5A relates to increased expression of 15-PGDH in colon cancer cells. In the same cohort of patients, we demonstrated a parallel and significant loss of 15-PGDH and WNT5A protein expression in CRC tissues compared with matched normal colon tissues. Furthermore, patients with low 15-PGDH/WNT5A expression in their tumors showed reduced survival compared with patients with high 15-PGDH/WNT5A expression. To investigate if WNT5A signaling directly affects 15-PGDH expression, we performed in vitro analyses of colon cancer cells (HT-29 and Caco-2). Both cell lines, when treated with recombinant WNT5A (rWNT5A) or Foxy-5, a WNT5A-mimicking peptide, responded by increasing their expression of 15-PGDH mRNA and protein. Our investigations showed that rWNT5A and Foxy-5 induced this increased expression of 15-PGDH through reduced β-catenin signaling as well as increased JNK/AP-1 signaling in colon cancer cells. WNT5A signaling also induced increased 15-PGDH expression in a breast cancer cell line both in vitro and in vivo. In agreement, WNT5A signaling also increased the expression of the differentiation markers sucrose-isomaltase and mucin-2 in colon cancer cells. Our results show that WNT5A signaling regulates 15-PGDH expression, thus uncovering a novel mechanism by which WNT5A acts as a tumor suppressor and suggests that increased 15-PGDH expression could be used as an indicator of a positive response to Foxy-5 in patients treated with this WNT5A agonist.
Collapse
Affiliation(s)
- Lubna M Mehdawi
- Department of Translational Medicine, Division of Cell and Experimental Pathology, Skåne University Hospital Malmö, Lund University, Sweden
| | - Chandra Prakash Prasad
- Department of Translational Medicine, Division of Cell and Experimental Pathology, Skåne University Hospital Malmö, Lund University, Sweden
| | - Roy Ehrnström
- Department of Translational Medicine, Division of Pathology, Skåne University Hospital Malmö, Lund University, Sweden
| | - Tommy Andersson
- Department of Translational Medicine, Division of Cell and Experimental Pathology, Skåne University Hospital Malmö, Lund University, Sweden
| | - Anita Sjölander
- Department of Translational Medicine, Division of Cell and Experimental Pathology, Skåne University Hospital Malmö, Lund University, Sweden.
| |
Collapse
|
20
|
Nikiforova ZN, Taipov MA, Kudryavcev IA, Shevchenko VE. [The connection of miR-21 and miR-155 with regulation of 15-HPGDH mRNA in human breast cancer cells]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2016; 62:265-71. [PMID: 27420617 DOI: 10.18097/pbmc20166203265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Breast cancer is the most frequent cancer and the leading cause of cancer-related deaths in women worldwide. We determined the expression of COX2, COX1, 15-HPGDH mRNA and miRNAs (miR-21, miR-155) in three estrogen positive human breast cancer cell lines (MCF-7, BT-474, ZR-75-1). According to the results of three independent experiments the amount of COX1 and COX2 mRNA was significantly higher in the ZR-75-1 than in MCF-7 and BT-474 cells. Levels of total 15-HPGDH; functional 15-HPGDH mRNA in BT-474 cell line were lower than in MCF-7 and ZR-75-1 ones. The synthesis of 15-HPGDH enzyme in BT-474 line was blocked at the nuclear immature pre-mRNA processing level. miR-155 expression level was significantly lower than miR-21 in breast cancer cell lines. Correlations between the dysregulation of miR-21, miR-155 and 15-HPGDH, COX-1, COX-2 mRNA were identified. Expression of miR-21 was high in MCF-7, ZR-75-1 and BT-474 cell lines. Our results show that miR-21 and miR-155 regulate activity of several genes in cancer cells, their effect on the individual genes was in some cases cumulative. Based on our results, we concluded that miR-21, miR-155 suppress the work of tumor suppressor gene 15-HPGDH and induce potential oncogene COX-2 that promotes cell malignancy and metastasis of breast cancer.
Collapse
Affiliation(s)
| | - M A Taipov
- Blokhin Russian Cancer Research Center, Moscow, Russia
| | | | | |
Collapse
|
21
|
Bartkowiak K, Kwiatkowski M, Buck F, Gorges TM, Nilse L, Assmann V, Andreas A, Müller V, Wikman H, Riethdorf S, Schlüter H, Pantel K. Disseminated Tumor Cells Persist in the Bone Marrow of Breast Cancer Patients through Sustained Activation of the Unfolded Protein Response. Cancer Res 2015; 75:5367-77. [PMID: 26573792 DOI: 10.1158/0008-5472.can-14-3728] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 09/02/2015] [Indexed: 11/16/2022]
Abstract
Disseminated tumor cells (DTC), which share mesenchymal and epithelial properties, are considered to be metastasis-initiating cells in breast cancer. However, the mechanisms supporting DTC survival are poorly understood. DTC extravasation into the bone marrow may be encouraged by low oxygen concentrations that trigger metabolic and molecular alterations contributing to DTC survival. Here, we investigated how the unfolded protein response (UPR), an important cytoprotective program induced by hypoxia, affects the behavior of stressed cancer cells. DTC cell lines established from the bone marrow of patients with breast cancer (BC-M1), lung cancer, (LC-M1), and prostate cancer (PC-E1) were subjected to hypoxic and hypoglycemic conditions. BC-M1 and LC-M1 exhibiting mesenchymal and epithelial properties adapted readily to hypoxia and glucose starvation. Upregulation of UPR proteins, such as the glucose-regulated protein Grp78, induced the formation of filamentous networks, resulting in proliferative advantages and sustained survival under total glucose deprivation. High Grp78 expression correlated with mesenchymal attributes of breast and lung cancer cells and with poor differentiation in clinical samples of primary breast and lung carcinomas. In DTCs isolated from bone marrow specimens from breast cancer patients, Grp78-positive stress granules were observed, consistent with the likelihood these cells were exposed to acute cell stress. Overall, our findings provide the first evidence that the UPR is activated in DTC in the bone marrow from cancer patients, warranting further study of this cell stress pathway as a predictive biomarker for recurrent metastatic disease.
Collapse
Affiliation(s)
- Kai Bartkowiak
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Marcel Kwiatkowski
- Institute of Clinical Chemistry, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Friedrich Buck
- Institute of Clinical Chemistry, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tobias M Gorges
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lars Nilse
- Institute of Molecular Medicine and Cell Research, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Volker Assmann
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Antje Andreas
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Volkmar Müller
- Department of Gynecology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Harriet Wikman
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sabine Riethdorf
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hartmut Schlüter
- Institute of Clinical Chemistry, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Klaus Pantel
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
22
|
Gromov P, Espinoza JA, Gromova I. Molecular and diagnostic features of apocrine breast lesions. Expert Rev Mol Diagn 2015; 15:1011-22. [DOI: 10.1586/14737159.2015.1057125] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
23
|
Duveau DY, Yasgar A, Wang Y, Hu X, Kouznetsova J, Brimacombe KR, Jadhav A, Simeonov A, Thomas CJ, Maloney DJ. Structure-activity relationship studies and biological characterization of human NAD(+)-dependent 15-hydroxyprostaglandin dehydrogenase inhibitors. Bioorg Med Chem Lett 2013; 24:630-5. [PMID: 24360556 DOI: 10.1016/j.bmcl.2013.11.081] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Accepted: 11/27/2013] [Indexed: 02/08/2023]
Abstract
The structure-activity relationship (SAR) study of two chemotypes identified as inhibitors of the human NAD(+)-dependent 15-hydroxyprostaglandin dehydrogenase (HPGD, 15-PGDH) was conducted. Top compounds from both series displayed potent inhibition (IC50 <50 nM), demonstrate excellent selectivity towards HPGD and potently induce PGE2 production in A549 lung cancer and LNCaP prostate cancer cells.
Collapse
Affiliation(s)
- Damien Y Duveau
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, MD 20850, United States
| | - Adam Yasgar
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, MD 20850, United States
| | - Yuhong Wang
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, MD 20850, United States
| | - Xin Hu
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, MD 20850, United States
| | - Jennifer Kouznetsova
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, MD 20850, United States
| | - Kyle R Brimacombe
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, MD 20850, United States
| | - Ajit Jadhav
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, MD 20850, United States
| | - Anton Simeonov
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, MD 20850, United States
| | - Craig J Thomas
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, MD 20850, United States
| | - David J Maloney
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, MD 20850, United States.
| |
Collapse
|
24
|
Lehtinen L, Ketola K, Mäkelä R, Mpindi JP, Viitala M, Kallioniemi O, Iljin K. High-throughput RNAi screening for novel modulators of vimentin expression identifies MTHFD2 as a regulator of breast cancer cell migration and invasion. Oncotarget 2013; 4:48-63. [PMID: 23295955 PMCID: PMC3702207 DOI: 10.18632/oncotarget.756] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Vimentin is an intermediate filament protein, with a key role in the epithelial to mesenchymal transition as well as cell invasion, and it is often upregulated during cancer progression. However, relatively little is known about its regulation in cancer cells. Here, we performed an RNA interference screen followed by protein lysate microarray analysis in bone metastatic MDA-MB-231(SA) breast cancer cells to identify novel regulators of vimentin expression. Out of the 596 genes investigated, three novel vimentin regulators EPHB4, WIPF2 and MTHFD2 were identified. The reduced vimentin expression in response to EPHB4, WIPF2 and MTHFD2 silencing was observed at mRNA and protein levels. Bioinformatic analysis of gene expression data across cancers indicated overexpression of EPHB4 and MTHFD2 in breast cancer and high expression associated with poor clinical characteristics. Analysis of 96 cDNA samples derived from both normal and malignant human tissues suggested putative association with metastatic disease. MTHFD2 knockdown resulted in impaired cell migration and invasion into extracellular matrix as well as decreased the fraction of cells with a high CD44 expression, a marker of cancer stem cells. Furthermore, MTHFD2 expression was induced in response to TGF-β stimulation in breast cancer cells. Our results show that MTHFD2 is overexpressed in breast cancer, associates with poor clinical characteristics and promotes cellular features connected with metastatic disease, thus implicating MTHFD2 as a potential drug target to block breast cancer cell migration and invasion.
Collapse
Affiliation(s)
- Laura Lehtinen
- Medical Biotechnology, VTT Technical Research Centre of Finland and Turku Centre for Biotechnology, University of Turku, Turku, Finland.
| | | | | | | | | | | | | |
Collapse
|
25
|
Lee SE, Lee JU, Lee MH, Ryu MJ, Kim SJ, Kim YK, Choi MJ, Kim KS, Kim JM, Kim JW, Koh YW, Lim DS, Jo YS, Shong M. RAF kinase inhibitor-independent constitutive activation of Yes-associated protein 1 promotes tumor progression in thyroid cancer. Oncogenesis 2013; 2:e55. [PMID: 23857250 PMCID: PMC3740284 DOI: 10.1038/oncsis.2013.12] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Revised: 04/20/2013] [Accepted: 04/26/2013] [Indexed: 12/16/2022] Open
Abstract
The transcription coactivator Yes-associated protein 1 (YAP1) is regulated by the Hippo tumor suppressor pathway. However, the role of YAP1 in thyroid cancer, which is frequently associated with the BRAFV600E mutation, remains unknown. This study aimed to investigate the role of YAP1 in thyroid cancer. YAP1 was overexpressed in papillary (PTC) and anaplastic thyroid cancer, and nuclear YAP1 was more frequently detected in BRAFV600E (+) PTC. In the thyroid cancer cell lines TPC-1 and HTH7, which do not have the BRAFV600E mutation, YAP1 was cytosolic and inactive at high cell densities. In contrast, YAP1 was retained in the nucleus and its target genes were expressed in the thyroid cancer cells 8505C and K1, which harbor the BRAFV600E mutation, regardless of cell density. Furthermore, the nuclear activation of YAP1 in 8505C was not inhibited by RAF or MEK inhibitor. In vitro experiments, YAP1 silencing or overexpression affected migratory capacities of 8505C and TPC-1 cells. YAP1 knockdown resulted in marked decrease of tumor volume, invasion and distant metastasis in orthotopic tumor xenograft mouse models using the 8505C thyroid cancer cell line. Taken together, YAP1 is involved in the tumor progression of thyroid cancer and YAP1-mediated effects might not be affected by the currently used RAF kinase inhibitors.
Collapse
Affiliation(s)
- S E Lee
- Department of Internal Medicine, Research Center for Endocrine and Metabolic Disease, Chungnam National University School of Medicine, Daejeon, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Bhar A, Haubrock M, Mukhopadhyay A, Maulik U, Bandyopadhyay S, Wingender E. Coexpression and coregulation analysis of time-series gene expression data in estrogen-induced breast cancer cell. Algorithms Mol Biol 2013; 8:9. [PMID: 23521829 PMCID: PMC3827943 DOI: 10.1186/1748-7188-8-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 02/07/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Estrogen is a chemical messenger that has an influence on many breast cancers as it helps cells to grow and divide. These cancers are often known as estrogen responsive cancers in which estrogen receptor occupies the surface of the cells. The successful treatment of breast cancers requires understanding gene expression, identifying of tumor markers, acquiring knowledge of cellular pathways, etc. In this paper we introduce our proposed triclustering algorithm δ-TRIMAX that aims to find genes that are coexpressed over subset of samples across a subset of time points. Here we introduce a novel mean-squared residue for such 3D dataset. Our proposed algorithm yields triclusters that have a mean-squared residue score below a threshold δ. RESULTS We have applied our algorithm on one simulated dataset and one real-life dataset. The real-life dataset is a time-series dataset in estrogen induced breast cancer cell line. To establish the biological significance of genes belonging to resultant triclusters we have performed gene ontology, KEGG pathway and transcription factor binding site enrichment analysis. Additionally, we represent each resultant tricluster by computing its eigengene and verify whether its eigengene is also differentially expressed at early, middle and late estrogen responsive stages. We also identified hub-genes for each resultant triclusters and verified whether the hub-genes are found to be associated with breast cancer. Through our analysis CCL2, CD47, NFIB, BRD4, HPGD, CSNK1E, NPC1L1, PTEN, PTPN2 and ADAM9 are identified as hub-genes which are already known to be associated with breast cancer. The other genes that have also been identified as hub-genes might be associated with breast cancer or estrogen responsive elements. The TFBS enrichment analysis also reveals that transcription factor POU2F1 binds to the promoter region of ESR1 that encodes estrogen receptor α. Transcription factor E2F1 binds to the promoter regions of coexpressed genes MCM7, ANAPC1 and WEE1. CONCLUSIONS Thus our integrative approach provides insights into breast cancer prognosis.
Collapse
|
27
|
Wang J, Scholtens D, Holko M, Ivancic D, Lee O, Hu H, Chatterton RT, Sullivan ME, Hansen N, Bethke K, Zalles CM, Khan SA. Lipid metabolism genes in contralateral unaffected breast and estrogen receptor status of breast cancer. Cancer Prev Res (Phila) 2013; 6:321-30. [PMID: 23512947 DOI: 10.1158/1940-6207.capr-12-0304] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Risk biomarkers that are specific to estrogen receptor (ER) subtypes of breast cancer would aid the development and implementation of distinct prevention strategies. The contralateral unaffected breast of women with unilateral breast cancer (cases) is a good model for defining subtype-specific risk because women with ER-negative (ER-) index primaries are at high risk for subsequent ER-negative primary cancers. We conducted random fine needle aspiration of the unaffected breasts of cases. Samples from 30 subjects [15 ER-positive (ER+) and 15 ER- cases matched for age, race and menopausal status] were used for Illumina expression array analysis. Findings were confirmed using quantitative real-time PCR (qRT-PCR) in the same samples. A validation set consisting of 36 subjects (12 ER+, 12 ER- and 12 standard-risk healthy controls) was used to compare gene expression across groups. ER- case samples displayed significantly higher expression of 18 genes/transcripts, 8 of which were associated with lipid metabolism on gene ontology analysis (GO: 0006629). This pattern was confirmed by qRT-PCR in the same samples, and in the 24 cases of the validation set. When compared to the healthy controls in the validation set, significant overexpression of 4 genes (DHRS2, HMGCS2, HPGD and ACSL3) was observed in ER- cases, with significantly lower expression of UGT2B11 and APOD in ER+ cases, and decreased expression of UGT2B7 in both subtypes. These data suggest that differential expression of lipid metabolism genes may be involved in the risk for subtypes of breast cancer, and are potential biomarkers of ER-specific breast cancer risk.
Collapse
Affiliation(s)
- Jun Wang
- Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Kang PS, Kim JH, Moon OI, Lim SC, Kim KJ. Prognostic implication of 15-hydroxyprostaglandin dehydrogenase down-regulation in patients with colorectal cancer. JOURNAL OF THE KOREAN SOCIETY OF COLOPROCTOLOGY 2012; 28:253-258. [PMID: 23185705 PMCID: PMC3499426 DOI: 10.3393/jksc.2012.28.5.253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Accepted: 09/14/2012] [Indexed: 02/07/2023]
Abstract
PURPOSE Prostaglandin (PG) E2 is known to be closely related to cancer progression and is inactivated by 15-hydroxyprostaglandin dehydrogenase (PGDH). 15-PGDH is shown to have tumor suppressor activity and to be down-regulated in various cancers, including colorectal cancer (CRC). Therefore, we evaluated the expression of 15-PGDH and its prognostic effect in patients with CRC. METHODS 15-PGDH expression was examined by using immunohistochemistry in 77 patients with CRC. Its prognostic significance was statistically evaluated. RESULTS Negative 15-PGDH expression was noted in 55.8% of the 77 cases of CRC. 15-PGDH expression showed no correlation with any of the various clinicopathologic parameters. The status of lymph node metastasis, tumor-node-metastasis stages, and pre-operative carcinoembryonic antigen levels showed significant prognostic effect. However, univariate analysis revealed down-regulation of 15-PGDH not to be a predictor of poor survival. The 5-year overall survival rate was 71.7% in the group with positive expression of 15-PGDH and 67.1% in the group with negative expression of 15-PGDH, but this difference was not statistically significant (P = 0.751). CONCLUSION 15-PGDH was down-regulated in 55.8% of the colorectal cancer patients. However, down-regulation of 15-PGDH showed no prognostic value in patients with CRC. Further larger scale or prospective studies are needed to clarify the prognostic effect of 15-PGDH down-regulation in patients with colorectal cancer.
Collapse
Affiliation(s)
- Pil Sung Kang
- Department of Surgery, Chosun University School of Medicine, Gwangju, Korea
| | - Jin Ha Kim
- Department of Surgery, Chosun University School of Medicine, Gwangju, Korea
| | - Ok In Moon
- Department of Surgery, Chosun University School of Medicine, Gwangju, Korea
| | - Sung Chul Lim
- Department of Pathology, Chosun University School of Medicine, Gwangju, Korea
| | - Kyung Jong Kim
- Department of Surgery, Chosun University School of Medicine, Gwangju, Korea
| |
Collapse
|
29
|
Hilvo M, Orešič M. Regulation of lipid metabolism in breast cancer provides diagnostic and therapeutic opportunities. ACTA ACUST UNITED AC 2012. [DOI: 10.2217/clp.12.10] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|