1
|
Jin Z, Chen Z, Liang T, Liu W, Shan Z, Tan D, Chen J, Hu J, Qin L, Xu J. Accelerated fracture healing accompanied with traumatic brain injury: A review of clinical studies, animal models and potential mechanisms. J Orthop Translat 2025; 50:71-84. [PMID: 39868349 PMCID: PMC11763218 DOI: 10.1016/j.jot.2024.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 10/16/2024] [Accepted: 10/30/2024] [Indexed: 01/28/2025] Open
Abstract
The orthopaedic community frequently encounters polytrauma individuals with concomitant traumatic brain injury (TBI) and their fractures demonstrate accelerated fracture union, but the mechanisms remain far from clear. Animal and clinical studies demonstrate robust callus formation at the early healing process and expedited radiographical union. In humans, robust callus formation in TBI occurs independently of fracture fixation methods across multiple fracture sites. Animal studies of TBI replicate clinically relevant enlarged fracture callus as characterized by increased tissue volume and bone volume at the early stages. However, refinement and standardization of the TBI models requires further research. The quest for its underlying mechanisms began with the finding of increased osteogenesis in vitro using the serum and cerebral spinal fluid (CSF) from TBI individuals. This has led to the investigation of myriads of brain-derived factors including humoral factors, cytokines, exosomes, and mi-RNAs. Further, the emerging information of interplay between the skeletal system and central nervous system, the roles of peripheral nerves and their neuropeptides in regulating bone regeneration, offers valuable insights for future research. This review consolidates the findings from both experimental and clinical studies, elucidating the potential mechanisms underlying enhanced fracture healing in concurrent TBI scenarios that may lay down a foundation to develop innovative therapies for fracture healing enhancement and conquer fracture non-union. The translational potential of this article. This review comprehensively summarizes the observations of accelerated fracture healing in the presence of traumatic brain injury from both preclinical and clinical studies. In addition, it also delineates potential cellular and molecular mechanisms. Further detailed investigation into its underlying mechanisms may reveal innovative orthopaedic intervention strategies to improve fracture healing and thus offering promising avenues for future translational applications.
Collapse
Affiliation(s)
- Zheyu Jin
- Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology and Innovative Orthopaedic Biomaterial & Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
- Areas of Excellence Centre for Musculoskeletal Degeneration and Regeneration, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Ziyi Chen
- Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology and Innovative Orthopaedic Biomaterial & Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
- Areas of Excellence Centre for Musculoskeletal Degeneration and Regeneration, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
- Institute of Brain Science and Brain-inspired Research, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Tongzhou Liang
- Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology and Innovative Orthopaedic Biomaterial & Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
- Areas of Excellence Centre for Musculoskeletal Degeneration and Regeneration, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Weiyang Liu
- Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology and Innovative Orthopaedic Biomaterial & Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
- Areas of Excellence Centre for Musculoskeletal Degeneration and Regeneration, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Zhengming Shan
- Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology and Innovative Orthopaedic Biomaterial & Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
- Areas of Excellence Centre for Musculoskeletal Degeneration and Regeneration, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Dianhui Tan
- Department of Neurosurgery, the First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Jiechen Chen
- Department of Orthopaedics, the First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
- Orthopaedic Medical Research Centre, the First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Jun Hu
- Department of Orthopaedics, the First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
- Orthopaedic Medical Research Centre, the First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Ling Qin
- Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology and Innovative Orthopaedic Biomaterial & Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
- Areas of Excellence Centre for Musculoskeletal Degeneration and Regeneration, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Jiankun Xu
- Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology and Innovative Orthopaedic Biomaterial & Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
- Areas of Excellence Centre for Musculoskeletal Degeneration and Regeneration, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
2
|
Alexander KA, Tseng HW, Lao HW, Girard D, Barbier V, Ungerer JPJ, McWhinney BC, Samuel SG, Fleming W, Winkler IG, Salga M, Genêt F, Banzet S, Ruitenberg MJ, Lévesque JP. A glucocorticoid spike derails muscle repair to heterotopic ossification after spinal cord injury. Cell Rep Med 2024; 5:101849. [PMID: 39657663 PMCID: PMC11722129 DOI: 10.1016/j.xcrm.2024.101849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 08/02/2024] [Accepted: 11/11/2024] [Indexed: 12/12/2024]
Abstract
Why severe injury to the central nervous system (CNS) triggers the development of large neurogenic heterotopic ossifications (NHOs) within periarticular muscles remains unknown. We report that spinal cord injury (SCI) triggers a rapid corticosterone spike in mice, which is causal for NHO development because treatments with corticosterone or the synthetic glucocorticoid (GC) receptor (GR) agonist dexamethasone are sufficient to trigger heterotopic ossification and upregulate the expression of osteoinductive and osteogenic differentiation genes in injured muscles even without SCI. The central role for GR signaling in causing NHO is further demonstrated in mice deleted for the GR gene (Nr3c1), which no longer develop NHO after SCI. Furthermore, administration of clinical GR antagonists inhibits NHO development in mice with SCI. This study identifies endogenous GC as causing pathological NHO after CNS injury and suggests that GR antagonists may be of prophylactic use to prevent NHO development in victims of severe CNS injuries.
Collapse
Affiliation(s)
- Kylie A Alexander
- Mater Research Institute - The University of Queensland, Translational Research Institute, Woolloongabba, QLD 4102, Australia.
| | - Hsu-Wen Tseng
- Mater Research Institute - The University of Queensland, Translational Research Institute, Woolloongabba, QLD 4102, Australia
| | - Hong Wa Lao
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St Lucia, QLD 4067, Australia
| | - Dorothée Girard
- Institut de Recherche Biomédicale des Armées, 92140 Clamart, France; INSERM, UMR-MD U1197 SToRM, 92140 Clamart, France
| | - Valérie Barbier
- Mater Research Institute - The University of Queensland, Translational Research Institute, Woolloongabba, QLD 4102, Australia
| | - Jacobus P J Ungerer
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St Lucia, QLD 4067, Australia; Department of Chemical Pathology, Pathology Queensland, Herston, QLD 4029, Australia
| | - Brett C McWhinney
- Department of Chemical Pathology, Pathology Queensland, Herston, QLD 4029, Australia
| | - Selwin G Samuel
- Mater Research Institute - The University of Queensland, Translational Research Institute, Woolloongabba, QLD 4102, Australia
| | - Whitney Fleming
- Mater Research Institute - The University of Queensland, Translational Research Institute, Woolloongabba, QLD 4102, Australia
| | - Ingrid G Winkler
- Mater Research Institute - The University of Queensland, Translational Research Institute, Woolloongabba, QLD 4102, Australia
| | - Marjorie Salga
- Unité Péri-Opératoire du Handicap, Physical and Rehabilitation Medicine Department, Hôpital Raymond-Poincaré, Assistance Publique Hôpitaux de Paris (APHP), 92380 Garches, France
| | - François Genêt
- Unité Péri-Opératoire du Handicap, Physical and Rehabilitation Medicine Department, Hôpital Raymond-Poincaré, Assistance Publique Hôpitaux de Paris (APHP), 92380 Garches, France; Université Versailles Saint-Quentin-en-Yvelines, UFR Simone Veil - Santé, END:ICAP, INSERM U1179, 78180 Montigny-le-Bretonneux, France
| | - Sébastien Banzet
- Institut de Recherche Biomédicale des Armées, 92140 Clamart, France; INSERM, UMR-MD U1197 SToRM, 92140 Clamart, France
| | - Marc J Ruitenberg
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St Lucia, QLD 4067, Australia
| | - Jean-Pierre Lévesque
- Mater Research Institute - The University of Queensland, Translational Research Institute, Woolloongabba, QLD 4102, Australia.
| |
Collapse
|
3
|
Zhu M, Yea JH, Li Z, Qin Q, Xu M, Xing X, Negri S, Archer M, Mittal M, Levi B, James AW. Pharmacologic or genetic targeting of peripheral nerves prevents peri-articular traumatic heterotopic ossification. Bone Res 2024; 12:54. [PMID: 39327413 PMCID: PMC11427465 DOI: 10.1038/s41413-024-00358-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 07/08/2024] [Accepted: 07/16/2024] [Indexed: 09/28/2024] Open
Abstract
Heterotopic ossification (HO) is a pathological process that commonly arises following severe polytrauma, characterized by the anomalous differentiation of mesenchymal progenitor cells and resulting in the formation of ectopic bone in non-skeletal tissues. This abnormal bone growth contributes to pain and reduced mobility, especially when adjacent to a joint. Our prior observations suggested an essential role of NGF (Nerve Growth Factor)-responsive TrkA (Tropomyosin Receptor Kinase A)-expressing peripheral nerves in regulating abnormal osteochondral differentiation following tendon injury. Here, we utilized a recently developed mouse model of hip arthroplasty-induced HO to further validate the role of peripheral nerve regulation of traumatic HO. Nerve ingrowth was either modulated using a knockin transgenic animals with point mutation in TrkA, or local treatment with an FDA-approved formulation of long acting Bupivacaine which prevents peripheral nerve growth. Results demonstrate exuberant sensory and sympathetic nerve growth within the peri-articular HO site, and that both methods to reduce local innervation significantly reduced heterotopic bone formation. TrkA inhibition led to a 34% reduction in bone volume, while bupivacaine treatment resulted in a 50% decrease. Mechanistically, alterations in TGFβ and FGF signaling activation accompanied both methods of local denervation, and a shift in macrophages from M1 to M2 phenotypes was observed. In sum, these studies reinforce the observations that peripheral nerves play a role in the etiopathogenesis of HO, and that targeting local nerves represents a potential therapeutic approach for disease prevention.
Collapse
Affiliation(s)
- Manyu Zhu
- Department of Pathology, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Ji-Hye Yea
- Department of Pathology, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Zhao Li
- Department of Pathology, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Qizhi Qin
- Department of Pathology, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Mingxin Xu
- Department of Pathology, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Xin Xing
- Department of Pathology, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Stefano Negri
- Department of Pathology, Johns Hopkins University, Baltimore, MD, 21205, USA
- Orthopedic Unit, University of Verona, Verona, Italy
| | - Mary Archer
- Department of Pathology, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Monisha Mittal
- Department of Surgery, Center for Organogenesis and Trauma, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Benjamin Levi
- Department of Surgery, Center for Organogenesis and Trauma, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Aaron W James
- Department of Pathology, Johns Hopkins University, Baltimore, MD, 21205, USA.
| |
Collapse
|
4
|
Wang H, Wang X, Zhang Q, Liang Y, Wu H. Matrine reduces traumatic heterotopic ossification in mice by inhibiting M2 macrophage polarization through the MAPK pathway. Biomed Pharmacother 2024; 177:117130. [PMID: 39018873 DOI: 10.1016/j.biopha.2024.117130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/05/2024] [Accepted: 07/10/2024] [Indexed: 07/19/2024] Open
Abstract
In this study, the role of matrine, a component derived from traditional Chinese medicine, in modulating macrophage polarization and its effects on traumatic heterotopic ossification (HO) in mice was investigated. Traumatic HO is a pathological condition characterized by abnormal bone formation in nonskeletal tissues, often following severe trauma or surgery. The mechanisms underlying HO involve an enhanced inflammatory response and abnormal bone formation, with macrophages playing a crucial role. Our study demonstrated that matrine effectively inhibits the polarization of bone marrow-derived macrophages (BMDMs) toward the M2 phenotype, a subtype associated with anti-inflammatory processes and implicated in the progression of HO. Using in vitro assays, we showed that matrine suppresses key M2 markers and inhibits the MAPK signaling pathway in BMDMs. Furthermore, in vivo experiments revealed that matrine treatment significantly reduced HO formation in the Achilles tendons of mice and downregulated the expression of markers associated with M2 macrophages and the MAPK pathway. Our findings suggest that the ability of matrine to modulate macrophage polarization and inhibit the MAPK pathway has therapeutic potential for treating traumatic HO, providing a novel approach to managing this complex condition.
Collapse
Affiliation(s)
- Hui Wang
- Orthopedic Disease Center of the Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province 250000, China
| | - Xiaofei Wang
- Pediatric Surgery department, People's Hospital Affiliated to Shandong First Medical University, Jinan, Shandong Province 271100, China
| | - Qingkun Zhang
- Orthopedic Disease Center of the Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province 250000, China
| | - Yanchen Liang
- Orthopedic Disease Center of the Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province 250000, China.
| | - Hong Wu
- Department of Radiation Oncology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province 250000, China.
| |
Collapse
|
5
|
Xie Y, Zhang J, Jin X, Liu S, Song W. Development and validation of a nomogram for predicting heterotopic ossification following spinal cord injury. Clin Neurol Neurosurg 2024; 243:108348. [PMID: 38833809 DOI: 10.1016/j.clineuro.2024.108348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/07/2024] [Accepted: 05/21/2024] [Indexed: 06/06/2024]
Abstract
OBJECTIVE Heterotopic ossification (HO) following spinal cord injury (SCI) can severely compromise patient mobility and quality of life. Precise identification of SCI patients at an elevated risk for HO is crucial for implementing early clinical interventions. While the literature presents diverse correlations between HO onset and purported risk factors, the development of a predictive model to quantify these risks is likely to bolster preventive approaches. This study is designed to develop and validate a nomogram-based predictive model that estimates the likelihood of HO in SCI patients, utilizing recognized risk factors to expedite clinical decision-making processes. METHODS We recruited a total of 145 patients with SCI and presenting with HO who were hospitalized at the China Rehabilitation Research Center, Beijing Boai Hospital, from June 2016 to December 2022. Additionally, 337 patients with SCI without HO were included as controls. Comprehensive data were collected for all study participants, and subsequently, the dataset was randomly partitioned into training and validation groups. Using Least Absolute Shrinkage and Selection Operator regression, variables were meticulously screened during the pretreatment phase to formulate the predictive model. The efficacy of the model was then assessed using metrics including receiver-operating characteristic (ROC) analysis, calibration assessment, and decision curve analysis. RESULTS The final prediction model incorporated age, sex, complete spinal cord injury status, spasm occurrence, and presence of deep vein thrombosis (DVT). Notably, the model exhibited commendable performance in both the training and validation groups, as evidenced by areas under the ROC curve (AUCs) of 0.756 and 0.738, respectively. These values surpassed the AUCs obtained for single variables, namely age (0.636), sex (0.589), complete spinal cord injury (0.681), spasm occurrence (0.563), and DVT presence (0.590). Furthermore, the calibration curve illustrated a congruence between the predicted and actual outcomes, indicating the high accuracy of the model. The decision curve analysis indicated substantial net benefits associated with the application of the model, thereby underscoring its practical utility. CONCLUSIONS HO following SCI correlates with several identifiable risk factors, including male gender, youthful age, complete SCI, spasm occurrence and DVT. Our predictive model effectively estimates the likelihood of HO development by leveraging these factors, assisting physicians in identifying patients at high risk. Subsequently, correct positioning to prevent spasm-related deformities and educating healthcare providers on safe lower limb mobilization techniques are crucial to minimize muscle injury risks from rapid iliopsoas muscle extension. Additionally, the importance of early DVT prevention through routine screening and anticoagulation is emphasized to further reduce the incidence of HO.
Collapse
Affiliation(s)
- Yulei Xie
- School of Rehabilitation, Capital Medical University, Beijing, China
| | - Junwei Zhang
- School of Rehabilitation, Capital Medical University, Beijing, China; Spine and Spinal Cord Surgery, Beijing Boai Hospital, China Rehabilitation Research Center, Beijing, China; Department of Orthopedics Surgery, Capital Medical University, Beijing, China.
| | - Xiaoqin Jin
- School of Rehabilitation Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Shujia Liu
- School of Rehabilitation, Capital Medical University, Beijing, China; Spine and Spinal Cord Surgery, Beijing Boai Hospital, China Rehabilitation Research Center, Beijing, China; Department of Orthopedics Surgery, Capital Medical University, Beijing, China
| | - Wei Song
- Department of Rehabilitation Engineering, China Rehabilitation Science Institute, Beijing, China.
| |
Collapse
|
6
|
Li D, Liu C, Wang H, Li Y, Wang Y, An S, Sun S. The Role of Neuromodulation and Potential Mechanism in Regulating Heterotopic Ossification. Neurochem Res 2024; 49:1628-1642. [PMID: 38416374 DOI: 10.1007/s11064-024-04118-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/17/2024] [Accepted: 01/28/2024] [Indexed: 02/29/2024]
Abstract
Heterotopic ossification (HO) is a pathological process characterized by the aberrant formation of bone in muscles and soft tissues. It is commonly triggered by traumatic brain injury, spinal cord injury, and burns. Despite a wide range of evidence underscoring the significance of neurogenic signals in proper bone remodeling, a clear understanding of HO induced by nerve injury remains rudimentary. Recent studies suggest that injury to the nervous system can activate various signaling pathways, such as TGF-β, leading to neurogenic HO through the release of neurotrophins. These pathophysiological changes lay a robust groundwork for the prevention and treatment of HO. In this review, we collected evidence to elucidate the mechanisms underlying the pathogenesis of HO related to nerve injury, aiming to enhance our understanding of how neurological repair processes can culminate in HO.
Collapse
Affiliation(s)
- Dengju Li
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Shandong First Medical University, Jinan, Shandong, China
| | - Changxing Liu
- Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
| | - Haojue Wang
- Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
| | - Yunfeng Li
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Yaqi Wang
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Senbo An
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
- Shandong First Medical University, Jinan, Shandong, China.
| | - Shui Sun
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
- Shandong First Medical University, Jinan, Shandong, China.
- Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China.
| |
Collapse
|
7
|
Zhang Y, Zhao X, Ge D, Huang Y, Yao Q. The impact and mechanism of nerve injury on bone metabolism. Biochem Biophys Res Commun 2024; 704:149699. [PMID: 38412668 DOI: 10.1016/j.bbrc.2024.149699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 01/30/2024] [Accepted: 02/15/2024] [Indexed: 02/29/2024]
Abstract
With an increasing understanding of the mechanisms of fracture healing, it has been found that nerve injury plays a crucial role in the process, but the specific mechanism is yet to be completely revealed. To address this issue and provide novel insights for fracture treatment, we compiled this review. This review aims to study the impact of nerve injury on fracture healing, exploring the role of neurotrophic factors in the healing process. We first revisited the effects of the central nervous system (CNS) and the peripheral nervous system (PNS) on the skeletal system, and further explained the phenomenon of significantly accelerated fracture healing under nerve injury conditions. Then, from the perspective of neurotrophic factors, we delved into the physiological functions and mechanisms of neurotrophic factors, such as nerve growth factor (NGF), Neuropeptides (NPs), and Brain-derived neurotrophic factor (BDNF), in bone metabolism. These effects include direct actions on bone cells, improvement of local blood supply, regulation of bone growth factors, control of cellular signaling pathways, promotion of callus formation and bone regeneration, and synergistic or antagonistic effects with other endocrine factors, such as Sema3A and Transforming Growth Factor β (TGF-β). Finally, we discussed the treatments of fractures with nerve injuries and the future research directions in this review, suggesting that the relationship between nerve injury and fracture healing, as well as the role of nerve injury in other skeletal diseases.
Collapse
Affiliation(s)
- Yongqiang Zhang
- Department of Orthopedic Surgery, Institute of Digital Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China; Key Lab of Additive Manufacturing Technology, Institute of Digital Medicine, Nanjing Medical University, Nanjing, China; Research Center of Digital Medicine and 3D Printing Technology of Jiangsu Province, Nanjing, China
| | - Xiao Zhao
- Department of Orthopedic Surgery, Institute of Digital Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China; Key Lab of Additive Manufacturing Technology, Institute of Digital Medicine, Nanjing Medical University, Nanjing, China; Research Center of Digital Medicine and 3D Printing Technology of Jiangsu Province, Nanjing, China
| | - Dawei Ge
- Department of Orthopedic Surgery, Institute of Digital Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China; Key Lab of Additive Manufacturing Technology, Institute of Digital Medicine, Nanjing Medical University, Nanjing, China; Research Center of Digital Medicine and 3D Printing Technology of Jiangsu Province, Nanjing, China
| | - Yang Huang
- International Innovation Center for Forest Chemicals & Materials and Jiangsu Co-Innovation Center of Efficient Processing & Utilization of Forest Resources, Nanjing Forestry University, Nanjing, China
| | - Qingqiang Yao
- Department of Orthopedic Surgery, Institute of Digital Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China; Key Lab of Additive Manufacturing Technology, Institute of Digital Medicine, Nanjing Medical University, Nanjing, China; Research Center of Digital Medicine and 3D Printing Technology of Jiangsu Province, Nanjing, China.
| |
Collapse
|
8
|
Yan J, Gao B, Wang C, Lu W, Qin W, Han X, Liu Y, Li T, Guo Z, Ye T, Wan Q, Xu H, Kang J, Lu N, Gao C, Qin Z, Yang C, Zheng J, Shen P, Niu L, Zou W, Jiao K. Calcified apoptotic vesicles from PROCR + fibroblasts initiate heterotopic ossification. J Extracell Vesicles 2024; 13:e12425. [PMID: 38594791 PMCID: PMC11004040 DOI: 10.1002/jev2.12425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 02/08/2024] [Accepted: 03/13/2024] [Indexed: 04/11/2024] Open
Abstract
Heterotopic ossification (HO) comprises the abnormal formation of ectopic bone in extraskeletal soft tissue. The factors that initiate HO remain elusive. Herein, we found that calcified apoptotic vesicles (apoVs) led to increased calcification and stiffness of tendon extracellular matrix (ECM), which initiated M2 macrophage polarization and HO progression. Specifically, single-cell transcriptome analyses of different stages of HO revealed that calcified apoVs were primarily secreted by a PROCR+ fibroblast population. In addition, calcified apoVs enriched calcium by annexin channels, absorbed to collagen I via electrostatic interaction, and aggregated to produce calcifying nodules in the ECM, leading to tendon calcification and stiffening. More importantly, apoV-releasing inhibition or macrophage deletion both successfully reversed HO development. Thus, we are the first to identify calcified apoVs from PROCR+ fibroblasts as the initiating factor of HO, and might serve as the therapeutic target for inhibiting pathological calcification.
Collapse
Affiliation(s)
- Jianfei Yan
- Department of StomatologyTangdu hospital & State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration & School of Stomatology, The Fourth Military Medical UniversityXi'anShaanxiChina
| | - Bo Gao
- Institute of Orthopaedic SurgeryXijing Hospital, Fourth Military Medical UniversityXi'anShaanxiChina
| | - Chenyu Wang
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, School of StomatologyThe Fourth Military Medical UniversityXi'anShaanxiChina
| | - Weicheng Lu
- Department of StomatologyTangdu hospital & State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration & School of Stomatology, The Fourth Military Medical UniversityXi'anShaanxiChina
| | - Wenpin Qin
- Department of StomatologyTangdu hospital & State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration & School of Stomatology, The Fourth Military Medical UniversityXi'anShaanxiChina
| | - Xiaoxiao Han
- Department of StomatologyTangdu hospital & State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration & School of Stomatology, The Fourth Military Medical UniversityXi'anShaanxiChina
| | - Yingying Liu
- Department of NeurobiologyThe Fourth Military Medical UniversityXi'anShaanxiChina
| | - Tao Li
- Center for Spintronics and Quantum Systems, State Key Laboratory for Mechanical Behavior of Materials, Department of Materials Science and EngineeringXi'an Jiaotong UniversityXi'anShaanxiChina
| | - Zhenxing Guo
- Department of StomatologyTangdu hospital & State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration & School of Stomatology, The Fourth Military Medical UniversityXi'anShaanxiChina
| | - Tao Ye
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, School of StomatologyThe Fourth Military Medical UniversityXi'anShaanxiChina
| | - Qianqian Wan
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, School of StomatologyThe Fourth Military Medical UniversityXi'anShaanxiChina
| | - Haoqing Xu
- Department of StomatologyTangdu hospital & State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration & School of Stomatology, The Fourth Military Medical UniversityXi'anShaanxiChina
- College of Life Science Northwest UniversityXi'anShaanxiChina
| | - Junjun Kang
- Department of NeurobiologyThe Fourth Military Medical UniversityXi'anShaanxiChina
| | - Naining Lu
- Department of NeurobiologyThe Fourth Military Medical UniversityXi'anShaanxiChina
| | - Changhe Gao
- Department of StomatologyTangdu hospital & State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration & School of Stomatology, The Fourth Military Medical UniversityXi'anShaanxiChina
| | - Zixuan Qin
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, School of StomatologyThe Fourth Military Medical UniversityXi'anShaanxiChina
| | - Chi Yang
- Department of Oral SurgeryNinth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, and National Clinical Research Center of StomatologyShanghaiChina
| | - Jisi Zheng
- Department of Oral SurgeryNinth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, and National Clinical Research Center of StomatologyShanghaiChina
| | - Pei Shen
- Department of Oral SurgeryNinth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, and National Clinical Research Center of StomatologyShanghaiChina
| | - Lina Niu
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, School of StomatologyThe Fourth Military Medical UniversityXi'anShaanxiChina
| | - Weiguo Zou
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Sciences, Shanghai Institute of Biochemistry and Cell BiologyChinese Academy of Sciences, University of Chinese Academy of SciencesShanghaiChina
| | - Kai Jiao
- Department of StomatologyTangdu hospital & State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration & School of Stomatology, The Fourth Military Medical UniversityXi'anShaanxiChina
| |
Collapse
|
9
|
Li S, Nong Q, Wu Y, Liu D. Healing an ischial tuberosity pressure ulcer in a patient with neurogenic heterotopic ossification: a case report. J Wound Care 2024; 33:lxix-lxxiii. [PMID: 38457272 DOI: 10.12968/jowc.2024.33.sup3a.lxix] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2024]
Abstract
Neurogenic heterotopic ossification (NHO) is widely recognised as an aberrant bone formation in soft tissue following central nervous system injury. It is most frequently associated with pain and limited movement, especially in the hip. However, it may be neglected in patients with paraplegia with a pressure ulcer (PU). We report the case of an 18-year-old male patient who presented with a hard-to-heal ischial tuberosity PU and who had undergone three operations at other hospitals during the previous six months, which had failed to repair the PU. There was a history of paraplegia as a consequence of spinal cord injury two years previously. Computed tomography and three-dimensional reconstruction showed massive heterotopic ossification (HO) in the wound bed and around the right hip. Histological findings were consistent with a diagnosis of HO. The HO around the wound was completely excised, negative pressure wound therapy was used to promote granulation, and a gluteus maximus musculocutaneous flap was used to cover the wound. We conclude that for patients with paraplegia, with a hard-to-heal PU, it should be determined whether it is associated with NHO. Surgical resection of HO surrounding the wound and improving the microcirculation are critical for repair and reconstruction of these PUs.
Collapse
Affiliation(s)
- Shuntang Li
- Department of Burns and Plastic Surgery, the First Affiliate Hospital of Guangxi Medical University, Nanning 530021, Guangxi, People's Republic of China
| | - Qingwen Nong
- Department of Burns and Plastic Surgery, the First Affiliate Hospital of Guangxi Medical University, Nanning 530021, Guangxi, People's Republic of China
| | - Yajun Wu
- Department of Burns and Plastic Surgery, the First Affiliate Hospital of Guangxi Medical University, Nanning 530021, Guangxi, People's Republic of China
| | - Daen Liu
- Department of Burns and Plastic Surgery, the First Affiliate Hospital of Guangxi Medical University, Nanning 530021, Guangxi, People's Republic of China
| |
Collapse
|
10
|
Sims NA, Lévesque JP. Oncostatin M: Dual Regulator of the Skeletal and Hematopoietic Systems. Curr Osteoporos Rep 2024; 22:80-95. [PMID: 38198032 PMCID: PMC10912291 DOI: 10.1007/s11914-023-00837-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/30/2023] [Indexed: 01/11/2024]
Abstract
PURPOSE OF THE REVIEW The bone and hematopoietic tissues coemerge during development and are functionally intertwined throughout mammalian life. Oncostatin M (OSM) is an inflammatory cytokine of the interleukin-6 family produced by osteoblasts, bone marrow macrophages, and neutrophils. OSM acts via two heterodimeric receptors comprising GP130 with either an OSM receptor (OSMR) or a leukemia inhibitory factor receptor (LIFR). OSMR is expressed on osteoblasts, mesenchymal, and endothelial cells and mice deficient for the Osm or Osmr genes have both bone and blood phenotypes illustrating the importance of OSM and OSMR in regulating these two intertwined tissues. RECENT FINDINGS OSM regulates bone mass through signaling via OSMR, adaptor protein SHC1, and transducer STAT3 to both stimulate osteoclast formation and promote osteoblast commitment; the effect on bone formation is also supported by action through LIFR. OSM produced by macrophages is an important inducer of neurogenic heterotopic ossifications in peri-articular muscles following spinal cord injury. OSM produced by neutrophils in the bone marrow induces hematopoietic stem and progenitor cell proliferation in an indirect manner via OSMR expressed by bone marrow stromal and endothelial cells that form hematopoietic stem cell niches. OSM acts as a brake to therapeutic hematopoietic stem cell mobilization in response to G-CSF and CXCR4 antagonist plerixafor. Excessive OSM production by macrophages in the bone marrow is a key contributor to poor hematopoietic stem cell mobilization (mobilopathy) in people with diabetes. OSM and OSMR may also play important roles in the progression of several cancers. It is increasingly clear that OSM plays unique roles in regulating the maintenance and regeneration of bone, hematopoietic stem and progenitor cells, inflammation, and skeletal muscles. Dysregulated OSM production can lead to bone pathologies, defective muscle repair and formation of heterotopic ossifications in injured muscles, suboptimal mobilization of hematopoietic stem cells, exacerbated inflammatory responses, and anti-tumoral immunity. Ongoing research will establish whether neutralizing antibodies or cytokine traps may be useful to correct pathologies associated with excessive OSM production.
Collapse
Affiliation(s)
- Natalie A Sims
- St. Vincent's Institute of Medical Research, 9 Princes St, Fitzroy, VIC, Australia
- Melbourne Medical School, The University of Melbourne, Melbourne, VIC, Australia
| | - Jean-Pierre Lévesque
- Translational Research Institute, Mater Research Institute - The University of Queensland, 37 Kent Street, Woolloongabba, QLD, Australia.
| |
Collapse
|
11
|
Beom JY, Low W, Park KS, Yoon TR, Lee CY, Song H. Surgical Resection of Neurogenic Heterotopic Ossification around Hip Joint in Stroke Patients: A Safety and Outcome Report. Hip Pelvis 2023; 35:268-276. [PMID: 38125274 PMCID: PMC10728050 DOI: 10.5371/hp.2023.35.4.268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 12/23/2023] Open
Abstract
Purpose Resection remains the most reliable treatment for established heterotopic ossification, despite questions regarding its effectiveness due to the potential for complications. This study evaluated the clinical outcomes and complications of neurogenic heterotopic ossification (NHO) resection in stroke patients' ankylosed hips. Materials and Methods We retrospectively analyzed nine hip NHO resections performed on seven patients from 2010 to 2018. The pre- and postoperative range of motion of the operated hip were compared. Analysis of postoperative complications, including infection, recurrence, iatrogenic fracture, and neurovascular injury was performed. Results The mean operative time was 132.78±21.08 minutes, with a mean hemoglobin drop of 3.06±0.82 g/dL within the first postoperative week. The mean duration of postoperative follow-up was 52.08±28.72 months for all patients. Postoperative range of motion showed improvement from preoperative. Flexion and external rotation (mean, 58.89±30.60° and 16.67±18.03°, respectively) showed the greatest gain of motion of the operated hip joint. Postoperative infections resolved in two cases through surgical debridement, and one case required conversion to total hip arthroplasty due to instability. There were no recurrences, iatrogenic fractures, or neurovascular injuries. Conclusion Resection is a beneficial intervention for restoring the functional range of motion of the hip in order to improve the quality of life for patients with NHO and neurological disorders. We recommend performance of a minimal resection to achieve a targeted functional arc of motion in order to minimize the risk of postoperative complications.
Collapse
Affiliation(s)
- Jae-Young Beom
- Department of Orthopedic Surgery, Chonnam National University Hwasun Hospital, Chonnam National University Medical School, Hwasun, Korea
| | - WengKong Low
- Orthopaedic and Traumatology Department, Hospital Kuala Lumpur, Kuala Lumpur, Malaysia
| | - Kyung-Soon Park
- Department of Orthopedic Surgery, Chonnam National University Hwasun Hospital, Chonnam National University Medical School, Hwasun, Korea
| | - Taek-Rim Yoon
- Department of Orthopedic Surgery, Chonnam National University Hwasun Hospital, Chonnam National University Medical School, Hwasun, Korea
| | - Chan Young Lee
- Department of Orthopedic Surgery, Chonnam National University Hwasun Hospital, Chonnam National University Medical School, Hwasun, Korea
| | - Hyeongmin Song
- Department of Orthopedic Surgery, Chonnam National University Hwasun Hospital, Chonnam National University Medical School, Hwasun, Korea
| |
Collapse
|
12
|
Salga M, Samuel SG, Tseng HW, Gatin L, Girard D, Rival B, Barbier V, Bisht K, Shatunova S, Debaud C, Winkler IG, Paquereau J, Dinh A, Genêt G, Kerever S, Abback PS, Banzet S, Genêt F, Lévesque JP, Alexander KA. Bacterial Lipopolysaccharides Exacerbate Neurogenic Heterotopic Ossification Development. J Bone Miner Res 2023; 38:1700-1717. [PMID: 37602772 DOI: 10.1002/jbmr.4905] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 07/24/2023] [Accepted: 08/15/2023] [Indexed: 08/22/2023]
Abstract
Neurogenic heterotopic ossifications (NHO) are heterotopic bones that develop in periarticular muscles after severe central nervous system (CNS) injuries. Several retrospective studies have shown that NHO prevalence is higher in patients who suffer concomitant infections. However, it is unclear whether these infections directly contribute to NHO development or reflect the immunodepression observed in patients with CNS injury. Using our mouse model of NHO induced by spinal cord injury (SCI) between vertebrae T11 to T13 , we demonstrate that lipopolysaccharides (LPS) from gram-negative bacteria exacerbate NHO development in a toll-like receptor-4 (TLR4)-dependent manner, signaling through the TIR-domain-containing adapter-inducing interferon-β (TRIF/TICAM1) adaptor rather than the myeloid differentiation primary response-88 (MYD88) adaptor. We find that T11 to T13 SCI did not significantly alter intestinal integrity nor cause intestinal bacteria translocation or endotoxemia, suggesting that NHO development is not driven by endotoxins from the gut in this model of SCI-induced NHO. Relevant to the human pathology, LPS increased expression of osteoblast markers in cultures of human fibro-adipogenic progenitors isolated from muscles surrounding NHO biopsies. In a case-control retrospective study in patients with traumatic brain injuries, infections with gram-negative Pseudomonas species were significantly associated with NHO development. Together these data suggest a functional association between gram-negative bacterial infections and NHO development and highlights infection management as a key consideration to avoid NHO development in patients. © 2023 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Marjorie Salga
- Mater Research Institute-The University of Queensland, Translational Research Institute, Woolloongabba, Australia
- University of Versailles Saint Quentin en Yvelines, END:ICAP U1179 INSERM, UFR Simone Veil-Santé, Montigny le Bretonneux, France
- UPOH (Unité Péri Opératoire du Handicap), Physical and Rehabilitation Medicine Department, Raymond-Poincaré Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Garches, France
| | - Selwin G Samuel
- Mater Research Institute-The University of Queensland, Translational Research Institute, Woolloongabba, Australia
- Department of Oral Pathology and Microbiology, Saveetha Dental College and Hospitals, Chennai, India
| | - Hsu-Wen Tseng
- Mater Research Institute-The University of Queensland, Translational Research Institute, Woolloongabba, Australia
| | - Laure Gatin
- University of Versailles Saint Quentin en Yvelines, END:ICAP U1179 INSERM, UFR Simone Veil-Santé, Montigny le Bretonneux, France
- UPOH (Unité Péri Opératoire du Handicap), Physical and Rehabilitation Medicine Department, Raymond-Poincaré Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Garches, France
- Department of Orthopedic Surgery, Raymond Poincaré Hospital, AP-HP, Garches, France
| | - Dorothée Girard
- Institut de Recherche Biomédicale des Armées (IRBA), INSERM UMR-MD 1197, Clamart, France
| | - Bastien Rival
- Institut de Recherche Biomédicale des Armées (IRBA), INSERM UMR-MD 1197, Clamart, France
| | - Valérie Barbier
- Mater Research Institute-The University of Queensland, Translational Research Institute, Woolloongabba, Australia
| | - Kavita Bisht
- Mater Research Institute-The University of Queensland, Translational Research Institute, Woolloongabba, Australia
| | - Svetlana Shatunova
- Mater Research Institute-The University of Queensland, Translational Research Institute, Woolloongabba, Australia
| | - Charlotte Debaud
- University of Versailles Saint Quentin en Yvelines, END:ICAP U1179 INSERM, UFR Simone Veil-Santé, Montigny le Bretonneux, France
| | - Ingrid G Winkler
- Mater Research Institute-The University of Queensland, Translational Research Institute, Woolloongabba, Australia
| | - Julie Paquereau
- UPOH (Unité Péri Opératoire du Handicap), Physical and Rehabilitation Medicine Department, Raymond-Poincaré Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Garches, France
| | - Aurélien Dinh
- Department of Infectious Diseases, Raymond Poincaré Hospital, AP-HP, Garches, France
| | - Guillaume Genêt
- University of Versailles Saint Quentin en Yvelines, END:ICAP U1179 INSERM, UFR Simone Veil-Santé, Montigny le Bretonneux, France
| | - Sébastien Kerever
- Department of Anesthesiology and Critical Care, Lariboisière University Hospital, AP-HP, Paris, France
| | - Paer-Sélim Abback
- Department of Anesthesiology and Critical Care, Beaujon Hospital, DMU Parabol, AP-HP, Clichy, France
| | - Sébastien Banzet
- Institut de Recherche Biomédicale des Armées (IRBA), INSERM UMR-MD 1197, Clamart, France
| | - François Genêt
- University of Versailles Saint Quentin en Yvelines, END:ICAP U1179 INSERM, UFR Simone Veil-Santé, Montigny le Bretonneux, France
- UPOH (Unité Péri Opératoire du Handicap), Physical and Rehabilitation Medicine Department, Raymond-Poincaré Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Garches, France
| | - Jean-Pierre Lévesque
- Mater Research Institute-The University of Queensland, Translational Research Institute, Woolloongabba, Australia
| | - Kylie A Alexander
- Mater Research Institute-The University of Queensland, Translational Research Institute, Woolloongabba, Australia
| |
Collapse
|
13
|
Gueguen J, Girard D, Rival B, Fernandez J, Goriot ME, Banzet S. Spinal cord injury dysregulates fibro-adipogenic progenitors miRNAs signaling to promote neurogenic heterotopic ossifications. Commun Biol 2023; 6:932. [PMID: 37700159 PMCID: PMC10497574 DOI: 10.1038/s42003-023-05316-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 09/01/2023] [Indexed: 09/14/2023] Open
Abstract
Neurogenic heterotopic ossifications are intramuscular bone formations developing following central nervous system injury. The pathophysiology is poorly understood and current treatments for this debilitating condition remain unsatisfying. Here we explored the role of miRNAs in a clinically relevant mouse model that combines muscle and spinal cord injury, and in patients' cells. We found an osteo-suppressive miRNAs response in injured muscle that was hindered when the spinal cord injury was associated. In isolated fibro-adipogenic progenitors from damaged muscle (cells at the origin of ossification), spinal cord injury induced a downregulation of osteo-suppressive miRNAs while osteogenic markers were overexpressed. The overexpression of selected miRNAs in patient's fibro-adipogenic progenitors inhibited mineralization and osteo-chondrogenic markers in vitro. Altogether, we highlighted an osteo-suppressive mechanism involving multiple miRNAs in response to muscle injury that prevents osteogenic commitment which is ablated by the neurologic lesion in heterotopic ossification pathogenesis. This provides new research hypotheses for preventive treatments.
Collapse
Affiliation(s)
- Jules Gueguen
- Institut de Recherche Biomédicale des Armées, 92140, Clamart, France
- INSERM UMR-MD-1197, 92140, Clamart, France
| | - Dorothée Girard
- Institut de Recherche Biomédicale des Armées, 92140, Clamart, France
- INSERM UMR-MD-1197, 92140, Clamart, France
| | - Bastien Rival
- Institut de Recherche Biomédicale des Armées, 92140, Clamart, France
- INSERM UMR-MD-1197, 92140, Clamart, France
| | - Juliette Fernandez
- Institut de Recherche Biomédicale des Armées, 92140, Clamart, France
- INSERM UMR-MD-1197, 92140, Clamart, France
| | - Marie-Emmanuelle Goriot
- Institut de Recherche Biomédicale des Armées, 92140, Clamart, France
- INSERM UMR-MD-1197, 92140, Clamart, France
| | - Sébastien Banzet
- Institut de Recherche Biomédicale des Armées, 92140, Clamart, France.
- INSERM UMR-MD-1197, 92140, Clamart, France.
| |
Collapse
|
14
|
Ethyl caffeate inhibits macrophage polarization via SIRT1/NF-κB to attenuate traumatic heterotopic ossification in mice. Biomed Pharmacother 2023; 161:114508. [PMID: 37002582 DOI: 10.1016/j.biopha.2023.114508] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 03/16/2023] Open
Abstract
Heterotopic ossification (HO) denotes the presence of mature bone tissue in soft tissues or around joints. Inflammation is a key driver of traumatic HO, and macrophages play an important role in this process. Ethyl caffeate (ECF), a critical active compound found in Petunia, exerts significant anti-inflammatory effects. Herein, we established a mouse model of HO by transection of the Achilles tendon and back burn and found abundant macrophage infiltration in the early stage of HO, which decreased with time. In vitro and in vivo experiments indicated that ECF inhibited macrophage polarization, and mechanistic studies showed that it inhibited the SIRT1/NF-κB signalling pathway, thereby suppressing the release of downstream inflammatory cytokines. ECF reduced HO in mice, and its effect was comparable to indomethacin (INDO). In vitro studies revealed that ECF did not directly affect the mineralization of mesenchymal stem cells (MSCs) or osteogenic differentiation but inhibited these processes by reducing the level of inflammatory cytokines in the conditioned medium (CM). Thus, M1 macrophages may play a crucial role in the pathogenesis of HO, and ECF is a prospective candidate for the prevention of trauma-induced HO. DATA AVAILABILITY: Data will be made available on request.
Collapse
|
15
|
Cao G, Zhang S, Wang Y, Quan S, Yue C, Yao J, Alexander PG, Tan H. Pathogenesis of acquired heterotopic ossification: Risk factors, cellular mechanisms, and therapeutic implications. Bone 2023; 168:116655. [PMID: 36581258 DOI: 10.1016/j.bone.2022.116655] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 12/14/2022] [Accepted: 12/22/2022] [Indexed: 12/27/2022]
Abstract
Heterotopic ossification (HO), including hereditary and acquired HO, is the formation of extraskeletal bone in skeletal muscle and surrounding soft tissues. Acquired HO is often caused by range of motion, explosion injury, nerve injury or burns. Severe HO can lead to pain and limited joint activity, affecting functional rehabilitation and quality of life. Increasing evidence shows that inflammatory processes and mesenchymal stem cells (MSCs) can drive HO. However, explicit knowledge about the specific mechanisms that result in HO and related cell precursors is still limited. Moreover, there are no effective methods to prevent or reduce HO formation. In this review, we provide an update of known risk factors and relevant cellular origins for HO. In particular, we focus on the underlying mechanisms of MSCs in acquired HO, which follow the osteogenic program. We also discuss the latest therapeutic value and implications for acquired HO. Our review highlights the current gaps in knowledge regarding the pathogenesis of acquired HO and identifies potential targets for the prevention and treatment of HO.
Collapse
Affiliation(s)
- Guorui Cao
- Department of Knee Surgery, Luoyang Orthopedic Hospital of Henan Province, Orthopedic Hospital of Henan Province, Luoyang, Henan Province, People's Republic of China.
| | - Shaoyun Zhang
- Department of Orthopedics, The Third Hospital of Mianyang, Sichuan Mental Health Center, Mianyang, Sichuan Province, People's Republic of China
| | - Yixuan Wang
- Hunan University of Chinese Medicine, Changsha, Hunan Province, People's Republic of China
| | - Songtao Quan
- Department of Knee Surgery, Luoyang Orthopedic Hospital of Henan Province, Orthopedic Hospital of Henan Province, Luoyang, Henan Province, People's Republic of China
| | - Chen Yue
- Department of Knee Surgery, Luoyang Orthopedic Hospital of Henan Province, Orthopedic Hospital of Henan Province, Luoyang, Henan Province, People's Republic of China
| | - Junna Yao
- Department of Knee Surgery, Luoyang Orthopedic Hospital of Henan Province, Orthopedic Hospital of Henan Province, Luoyang, Henan Province, People's Republic of China
| | - Peter G Alexander
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, United States of America.
| | - Honglue Tan
- Department of Knee Surgery, Luoyang Orthopedic Hospital of Henan Province, Orthopedic Hospital of Henan Province, Luoyang, Henan Province, People's Republic of China.
| |
Collapse
|
16
|
Tu B, Li J, Sun Z, Zhang T, Liu H, Yuan F, Fan C. Macrophage-Derived TGF-β and VEGF Promote the Progression of Trauma-Induced Heterotopic Ossification. Inflammation 2023; 46:202-216. [PMID: 35986177 DOI: 10.1007/s10753-022-01723-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 07/17/2022] [Accepted: 07/25/2022] [Indexed: 11/30/2022]
Abstract
Heterotopic ossification (HO) is a pathological bone formation process caused by musculoskeletal trauma. HO is characterized by aberrant endochondral ossification and angiogenesis. Our previous studies have indicated that macrophage inflammation is involved in traumatic HO formation. In this study, we found that macrophage infiltration and TGF-β signaling activation are presented in human HO. Depletion of macrophages effectively suppressed traumatic HO formation in a HO mice model, and macrophage depletion significantly inhibited the activation of TGF-β/Smad2/3 signaling. In addition, the TGF-β blockade created by a neutralizing antibody impeded ectopic bone formation in vivo. Notably, endochondral ossification and angiogenesis are attenuated following macrophage depletion or TGF-β inhibition. Furthermore, our observations on macrophage polarization revealed that M2 macrophages, rather than M1 macrophages, play a critical role in supporting HO development by enhancing the osteogenic and chondrogenic differentiation of mesenchymal stem cells. Our findings on ectopic bone formation in HO patients and the mice model indicate that M2 macrophages are an important contributor for HO development, and that inhibition of M2 polarization or TGF-β activity may be a potential method of therapy for traumatic HO.
Collapse
Affiliation(s)
- Bing Tu
- Department of Orthopaedics, Shanghai Jiaotong University Affiliated Sixth People's Hospital, No. 600 Yishan Road, Shanghai, 200233, China
| | - Juehong Li
- Department of Orthopaedics, Shanghai Jiaotong University Affiliated Sixth People's Hospital, No. 600 Yishan Road, Shanghai, 200233, China
| | - Ziyang Sun
- Department of Orthopaedics, Shanghai Jiaotong University Affiliated Sixth People's Hospital, No. 600 Yishan Road, Shanghai, 200233, China
| | - Tongtong Zhang
- Department of Orthopaedics, Shanghai Jiaotong University Affiliated Sixth People's Hospital, No. 600 Yishan Road, Shanghai, 200233, China
| | - Hang Liu
- Department of Orthopaedics, Shanghai Jiaotong University Affiliated Sixth People's Hospital, No. 600 Yishan Road, Shanghai, 200233, China
| | - Feng Yuan
- Department of Orthopaedics, Shanghai Jiaotong University Affiliated Sixth People's Hospital, No. 600 Yishan Road, Shanghai, 200233, China.
| | - Cunyi Fan
- Department of Orthopaedics, Shanghai Jiaotong University Affiliated Sixth People's Hospital, No. 600 Yishan Road, Shanghai, 200233, China.
| |
Collapse
|
17
|
Akhavan AA, Catterall LC, Deune EG. Bony Cubital Tunnel Syndrome: A Case Report of Heterotopic Ossification Causing Circumferential Ulnar Nerve Encasement at the Elbow and Review of Current Management. Ann Plast Surg 2023; 90:41-46. [PMID: 36534099 DOI: 10.1097/sap.0000000000003337] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND Heterotopic ossification (HO) is a rare but known complication of brain and nerve trauma, orthopedic trauma, and burns. Nerve compression due to HO is extremely rare; "bony cubital tunnel syndrome," or compression of the ulnar nerve at the elbow due to HO, is an unusual presentation that requires special considerations for treatment. CASE PRESENTATION We present a 50-year-old man who presented to our hospital after vehicular polytrauma with associated car fire and prolonged extrication. He experienced extensive trauma, with all classically described risks for HO. He developed bony cubital tunnel syndrome, with ulnar neuropathy confirmed on electrodiagnostic studies, and underwent surgical decompression. Surgical decompression revealed circumferential encasement of the ulnar nerve in heterotopic bone, all of which was removed. He demonstrates appropriate recovery of nerve function. LITERATURE REVIEW All perineural HO should be excised early to prevent nerve injury, because excision within 4 months of development is linked to improved functional outcomes. Measures to prevent nerve compression by HO are all associated with delayed wound or bone healing and should be considered on an individual basis.
Collapse
Affiliation(s)
- Arya Andre Akhavan
- From the Division of Plastic and Reconstructive Surgery, Icahn School of Medicine at Mount Sinai, New York, NY
| | | | | |
Collapse
|
18
|
Qin Q, Lee S, Patel N, Walden K, Gomez-Salazar M, Levi B, James AW. Neurovascular coupling in bone regeneration. Exp Mol Med 2022; 54:1844-1849. [PMID: 36446849 PMCID: PMC9722927 DOI: 10.1038/s12276-022-00899-6] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 10/11/2022] [Accepted: 10/11/2022] [Indexed: 11/30/2022] Open
Abstract
The mammalian skeletal system is densely innervated by both neural and vascular networks. Peripheral nerves in the skeleton include sensory and sympathetic nerves. The crosstalk between skeletal and neural tissues is critical for skeletal development and regeneration. The cellular processes of osteogenesis and angiogenesis are coupled in both physiological and pathophysiological contexts. The cellular and molecular regulation of osteogenesis and angiogenesis have yet to be fully defined. This review will provide a detailed characterization of the regulatory role of nerves and blood vessels during bone regeneration. Furthermore, given the importance of the spatial relationship between nerves and blood vessels in bone, we discuss neurovascular coupling during physiological and pathological bone formation. A better understanding of the interactions between nerves and blood vessels will inform future novel therapeutic neural and vascular targeting for clinical bone repair and regeneration.
Collapse
Affiliation(s)
- Qizhi Qin
- grid.21107.350000 0001 2171 9311Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - Seungyong Lee
- grid.260024.20000 0004 0627 4571Department of Physiology, College of Graduate Studies, Midwestern University, Glendale, AZ 85308 USA ,grid.412977.e0000 0004 0532 7395Department of Physical Education, Incheon National University, Incheon, 22012 South Korea
| | - Nirali Patel
- grid.260024.20000 0004 0627 4571Arizona College of Osteopathic Medicine, Midwestern University, Glendale, AZ 85308 USA
| | - Kalah Walden
- grid.260024.20000 0004 0627 4571Arizona College of Osteopathic Medicine, Midwestern University, Glendale, AZ 85308 USA
| | - Mario Gomez-Salazar
- grid.21107.350000 0001 2171 9311Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - Benjamin Levi
- grid.267313.20000 0000 9482 7121Departments of Surgery, UT Southwestern Medical Center, Dallas, TX 75390 USA
| | - Aaron W. James
- grid.21107.350000 0001 2171 9311Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| |
Collapse
|
19
|
Rizvi SMHA, Sharaf J, Williams KAD, Tariq M, Acharekar MV, Guerrero Saldivia SE, Unnikrishnan S, Chavarria YY, Akindele AO, Jalkh AP, Eastmond AK, Shetty C, Mohammed L. Effectiveness of Prophylactic Interventions in Neurogenic Heterotopic Ossification (NHO): A Systematic Review. Cureus 2022; 14:e27683. [PMID: 36072216 PMCID: PMC9440349 DOI: 10.7759/cureus.27683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 08/04/2022] [Indexed: 11/06/2022] Open
Abstract
Neurogenic heterotopic ossification (NHO) is the formation of mature lamellar bone in peri-articular tissues following a neurological insult, most commonly traumatic brain injury (TBI) or spinal cord injury (SCI). NHO is a debilitating condition associated with significant morbidity and reduced quality of life. However, its pathophysiology remains poorly understood. While surgery is the mainstay of treatment once NHO has been diagnosed, prophylactic options are limited and not well studied. This review aimed to determine the efficacy of various interventions used in the primary prevention of NHO. We conducted an electronic literature search using five databases (PubMed, Embase, ScienceDirect, Cochrane Library, and Cumulative Index to Nursing and Allied Health Literature (CINAHL)) for records published until April 10, 2022. We identified 2,610 potentially eligible records across all databases. Nine reports met our eligibility criteria and were included in this review. Four were clinical trials (three randomized control trials, one nonrandomized trial), four were observational studies, and one was a systematic review/meta-analysis. The medications/interventions used included: warfarin, pulse low-intensity electromagnetic field therapy (PLIMF), bisphosphonates, and nonsteroidal anti-inflammatory drugs (NSAIDs). We did not find conclusive evidence to recommend the use of bisphosphonates and warfarin in the prevention of NHO. On the contrary, we found NSAIDs and PLIMF as effective prophylactic options based on the results of high-quality randomized control trials. Further prospective randomized studies with prolonged follow-ups are needed to confirm the long-term efficacy of these preventive interventions.
Collapse
Affiliation(s)
| | - Joudi Sharaf
- Research, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Kerry-Ann D Williams
- Research, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Maha Tariq
- Research, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Maitri V Acharekar
- Research, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | | | - Sumedha Unnikrishnan
- Research, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Yeny Y Chavarria
- Research, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Adebisi O Akindele
- Research, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Ana P Jalkh
- Research, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Aziza K Eastmond
- Research, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Chaitra Shetty
- Research, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Lubna Mohammed
- Research, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| |
Collapse
|
20
|
Hwang CD, Pagani CA, Nunez JH, Cherief M, Qin Q, Gomez-Salazar M, Kadaikal B, Kang H, Chowdary AR, Patel N, James AW, Levi B. Contemporary perspectives on heterotopic ossification. JCI Insight 2022; 7:158996. [PMID: 35866484 PMCID: PMC9431693 DOI: 10.1172/jci.insight.158996] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Heterotopic ossification (HO) is the formation of ectopic bone that is primarily genetically driven (fibrodysplasia ossificans progressiva [FOP]) or acquired in the setting of trauma (tHO). HO has undergone intense investigation, especially over the last 50 years, as awareness has increased around improving clinical technologies and incidence, such as with ongoing wartime conflicts. Current treatments for tHO and FOP remain prophylactic and include NSAIDs and glucocorticoids, respectively, whereas other proposed therapeutic modalities exhibit prohibitive risk profiles. Contemporary studies have elucidated mechanisms behind tHO and FOP and have described new distinct niches independent of inflammation that regulate ectopic bone formation. These investigations have propagated a paradigm shift in the approach to treatment and management of a historically difficult surgical problem, with ongoing clinical trials and promising new targets.
Collapse
Affiliation(s)
- Charles D Hwang
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Massachusetts General Hospital, Harvard University, Boston, Massachusetts, USA
| | - Chase A Pagani
- Department of Surgery, Center for Organogenesis Research and Trauma, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Johanna H Nunez
- Department of Surgery, Center for Organogenesis Research and Trauma, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Masnsen Cherief
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Qizhi Qin
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland, USA
| | | | - Balram Kadaikal
- Department of Surgery, Center for Organogenesis Research and Trauma, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Heeseog Kang
- Department of Surgery, Center for Organogenesis Research and Trauma, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Ashish R Chowdary
- Department of Surgery, Center for Organogenesis Research and Trauma, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Nicole Patel
- Division of Plastic and Reconstructive Surgery, Department of Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Aaron W James
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Benjamin Levi
- Department of Surgery, Center for Organogenesis Research and Trauma, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
21
|
Negri S, Wang Y, Li Z, Qin Q, Lee S, Cherief M, Xu J, Hsu GCY, Tower RJ, Presson B, Levin A, McCarthy E, Levi B, James AW. Acetabular Reaming Is a Reliable Model to Produce and Characterize Periarticular Heterotopic Ossification of the Hip. Stem Cells Transl Med 2022; 11:876-888. [PMID: 35758541 PMCID: PMC9397657 DOI: 10.1093/stcltm/szac042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 05/07/2022] [Indexed: 11/17/2022] Open
Abstract
Heterotopic ossification (HO) is a pathologic process characterized by the formation of bone tissue in extraskeletal locations. The hip is a common location of HO, especially as a complication of arthroplasty. Here, we devise a first-of-its-kind mouse model of post-surgical hip HO and validate expected cell sources of HO using several HO progenitor cell reporter lines. To induce HO, an anterolateral surgical approach to the hip was used, followed by disclocation and acetabular reaming. Animals were analyzed with high-resolution roentgenograms and micro-computed tomography, conventional histology, immunohistochemistry, and assessments of fluorescent reporter activity. All the treated animals' developed periarticular HO with an anatomical distribution similar to human patients after arthroplasty. Heterotopic bone was found in periosteal, inter/intramuscular, and intracapsular locations. Further, the use of either PDGFRα or scleraxis (Scx) reporter mice demonstrated that both cell types gave rise to periarticular HO in this model. In summary, acetabular reaming reproducibly induces periarticular HO in the mouse reproducing human disease, and with defined mesenchymal cellular contributors similar to other experimental HO models. This protocol may be used in the future for further detailing of the cellular and molecular mediators of post-surgical HO, as well as the screening of new therapies.
Collapse
Affiliation(s)
| | | | - Zhao Li
- Department of Pathology, Johns Hopkins University, Baltimore, MD, USA
| | - Qizhi Qin
- Department of Pathology, Johns Hopkins University, Baltimore, MD, USA
| | - Seungyong Lee
- Department of Pathology, Johns Hopkins University, Baltimore, MD, USA
| | - Masnsen Cherief
- Department of Pathology, Johns Hopkins University, Baltimore, MD, USA
| | - Jiajia Xu
- Department of Pathology, Johns Hopkins University, Baltimore, MD, USA
| | | | - Robert Joel Tower
- Center for Organogenesis Research and Trauma, University of Texas Southwestern, Dallas, TX, USA
| | - Bradley Presson
- Orthopaedic and Trauma Surgery Unit, Department of Surgery, Dentistry, Paediatrics and Gynaecology of the University of Verona, Verona, Italy
| | - Adam Levin
- Department of Orthopaedics, Johns Hopkins University, Baltimore, MD, USA
| | - Edward McCarthy
- Department of Pathology, Johns Hopkins University, Baltimore, MD, USA
| | - Benjamin Levi
- Center for Organogenesis Research and Trauma, University of Texas Southwestern, Dallas, TX, USA
| | - Aaron W James
- Corresponding author: Aaron W. James, 720 Rutland Avenue, Room 524A, Baltimore, MD 21205, USA. Tel: +1 410 502 4143; Fax: +1 410 955 9777;
| |
Collapse
|
22
|
Qin Q, Gomez-Salazar M, Cherief M, Pagani CA, Lee S, Hwang C, Tower RJ, Onggo S, Sun Y, Piplani A, Li Z, Ramesh S, Clemens TL, Levi B, James AW. Neuron-to-vessel signaling is a required feature of aberrant stem cell commitment after soft tissue trauma. Bone Res 2022; 10:43. [PMID: 35641477 PMCID: PMC9156761 DOI: 10.1038/s41413-022-00216-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 04/04/2022] [Accepted: 04/29/2022] [Indexed: 11/10/2022] Open
Abstract
The functional interdependence of nerves and blood vessels is a well-established concept during tissue morphogenesis, yet the role of neurovascular coupling in proper and aberrant tissue repair is an emerging field of interest. Here, we sought to define the regulatory relationship of peripheral nerves on vasculature in a severe extremity trauma model in mice, which results in aberrant cell fate and heterotopic ossification (HO). First, a high spatial degree of neurovascular congruency was observed to exist within extremity injury associated heterotopic ossification. Vascular and perivascular cells demonstrate characteristic responses to injury, as assessed by single cell RNA sequencing. This vascular response to injury was blunted in neurectomized mice, including a decrease in endothelial proliferation and type H vessel formation, and a downregulation of key transcriptional networks associated with angiogenesis. Independent mechanisms to chemically or genetically inhibit axonal ingrowth led to similar deficits in HO site angiogenesis, a reduction in type H vessels, and heterotopic bone formation. Finally, a combination of single cell transcriptomic approaches within the dorsal root ganglia identified key neural-derived angiogenic paracrine factors that may mediate neuron-to-vascular signaling in HO. These data provide further understanding of nerve-to-vessel crosstalk in traumatized soft tissues, which may reflect a key determinant of mesenchymal progenitor cell fate after injury.
Collapse
Affiliation(s)
- Qizhi Qin
- Department of Pathology, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Mario Gomez-Salazar
- Department of Pathology, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Masnsen Cherief
- Department of Pathology, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Chase A Pagani
- Center for Organogenesis and Trauma, Department of Surgery, University of Texas, Southwestern, TX, USA
| | - Seungyong Lee
- Department of Pathology, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Charles Hwang
- Department of Plastic Surgery, Harvard, Cambridge, MA, 02138, USA
| | - Robert J Tower
- Center for Organogenesis and Trauma, Department of Surgery, University of Texas, Southwestern, TX, USA
- Department of Orthopaedics, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Sharon Onggo
- Department of Pathology, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Yuxiao Sun
- Center for Organogenesis and Trauma, Department of Surgery, University of Texas, Southwestern, TX, USA
| | - Abhinav Piplani
- Department of Pathology, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Zhao Li
- Department of Pathology, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Sowmya Ramesh
- Department of Pathology, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Thomas L Clemens
- Department of Orthopaedics, Johns Hopkins University, Baltimore, MD, 21205, USA
- Baltimore Veterans Administration Medical Center, Baltimore, MD, 21201, USA
| | - Benjamin Levi
- Center for Organogenesis and Trauma, Department of Surgery, University of Texas, Southwestern, TX, USA.
| | - Aaron W James
- Department of Pathology, Johns Hopkins University, Baltimore, MD, 21205, USA.
| |
Collapse
|
23
|
Lees-Shepard JB, Stoessel SJ, Chandler JT, Bouchard K, Bento P, Apuzzo LN, Devarakonda PM, Hunter JW, Goldhamer DJ. An anti-ACVR1 antibody exacerbates heterotopic ossification by fibro-adipogenic progenitors in fibrodysplasia ossificans progressiva mice. J Clin Invest 2022; 132:153795. [PMID: 35503416 PMCID: PMC9197527 DOI: 10.1172/jci153795] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 04/29/2022] [Indexed: 11/17/2022] Open
Abstract
Fibrodysplasia ossificans progressiva (FOP) is a rare genetic disease characterized by progressive and catastrophic heterotopic ossification (HO) of skeletal muscle and associated soft tissues. FOP is caused by dominantly acting mutations in the gene encoding the bone morphogenetic protein (BMP) type I receptor, ACVR1 (ALK2), the most prevalent of which results in an arginine to histidine substitution at position 206[ACVR1(R206H)]. The fundamental pathological consequence of FOP-causing ACVR1 receptor mutations is to enable activin A to initiate canonical BMP signaling in fibro-adipogenic progenitors (FAPs), which drives HO. We developed a monoclonal blocking antibody (JAB0505) to the extracellular domain of ACVR1 and tested its effect on HO in two independent FOP mouse models. Although JAB0505 inhibited BMP-dependent gene expression in wild-type and ACVR1(R206H)-overexpressing cell lines, JAB0505 treatment profoundly exacerbated injury-induced HO. JAB0505-treated mice exhibited multiple, distinct foci of heterotopic lesions, suggesting an atypically broad anatomical domain of FAP recruitment to endochondral ossification. This was accompanied by dysregulated FAP population growth and an abnormally sustained immunological reaction following muscle injury. JAB0505 drove injury-induced HO in the absence of activin A, indicating that JAB0505 has receptor agonist activity. These data raise serious safety and efficacy concerns for the use of bivalent anti-ACVR1 antibodies to treat patients with FOP.
Collapse
Affiliation(s)
- John B Lees-Shepard
- Skeletal Diseases, Regeneron Pharmaceuticals, Tarrytown, United States of America
| | - Sean J Stoessel
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, United States of America
| | - Julian T Chandler
- Discovery Research, Alexion Pharmaceuticals, New Haven, United States of America
| | - Keith Bouchard
- Discovery Research, Alexion Pharmaceuticals, New Haven, United States of America
| | - Patricia Bento
- Product Development and Clinical Supply, Alexion Pharmaceuticals, New Haven, United States of America
| | - Lorraine N Apuzzo
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, United States of America
| | | | - Jeffrey W Hunter
- Discovery Research, Alexion Pharmaceuticals, New Haven, United States of America
| | - David J Goldhamer
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, United States of America
| |
Collapse
|
24
|
Tseng HW, Kulina I, Girard D, Gueguen J, Vaquette C, Salga M, Fleming W, Jose B, Millard SM, Pettit AR, Schroder K, Thomas G, Wheeler L, Genêt F, Banzet S, Alexander KA, Lévesque JP. Interleukin-1 Is Overexpressed in Injured Muscles Following Spinal Cord Injury and Promotes Neurogenic Heterotopic Ossification. J Bone Miner Res 2022; 37:531-546. [PMID: 34841579 DOI: 10.1002/jbmr.4482] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 11/14/2021] [Accepted: 11/17/2021] [Indexed: 12/12/2022]
Abstract
Neurogenic heterotopic ossifications (NHOs) form in periarticular muscles after severe spinal cord (SCI) and traumatic brain injuries. The pathogenesis of NHO is poorly understood with no effective preventive treatment. The only curative treatment remains surgical resection of pathological NHOs. In a mouse model of SCI-induced NHO that involves a transection of the spinal cord combined with a muscle injury, a differential gene expression analysis revealed that genes involved in inflammation such as interleukin-1β (IL-1β) were overexpressed in muscles developing NHO. Using mice knocked-out for the gene encoding IL-1 receptor (IL1R1) and neutralizing antibodies for IL-1α and IL-1β, we show that IL-1 signaling contributes to NHO development after SCI in mice. Interestingly, other proteins involved in inflammation that were also overexpressed in muscles developing NHO, such as colony-stimulating factor-1, tumor necrosis factor, or C-C chemokine ligand-2, did not promote NHO development. Finally, using NHO biopsies from SCI and TBI patients, we show that IL-1β is expressed by CD68+ macrophages. IL-1α and IL-1β produced by activated human monocytes promote calcium mineralization and RUNX2 expression in fibro-adipogenic progenitors isolated from muscles surrounding NHOs. Altogether, these data suggest that interleukin-1 promotes NHO development in both humans and mice. © 2021 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Hsu-Wen Tseng
- Mater Research Institute - The University of Queensland, Woolloongabba, Australia
| | - Irina Kulina
- Mater Research Institute - The University of Queensland, Woolloongabba, Australia
| | - Dorothée Girard
- Institut de Recherche Biomédicale des Armées (IRBA), Clamart, France.,INSERM UMR-MD 1197, Université de Paris-Saclay, Gif-sur-Yvette, France
| | - Jules Gueguen
- Institut de Recherche Biomédicale des Armées (IRBA), Clamart, France.,INSERM UMR-MD 1197, Université de Paris-Saclay, Gif-sur-Yvette, France
| | - Cedryck Vaquette
- School of Dentistry, The University of Queensland, Herston, Australia.,Regenerative Medicine, Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, Australia
| | - Marjorie Salga
- Mater Research Institute - The University of Queensland, Woolloongabba, Australia.,Unité Péri Opératoire du Handicap (UPOH), PMR Department, Versailles Saint-Quentin-en-Yvelines University (UVSQ); UFR Simone Veil - Santé, END: ICAP, INSERM U1179, Hôpital Raymond-Poincaré, Assistance Publique - Hôpitaux de Paris (AP-HP), Garches, France.,Université de Versailles Saint-Quentin-en-Yvelines (UVSQ); UFR Simone Veil - Santé, END: ICAP, INSERM U1179, Montigny-le-Bretonneux, France
| | - Whitney Fleming
- Mater Research Institute - The University of Queensland, Woolloongabba, Australia
| | - Beulah Jose
- Mater Research Institute - The University of Queensland, Woolloongabba, Australia
| | - Susan M Millard
- Mater Research Institute - The University of Queensland, Woolloongabba, Australia
| | - Allison R Pettit
- Mater Research Institute - The University of Queensland, Woolloongabba, Australia
| | - Kate Schroder
- Institute for Molecular Bioscience, University of Queensland, Saint Lucia, Australia
| | - Gethin Thomas
- The University of Queensland Diamantina Institute, Translational Research Institute, Woolloongabba, Australia
| | - Lawrie Wheeler
- The University of Queensland Diamantina Institute, Translational Research Institute, Woolloongabba, Australia
| | - François Genêt
- Unité Péri Opératoire du Handicap (UPOH), PMR Department, Versailles Saint-Quentin-en-Yvelines University (UVSQ); UFR Simone Veil - Santé, END: ICAP, INSERM U1179, Hôpital Raymond-Poincaré, Assistance Publique - Hôpitaux de Paris (AP-HP), Garches, France.,Université de Versailles Saint-Quentin-en-Yvelines (UVSQ); UFR Simone Veil - Santé, END: ICAP, INSERM U1179, Montigny-le-Bretonneux, France
| | - Sébastien Banzet
- Institut de Recherche Biomédicale des Armées (IRBA), Clamart, France.,INSERM UMR-MD 1197, Université de Paris-Saclay, Gif-sur-Yvette, France
| | - Kylie A Alexander
- Mater Research Institute - The University of Queensland, Woolloongabba, Australia
| | - Jean-Pierre Lévesque
- Mater Research Institute - The University of Queensland, Woolloongabba, Australia
| |
Collapse
|
25
|
Vardar S, Özsoy Ünübol T, Ata E, Yılmaz F. A case report of a patient with COVID-19 infection and widespread heterotopic ossification. Turk J Phys Med Rehabil 2022; 68:149-153. [PMID: 35949971 PMCID: PMC9305654 DOI: 10.5606/tftrd.2022.8172] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 06/16/2021] [Indexed: 11/27/2022] Open
Abstract
Since the beginning of the novel coronavirus disease-2019 (COVID-19) pandemic, physical medicine and rehabilitation specialists have played an important role in fighting this disease apart from the pulmonary rehabilitation. As a high number of patients have needed immobilization and intensive care unit (ICU) treatment, many complications have emerged inevitably. Heterotopic ossification (HO) is one of these complications. Herein, we present a case of young male patient who had widespread HO in his shoulders, elbows, and hips. Although he managed to survive, he still has difficulty in ambulation and daily living activities. Given the continuing high prevalence of COVID-19, many patients would need immobilization and ICU treatment. Therefore, causes of HO should be scrutinized, physicians and caregivers need to raise vigilance, and comprehensive protective measures should be put in place. On the other hand, as HO is used to be diagnosed quite frequently in the patients with neurological diseases, diagnosis of HO in the COVID-19 patients should not automatically be linked to the stay in the ICU. Yet, it is a fact that impaired immune response is prevalent both in COVID-19 and HO. The correlation between COVID-19 and HO is remarkable, but further research is needed to establish a causal relationship.
Collapse
Affiliation(s)
- Serenay Vardar
- Department of Physical Medicine and Rehabilitation, Health Sciences University, Sultan 2. Abdulhamid Han Training and Research Hospital, Istanbul, Turkey
| | - Tuğba Özsoy Ünübol
- Department of Physical Medicine and Rehabilitation, Health Sciences University, Sultan 2. Abdulhamid Han Training and Research Hospital, Istanbul, Turkey
| | - Emre Ata
- Department of Physical Medicine and Rehabilitation, Health Sciences University, Sultan 2. Abdulhamid Han Training and Research Hospital, Istanbul, Turkey
| | - Figen Yılmaz
- Department of Physical Medicine and Rehabilitation, Health Sciences University, Sultan 2. Abdulhamid Han Training and Research Hospital, Istanbul, Turkey
| |
Collapse
|
26
|
Tseng HW, Girard D, Alexander KA, Millard SM, Torossian F, Anginot A, Fleming W, Gueguen J, Goriot ME, Clay D, Jose B, Nowlan B, Pettit AR, Salga M, Genêt F, Bousse-Kerdilès MCL, Banzet S, Lévesque JP. Spinal cord injury reprograms muscle fibroadipogenic progenitors to form heterotopic bones within muscles. Bone Res 2022; 10:22. [PMID: 35217633 PMCID: PMC8881504 DOI: 10.1038/s41413-022-00188-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 11/21/2021] [Accepted: 12/06/2021] [Indexed: 12/30/2022] Open
Abstract
The cells of origin of neurogenic heterotopic ossifications (NHOs), which develop frequently in the periarticular muscles following spinal cord injuries (SCIs) and traumatic brain injuries, remain unclear because skeletal muscle harbors two progenitor cell populations: satellite cells (SCs), which are myogenic, and fibroadipogenic progenitors (FAPs), which are mesenchymal. Lineage-tracing experiments using the Cre recombinase/LoxP system were performed in two mouse strains with the fluorescent protein ZsGreen specifically expressed in either SCs or FAPs in skeletal muscles under the control of the Pax7 or Prrx1 gene promoter, respectively. These experiments demonstrate that following muscle injury, SCI causes the upregulation of PDGFRα expression on FAPs but not SCs and the failure of SCs to regenerate myofibers in the injured muscle, with reduced apoptosis and continued proliferation of muscle resident FAPs enabling their osteogenic differentiation into NHOs. No cells expressing ZsGreen under the Prrx1 promoter were detected in the blood after injury, suggesting that the cells of origin of NHOs are locally derived from the injured muscle. We validated these findings using human NHO biopsies. PDGFRα+ mesenchymal cells isolated from the muscle surrounding NHO biopsies could develop ectopic human bones when transplanted into immunocompromised mice, whereas CD56+ myogenic cells had a much lower potential. Therefore, NHO is a pathology of the injured muscle in which SCI reprograms FAPs to undergo uncontrolled proliferation and differentiation into osteoblasts.
Collapse
Affiliation(s)
- Hsu-Wen Tseng
- Mater Research Institute-The University of Queensland, Woolloongabba, QLD, Australia
| | - Dorothée Girard
- Institut de Recherche Biomédicale des Armées (IRBA), INSERM UMRS-MD, 1197, Clamart, France
| | - Kylie A Alexander
- Mater Research Institute-The University of Queensland, Woolloongabba, QLD, Australia
| | - Susan M Millard
- Mater Research Institute-The University of Queensland, Woolloongabba, QLD, Australia
| | - Frédéric Torossian
- INSERM UMRS-MD 1197, Université de Paris-Saclay, Hôpital Paul Brousse, Villejuif, France
| | - Adrienne Anginot
- INSERM UMRS-MD 1197, Université de Paris-Saclay, Hôpital Paul Brousse, Villejuif, France
| | - Whitney Fleming
- Mater Research Institute-The University of Queensland, Woolloongabba, QLD, Australia
| | - Jules Gueguen
- Institut de Recherche Biomédicale des Armées (IRBA), INSERM UMRS-MD, 1197, Clamart, France
| | | | - Denis Clay
- INSERM UMS-44, Université de Paris-Saclay, Hôpital Paul Brousse, Villejuif, France
| | - Beulah Jose
- Mater Research Institute-The University of Queensland, Woolloongabba, QLD, Australia
| | - Bianca Nowlan
- Mater Research Institute-The University of Queensland, Woolloongabba, QLD, Australia
| | - Allison R Pettit
- Mater Research Institute-The University of Queensland, Woolloongabba, QLD, Australia
| | - Marjorie Salga
- UPOH (Unité Péri Opératoire du Handicap, Perioperative Disability Unit), Physical and Rehabilitation Medicine department, Raymond-Poincaré Hospital, Assistance Publique - Hôpitaux de Paris (AP-HP), Garches, France.,Université de Versailles Saint Quentin en Yvelines, UFR Simone Veil - Santé, END:ICAP INSERM U1179, Montigny le Bretonneux, France
| | - François Genêt
- UPOH (Unité Péri Opératoire du Handicap, Perioperative Disability Unit), Physical and Rehabilitation Medicine department, Raymond-Poincaré Hospital, Assistance Publique - Hôpitaux de Paris (AP-HP), Garches, France.,Université de Versailles Saint Quentin en Yvelines, UFR Simone Veil - Santé, END:ICAP INSERM U1179, Montigny le Bretonneux, France
| | | | - Sébastien Banzet
- Institut de Recherche Biomédicale des Armées (IRBA), INSERM UMRS-MD, 1197, Clamart, France.
| | - Jean-Pierre Lévesque
- Mater Research Institute-The University of Queensland, Woolloongabba, QLD, Australia.
| |
Collapse
|
27
|
Alexander KA, Tseng HW, Kulina I, Fleming W, Vaquette C, Genêt F, Ruitenberg MJ, Lévesque JP. Lymphocytes Are Not Required for Neurogenic Heterotopic Ossification Development after Spinal Cord Injury. Neurotrauma Rep 2022; 3:87-96. [PMID: 35317305 PMCID: PMC8935476 DOI: 10.1089/neur.2021.0072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Neurogenic heterotopic ossifications (NHOs) are incapacitating complications of traumatic brain and spinal cord injuries (SCI) that manifest as abnormal bone formation in periarticular muscles. Using a unique model of NHO after SCI in genetically unmodified mice, we have previously established that the innate immune system plays a key driving role in NHO pathogenesis. The role of adaptive immune cells in NHO pathogenesis, however, remains unexplored in this model. Here we established that B lymphocytes were reduced in the spleen and blood after SCI and increased in muscles of mice in which NHO develops, whereas minimal changes in T cell frequencies were noted. Interestingly, Rag1-/- mice lacking mature T and B lymphocytes, developed NHO, similar to wild-type mice. Finally, mice that underwent splenectomy before SCI and muscle damage also developed NHO to the same extent as non-splenectomized SCI controls. Overall, our findings show that functional T and B lymphocytes have minimal influence or dispensable contributions to NHO development after experimental SCI in mice.
Collapse
Affiliation(s)
- Kylie A. Alexander
- Mater Research Institute, The University of Queensland, Translational Research Institute, Woolloongabba, Queensland, Australia
| | - Hsu-Wen Tseng
- Mater Research Institute, The University of Queensland, Translational Research Institute, Woolloongabba, Queensland, Australia
| | - Irina Kulina
- Mater Research Institute, The University of Queensland, Translational Research Institute, Woolloongabba, Queensland, Australia
| | - Whitney Fleming
- Mater Research Institute, The University of Queensland, Translational Research Institute, Woolloongabba, Queensland, Australia
| | - Cedryck Vaquette
- School of Dentistry, The University of Queensland, Herston, QLD, Australia
| | - François Genêt
- UPOH (Unité Péri Opératoire du Handicap, Perioperative Disability Unit), Physical and Rehabilitation Medicine department, Raymond-Poincaré Hospital, Assistance Publique–Hôpitaux de Paris (AP-HP), Garches, France
- Versailles Saint-Quentin-en-Yvelines University (UVSQ); UFR Simone Veil—Santé, END: ICAP, Inserm U1179, Montigny-le-Bretonneux, France
| | | | - Jean-Pierre Lévesque
- Mater Research Institute, The University of Queensland, Translational Research Institute, Woolloongabba, Queensland, Australia
| |
Collapse
|
28
|
Brance ML, Cóccaro NM, Casalongue AN, Durán A, Brun LR. Extensive progressive heterotopic ossification post-Covid-19 in a man. Bone 2022; 155:116287. [PMID: 34896358 PMCID: PMC8653400 DOI: 10.1016/j.bone.2021.116287] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 11/07/2021] [Accepted: 12/02/2021] [Indexed: 11/30/2022]
Abstract
Heterotopic ossification (HO) is the formation of extraskeletal bone in muscle and soft tissues and could be genetic or non-genetic. The classic presentation of non-genetic HO is in young adults with a clear history of local trauma, surgery or prolonged immobilization after spinal cord and traumatic brain injuries. Genetic HO has a significant clinical severity compared to non-genetic causes and includes fibrodysplasia ossificans progressiva (FOP). FOP is an extremely rare genetic skeletal disorder characterized by congenital malformations of the great toes and progressive heterotopic ossification that forms qualitatively normal bone in characteristic extraskeletal sites affecting skeletal muscles, fascia, tendons, and ligaments. Previously, it has been reported an association between SARS-CoV-2 infection (COVID-19) and HO or FOP exacerbation with unclear etiopathogenesis. The possible mechanisms could be prolonged immobilization and systemic inflammation. Here, we describe the case of a 55-year-old apparently healthy man who suffered from a severe SARS-CoV-2 infection after that he experienced an extensive and progressive heterotopic ossification around the shoulders, the elbows, the hip, the knees, and the ankles. Because of the clinical severity, the painful soft-tissue swelling, the progressive HO, and the bilateral congenital hallux valgus deformity, a late-onset atypical FOP was suspected. Nevertheless, no variant of clinical significance has been identified in the coding regions and splicing sites in the ACVR1 gene and no deletions and/or duplications have been identified in exonic regions.
Collapse
Affiliation(s)
- María Lorena Brance
- Bone Biology Laboratory, School of Medicine, Rosario National University, Argentina; Reumatología y Enfermedades Óseas Rosario, Argentina; National Council of Scientific and Technical Research (CONICET), Argentina.
| | | | | | - Ariel Durán
- Physical, Sanatorio de Neurorehabilitación, Rosario, Argentina
| | - Lucas R Brun
- Bone Biology Laboratory, School of Medicine, Rosario National University, Argentina; National Council of Scientific and Technical Research (CONICET), Argentina.
| |
Collapse
|
29
|
Macrophages in heterotopic ossification: from mechanisms to therapy. NPJ Regen Med 2021; 6:70. [PMID: 34702860 PMCID: PMC8548514 DOI: 10.1038/s41536-021-00178-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 09/30/2021] [Indexed: 01/04/2023] Open
Abstract
Heterotopic ossification (HO) is the formation of extraskeletal bone in non-osseous tissues. It is caused by an injury that stimulates abnormal tissue healing and regeneration, and inflammation is involved in this process. It is worth noting that macrophages are crucial mediators of inflammation. In this regard, abundant macrophages are recruited to the HO site and contribute to HO progression. Macrophages can acquire different functional phenotypes and promote mesenchymal stem cell (MSC) osteogenic differentiation, chondrogenic differentiation, and angiogenesis by expressing cytokines and other factors such as the transforming growth factor-β1 (TGF-β1), bone morphogenetic protein (BMP), activin A (Act A), oncostatin M (OSM), substance P (SP), neurotrophin-3 (NT-3), and vascular endothelial growth factor (VEGF). In addition, macrophages significantly contribute to the hypoxic microenvironment, which primarily drives HO progression. Thus, these have led to an interest in the role of macrophages in HO by exploring whether HO is a "butterfly effect" event. Heterogeneous macrophages are regarded as the "butterflies" that drive a sequence of events and ultimately promote HO. In this review, we discuss how the recruitment of macrophages contributes to HO progression. In particular, we review the molecular mechanisms through which macrophages participate in MSC osteogenic differentiation, angiogenesis, and the hypoxic microenvironment. Understanding the diverse role of macrophages may unveil potential targets for the prevention and treatment of HO.
Collapse
|
30
|
Neurogenic heterotopic ossification in the upper limb. HAND SURGERY & REHABILITATION 2021; 41S:S167-S174. [PMID: 34536583 DOI: 10.1016/j.hansur.2020.09.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 08/15/2020] [Accepted: 09/08/2020] [Indexed: 11/21/2022]
Abstract
Neurogenic heterotopic ossifications (NHOs) are periarticular ectopic ossifications that frequently develop after a central nervous system injury, most often a traumatic one. They limit range of motion and cause pain, interfering with limb positioning and function, whether active or passive. Highly described in the lower limbs, NHOs can also develop in the upper limb, with specific characteristics depending on their location. This article provides a summary of the diagnostic and therapeutic management of NHOs in the upper limb, based on the current literature.
Collapse
|
31
|
McDonald SJ, Sharkey JM, Sun M, Kaukas LM, Shultz SR, Turner RJ, Leonard AV, Brady RD, Corrigan F. Beyond the Brain: Peripheral Interactions after Traumatic Brain Injury. J Neurotrauma 2021; 37:770-781. [PMID: 32041478 DOI: 10.1089/neu.2019.6885] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Traumatic brain injury (TBI) is a leading cause of death and disability, and there are currently no pharmacological treatments known to improve patient outcomes. Unquestionably, contributing toward a lack of effective treatments is the highly complex and heterogenous nature of TBI. In this review, we highlight the recent surge of research that has demonstrated various central interactions with the periphery as a potential major contributor toward this heterogeneity and, in particular, the breadth of research from Australia. We describe the growing evidence of how extracranial factors, such as polytrauma and infection, can significantly alter TBI neuropathology. In addition, we highlight how dysregulation of the autonomic nervous system and the systemic inflammatory response induced by TBI can have profound pathophysiological effects on peripheral organs, such as the heart, lung, gastrointestinal tract, liver, kidney, spleen, and bone. Collectively, this review firmly establishes TBI as a systemic condition. Further, the central and peripheral interactions that can occur after TBI must be further explored and accounted for in the ongoing search for effective treatments.
Collapse
Affiliation(s)
- Stuart J McDonald
- Department Neuroscience, Monash University, Melbourne, Victoria, Australia.,Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, Victoria, Australia
| | - Jessica M Sharkey
- Discipline of Anatomy and Pathology, Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - Mujun Sun
- Department Neuroscience, Monash University, Melbourne, Victoria, Australia
| | - Lola M Kaukas
- School of Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Sandy R Shultz
- Department Neuroscience, Monash University, Melbourne, Victoria, Australia.,Department of Medicine, University of Melbourne, Melbourne, Victoria, Australia
| | - Renee J Turner
- Discipline of Anatomy and Pathology, Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - Anna V Leonard
- Discipline of Anatomy and Pathology, Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - Rhys D Brady
- Department Neuroscience, Monash University, Melbourne, Victoria, Australia
| | - Frances Corrigan
- School of Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| |
Collapse
|
32
|
Zhou A, Wu B, Yu H, Tang Y, Liu J, Jia Y, Yang X, Xiang L. Current Understanding of Osteoimmunology in Certain Osteoimmune Diseases. Front Cell Dev Biol 2021; 9:698068. [PMID: 34485284 PMCID: PMC8416088 DOI: 10.3389/fcell.2021.698068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 07/15/2021] [Indexed: 02/05/2023] Open
Abstract
The skeletal system and immune system seem to be two independent systems. However, there in fact are extensive and multiple crosstalk between them. The concept of osteoimmunology was created to describe those interdisciplinary events, but it has been constantly updated over time. In this review, we summarize the interactions between the skeletal and immune systems in the co-development of the two systems and the progress of certain typical bone abnormalities and bone regeneration on the cellular and molecular levels according to the mainstream novel study. At the end of the review, we also highlighted the possibility of extending the research scope of osteoimmunology to other systemic diseases. In conclusion, we propose that osteoimmunology is a promising perspective to uncover the mechanism of related diseases; meanwhile, a study from the point of view of osteoimmunology may also provide innovative ideas and resolutions to achieve the balance of internal homeostasis.
Collapse
Affiliation(s)
- Anqi Zhou
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Bingfeng Wu
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Hui Yu
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yufei Tang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jiayi Liu
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yinan Jia
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xiaoyu Yang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Lin Xiang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
33
|
NGF-TrkA signaling dictates neural ingrowth and aberrant osteochondral differentiation after soft tissue trauma. Nat Commun 2021; 12:4939. [PMID: 34400627 PMCID: PMC8368242 DOI: 10.1038/s41467-021-25143-z] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 07/19/2021] [Indexed: 02/07/2023] Open
Abstract
Pain is a central feature of soft tissue trauma, which under certain contexts, results in aberrant osteochondral differentiation of tissue-specific stem cells. Here, the role of sensory nerve fibers in this abnormal cell fate decision is investigated using a severe extremity injury model in mice. Soft tissue trauma results in NGF (Nerve growth factor) expression, particularly within perivascular cell types. Consequently, NGF-responsive axonal invasion occurs which precedes osteocartilaginous differentiation. Surgical denervation impedes axonal ingrowth, with significant delays in cartilage and bone formation. Likewise, either deletion of Ngf or two complementary methods to inhibit its receptor TrkA (Tropomyosin receptor kinase A) lead to similar delays in axonal invasion and osteochondral differentiation. Mechanistically, single-cell sequencing suggests a shift from TGFβ to FGF signaling activation among pre-chondrogenic cells after denervation. Finally, analysis of human pathologic specimens and databases confirms the relevance of NGF-TrkA signaling in human disease. In sum, NGF-mediated TrkA-expressing axonal ingrowth drives abnormal osteochondral differentiation after soft tissue trauma. NGF-TrkA signaling inhibition may have dual therapeutic use in soft tissue trauma, both as an analgesic and negative regulator of aberrant stem cell differentiation.
Collapse
|
34
|
Debaud C, Tseng HW, Chedik M, Kulina I, Genêt F, Ruitenberg MJ, Levesque JP. Local and Systemic Factors Drive Ectopic Osteogenesis in Regenerating Muscles of Spinal-Cord-Injured Mice in a Lesion-Level-Dependent Manner. J Neurotrauma 2021; 38:2162-2175. [PMID: 33913747 DOI: 10.1089/neu.2021.0058] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Neuroimmune dysfunction is thought to promote the development of several acute and chronic complications in spinal cord injury (SCI) patients. Putative roles for adrenal stress hormones and catecholamines are increasingly being recognized, yet how these adversely affect peripheral tissue homeostasis and repair under SCI conditions remains elusive. Here, we investigated their influence in a mouse model of SCI with acquired neurogenic heterotopic ossification. We show that spinal cord lesions differentially influence muscular regeneration in a level-dependent manner and through a complex multi-step process that creates an osteopermissive environment within the first hours of injury. This cascade of events is shown to critically involve adrenergic signals and drive the acute release of the neuropeptide, substance P. Our findings generate new insights into the kinetics and processes that govern SCI-induced deregulations in skeletal muscle homeostasis and regeneration, thereby aiding the development of sequential therapeutic strategies that can prevent or attenuate neuromusculoskeletal complications in SCI patients.
Collapse
Affiliation(s)
- Charlotte Debaud
- Mater Research Institute-The University of Queensland, Translational Research Institute, Woolloongabba, Queensland, Australia
- Spine Division, Orthopaedic Surgery Department, Queensland Health, Princess Alexandra Hospital, Woolloongabba, Queensland, Australia
- Université de Versailles Saint Quentin en Yvelines, U1179 INSERM, UFR des Sciences de la Santé-Simone Veil, Montigny-le-Bretonneux, France
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Saint Lucia, Queensland, Australia
| | - Hsu-Wen Tseng
- Mater Research Institute-The University of Queensland, Translational Research Institute, Woolloongabba, Queensland, Australia
| | - Malha Chedik
- Université de Versailles Saint Quentin en Yvelines, U1179 INSERM, UFR des Sciences de la Santé-Simone Veil, Montigny-le-Bretonneux, France
| | - Irina Kulina
- Mater Research Institute-The University of Queensland, Translational Research Institute, Woolloongabba, Queensland, Australia
| | - François Genêt
- Université de Versailles Saint Quentin en Yvelines, U1179 INSERM, UFR des Sciences de la Santé-Simone Veil, Montigny-le-Bretonneux, France
- Service de Réhabilitation, Hôpital Raymond Poincaré, APHP, CIC-IT 1429, Garches, France
| | - Marc J Ruitenberg
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Saint Lucia, Queensland, Australia
| | - Jean-Pierre Levesque
- Mater Research Institute-The University of Queensland, Translational Research Institute, Woolloongabba, Queensland, Australia
| |
Collapse
|
35
|
Influences of the IL-6 cytokine family on bone structure and function. Cytokine 2021; 146:155655. [PMID: 34332274 DOI: 10.1016/j.cyto.2021.155655] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/08/2021] [Accepted: 07/12/2021] [Indexed: 01/12/2023]
Abstract
The IL-6 family of cytokines comprises a large group of cytokines that all act via the formation of a signaling complex that includes the glycoprotein 130 (gp130) receptor. Despite this, many of these cytokines have unique roles that regulate the activity of bone forming osteoblasts, bone resorbing osteoclasts, bone-resident osteocytes, and cartilage cells (chondrocytes). These include specific functions in craniofacial development, longitudinal bone growth, and the maintenance of trabecular and cortical bone structure, and have been implicated in musculoskeletal pathologies such as craniosynostosis, osteoporosis, rheumatoid arthritis, osteoarthritis, and heterotopic ossifications. This review will work systematically through each member of this family and provide an overview and an update on the expression patterns and functions of each of these cytokines in the skeleton, as well as their negative feedback pathways, particularly suppressor of cytokine signaling 3 (SOCS3). The specific cytokines described are interleukin 6 (IL-6), interleukin 11 (IL-11), oncostatin M (OSM), leukemia inhibitory factor (LIF), cardiotrophin 1 (CT-1), ciliary neurotrophic factor (CNTF), cardiotrophin-like cytokine factor 1 (CLCF1), neuropoietin, humanin and interleukin 27 (IL-27).
Collapse
|
36
|
Lévesque JP, Summers KM, Millard SM, Bisht K, Winkler IG, Pettit AR. Role of macrophages and phagocytes in orchestrating normal and pathologic hematopoietic niches. Exp Hematol 2021; 100:12-31.e1. [PMID: 34298116 DOI: 10.1016/j.exphem.2021.07.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/02/2021] [Accepted: 07/06/2021] [Indexed: 12/13/2022]
Abstract
The bone marrow (BM) contains a mosaic of niches specialized in supporting different maturity stages of hematopoietic stem and progenitor cells such as hematopoietic stem cells and myeloid, lymphoid, and erythroid progenitors. Recent advances in BM imaging and conditional gene knockout mice have revealed that niches are a complex network of cells of mesenchymal, endothelial, neuronal, and hematopoietic origins, together with local physicochemical parameters. Within these complex structures, phagocytes, such as neutrophils, macrophages, and dendritic cells, all of which are of hematopoietic origin, have been found to be important in regulating several niches in the BM, including hematopoietic stem cell niches, erythropoietic niches, and niches involved in endosteal bone formation. There is also increasing evidence that these macrophages have an important role in adapting hematopoiesis, erythropoiesis, and bone formation in response to inflammatory stressors and play a key part in maintaining the integrity and function of these. Likewise, there is also accumulating evidence that subsets of monocytes, macrophages, and other phagocytes contribute to the progression and response to treatment of several lymphoid malignancies such as multiple myeloma, Hodgkin lymphoma, and non-Hodgkin lymphoma, as well as lymphoblastic leukemia, and may also play a role in myelodysplastic syndrome and myeloproliferative neoplasms associated with Noonan syndrome and aplastic anemia. In this review, the potential functions of macrophages and other phagocytes in normal and pathologic niches are discussed, as are the challenges in studying BM and other tissue-resident macrophages at the molecular level.
Collapse
Affiliation(s)
- Jean-Pierre Lévesque
- Mater Research Institute, University of Queensland, Woolloongabba, QLD, Australia.
| | - Kim M Summers
- Mater Research Institute, University of Queensland, Woolloongabba, QLD, Australia
| | - Susan M Millard
- Mater Research Institute, University of Queensland, Woolloongabba, QLD, Australia
| | - Kavita Bisht
- Mater Research Institute, University of Queensland, Woolloongabba, QLD, Australia
| | - Ingrid G Winkler
- Mater Research Institute, University of Queensland, Woolloongabba, QLD, Australia
| | - Allison R Pettit
- Mater Research Institute, University of Queensland, Woolloongabba, QLD, Australia
| |
Collapse
|
37
|
Desai KB. Decoding the behaviour of extracapsular proximal femur fracture- dislocation - A systematic review of a rare fracture pattern. J Clin Orthop Trauma 2021; 18:157-170. [PMID: 34012770 PMCID: PMC8111678 DOI: 10.1016/j.jcot.2021.04.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 04/22/2021] [Indexed: 11/18/2022] Open
Abstract
PURPOSE Proximal femoral extracapsular fractures with associated ipsilateral hip dislocation is an extremely rare pattern of injury. These fractures may be associated with a spectrum of severity from isolated trochanteric fractures to comminuted intertrochanteric and subtrochanteric fractures with hip dislocation. To date, this pattern of injury is not described in any injury classification system and no clear cut guidelines for the same are available. The aim of this review is to provide an evidence based pooled analysis of the existing literature and develop guidelines that help surgeons tackle this rare injury pattern. METHODS A comprehensive review of the literature was undertaken using the PRISMA. Case reports and series of Extracapsular proximal femoral fracture dislocations published in PubMed, EMBASE, Springer, OvidSP, ScienceDirect, Web of Science and Google scholar between inception of journals to May 2020 were included in the review. A pooled analysis comparing the demography, pattern of the fracture, mode and mechanism of injury with the clinical and radiological outcome and complications was performed. RESULTS 52 cases from 46 case studies were included in the pooled analysis. There was a near significant association between avascular necrosis and mean time to reduction (p = 0.0865). Individuals with compound injury had 10.12 times higher risk of avascular necrosis (p = 0.009). No significant association between the pattern of proximal femur fracture and incidence of avascular necrosis (p = 0.116, chi-square). There was no significant association between polytrauma and poor clinical outcomes. (p = 0.231). CONCLUSIONS Principles of damage control orthopaedics should be followed in unstable patients with this rare fracture dislocation. Percutaneous Schanz screw reduction manoeuvre can be attempted gently with a low threshold to perform an open reduction. Every attempt at salvaging the fractured hip must be performed in young individuals with an arthroplasty standby for comminuted and unreconstructable cases.
Collapse
Affiliation(s)
- Keyur B. Desai
- Lokmanya Tilak Municipal Medical College and General Hospital, Sion, Mumbai, Maharashtra, India
| |
Collapse
|
38
|
MyD88 Is Not Required for Muscle Injury-Induced Endochondral Heterotopic Ossification in a Mouse Model of Fibrodysplasia Ossificans Progressiva. Biomedicines 2021; 9:biomedicines9060630. [PMID: 34206078 PMCID: PMC8227787 DOI: 10.3390/biomedicines9060630] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 05/25/2021] [Accepted: 05/25/2021] [Indexed: 01/09/2023] Open
Abstract
Excess inflammation and canonical BMP receptor (BMPR) signaling are coinciding hallmarks of the early stages of injury-induced endochondral heterotopic ossification (EHO), especially in the rare genetic disease fibrodysplasia ossificans progressiva (FOP). Multiple inflammatory signaling pathways can synergistically enhance BMP-induced Smad1/5/8 activity in multiple cell types, suggesting the importance of pathway crosstalk in EHO and FOP. Toll-like receptors (TLRs) and IL-1 receptors mediate many of the earliest injury-induced inflammatory signals largely via MyD88-dependent pathways. Thus, the hypothesis that MyD88-dependent signaling is required for EHO was tested in vitro and in vivo using global or Pdgfrα-conditional deletion of MyD88 in FOP mice. As expected, IL-1β or LPS synergistically increased Activin A (ActA)-induced phosphorylation of Smad 1/5 in fibroadipoprogenitors (FAPs) expressing Alk2R206H. However, conditional deletion of MyD88 in Pdgfrα-positive cells of FOP mice did not significantly alter the amount of muscle injury-induced EHO. Even more surprisingly, injury-induced EHO was not significantly affected by global deletion of MyD88. These studies demonstrate that MyD88-dependent signaling is dispensable for injury-induced EHO in FOP mice.
Collapse
|
39
|
Althaqafi RMM, Assiri SA, Aloufi RA, Althobaiti F, Althobaiti B, Al Adwani M. A case report and literature review of heterotopic mesenteric ossification. Int J Surg Case Rep 2021; 82:105905. [PMID: 33962265 PMCID: PMC8113807 DOI: 10.1016/j.ijscr.2021.105905] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/17/2021] [Accepted: 04/19/2021] [Indexed: 11/09/2022] Open
Abstract
Introduction and importance Heterotopic mesenteric ossification is a benign bony tissue growth in the mesentery that mostly follows repetitive or severe abdominal injuries leading to reactive bone formation in the mesentery. There are only 73 cases (51 publications) identified in the literature up to the beginning of 2020. Case presentation 45-year-old Saudi male underwent multiple laparotomies to manage complicated appendicitis which ended with a diverting ileostomy and a colostomy as a mucus fistula. After 9 months, the patient was admitted to the General Surgery department in Al-Hada Armed Forces Hospital for an open ileostomy and colostomy reversal surgery where several irregular bone-like tissues of hard consistency and sharp edges with some spindle-shaped structures resembling needles were found in the mesentery of the small intestine and histopathology revealed of trabecular bone fragments confirming the diagnosis. Clinical discussion The majority of cases occur mid to late adulthood with a predilection in the male gender, and usually present with bowel obstruction or an enterocutaneous fistula. Although it has no malignant potential, it may cause severe bowel obstruction that can lead to mortality, it's a rare occurrence and, therefore, is difficult to diagnose among many common abdominal disturbances. Conclusion Here we report a rare case of heterotopic mesenteric ossification, which should be considered as one of the delayed complications of abdominal surgery or trauma. The time range of expecting the presentation of heterotopic mesenteric ossification following major abdominal trauma or surgery should be extended and continuously considered during differential diagnosis. One of the delayed complications of abdominal surgery or trauma is Heterotopic mesenteric ossification. Since 1983 there are only 73 cases of Heterotopic mesenteric ossification published to date. Preoperative diagnosis of Heterotopic mesenteric ossification should be based mainly on the characteristic radiographic findings without relying on the levels of calcium or alkaline phosphatase. The only way to reach the definitive diagnosis is through excision and histopathological analysis. Heterotopic mesenteric ossification has no malignant potential, but it can cause severe bowel obstruction that can lead to mortality in already sick patients.
Collapse
Affiliation(s)
| | | | | | - Fawaz Althobaiti
- Department of General Surgery, Al-Hada Armed Forces Hospital, Taif, Saudi Arabia
| | - Budur Althobaiti
- Department of General Surgery, Al-Hada Armed Forces Hospital, Taif, Saudi Arabia
| | - Mohammad Al Adwani
- Department of General Surgery, Al-Hada Armed Forces Hospital, Taif, Saudi Arabia
| |
Collapse
|
40
|
Ampadiotaki MM, Evangelopoulos DS, Pallis D, Vlachos C, Vlamis J, Evangelopoulos ME. New Strategies in Neurogenic Heterotopic Ossification. Cureus 2021; 13:e14709. [PMID: 34055549 PMCID: PMC8158068 DOI: 10.7759/cureus.14709] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
The term neurogenic heterotopic ossification (NHO) is used to describe the pathological bone formation in soft tissues, due to spinal cord or brain injury. Commonly is presented with pain and stiffness of the affected joint. NHO affects the quality of life of these patients, delays their rehabilitation and therefore increases morbidity. The aim of this article is to emphasize pathophysiology mechanism and review new molecular treatments of heterotopic ossification (HO). It was demonstrated that potent treatment strategies are based on understanding the molecular mechanisms and aiming to inhibit the pathological process of the HO in various stages. New treatments are targeting several factors such as bone morphogenetic proteins (BMPs), retinoic acid receptors (RARs), hypoxic inhibitors (Hif1-inhibitors, rapamycin), free radical scavengers and immunological agents (imatinib). The endogenous pathways that lead to HO at molecular and cellular levels have been the aim of many studies in recent years. New treatment options for HO should be recommended due to the ineffectiveness of traditional older options, such as anti-inflammatory drugs and radiation, especially in the case of NHO.
Collapse
Affiliation(s)
| | - Dimitrios S Evangelopoulos
- 3rd Orthopaedic Department, KAT Hospital, National and Kapodistrian University of Athens School of Medicine, Athens, GRC
| | | | - Christos Vlachos
- 3rd Orthopaedic Department, KAT Hospital, National and Kapodistrian University of Athens School of Medicine, Athens, GRC
| | - John Vlamis
- 3rd Orthopaedic Department, KAT Hospital, National and Kapodistrian University of Athens School of Medicine, Athens, GRC
| | | |
Collapse
|
41
|
Girard D, Torossian F, Oberlin E, Alexander KA, Gueguen J, Tseng HW, Genêt F, Lataillade JJ, Salga M, Levesque JP, Le Bousse-Kerdilès MC, Banzet S. Neurogenic Heterotopic Ossifications Recapitulate Hematopoietic Stem Cell Niche Development Within an Adult Osteogenic Muscle Environment. Front Cell Dev Biol 2021; 9:611842. [PMID: 33748104 PMCID: PMC7973025 DOI: 10.3389/fcell.2021.611842] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 02/17/2021] [Indexed: 12/11/2022] Open
Abstract
Hematopoiesis and bone interact in various developmental and pathological processes. Neurogenic heterotopic ossifications (NHO) are the formation of ectopic hematopoietic bones in peri-articular muscles that develop following severe lesions of the central nervous system such as traumatic cerebral or spinal injuries or strokes. This review will focus on the hematopoietic facet of NHO. The characterization of NHO demonstrates the presence of hematopoietic marrow in which quiescent hematopoietic stem cells (HSC) are maintained by a functional stromal microenvironment, thus documenting that NHOs are neo-formed ectopic HSC niches. Similarly to adult bone marrow, the NHO permissive environment supports HSC maintenance, proliferation and differentiation through bidirectional signaling with mesenchymal stromal cells and endothelial cells, involving cell adhesion molecules, membrane-bound growth factors, hormones, and secreted matrix proteins. The participation of the nervous system, macrophages and inflammatory cytokines including oncostatin M and transforming growth factor (TGF)-β in this process, reveals how neural circuitry fine-tunes the inflammatory response to generate hematopoietic bones in injured muscles. The localization of NHOs in the peri-articular muscle environment also suggests a role of muscle mesenchymal cells and bone metabolism in development of hematopoiesis in adults. Little is known about the establishment of bone marrow niches and the regulation of HSC cycling during fetal development. Similarities between NHO and development of fetal bones make NHOs an interesting model to study the establishment of bone marrow hematopoiesis during development. Conversely, identification of stage-specific factors that specify HSC developmental state during fetal bone development will give more mechanistic insights into NHO.
Collapse
Affiliation(s)
- Dorothée Girard
- INSERM UMRS-MD 1197, Institut de Recherche Biomédicale des Armées (IRBA), Clamart, France
| | - Frédéric Torossian
- INSERM UMRS-MD 1197, Université Paris-Saclay, Hôpital Paul Brousse, Villejuif, France
| | - Estelle Oberlin
- INSERM UMRS-MD 1197, Université Paris-Saclay, Hôpital Paul Brousse, Villejuif, France
| | - Kylie A. Alexander
- Mater Research Institute—The University of Queensland, Woolloongabba, QLD, Australia
| | - Jules Gueguen
- INSERM UMRS-MD 1197, Institut de Recherche Biomédicale des Armées (IRBA), Clamart, France
| | - Hsu-Wen Tseng
- Mater Research Institute—The University of Queensland, Woolloongabba, QLD, Australia
| | - François Genêt
- INSERM U1179, Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), Versailles, France
| | | | - Marjorie Salga
- INSERM U1179, Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), Versailles, France
| | - Jean-Pierre Levesque
- Mater Research Institute—The University of Queensland, Woolloongabba, QLD, Australia
| | | | - Sébastien Banzet
- INSERM UMRS-MD 1197, Institut de Recherche Biomédicale des Armées (IRBA), Clamart, France
| |
Collapse
|
42
|
Pagani CA, Huber AK, Hwang C, Marini S, Padmanabhan K, Livingston N, Nunez J, Sun Y, Edwards N, Cheng YH, Visser N, Yu P, Patel N, Greenstein JA, Rasheed H, Nelson R, Kessel K, Vasquez K, Strong AL, Hespe GE, Song JY, Wellik DM, Levi B. Novel Lineage-Tracing System to Identify Site-Specific Ectopic Bone Precursor Cells. Stem Cell Reports 2021; 16:626-640. [PMID: 33606989 PMCID: PMC7940250 DOI: 10.1016/j.stemcr.2021.01.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 01/19/2021] [Accepted: 01/21/2021] [Indexed: 11/30/2022] Open
Abstract
Heterotopic ossification (HO) is a form of pathological cell-fate change of mesenchymal stem/precursor cells (MSCs) that occurs following traumatic injury, limiting range of motion in extremities and causing pain. MSCs have been shown to differentiate to form bone; however, their lineage and aberrant processes after trauma are not well understood. Utilizing a well-established mouse HO model and inducible lineage-tracing mouse (Hoxa11-CreERT2;ROSA26-LSL-TdTomato), we found that Hoxa11-lineage cells represent HO progenitors specifically in the zeugopod. Bioinformatic single-cell transcriptomic and epigenomic analyses showed Hoxa11-lineage cells are regionally restricted mesenchymal cells that, after injury, gain the potential to undergo differentiation toward chondrocytes, osteoblasts, and adipocytes. This study identifies Hoxa11-lineage cells as zeugopod-specific ectopic bone progenitors and elucidates the fate specification and multipotency that mesenchymal cells acquire after injury. Furthermore, this highlights homeobox patterning genes as useful tools to trace region-specific progenitors and enable location-specific gene deletion. Lineage tracing, single-cell RNA-seq and single cell ATAC enable cell specific analysis of in vivo cell fate Hoxa11 lineage marks distinct mesenchymal precursors in the zeugopod Hoxa11 lineage mesenchymal precursors undergo an aberrant cell fate change towards ectopic bone and cartilage
Collapse
Affiliation(s)
- Chase A Pagani
- Center for Organogenesis and Trauma, Department of Surgery, University of Texas Southwestern, 6000 Harry Hines Boulevard, Dallas, TX 75235, USA
| | - Amanda K Huber
- Section of Plastic Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| | - Charles Hwang
- Section of Plastic Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| | - Simone Marini
- Section of Plastic Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| | | | - Nicholas Livingston
- Center for Organogenesis and Trauma, Department of Surgery, University of Texas Southwestern, 6000 Harry Hines Boulevard, Dallas, TX 75235, USA
| | - Johanna Nunez
- Center for Organogenesis and Trauma, Department of Surgery, University of Texas Southwestern, 6000 Harry Hines Boulevard, Dallas, TX 75235, USA
| | - Yuxiao Sun
- Center for Organogenesis and Trauma, Department of Surgery, University of Texas Southwestern, 6000 Harry Hines Boulevard, Dallas, TX 75235, USA
| | - Nicole Edwards
- Section of Plastic Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yu-Hao Cheng
- Institute for Cell Engineering, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Noelle Visser
- Section of Plastic Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| | - Pauline Yu
- Section of Plastic Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| | - Nicole Patel
- Section of Plastic Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| | - Joseph A Greenstein
- Section of Plastic Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| | - Husain Rasheed
- Section of Plastic Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| | - Reagan Nelson
- Section of Plastic Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| | - Karen Kessel
- Section of Plastic Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| | - Kaetlin Vasquez
- Section of Plastic Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| | - Amy L Strong
- Section of Plastic Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| | - Geoffrey E Hespe
- Section of Plastic Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jane Y Song
- Department of Cell and Regenerative Biology, University of Wisconsin, Madison, WI 53705, USA
| | - Deneen M Wellik
- Department of Cell and Regenerative Biology, University of Wisconsin, Madison, WI 53705, USA
| | - Benjamin Levi
- Center for Organogenesis and Trauma, Department of Surgery, University of Texas Southwestern, 6000 Harry Hines Boulevard, Dallas, TX 75235, USA.
| |
Collapse
|
43
|
Mundy C, Yao L, Sinha S, Chung J, Rux D, Catheline SE, Koyama E, Qin L, Pacifici M. Activin A promotes the development of acquired heterotopic ossification and is an effective target for disease attenuation in mice. Sci Signal 2021; 14:eabd0536. [PMID: 33563697 PMCID: PMC10508179 DOI: 10.1126/scisignal.abd0536] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Heterotopic ossification (HO) is a common, potentially debilitating pathology that is instigated by inflammation caused by tissue damage or other insults, which is followed by chondrogenesis, osteogenesis, and extraskeletal bone accumulation. Current remedies are not very effective and have side effects, including the risk of triggering additional HO. The TGF-β family member activin A is produced by activated macrophages and other inflammatory cells and stimulates the intracellular effectors SMAD2 and SMAD3 (SMAD2/3). Because HO starts with inflammation and because SMAD2/3 activation is chondrogenic, we tested whether activin A stimulated HO development. Using mouse models of acquired intramuscular and subdermal HO, we found that blockage of endogenous activin A by a systemically administered neutralizing antibody reduced HO development and bone accumulation. Single-cell RNA-seq analysis and developmental trajectories showed that the antibody treatment reduced the recruitment of Sox9+ skeletal progenitors, many of which also expressed the gene encoding activin A (Inhba), to HO sites. Gain-of-function assays showed that activin A enhanced the chondrogenic differentiation of progenitor cells through SMAD2/3 signaling, and inclusion of activin A in HO-inducing implants enhanced HO development in vivo. Together, our data reveal that activin A is a critical upstream signaling stimulator of acquired HO in mice and could represent an effective therapeutic target against forms of this pathology in patients.
Collapse
Affiliation(s)
- Christina Mundy
- Translational Research Program in Pediatric Orthopaedics, Division of Orthopaedic Surgery, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Lutian Yao
- Translational Research Program in Pediatric Orthopaedics, Division of Orthopaedic Surgery, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Orthopaedics, The First Hospital of China Medical University, Liaoning 110001, China
| | - Sayantani Sinha
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Juliet Chung
- Translational Research Program in Pediatric Orthopaedics, Division of Orthopaedic Surgery, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Danielle Rux
- Translational Research Program in Pediatric Orthopaedics, Division of Orthopaedic Surgery, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Sarah E Catheline
- Translational Research Program in Pediatric Orthopaedics, Division of Orthopaedic Surgery, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Eiki Koyama
- Translational Research Program in Pediatric Orthopaedics, Division of Orthopaedic Surgery, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Ling Qin
- Department of Orthopaedic Surgery, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Maurizio Pacifici
- Translational Research Program in Pediatric Orthopaedics, Division of Orthopaedic Surgery, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.
| |
Collapse
|
44
|
Cardiopulmonary and Neurologic Dysfunctions in Fibrodysplasia Ossificans Progressiva. Biomedicines 2021; 9:biomedicines9020155. [PMID: 33562570 PMCID: PMC7915901 DOI: 10.3390/biomedicines9020155] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/20/2021] [Accepted: 01/28/2021] [Indexed: 12/28/2022] Open
Abstract
Fibrodysplasia Ossificans Progressiva (FOP) is an ultra-rare but debilitating disorder characterized by spontaneous, progressive, and irreversible heterotopic ossifications (HO) at extraskeletal sites. FOP is caused by gain-of-function mutations in the Activin receptor Ia/Activin-like kinase 2 gene (Acvr1/Alk2), with increased receptor sensitivity to bone morphogenetic proteins (BMPs) and a neoceptor response to Activin A. There is extensive literature on the skeletal phenotypes in FOP, but a much more limited understanding of non-skeletal manifestations of this disease. Emerging evidence reveals important cardiopulmonary and neurologic dysfunctions in FOP including thoracic insufficiency syndrome, pulmonary hypertension, conduction abnormalities, neuropathic pain, and demyelination of the central nervous system (CNS). Here, we review the recent research and discuss unanswered questions regarding the cardiopulmonary and neurologic phenotypes in FOP.
Collapse
|
45
|
Kazezian Z, Bull AMJ. A review of the biomarkers and in vivo models for the diagnosis and treatment of heterotopic ossification following blast and trauma-induced injuries. Bone 2021; 143:115765. [PMID: 33285256 DOI: 10.1016/j.bone.2020.115765] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 10/29/2020] [Accepted: 11/18/2020] [Indexed: 12/29/2022]
Abstract
Heterotopic ossification (HO) is the process of de novo bone formation in non-osseous tissues. HO can occur following trauma and burns and over 60% of military personnel with blast-associated amputations develop HO. This rate is far higher than in other trauma-induced HO development. This suggests that the blast effect itself is a major contributing factor, but the pathway triggering HO following blast injury specifically is not yet fully identified. Also, because of the difficulty of studying the disease using clinical data, the only sources remain the relevant in vivo models. The aim of this paper is first to review the key biomarkers and signalling pathways identified in trauma and blast induced HO in order to summarize the molecular mechanisms underlying HO development, and second to review the blast injury in vivo models developed. The literature derived from trauma-induced HO suggests that inflammatory cytokines play a key role directing different progenitor cells to transform into an osteogenic class contributing to the development of the disease. This highlights the importance of identifying the downstream biomarkers under specific signalling pathways which might trigger similar stimuli in blast to those of trauma induced formation of ectopic bone in the tissues surrounding the site of the injury. The lack of information in the literature regarding the exact biomarkers leading to blast associated HO is hampering the design of specific therapeutics. The majority of existing blast injury in vivo models do not fully replicate the combat scenario in terms of blast, fracture and amputation; these three usually happen in one insult. Hence, this paper highlights the need to replicate the full effect of the blast in preclinical models to better understand the mechanism of blast induced HO development and to enable the design of a specific therapeutic to supress the formation of ectopic bone.
Collapse
Affiliation(s)
- Zepur Kazezian
- Centre for Blast Injury Studies, Department of Bioengineering, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom.
| | - Anthony M J Bull
- Centre for Blast Injury Studies, Department of Bioengineering, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom
| |
Collapse
|
46
|
Re: "High prevalence of heterotopic ossification in critically ill patients with severe COVID-19" by Stoira et al. Clin Microbiol Infect 2021; 27:1051-1052. [PMID: 33460830 PMCID: PMC7810024 DOI: 10.1016/j.cmi.2020.12.038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 12/01/2020] [Indexed: 01/10/2023]
|
47
|
Abeynayake N, Arthur A, Gronthos S. Crosstalk between skeletal and neural tissues is critical for skeletal health. Bone 2021; 142:115645. [PMID: 32949783 DOI: 10.1016/j.bone.2020.115645] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/09/2020] [Accepted: 09/10/2020] [Indexed: 12/24/2022]
Abstract
Emerging evidence in the literature describes a physical and functional association between the neural and skeletal systems that forms a neuro-osteogenic network. This communication between bone cells and neural tissues within the skeleton is important in facilitating bone skeletal growth, homeostasis and repair. The growth and repair of the skeleton is dependent on correct neural innervation for correct skeletal developmental growth and fracture repair, while pathological conditions such as osteoporosis are accelerated by disruptions to sympathetic innervation. To date, different molecular mechanisms have been reported to mediate communication between bone and neural populations. This review highlights the important role of various cell surface receptors, cytokines and associated ligands as potential regulators of skeletal development, homeostasis, and repair, by mediating interactions between the skeletal and nervous systems. Specifically, this review describes how Bone Morphogenetic Proteins (BMPs), Eph/ephrin, Chemokine CXCL12, Calcitonin Gene-related Peptide (CGRP), Netrins, Neurotrophins (NTs), Slit/Robo and the Semaphorins (Semas) contribute to the cross talk between bone cells and peripheral nerves, and the importance of these interactions in maintaining skeletal health.
Collapse
Affiliation(s)
- Nethmi Abeynayake
- Mesenchymal Stem Cell Laboratory, Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia; Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Agnieszka Arthur
- Mesenchymal Stem Cell Laboratory, Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia; Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Stan Gronthos
- Mesenchymal Stem Cell Laboratory, Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia; Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia.
| |
Collapse
|
48
|
Rodriguez G, Berri M, Lin P, Kamdar N, Mahmoudi E, Peterson MD. Musculoskeletal morbidity following spinal cord injury: A longitudinal cohort study of privately-insured beneficiaries. Bone 2021; 142:115700. [PMID: 33091639 PMCID: PMC9671069 DOI: 10.1016/j.bone.2020.115700] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 10/05/2020] [Accepted: 10/15/2020] [Indexed: 01/13/2023]
Abstract
BACKGROUND People living with spinal cord injuries (SCIs) experience motor, sensory and autonomic impairments that cause musculoskeletal disorders following the injury and that progress throughout lifetime. The range and severity of issues are largely dependent on level and completeness of the injury and preserved function. OBJECTIVE High risk of developing musculoskeletal morbidities among individuals after sustaining a traumatic SCI is well known in the clinical setting, however, there is a severe lack of evidence in literature. The objective of this study was to compare the incidence of and adjusted hazards for musculoskeletal morbidities among adults with and without SCIs. METHODS Privately-insured beneficiaries were included if they had an ICD-9-CM diagnostic code for SCI (n = 9081). Adults without SCI were also included (n = 1,474,232). Incidence estimates of common musculoskeletal morbidities (e.g., osteoporosis, sarcopenia, osteoarthritis, fractures, etc.) were compared at 5-years of enrollment. Survival models were used to quantify unadjusted and adjusted hazard ratios for incident musculoskeletal morbidities. RESULTS Adults living with traumatic SCIs had a higher incidence of any musculoskeletal morbidities (82.4% vs. 47.5%) as compared to adults without SCI, and differences were to a clinically meaningful extent. Survival models demonstrated that adults with SCI had a greater fully-adjusted hazard for any musculoskeletal morbidity (Hazard Ratio [HR]: 2.41; 95%CI: 2.30, 2.52), and all musculoskeletal disorders, and ranged from HR: 1.26 (1.14, 1.39) for rheumatoid arthritis to HR: 7.02 (6.58, 7.49) for pathologic fracture. CONCLUSIONS Adults with SCIs have a significantly higher incidence of and risk for common musculoskeletal morbidities, as compared to adults without SCIs. Efforts are needed to facilitate the development of improved clinical screening algorithms and early interventions to reduce risk of musculoskeletal disease onset/progression in this higher risk population.
Collapse
Affiliation(s)
- Gianna Rodriguez
- Department of Physical Medicine and Rehabilitation, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Maryam Berri
- Department of Physical Medicine and Rehabilitation, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Paul Lin
- Institute for Healthcare Policy and Innovation, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Neil Kamdar
- Institute for Healthcare Policy and Innovation, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA; Department of Obstetrics and Gynecology, Michigan Medicine, University of Michigan, USA; Department of Emergency Medicine, Michigan Medicine, University of Michigan, USA; Department of Surgery, Michigan Medicine, University of Michigan, USA
| | - Elham Mahmoudi
- Department of Family Medicine, Michigan Medicine, University of Michigan, USA
| | - Mark D Peterson
- Department of Physical Medicine and Rehabilitation, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA; Institute for Healthcare Policy and Innovation, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
49
|
Cappato S, Gamberale R, Bocciardi R, Brunelli S. Genetic and Acquired Heterotopic Ossification: A Translational Tale of Mice and Men. Biomedicines 2020; 8:biomedicines8120611. [PMID: 33327623 PMCID: PMC7765130 DOI: 10.3390/biomedicines8120611] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/10/2020] [Accepted: 12/13/2020] [Indexed: 12/11/2022] Open
Abstract
Heterotopic ossification is defined as an aberrant formation of bone in extraskeletal soft tissue, for which both genetic and acquired conditions are known. This pathologic process may occur in many different sites such as the skin, subcutaneous tissue, skeletal muscle and fibrous tissue adjacent to joints, ligaments, walls of blood vessels, mesentery and other. The clinical spectrum of this disorder is wide: lesions may range from small foci of ossification to massive deposits of bone throughout the body, typical of the progressive genetically determined conditions such as fibrodysplasia ossificans progressiva, to mention one of the most severe and disabling forms. The ectopic bone formation may be regarded as a failed tissue repair process in response to a variety of triggers and evolving towards bone formation through a multistage differentiation program, with several steps common to different clinical presentations and distinctive features. In this review, we aim at providing a comprehensive view of the genetic and acquired heterotopic ossification disorders by detailing the clinical and molecular features underlying the different human conditions in comparison with the corresponding, currently available mouse models.
Collapse
Affiliation(s)
- Serena Cappato
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Sciences (DINOGMI), University of Genova, 16132 Genova, Italy;
| | - Riccardo Gamberale
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Milano, Italy; (R.G.); (S.B.)
| | - Renata Bocciardi
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Sciences (DINOGMI), University of Genova, 16132 Genova, Italy;
- UOC Genetica Medica, IRCCS Giannina Gaslini, 16147 Genova, Italy
- Correspondence:
| | - Silvia Brunelli
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Milano, Italy; (R.G.); (S.B.)
| |
Collapse
|
50
|
Wong KR, Mychasiuk R, O'Brien TJ, Shultz SR, McDonald SJ, Brady RD. Neurological heterotopic ossification: novel mechanisms, prognostic biomarkers and prophylactic therapies. Bone Res 2020; 8:42. [PMID: 33298867 PMCID: PMC7725771 DOI: 10.1038/s41413-020-00119-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 08/20/2020] [Accepted: 09/16/2020] [Indexed: 02/07/2023] Open
Abstract
Neurological heterotopic ossification (NHO) is a debilitating condition where bone forms in soft tissue, such as muscle surrounding the hip and knee, following an injury to the brain or spinal cord. This abnormal formation of bone can result in nerve impingement, pain, contractures and impaired movement. Patients are often diagnosed with NHO after the bone tissue has completely mineralised, leaving invasive surgical resection the only remaining treatment option. Surgical resection of NHO creates potential for added complications, particularly in patients with concomitant injury to the central nervous system (CNS). Although recent work has begun to shed light on the physiological mechanisms involved in NHO, there remains a significant knowledge gap related to the prognostic biomarkers and prophylactic treatments which are necessary to prevent NHO and optimise patient outcomes. This article reviews the current understanding pertaining to NHO epidemiology, pathobiology, biomarkers and treatment options. In particular, we focus on how concomitant CNS injury may drive ectopic bone formation and discuss considerations for treating polytrauma patients with NHO. We conclude that understanding of the pathogenesis of NHO is rapidly advancing, and as such, there is the strong potential for future research to unearth methods capable of identifying patients likely to develop NHO, and targeted treatments to prevent its manifestation.
Collapse
Affiliation(s)
- Ker Rui Wong
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Richelle Mychasiuk
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Terence J O'Brien
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia.,Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
| | - Sandy R Shultz
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia.,Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
| | - Stuart J McDonald
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia.,Department of Physiology, Anatomy and Microbiology, School of Life Sciences, La Trobe University, Bundoora, VIC, Australia
| | - Rhys D Brady
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia. .,Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|