1
|
Li YJ, Chen YH, Wang JW, Wu HH, Hsu HH, Ho DR, Yang CW, Tian YC. Suppression of cisplatin induced ATF3 expression and apoptosis by BK polyomavirus and its encoded microRNA in bladder cancer cells. Biomed Pharmacother 2025; 186:118032. [PMID: 40215645 DOI: 10.1016/j.biopha.2025.118032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/25/2025] [Accepted: 04/03/2025] [Indexed: 04/25/2025] Open
Abstract
Recent evidence links BK polyomavirus (BKPyV) infection to an increased risk of bladder cancer. This study investigates the role of BKPyV and its microRNA, miR-B1, in cisplatin-induced apoptosis. PCR analysis detected BKPyV DNA in 3 of 22 urothelial carcinoma (UC) samples from a non-transplant population. Bladder cancer cells infected with BKPyV showed increased proliferation and miR-B1-3p and -5p expression. Bioinformatics analysis identified a miR-B1-5p target site in the 3'-UTR of activating transcription factor 3 (ATF3), confirmed by a luciferase assay. The inhibitory effect was further validated by reduced ATF3 mRNA levels following overexpression of miR-B1 vectors or 5p mimics. Cisplatin treatment upregulated ATF3 expression, as shown by qPCR and immunoblotting. Overexpression of ATF3 mitigated the cisplatin-induced reduction in cell viability and elevated apoptotic markers, including cleaved caspase-3 and cleaved poly(ADP-ribose) polymerase (PARP). BKPyV infection or large T antigen (TAg) overexpression suppressed cisplatin-induced ATF3 expression, reducing its cytotoxicity and apoptotic marker expression. However, overexpression of ATF3 in BKPyV-infected bladder cancer cells attenuated BKPyV's inhibitory effects, restoring cisplatin-induced cytotoxicity and apoptotic marker expression, suggesting BKPyV infection promotes resistance to cisplatin cytotoxicity. Transfection with miR-B1 vectors or miR-B1-5p mimics decreased cisplatin-induced annexin V-positive cells, caspase-3 activity, and apoptotic marker expression, indicating that miR-B1 suppresses cisplatin-induced apoptosis. In conclusion, this study demonstrates that BKPyV promotes bladder cancer cell growth and impairs cisplatin-induced apoptosis, with miR-B1 targeting ATF3 as a key mechanism. Targeting BKPyV replication or regulating miR-B1 expression could offer potential therapeutic strategies for managing BKPyV-positive and cisplatin-resistant urothelial carcinoma.
Collapse
Affiliation(s)
- Yi-Jung Li
- Kidney Research Center and Department of Nephrology, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan; Department of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Yu-Hsuan Chen
- Kidney Research Center and Department of Nephrology, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| | - Jiun-Wen Wang
- Kidney Research Center and Department of Nephrology, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| | - Hsin-Hsu Wu
- Kidney Research Center and Department of Nephrology, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan; Department of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Hsiang-Hao Hsu
- Kidney Research Center and Department of Nephrology, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan; Department of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Dong-Ru Ho
- Department of Urology, Chiayi Chang Gung Memorial Hospital, Chiayi 613, Taiwan
| | - Chih-Wei Yang
- Kidney Research Center and Department of Nephrology, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan; Department of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Ya-Chung Tian
- Kidney Research Center and Department of Nephrology, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan; Department of Medicine, Chang Gung University, Taoyuan 333, Taiwan.
| |
Collapse
|
2
|
Googins MR, An P, Gauthier CH, Pipas JM. Polyomavirus large T antigens: Unraveling a complex interactome. Tumour Virus Res 2024; 19:200306. [PMID: 39675526 PMCID: PMC11720896 DOI: 10.1016/j.tvr.2024.200306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/12/2024] [Accepted: 12/12/2024] [Indexed: 12/17/2024] Open
Abstract
All members of the polyomavirus family encode a large T antigen (LT) protein that plays essential roles in viral DNA replication, regulation of viral gene expression, and the manipulation of numerous cellular pathways. Over 100 polyomaviruses have been discovered in hosts ranging from arthropods and fish to mammals, including fourteen that infect humans. LT is among the most studied viral proteins with thousands of articles describing its functions in viral productive infection and tumorigenesis. However, nearly all knowledge of LT activities is based on the studies of simian virus 40 (SV40) and a few other viruses. Comparative studies of LT proteins of different polyomaviruses have revealed a remarkable diversity in the mechanisms by which LT proteins function across different polyomavirus species. This review focuses on human polyomaviruses highlights the similarities and differences between polyomavirus LTs and highlights gaps in our understanding of this protein family. The concentration of knowledge around SV40 LT and the corresponding lack of mechanistic studies on LT proteins encoded by other human and animal polyomaviruses severely constrains our understanding of the biology of this important virus family.
Collapse
Affiliation(s)
- Matthew R Googins
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, 15260, USA.
| | - Ping An
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, 15260, USA.
| | - Christian H Gauthier
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, 15260, USA.
| | - James M Pipas
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, 15260, USA.
| |
Collapse
|
3
|
Biffi R, Benoit SW, Sariyer IK, Safak M. JC virus small tumor antigen promotes S phase entry and cell cycle progression. Tumour Virus Res 2024; 18:200298. [PMID: 39586476 DOI: 10.1016/j.tvr.2024.200298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/28/2024] [Accepted: 11/18/2024] [Indexed: 11/27/2024] Open
Abstract
The early coding region of JC virus (JCV) encodes several regulatory proteins including large T antigen (LT-Ag), small t antigen (Sm t-Ag) and T' proteins because of the alternative splicing of the pre-mRNA. LT-Ag plays a critical role in cell transformation by targeting the key cell cycle regulatory proteins including p53 and pRb, however, the role of Sm t-Ag in this process remains elusive. Here, we investigated the effect of Sm t-Ag on the cell cycle progression and demonstrated that it facilitates S phase entry and exit when cells are released from G0/G1 growth arrest. Examination of the cell cycle stage specific expression profiles of the selected cyclins and cyclin-dependent kinases, including those active at the G1/S and G2/M transition state, demonstrated a higher level of early expression of these regulators such as cyclin B, cycling E, and Cdk2. In addition, analysis of the effect of Sm t-Ag on the growth promoting pathways including those active in the PI3K/Akt/mTOR axis showed substantially higher levels of the phosphorylated-Akt, -Gsk3-β and -S6K1 in Sm t-Ag-positive cells. Collectively, our results demonstrate that Sm t-Ag promotes cell cycle progression by activating the growth promoting pathways through which it may contribute to LT-Ag-mediated cell transformation.
Collapse
Affiliation(s)
- Renato Biffi
- Eurofins Biolabs S.R.L, Via Brubno Buozzi 2, Vimodrone, MI, 20055, Italy
| | - Stefanie W Benoit
- University of Cincinnati, Cincinnati Children's Hospital Medical Center, Burnet Campus, 3333 Burnet Ave, Cincinnati, OH, 45229, USA
| | - Ilker K Sariyer
- Lewis Katz School of Medicine at Temple University, Department of Microbiology, Immunology and Inflammation, Center for Neurovirology and Gene Editing, 3500 N. Broad Street, Philadelphia, PA, 19140, USA
| | - Mahmut Safak
- Lewis Katz School of Medicine at Temple University, Department of Microbiology, Immunology and Inflammation, Center for Neurovirology and Gene Editing, 3500 N. Broad Street, Philadelphia, PA, 19140, USA.
| |
Collapse
|
4
|
Alkan B, Tuncer MA, İnkaya AÇ. Advances in virus-specific T-cell therapy for polyomavirus infections: A comprehensive review. Int J Antimicrob Agents 2024; 64:107333. [PMID: 39245328 DOI: 10.1016/j.ijantimicag.2024.107333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 08/14/2024] [Accepted: 09/03/2024] [Indexed: 09/10/2024]
Abstract
Polyomaviruses are a group of small, non-enveloped, double-stranded DNA viruses that can infect various hosts, including humans. BKPyV causes conditions such as human polyomavirus-associated nephropathy (HPyVAN), human polyomavirus-associated haemorrhagic cystitis (HPyVHC), and human polyomavirus-associated urothelial cancer (HPyVUC). JC polyomavirus (JCPyV), on the other hand, is the causative agent of progressive multifocal leukoencephalopathy (PML), a severe demyelinating disease of the central nervous system. PML primarily affects immunocompromised individuals, including those with HIV, recipients of certain immunosuppressive therapies, and transplant patients. The treatment options for HPyV infections have been limited, but recent developments in virus-specific T cell (VST) therapy have shown promise. Although VST therapy has shown potential in treating both BKPyV and JCPyV infections, several challenges remain. These include the time-consuming and costly preparation of VSTs, the need for sophisticated production facilities, and uncertainties regarding the optimal cell type and infusion frequency. To the best of our knowledge, 85 patients with haemorrhagic cystitis, 27 patients with BKPyV viremia, 2 patients with BKPyV nephritis, 14 patients with haemorrhagic cystitis and BKPyV viremia, and 32 patients with PML have been treated with VST in the literature. The overall response results were 82 complete response, 33 partial response, 35 no response, and 10 no-outcome-reported. This review underscores the importance of VST therapy as a promising treatment approach for polyomavirus infections, emphasising the need for continued research and clinical trials to refine and expand this innovative immunotherapeutic strategy.
Collapse
Affiliation(s)
- Baran Alkan
- Hacettepe University, Faculty of Medicine, Ankara
| | - M Asli Tuncer
- Hacettepe University, Faculty of Medicine, Department of Neurology, Ankara
| | - A Çağkan İnkaya
- Hacettepe University, Faculty of Medicine, Department of Infectious Diseases, Ankara.
| |
Collapse
|
5
|
Gorißen C, Albers A, Ruf V, Chteinberg E, Siebert R, Schweizer L, Kaufmann L, Kühn JE, Tappe D, Kuhlmann T, Thomas C. Targeted whole-viral genome sequencing from formalin-fixed paraffin-embedded neuropathology specimens. Acta Neuropathol 2024; 148:51. [PMID: 39382575 PMCID: PMC11464609 DOI: 10.1007/s00401-024-02812-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 10/02/2024] [Accepted: 10/02/2024] [Indexed: 10/10/2024]
Affiliation(s)
- Charlotte Gorißen
- Institute of Neuropathology, University Hospital Münster, Münster, Germany
| | - Anne Albers
- Institute of Neuropathology, University Hospital Münster, Münster, Germany
| | - Viktoria Ruf
- Center for Neuropathology and Prion Research, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Emil Chteinberg
- Institute of Human Genetics, Ulm University and Ulm University Medical Center, Ulm, Germany
| | - Reiner Siebert
- Institute of Human Genetics, Ulm University and Ulm University Medical Center, Ulm, Germany
| | - Leonille Schweizer
- Edinger Institute (Institute of Neurology), University Hospital Frankfurt, Goethe University, Frankfurt Am Main, Germany
| | - Lukas Kaufmann
- Institute of Virology-Clinical Virology, University Hospital Münster, Münster, Germany
| | - Joachim E Kühn
- Institute of Virology-Clinical Virology, University Hospital Münster, Münster, Germany
| | - Dennis Tappe
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Tanja Kuhlmann
- Institute of Neuropathology, University Hospital Münster, Münster, Germany
| | - Christian Thomas
- Institute of Neuropathology, University Hospital Münster, Münster, Germany.
| |
Collapse
|
6
|
Kotton CN, Kamar N, Wojciechowski D, Eder M, Hopfer H, Randhawa P, Sester M, Comoli P, Tedesco Silva H, Knoll G, Brennan DC, Trofe-Clark J, Pape L, Axelrod D, Kiberd B, Wong G, Hirsch HH. The Second International Consensus Guidelines on the Management of BK Polyomavirus in Kidney Transplantation. Transplantation 2024; 108:1834-1866. [PMID: 38605438 PMCID: PMC11335089 DOI: 10.1097/tp.0000000000004976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/10/2024] [Accepted: 01/18/2024] [Indexed: 04/13/2024]
Abstract
BK polyomavirus (BKPyV) remains a significant challenge after kidney transplantation. International experts reviewed current evidence and updated recommendations according to Grading of Recommendations, Assessment, Development, and Evaluations (GRADE). Risk factors for BKPyV-DNAemia and biopsy-proven BKPyV-nephropathy include recipient older age, male sex, donor BKPyV-viruria, BKPyV-seropositive donor/-seronegative recipient, tacrolimus, acute rejection, and higher steroid exposure. To facilitate early intervention with limited allograft damage, all kidney transplant recipients should be screened monthly for plasma BKPyV-DNAemia loads until month 9, then every 3 mo until 2 y posttransplant (3 y for children). In resource-limited settings, urine cytology screening at similar time points can exclude BKPyV-nephropathy, and testing for plasma BKPyV-DNAemia when decoy cells are detectable. For patients with BKPyV-DNAemia loads persisting >1000 copies/mL, or exceeding 10 000 copies/mL (or equivalent), or with biopsy-proven BKPyV-nephropathy, immunosuppression should be reduced according to predefined steps targeting antiproliferative drugs, calcineurin inhibitors, or both. In adults without graft dysfunction, kidney allograft biopsy is not required unless the immunological risk is high. For children with persisting BKPyV-DNAemia, allograft biopsy may be considered even without graft dysfunction. Allograft biopsies should be interpreted in the context of all clinical and laboratory findings, including plasma BKPyV-DNAemia. Immunohistochemistry is preferred for diagnosing biopsy-proven BKPyV-nephropathy. Routine screening using the proposed strategies is cost-effective, improves clinical outcomes and quality of life. Kidney retransplantation subsequent to BKPyV-nephropathy is feasible in otherwise eligible recipients if BKPyV-DNAemia is undetectable; routine graft nephrectomy is not recommended. Current studies do not support the usage of leflunomide, cidofovir, quinolones, or IVIGs. Patients considered for experimental treatments (antivirals, vaccines, neutralizing antibodies, and adoptive T cells) should be enrolled in clinical trials.
Collapse
Affiliation(s)
- Camille N. Kotton
- Transplant and Immunocompromised Host Infectious Diseases Unit, Infectious Diseases Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Nassim Kamar
- Department of Nephrology and Organ Transplantation, Toulouse Rangueil University Hospital, INSERM UMR 1291, Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), University Paul Sabatier, Toulouse, France
| | - David Wojciechowski
- Department of Medicine, University of Texas Southwestern Medical Center, Dallas, TX
| | - Michael Eder
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Helmut Hopfer
- Division of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Parmjeet Randhawa
- Division of Transplantation Pathology, The Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA
| | - Martina Sester
- Department of Transplant and Infection Immunology, Saarland University, Homburg, Germany
| | - Patrizia Comoli
- Cell Factory and Pediatric Hematology/Oncology Unit, Department of Mother and Child Health, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Helio Tedesco Silva
- Division of Nephrology, Hospital do Rim, Fundação Oswaldo Ramos, Paulista School of Medicine, Federal University of São Paulo, Brazil
| | - Greg Knoll
- Department of Medicine (Nephrology), University of Ottawa and The Ottawa Hospital, Ottawa, ON, Canada
| | | | - Jennifer Trofe-Clark
- Renal-Electrolyte Hypertension Division, Associated Faculty of the Perelman School of Medicine, University of Pennsylvania, Pennsylvania, PA
- Transplantation Division, Associated Faculty of the Perelman School of Medicine, University of Pennsylvania, Pennsylvania, PA
| | - Lars Pape
- Pediatrics II, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | - David Axelrod
- Kidney, Pancreas, and Living Donor Transplant Programs at University of Iowa, Iowa City, IA
| | - Bryce Kiberd
- Division of Nephrology, Dalhousie University, Halifax, NS, Canada
| | - Germaine Wong
- Sydney School of Public Health, University of Sydney, Sydney, NSW, Australia
- Centre for Kidney Research, The Children’s Hospital at Westmead, Sydney, NSW, Australia
- Centre for Transplant and Renal Research, Westmead Hospital, Sydney, NSW, Australia
| | - Hans H. Hirsch
- Division of Transplantation and Clinical Virology, Department of Biomedicine, Faculty of Medicine, University of Basel, Basel, Switzerland
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
7
|
Mobaraki G, Shi S, Liu D, Smits KM, Severens K, Lommen K, Rennspiess D, Speel EJM, Winnepenninckx V, Klufah F, Samarska I, zur Hausen A. Mapping of Human Polyomavirus in Renal Cell Carcinoma Tissues. Int J Mol Sci 2024; 25:8213. [PMID: 39125783 PMCID: PMC11312419 DOI: 10.3390/ijms25158213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/18/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
Worldwide, the incidence of renal cell carcinoma (RCC) is rising, accounting for approximately 2% of all cancer diagnoses and deaths. The etiology of RCC is still obscure. Here, we assessed the presence of HPyVs in paraffin-embedded tissue (FFPE) resected tissue from patients with RCC by using different molecular techniques. Fifty-five FFPE tissues from 11 RCC patients were included in this study. Consensus and HPyV-specific primers were used to screen for HPyVs. Both PCR approaches revealed that HPyV is frequently detected in the tissues of RCC kidney resections. A total of 78% (43/55) of the tissues tested were positive for at least one HPyV (i.e., MCPyV, HPyV6, HPyV7, BKPyV, JCPyV, or WUyV). Additionally, 25 tissues (45%) were positive for only one HPyV, 14 (25%) for two HPyVs, 3 (5%) for three HPyVs, and 1 one (1%) tissue specimen was positive for four HPyVs. Eleven (20%) RCC specimens were completely devoid of HPyV sequences. MCPyV was found in 24/55 RCC tissues, HPyV7 in 19, and HPyV6 in 8. The presence of MCPyV and HPyV6 was confirmed by specific FISH or RNA-ISH. In addition, we aimed to confirm HPyV gene expression by IHC. Our results strongly indicate that these HPyVs infect RCC and nontumor tissues, possibly indicating that kidney tissues serve as a reservoir for HPyV latency. Whether HPyVs possibly contribute to the etiopathogenesis of RCC remains to be elucidated.
Collapse
Affiliation(s)
- Ghalib Mobaraki
- Department of Pathology, GROW-Research Institute for Oncology & Reproduction, Maastricht University, Medical Centre+, 6229 HX Maastricht, The Netherlands; (G.M.); (S.S.); (D.L.); (K.M.S.); (K.S.); (K.L.); (D.R.); (E.-J.M.S.); (V.W.); (F.K.); (I.S.)
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Jazan University, Jazan 45142, Saudi Arabia
| | - Shuai Shi
- Department of Pathology, GROW-Research Institute for Oncology & Reproduction, Maastricht University, Medical Centre+, 6229 HX Maastricht, The Netherlands; (G.M.); (S.S.); (D.L.); (K.M.S.); (K.S.); (K.L.); (D.R.); (E.-J.M.S.); (V.W.); (F.K.); (I.S.)
| | - Dan Liu
- Department of Pathology, GROW-Research Institute for Oncology & Reproduction, Maastricht University, Medical Centre+, 6229 HX Maastricht, The Netherlands; (G.M.); (S.S.); (D.L.); (K.M.S.); (K.S.); (K.L.); (D.R.); (E.-J.M.S.); (V.W.); (F.K.); (I.S.)
| | - Kim M. Smits
- Department of Pathology, GROW-Research Institute for Oncology & Reproduction, Maastricht University, Medical Centre+, 6229 HX Maastricht, The Netherlands; (G.M.); (S.S.); (D.L.); (K.M.S.); (K.S.); (K.L.); (D.R.); (E.-J.M.S.); (V.W.); (F.K.); (I.S.)
| | - Kim Severens
- Department of Pathology, GROW-Research Institute for Oncology & Reproduction, Maastricht University, Medical Centre+, 6229 HX Maastricht, The Netherlands; (G.M.); (S.S.); (D.L.); (K.M.S.); (K.S.); (K.L.); (D.R.); (E.-J.M.S.); (V.W.); (F.K.); (I.S.)
| | - Kim Lommen
- Department of Pathology, GROW-Research Institute for Oncology & Reproduction, Maastricht University, Medical Centre+, 6229 HX Maastricht, The Netherlands; (G.M.); (S.S.); (D.L.); (K.M.S.); (K.S.); (K.L.); (D.R.); (E.-J.M.S.); (V.W.); (F.K.); (I.S.)
| | - Dorit Rennspiess
- Department of Pathology, GROW-Research Institute for Oncology & Reproduction, Maastricht University, Medical Centre+, 6229 HX Maastricht, The Netherlands; (G.M.); (S.S.); (D.L.); (K.M.S.); (K.S.); (K.L.); (D.R.); (E.-J.M.S.); (V.W.); (F.K.); (I.S.)
| | - Ernst-Jan M. Speel
- Department of Pathology, GROW-Research Institute for Oncology & Reproduction, Maastricht University, Medical Centre+, 6229 HX Maastricht, The Netherlands; (G.M.); (S.S.); (D.L.); (K.M.S.); (K.S.); (K.L.); (D.R.); (E.-J.M.S.); (V.W.); (F.K.); (I.S.)
| | - Véronique Winnepenninckx
- Department of Pathology, GROW-Research Institute for Oncology & Reproduction, Maastricht University, Medical Centre+, 6229 HX Maastricht, The Netherlands; (G.M.); (S.S.); (D.L.); (K.M.S.); (K.S.); (K.L.); (D.R.); (E.-J.M.S.); (V.W.); (F.K.); (I.S.)
| | - Faisal Klufah
- Department of Pathology, GROW-Research Institute for Oncology & Reproduction, Maastricht University, Medical Centre+, 6229 HX Maastricht, The Netherlands; (G.M.); (S.S.); (D.L.); (K.M.S.); (K.S.); (K.L.); (D.R.); (E.-J.M.S.); (V.W.); (F.K.); (I.S.)
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Al-Baha University, Albaha 65525, Saudi Arabia
| | - Iryna Samarska
- Department of Pathology, GROW-Research Institute for Oncology & Reproduction, Maastricht University, Medical Centre+, 6229 HX Maastricht, The Netherlands; (G.M.); (S.S.); (D.L.); (K.M.S.); (K.S.); (K.L.); (D.R.); (E.-J.M.S.); (V.W.); (F.K.); (I.S.)
| | - Axel zur Hausen
- Department of Pathology, GROW-Research Institute for Oncology & Reproduction, Maastricht University, Medical Centre+, 6229 HX Maastricht, The Netherlands; (G.M.); (S.S.); (D.L.); (K.M.S.); (K.S.); (K.L.); (D.R.); (E.-J.M.S.); (V.W.); (F.K.); (I.S.)
| |
Collapse
|
8
|
Darwish MK, Allayeh AK, Ahmed AE, Abdelmaksoud MDE, Alkhalil SS, Ageeli Hakami M, Hassan A, Mohamed Mahmoud Farrag H, Saif Eldin M. Mohamed S, Gouda W. Case-control study: Unveiling human polyomaviruses and papillomavirus in Egyptian colorectal cancer patients. PLoS One 2024; 19:e0304147. [PMID: 38861564 PMCID: PMC11166297 DOI: 10.1371/journal.pone.0304147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 05/07/2024] [Indexed: 06/13/2024] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is a cancer type that is thought to be influenced by human papillomaviruses (HPVs) and human polyomaviruses (HPyVs). In Egypt, CRC ranks as the 7th most common cancer, accounting for 3.47% of male cancers and 3% of female cancers. However, there is currently a lack of information regarding the presence of PyVs and HPVs co-infection specifically in CRC cases in Egypt. Therefore, the aim of this study was to investigate the occurrence of HPVs and HPyVs (JCPyV, BKPyV, and SV40) infections, as well as co-infections, among CRC patients in Egypt. Additionally, the study aimed to assess any potential association between these viral infections and tumor stages. METHODS In the present study, we analyzed a total of 51 tissue samples obtained from Egyptian CRC patients, along with 19 polyps' samples. Our investigation focused on the detection and genotyping of HPyVs using Real-Time PCR. Additionally, we employed real-time PCR for the detection of HPVs, and for their genotyping, we utilized a combination of PCR amplification followed by sequencing. RESULTS In our study, we found evidence of HPyVs infection in the CRC patients, specifically SV40 (25.5%) and BKPyV (19.6%). However, JCPyV was not detected in the samples that were examined. Additionally, we discovered that HPV was present in 43.1% of the CRC patients. When considering viral co-infections, 19.6% of the CRC samples showed coexistence of multiple viruses, while no co-infections were found in the polyps samples. Importantly, we observed a significant correlation between the presence of HPVs and advanced colorectal tumor grades B2 and D. CONCLUSION Our findings provide valuable data for the detection of oncogenic viruses in colorectal cancer (CRC) and underscore the association of viral co-infections with advanced tumor stages. However, further research with larger cohorts is necessary to validate these findings and strengthen their significance in the field of CRC.
Collapse
Affiliation(s)
- Marwa K. Darwish
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Shaqra University, Al-Quwayiyah, Riyadh, Saudi Arabia
- Chemistry Department (Biochemistry Branch), Faculty of Science, Suez University, Suez, Egypt
| | - Abdou K. Allayeh
- Virology Lab, Water Pollution Research Department, Environment and Climate Change Institute, National Research Centre, Giza, Egypt
| | - Amr E. Ahmed
- Department of Biotechnology and Life Science, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni‑Suef, Egypt
| | | | - Samia S. Alkhalil
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Shaqra University, Al-Quwayiyah, Riyadh, Saudi Arabia
| | - Mohammed Ageeli Hakami
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Shaqra University, Al-Quwayiyah, Riyadh, Saudi Arabia
| | - Ahmed Hassan
- Oncology Department, Faculty of Medicine, Beni-Suef University, Beni‑Suef, Egypt
| | - Haiam Mohamed Mahmoud Farrag
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Shaqra University, Al-Quwayiyah, Riyadh, Saudi Arabia
| | - Samah Saif Eldin M. Mohamed
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Shaqra University, Al-Quwayiyah, Riyadh, Saudi Arabia
| | - Weaam Gouda
- Biochemistry Department, Biotechnology Research Institute, National Research Centre, Giza, Egypt
| |
Collapse
|
9
|
Starrett GJ, Foster H, Sigel K, Liu Y, Engels EA. Brief Report: The Virome of Bladder Tumors Arising in People Living With HIV. J Acquir Immune Defic Syndr 2023; 94:337-340. [PMID: 37884054 PMCID: PMC10662940 DOI: 10.1097/qai.0000000000003283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 08/01/2023] [Indexed: 10/28/2023]
Abstract
BACKGROUND People living with HIV (PLWH) have elevated risk for developing virus-related cancers. Bladder cancer risk is not increased in PLWH but is elevated among immunosuppressed solid organ transplant recipients (SOTRs). BK polyomavirus and, to a lesser extent, other viruses have been detected in bladder cancers from SOTRs. OBJECTIVE To characterize the virome of bladder tumors in PLWH. DESIGN Retrospective case series. METHODS We sequenced DNA and RNA from archived formalin-fixed bladder tumors from PLWH. Nonhuman reads were assembled and matched to a database of known viruses. RESULTS Fifteen bladder tumors from PLWH (13 carcinomas, 2 benign tumors) were evaluated. Fourteen tumors were in men, and the median age at diagnosis was 59 years (median CD4 count 460 cells/mm3). All but 1 tumor yielded both sufficient DNA and RNA. One bladder cancer, arising in a 52-year-old man with a CD4 count of 271 cells/mm3, manifested diverse Alphatorquevirus DNA and RNA sequences. A second cancer arising in a 58-year-old male former smoker (CD4 count of 227 cells/mm3) also showed Alphatorquevirus and Gammatorquevirus DNA sequences. Neither tumor exhibited viral integration. CONCLUSIONS Alphatorqueviruses and Gammatorqueviruses are anelloviruses, which have also been detected in bladder cancers from SOTRs, but anelloviruses are common infections, and detection may simply reflect increased abundance in the setting of immunosuppression. The lack of detection of BK polyomavirus among bladder tumors from PLWH parallels the lower level of bladder cancer risk seen in PLWH compared with SOTRs, indirectly supporting a role for BK polyomavirus in causing the excess risk in SOTRs.
Collapse
Affiliation(s)
- Gabriel J. Starrett
- Center for Cancer Research and Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Haidn Foster
- Center for Cancer Research and Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Keith Sigel
- Departments of Medicine and Pathology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yuxin Liu
- Departments of Medicine and Pathology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Eric A. Engels
- Center for Cancer Research and Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| |
Collapse
|
10
|
Wang Y, Yan S, Liu Y, Yan Z, Deng W, Geng J, Li Z, Xia R, Zeng W, Zhao T, Fang Y, Liu N, Yang L, Cheng Z, Xu J, Wu CL, Miao Y. Dynamic viral integration patterns actively participate in the progression of BK polyomavirus-associated diseases after renal transplantation. Am J Transplant 2023; 23:1694-1708. [PMID: 37507072 DOI: 10.1016/j.ajt.2023.07.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 07/16/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023]
Abstract
The classical lytic infection theory along with large T antigen-mediated oncogenesis cannot explain the BK polyomavirus (BKPyV)-associated tumor secondary to BKPyV-associated nephropathy (BKVAN), viremia/DNAemia, and viruria after renal transplantation. This study performed virome capture sequencing and pathological examination on regularly collected urine sediment and peripheral blood samples, and BKVAN and tumor biopsy tissues of 20 patients with BKPyV-associated diseases of different stages. In the early noncancerous stages, well-amplified integration sites were visualized by in situ polymerase chain reaction, simultaneously with BKPyV inclusion bodies and capsid protein expression. The integration intensity, the proportion of microhomology-mediated end-joining integration, and host PARP-1 and POLQ gene expression levels increased with disease progression. Furthermore, multiomics analysis was performed on BKPyV-associated urothelial carcinoma tissues, identifying tandem-like structures of BKPyV integration using long-read genome sequencing. The carcinogenicity of BKPyV integration was proven to disturb host gene expression and increase viral oncoprotein expression. Fallible DNA double-strand break repair pathways were significantly activated in the parenchyma of BKPyV-associated tumors. Olaparib showed an antitumor activity dose-response effect in the tumor organoids without BRCA1/2 genes mutation. In conclusion, the dynamic viral integration patterns actively participate in the progression of BKPyV-associated diseases and thus could be a potential target for disease monitoring and intervention.
Collapse
Affiliation(s)
- Yuchen Wang
- Department of Transplantation, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Susha Yan
- Department of Transplantation, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yanna Liu
- Department of Gastroenterology and Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Ziyan Yan
- Department of Transplantation, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wenfeng Deng
- Department of Transplantation, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jian Geng
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhuolin Li
- KingMed Diagnostics Group Co, Ltd, Guangzhou, China
| | - Renfei Xia
- Department of Transplantation, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wenli Zeng
- Department of Transplantation, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ting Zhao
- Departments of Urology and Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Yiling Fang
- Department of Transplantation, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Na Liu
- Mygenostics Co, Beijing, China
| | - Lingling Yang
- Geneseeq Research Institute, Nanjing Geneseeq Technology Inc, Nanjing, China
| | - Zhongyi Cheng
- Jingjie PTM BioLab (Hangzhou) Co, Inc, Hangzhou, China
| | - Jian Xu
- Department of Transplantation, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Chin-Lee Wu
- Departments of Urology and Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Yun Miao
- Department of Transplantation, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
11
|
Wang JW, Li YJ, Wu HH, Hsu HH, Chang MY, Wang RY, Tian YC. The essential role of the ERK activation in large T antigen of BK polyomavirus regulated cell migration. Virus Res 2023; 336:199220. [PMID: 37689160 PMCID: PMC10507160 DOI: 10.1016/j.virusres.2023.199220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/01/2023] [Accepted: 09/06/2023] [Indexed: 09/11/2023]
Abstract
Recent studies have suggested that BK polyomavirus (BKPyV) may be associated with the development of urothelial carcinoma. In Merkel cell carcinoma, TAg and tAg are the major viral proteins of Merkel cell polyomavirus with oncogenic potential. In this study, we aimed to distinguish the role of TAg and tAg in cell migration. Our result demonstrated that ERK was phosphorylated in human renal tubular cells expressing its TAg and tAg after BKPyV infection. Treatment with the ERK inhibitor U0126 suppressed BKPyV gene expression and reduced BKPyV replication. Both TAg and tAg induced cell migration via ERK-dependent signaling. Furthermore, the expression of TAg and tAg had a significant regulatory effect on focal adhesion molecules in renal proximal tubular cells, which strongly suggests that alterations in the focal adhesion complexes are critically involved in TAg and tAg-induced cell migration. Gelatin zymography profiling revealed that TAg regulates the expression and activity of MMP-2 and MMP-9, but not tAg. Interestingly, TAg regulates the expression and activity of MMP-9 through ERK signaling, whereas MMP-2 is regulated through an ERK-independent pathway. Unbalanced ERK pathway activity is frequently observed in many cancers, while MMP proteins are usually overexpressed in aggressive tumors. These findings support the view that BKPyV is an oncogenic virus.
Collapse
Affiliation(s)
- Jiun-Wen Wang
- Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan 333, Taiwan; Kidney Research Center and Department of Nephrology, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| | - Yi-Jung Li
- Kidney Research Center and Department of Nephrology, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan; Department of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Hsin-Hsu Wu
- Kidney Research Center and Department of Nephrology, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan; Graduate Institute of Clinical Medical Sciences, Chang Gung University, Taoyuan 333, Taiwan
| | - Hsiang-Hao Hsu
- Kidney Research Center and Department of Nephrology, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| | - Ming-Yang Chang
- Kidney Research Center and Department of Nephrology, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| | - Robert Yl Wang
- Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan 333, Taiwan; Kidney Research Center and Department of Nephrology, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan.
| | - Ya-Chung Tian
- Kidney Research Center and Department of Nephrology, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan; Department of Medicine, Chang Gung University, Taoyuan 333, Taiwan; Graduate Institute of Clinical Medical Sciences, Chang Gung University, Taoyuan 333, Taiwan.
| |
Collapse
|
12
|
Iwasaki S, Takahashi K, Katano H, Suzuki T, Sasaki H, Harada H, Takada Y, Makita K, Fukasawa Y, Tsuji T. BK Polyomavirus-Associated Urothelial Carcinoma of the Bladder with a Background of BK Polyomavirus Nephropathy in a Kidney Transplant Recipient. Nephron Clin Pract 2023; 147 Suppl 1:53-60. [PMID: 37531946 DOI: 10.1159/000531822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 05/02/2023] [Indexed: 08/04/2023] Open
Abstract
Renal transplant recipients are at increased risk for the development of a malignant neoplasm. Polyomavirus-associated urothelial carcinoma is a rare tumor that occurs in renal transplant recipients, with approximately 41 cases reported since 2002. It accounts for 27-31% of all post-transplant urothelial carcinomas and develops at an average of 8.5 years after transplantation. Histologically, it shows high-grade urothelial carcinoma (95.1%) with a high frequency of glandular differentiation and micropapillary structures (58.5%) and positive immunohistochemistry for polyomavirus large T antigen, p53 (92.9%), and p16 (100%). We encountered a case of BK polyomavirus (BKPyV)-associated urothelial carcinoma of the bladder diagnosed 54 months after kidney transplantation. Histologically, it was a high-grade urothelial carcinoma with micropapillary features, and immunohistochemically, it was diffusely positive for polyomavirus large T antigen, p16, and p53. BKPyV DNA and mRNA for BKPyV large T antigen have been identified in tissues using real-time polymerase chain reaction. The same sequence of the BKPyV VP1 genome hypervariable region was detected in both transplanted kidney tissue with polyomavirus nephropathy and urothelial carcinoma tissue, suggesting that polyomavirus-associated urothelial carcinoma developed in a background of persistent polyomavirus nephropathy. This case showed typical histological features and was detected and treated at an earlier stage than has been reported. It is important to keep in mind that polyomavirus-associated urothelial carcinoma can develop early after transplantation and might be associated with polyomavirus nephropathy. Because of its rapidly progressive nature, careful follow-up with urine cytology and cystoscopy is necessary. We report this case with a literature review.
Collapse
Affiliation(s)
- Sari Iwasaki
- Department of Pathology, Sapporo City General Hospital, Sapporo, Japan
| | - Kenta Takahashi
- Department of Pathology, National Institute of Infectious Disease, Tokyo, Japan
| | - Harutaka Katano
- Department of Pathology, National Institute of Infectious Disease, Tokyo, Japan
| | - Tadaki Suzuki
- Department of Pathology, National Institute of Infectious Disease, Tokyo, Japan
| | - Hajime Sasaki
- Department of Kidney Transplant Surgery, Sapporo City General Hospital, Sapporo, Japan
| | - Hiroshi Harada
- Department of Kidney Transplant Surgery, Sapporo City General Hospital, Sapporo, Japan
| | - Yusuke Takada
- Department of Kidney Transplant Surgery, Sapporo City General Hospital, Sapporo, Japan
| | - Keishi Makita
- Department of Pathology, Sapporo City General Hospital, Sapporo, Japan
| | - Yuichiro Fukasawa
- Department of Pathology, Sapporo City General Hospital, Sapporo, Japan
| | - Takahiro Tsuji
- Department of Pathology, Sapporo City General Hospital, Sapporo, Japan
| |
Collapse
|
13
|
Butler K, Banday AR. APOBEC3-mediated mutagenesis in cancer: causes, clinical significance and therapeutic potential. J Hematol Oncol 2023; 16:31. [PMID: 36978147 PMCID: PMC10044795 DOI: 10.1186/s13045-023-01425-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 03/14/2023] [Indexed: 03/30/2023] Open
Abstract
Apolipoprotein B mRNA-editing enzyme, catalytic polypeptides (APOBECs) are cytosine deaminases involved in innate and adaptive immunity. However, some APOBEC family members can also deaminate host genomes to generate oncogenic mutations. The resulting mutations, primarily signatures 2 and 13, occur in many tumor types and are among the most common mutational signatures in cancer. This review summarizes the current evidence implicating APOBEC3s as major mutators and outlines the exogenous and endogenous triggers of APOBEC3 expression and mutational activity. The review also discusses how APOBEC3-mediated mutagenesis impacts tumor evolution through both mutagenic and non-mutagenic pathways, including by inducing driver mutations and modulating the tumor immune microenvironment. Moving from molecular biology to clinical outcomes, the review concludes by summarizing the divergent prognostic significance of APOBEC3s across cancer types and their therapeutic potential in the current and future clinical landscapes.
Collapse
Affiliation(s)
- Kelly Butler
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - A Rouf Banday
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
14
|
Starrett GJ, Yu K, Golubeva Y, Lenz P, Piaskowski ML, Petersen D, Dean M, Israni A, Hernandez BY, Tucker TC, Cheng I, Gonsalves L, Morris CR, Hussain SK, Lynch CF, Harris RS, Prokunina-Olsson L, Meltzer PS, Buck CB, Engels EA. Evidence for virus-mediated oncogenesis in bladder cancers arising in solid organ transplant recipients. eLife 2023; 12:e82690. [PMID: 36961501 PMCID: PMC10446826 DOI: 10.7554/elife.82690] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 03/22/2023] [Indexed: 03/25/2023] Open
Abstract
A small percentage of bladder cancers in the general population have been found to harbor DNA viruses. In contrast, up to 25% of tumors of solid organ transplant recipients, who are at an increased risk of developing bladder cancer and have an overall poorer outcomes, harbor BK polyomavirus (BKPyV). To better understand the biology of the tumors and the mechanisms of carcinogenesis from potential oncoviruses, we performed whole genome and transcriptome sequencing on bladder cancer specimens from 43 transplant patients. Nearly half of the tumors from this patient population contained viral sequences. The most common were from BKPyV (N=9, 21%), JC polyomavirus (N=7, 16%), carcinogenic human papillomaviruses (N=3, 7%), and torque teno viruses (N=5, 12%). Immunohistochemistry revealed variable Large T antigen expression in BKPyV-positive tumors ranging from 100% positive staining of tumor tissue to less than 1%. In most cases of BKPyV-positive tumors, the viral genome appeared to be clonally integrated into the host chromosome consistent with microhomology-mediated end joining and coincided with focal amplifications of the tumor genome similar to other virus-mediated cancers. Significant changes in host gene expression consistent with the functions of BKPyV Large T antigen were also observed in these tumors. Lastly, we identified four mutation signatures in our cases, with those attributable to APOBEC3 and SBS5 being the most abundant. Mutation signatures associated with an antiviral drug, ganciclovir, and aristolochic acid, a nephrotoxic compound found in some herbal medicines, were also observed. The results suggest multiple pathways to carcinogenesis in solid organ transplant recipients with a large fraction being virus-associated.
Collapse
Affiliation(s)
| | - Kelly Yu
- DCEG, NCI, NIHRockvilleUnited States
| | | | - Petra Lenz
- Leidos Biomedical Research IncFrederickUnited States
| | | | | | | | - Ajay Israni
- Department of Medicine, Nephrology Division, Hennepin Healthcare System, University of MinnesotaMinneapolisUnited States
| | | | - Thomas C Tucker
- The Kentucky Cancer Registry, University of KentuckyLexingtonUnited States
| | - Iona Cheng
- Department of Epidemiology and Biostatistics,and Helen Diller Family Comprehensive Cancer Center, University of California, San FranciscoFremontUnited States
| | - Lou Gonsalves
- Connecticut Tumor Registry, Connecticut Department of Public HealthHartfordUnited States
| | - Cyllene R Morris
- California Cancer Reporting and Epidemiologic Surveillance Program, University of California, DavisDavisUnited States
| | - Shehnaz K Hussain
- Cedars-Sinai Cancer and Department of Medicine, Cedars-Sinai Medical CenterLos AngelesUnited States
| | - Charles F Lynch
- The Iowa Cancer Registry, University of IowaIowa CityUnited States
| | - Reuben S Harris
- Howard Hughes Medical Institute, University of MinnesotaMinneapolisUnited States
| | | | | | | | | |
Collapse
|
15
|
Manole B, Damian C, Giusca SE, Caruntu ID, Porumb-Andrese E, Lunca C, Dorneanu OS, Iancu LS, Ursu RG. The Influence of Oncogenic Viruses in Renal Carcinogenesis: Pros and Cons. Pathogens 2022; 11:757. [PMID: 35890003 PMCID: PMC9319782 DOI: 10.3390/pathogens11070757] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 06/29/2022] [Accepted: 06/30/2022] [Indexed: 02/05/2023] Open
Abstract
Viral infections are major contributors to the global cancer burden. Recent advances have revealed that known oncogenic viruses promote carcinogenesis through shared host cell targets and pathways. The aim of this review is to point out the connection between several oncogenic viruses from the Polyomaviridae, Herpesviridae and Flaviviridae families and renal carcinogenesis, highlighting their involvement in the carcinogenic mechanism. We performed a systematic search of the PubMed and EMBASE databases, which was carried out for all the published studies on RCC in the last 10 years, using the following search algorithm: renal cell carcinoma (RCC) and urothelial carcinoma, and oncogenic viruses (BKPyV, EBV, HCV, HPV and Kaposi Sarcoma Virus), RCC and biomarkers, immunohistochemistry (IHC). Our analysis included studies that were published in English from the 1st of January 2012 to the 1st of May 2022 and that described and analyzed the assays used for the detection of oncogenic viruses in RCC and urothelial carcinoma. The virus most frequently associated with RCC was BKPyV. This review of the literature will help to understand the pathogenic mechanism of the main type of renal malignancy and whether the viral etiology can be confirmed, at a minimum, as a co-factor. In consequence, these data can contribute to the development of new therapeutic strategies. A virus-induced tumor could be efficiently prevented by vaccination or treatment with oncolytic viral therapy and/or by targeted therapy.
Collapse
Affiliation(s)
- Bianca Manole
- Department of Morphofunctional Sciences I-Histolgy, Pathology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (B.M.); (S.-E.G.); (I.D.C.)
| | - Costin Damian
- Department of Microbiology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (O.S.D.); (L.S.I.); (R.G.U.)
| | - Simona-Eliza Giusca
- Department of Morphofunctional Sciences I-Histolgy, Pathology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (B.M.); (S.-E.G.); (I.D.C.)
| | - Irina Draga Caruntu
- Department of Morphofunctional Sciences I-Histolgy, Pathology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (B.M.); (S.-E.G.); (I.D.C.)
| | - Elena Porumb-Andrese
- Department of Dermatology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
| | - Catalina Lunca
- Department of Microbiology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (O.S.D.); (L.S.I.); (R.G.U.)
| | - Olivia Simona Dorneanu
- Department of Microbiology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (O.S.D.); (L.S.I.); (R.G.U.)
| | - Luminita Smaranda Iancu
- Department of Microbiology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (O.S.D.); (L.S.I.); (R.G.U.)
| | - Ramona Gabriela Ursu
- Department of Microbiology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (O.S.D.); (L.S.I.); (R.G.U.)
| |
Collapse
|
16
|
Myint TM, Chong CHY, Wyld M, Nankivell B, Kable K, Wong G. Polyoma BK Virus in Kidney Transplant Recipients: Screening, Monitoring, and Management. Transplantation 2022; 106:e76-e89. [PMID: 33908382 DOI: 10.1097/tp.0000000000003801] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Polyomavirus BK virus (BKPyV) infection is an important complication of kidney transplantation and allograft failure. The prevalence of viremia is 10%-15%, compared with BK-associated nephropathy (BKPyVAN) at 3%-5%. Given that there are no effective antiviral prophylaxis or treatment strategies for BKPyVAN, active screening to detect BKPyV viremia is recommended, particularly during the early posttransplant period. Immunosuppression reduction to allow viral clearance may avoid progression to severe and irreversible allograft damage. The frequency and duration of screening are highly variable between transplant centers because the evidence is reliant largely on observational data. While the primary treatment goals center on achieving viral clearance through immunosuppression reduction, prevention of subsequent acute rejection, premature graft loss, and return to dialysis remain as major challenges. Treatment strategies for BKPyV infection should be individualized to the recipient's underlying immunological risk and severity of the allograft infection. Efficacy data for adjuvant therapies including intravenous immunoglobulin and cidofovir are sparse. Future well-powered and high-quality randomized controlled trials are needed to inform evidence-based clinical practice for the management of BKPy infection.
Collapse
Affiliation(s)
- Thida Maung Myint
- Sydney School of Public Health, University of Sydney, Sydney, NSW, Australia
- Newcastle Transplant Unit, John Hunter Hospital, Newcastle, NSW, Australia
| | - Chanel H Y Chong
- Sydney School of Public Health, University of Sydney, Sydney, NSW, Australia
| | - Melanie Wyld
- Department of Renal Medicine, Centre for Transplant and Renal Research, Westmead Hospital, Westmead, NSW, Australia
| | - Brian Nankivell
- Department of Renal Medicine, Centre for Transplant and Renal Research, Westmead Hospital, Westmead, NSW, Australia
| | - Kathy Kable
- Department of Renal Medicine, Centre for Transplant and Renal Research, Westmead Hospital, Westmead, NSW, Australia
| | - Germaine Wong
- Sydney School of Public Health, University of Sydney, Sydney, NSW, Australia
- Department of Renal Medicine, Centre for Transplant and Renal Research, Westmead Hospital, Westmead, NSW, Australia
- Centre for Kidney Research, The Children's Hospital at Westmead, Westmead, NSW, Australia
| |
Collapse
|
17
|
Furmaga J, Kowalczyk M, Zapolski T, Furmaga O, Krakowski L, Rudzki G, Jaroszyński A, Jakubczak A. BK Polyomavirus-Biology, Genomic Variation and Diagnosis. Viruses 2021; 13:1502. [PMID: 34452367 PMCID: PMC8402805 DOI: 10.3390/v13081502] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 12/17/2022] Open
Abstract
The BK polyomavirus (BKPyV), a representative of the family Polyomaviridae, is widespread in the human population. While the virus does not cause significant clinical symptoms in immunocompetent individuals, it is activated in cases of immune deficiency, both pharmacological and pathological. Infection with the BKPyV is of particular importance in recipients of kidney transplants or HSC transplantation, in which it can lead to the loss of the transplanted kidney or to haemorrhagic cystitis, respectively. Four main genotypes of the virus are distinguished on the basis of molecular differentiation. The most common genotype worldwide is genotype I, with a frequency of about 80%, followed by genotype IV (about 15%), while genotypes II and III are isolated only sporadically. The distribution of the molecular variants of the virus is associated with the region of origin. BKPyV subtype Ia is most common in Africa, Ib-1 in Southeast Asia, and Ib-2 in Europe, while Ic is the most common variant in Northeast Asia. The development of molecular methods has enabled significant improvement not only in BKPyV diagnostics, but in monitoring the effectiveness of treatment as well. Amplification of viral DNA from urine by PCR (Polymerase Chain Reaction) and qPCR Quantitative Polymerase Chain Reaction) is a non-invasive method that can be used to confirm the presence of the genetic material of the virus and to determine the viral load. Sequencing techniques together with bioinformatics tools and databases can be used to determine variants of the virus, analyse their circulation in populations, identify relationships between them, and investigate the directions of evolution of the virus.
Collapse
Affiliation(s)
- Jacek Furmaga
- Department of General and Transplant Surgery and Nutritional Treatment, Medical University of Lublin, 20-954 Lublin, Poland;
| | - Marek Kowalczyk
- Institute of Quality Assessment and Processing of Animal Products, University of Life Sciences in Lublin, 20-950 Lublin, Poland
| | - Tomasz Zapolski
- Department of Cardiology, Medical University of Lublin, 20-954 Lublin, Poland;
| | - Olga Furmaga
- Department of Radiology, 424 General Military Hospital, 56403 Thessaloniki, Greece;
| | - Leszek Krakowski
- Department and Clinic of Animal Reproduction, Faculty of Veterinary Medicine, University of Life Sciences, Gleboka 30, 20-612 Lublin, Poland;
| | - Grzegorz Rudzki
- Department of Endocrinology, Diabetology and Metabolic Diseases, Medical University of Lublin, 20-954 Lublin, Poland;
| | - Andrzej Jaroszyński
- Department of Nephrology, Jan Kochanowski University in Kielce, 25-232 Kielce, Poland;
| | - Andrzej Jakubczak
- Institute of Biological Basis of Animal Production, Faculty of Animal Sciences and Bioeconomy, University of Life Sciences in Lublin, 20-950 Lublin, Poland
| |
Collapse
|
18
|
Abstract
Purpose of Review Virus-associated malignancies are a global health burden, constituting 10-12% of cancers worldwide. As these tumors express foreign viral antigens that can elicit specific T cell responses, virus-directed immunotherapies are a promising treatment strategy. Specifically, adoptive cell transfer of virus-specific T cells (VSTs) has demonstrated the potential to eradicate cancers associated with certain viruses. Recent Findings Initial studies in 1990s first showed that VSTs specific for the Epstein-Barr virus (EBVSTs) can induce complete remissions in patients with post-transplant lymphoproliferative disease. Since then, studies have validated the specificity and safety of VSTs in multiple lymphomas and solid malignancies. However, challenges remain to optimize this platform for widespread use, including enhancing potency and persistence, overcoming the immunosuppressive tumor microenvironment, and streamlining manufacturing processes that comply with regulatory requirements. Summary This review focuses on data from clinical trials evaluating VSTs directed against three viruses (EBV, HPV and MCPyV), as well as recent preclinical and clinical advances, and potential future directions.
Collapse
|
19
|
Wu Z, Graf FE, Hirsch HH. Antivirals against human polyomaviruses: Leaving no stone unturned. Rev Med Virol 2021; 31:e2220. [PMID: 33729628 DOI: 10.1002/rmv.2220] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/11/2021] [Accepted: 01/12/2021] [Indexed: 12/20/2022]
Abstract
Human polyomaviruses (HPyVs) encompass more than 10 species infecting 30%-90% of the human population without significant illness. Proven HPyV diseases with documented histopathology affect primarily immunocompromised hosts with manifestations in brain, skin and renourinary tract such as polyomavirus-associated nephropathy (PyVAN), polyomavirus-associated haemorrhagic cystitis (PyVHC), polyomavirus-associated urothelial cancer (PyVUC), progressive multifocal leukoencephalopathy (PML), Merkel cell carcinoma (MCC), Trichodysplasia spinulosa (TS) and pruritic hyperproliferative keratinopathy. Although virus-specific immune control is the eventual goal of therapy and lasting cure, antiviral treatments are urgently needed in order to reduce or prevent HPyV diseases and thereby bridging the time needed to establish virus-specific immunity. However, the small dsDNA genome of only 5 kb of the non-enveloped HPyVs only encodes 5-7 viral proteins. Thus, HPyV replication relies heavily on host cell factors, thereby limiting both, number and type of specific virus-encoded antiviral targets. Lack of cost-effective high-throughput screening systems and relevant small animal models complicates the preclinical development. Current clinical studies are limited by small case numbers, poorly efficacious compounds and absence of proper randomized trial design. Here, we review preclinical and clinical studies that evaluated small molecules with presumed antiviral activity against HPyVs and provide an outlook regarding potential new antiviral strategies.
Collapse
Affiliation(s)
- Zongsong Wu
- Transplantation & Clinical Virology, Department Biomedicine, University of Basel, Basel, Switzerland
| | - Fabrice E Graf
- Transplantation & Clinical Virology, Department Biomedicine, University of Basel, Basel, Switzerland
| | - Hans H Hirsch
- Transplantation & Clinical Virology, Department Biomedicine, University of Basel, Basel, Switzerland.,Clinical Virology, Laboratory Medicine, University Hospital Basel, Basel, Switzerland.,Infectious Diseases & Hospital Epidemiology, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
20
|
Li YJ, Wu HH, Chen CH, Wang HH, Chiang YJ, Hsu HH, Pang ST, Wang RYL, Tian YC. High Incidence and Early Onset of Urinary Tract Cancers in Patients with BK Polyomavirus Associated Nephropathy. Viruses 2021; 13:v13030476. [PMID: 33799453 PMCID: PMC8001968 DOI: 10.3390/v13030476] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/06/2021] [Accepted: 03/09/2021] [Indexed: 12/27/2022] Open
Abstract
Over-immunosuppressed kidney transplant recipients are susceptible to malignancies and BK polyomavirus (BKPyV)-associated nephropathy (BKPyVAN). This study aimed to verify the association between BKPyV infection and urinary tract cancers (UTC). A total of 244 kidney transplant recipients were enrolled at Chang Gung Memorial Hospital from June 2000 to February 2020. Biopsy-proven BKPyVAN patients (n = 17) had worse kidney function (eGFR: 26 ± 13.7 vs. 47.8 ± 31.0 mL/min/1.73 m2). The 5-year allograft survival rates for patients with and without BKPyVAN were 67% and 93%, respectively (p = 0.0002), while the 10-year patient survival was not different between the two groups. BKPyVAN patients had a significantly higher incidence of UTC compared to the non-BKPyVAN group (29.4% vs. 6.6%). Kaplan-Meier analysis showed that the UTC-free survival rate was significantly lower in BKPyVAN patients, and the onset of UTC was significantly shorter in BKPyVAN patients (53.4 vs. 108.9 months). The multivariate logistic regression analysis demonstrated that age (RR = 1.062) and BKVAN (RR = 6.459) were the most significant risk factors for the development of UTC. Our study demonstrates that BKPyVAN patients have greater allograft losses, higher incidence, a lower cancer-free survival rate, and an earlier onset with a higher relative risk of developing UTC compared to non-BKPyVAN patients.
Collapse
Affiliation(s)
- Yi-Jung Li
- Kidney Research Center and Department of Nephrology, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan; (Y.-J.L.); (H.-H.W.); (H.-H.H.)
- Department of Medicine, Chang Gung University, Taoyuan 333, Taiwan; (H.-H.W.); (S.-T.P.)
| | - Hsin-Hsu Wu
- Kidney Research Center and Department of Nephrology, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan; (Y.-J.L.); (H.-H.W.); (H.-H.H.)
- Department of Medicine, Chang Gung University, Taoyuan 333, Taiwan; (H.-H.W.); (S.-T.P.)
| | - Cheng-Hsu Chen
- Division of Nephrology, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung 407, Taiwan;
| | - Hsu-Han Wang
- Department of Medicine, Chang Gung University, Taoyuan 333, Taiwan; (H.-H.W.); (S.-T.P.)
- Department of Urology, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan;
| | - Yang-Jen Chiang
- Department of Urology, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan;
| | - Hsiang-Hao Hsu
- Kidney Research Center and Department of Nephrology, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan; (Y.-J.L.); (H.-H.W.); (H.-H.H.)
- Department of Medicine, Chang Gung University, Taoyuan 333, Taiwan; (H.-H.W.); (S.-T.P.)
| | - See-Tong Pang
- Department of Medicine, Chang Gung University, Taoyuan 333, Taiwan; (H.-H.W.); (S.-T.P.)
- Department of Urology, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan;
| | - Robert Y. L. Wang
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan;
| | - Ya-Chung Tian
- Kidney Research Center and Department of Nephrology, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan; (Y.-J.L.); (H.-H.W.); (H.-H.H.)
- Department of Medicine, Chang Gung University, Taoyuan 333, Taiwan; (H.-H.W.); (S.-T.P.)
- Correspondence: ; Tel.: +886-328-1200 (ext. 8181); Fax: +886-328-2173
| |
Collapse
|
21
|
Meier RP, Muller YD, Dietrich PY, Tille JC, Nikolaev S, Sartori A, Labidi-Galy I, Ernandez T, Kaur A, Hirsch HH, McKee TA, Toso C, Villard J, Berney T. Immunologic Clearance of a BK Virus-associated Metastatic Renal Allograft Carcinoma. Transplantation 2021; 105:423-429. [PMID: 32091486 PMCID: PMC7837753 DOI: 10.1097/tp.0000000000003193] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 02/01/2020] [Accepted: 02/06/2020] [Indexed: 01/20/2023]
Abstract
BACKGROUND Metastatic carcinoma of a renal allograft is a rare but life threatening event with a difficult clinical management. Recent reports suggested a potential role of BK polyomavirus (BKPyV) in the development of urologic tract malignancies in kidney transplant recipients. METHODS We investigated a kidney-pancreas female recipient with an history of BKPyV nephritis who developed a rapidly progressive and widely metastatic donor-derived renal carcinoma 9 years after transplantation. RESULTS Histology and fluorescence in situ hybridization analysis revealed a donor-derived (XY tumor cells) collecting (Bellini) duct carcinoma. The presence of BKPyV oncogenic large tumor antigen was identified in large amount within the kidney tumor and the bowel metastases. Whole genome sequencing of the tumor confirmed multiple genome BKPyV integrations. The transplanted kidney was removed, immunosuppression was withdrawn, and recombinant interleukin-2 (IL-2) was administered for 3 months, inducing a complete tumor clearance, with no evidence of disease at 6-year follow-up. The immunological profiling during IL-2 therapy revealed the presence of donor-specific T cells and expanded cytokine-producing bright natural killer cells but no donor-specific antibodies. Finally, we found persistently elevated anti-BK virus IgG titers and a specific anti-BKPyV T cell response. CONCLUSIONS This investigation showed evidence for the potential oncogenic role of BKPyV in collecting duct carcinoma in renal allografts and demonstrated that immunosuppression withdrawal and IL-2 therapy can lead to an efficient antitumor cellular mediated rejection possibly via 3 distinct mechanisms including (1) host-versus-graft, (2) host-versus-tumor, and (3) anti-BKPyV responses.
Collapse
Affiliation(s)
- Raphael P.H. Meier
- Abdominal Transplant Surgery, Department of Surgery, Geneva University Hospital and University of Geneva Medical School, Geneva, Switzerland
- Transplant Surgery, Department of Surgery, University of California San Francisco, San Francisco, CA
| | - Yannick D. Muller
- Transplant Surgery, Department of Surgery, University of California San Francisco, San Francisco, CA
- Immunology and Transplant Unit, Department Diagnostic, Geneva University Hospital and University of Geneva Medical School, Geneva, Switzerland
| | - Pierre-Yves Dietrich
- Department of Oncology, Geneva University Hospital and University of Geneva Medical School, Geneva, Switzerland
| | - Jean-Christophe Tille
- Diagnostic Department, Geneva University Hospital, and Department of Pathology and Immunology, University of Geneva Medical School, Geneva, Switzerland
| | - Sergey Nikolaev
- Department of Genetic Medicine and Development, Geneva University Hospital and University of Geneva Medical School, Geneva, Switzerland
| | - Ambra Sartori
- Department of Genetic Medicine and Development, Geneva University Hospital and University of Geneva Medical School, Geneva, Switzerland
| | - Intidhar Labidi-Galy
- Department of Oncology, Geneva University Hospital and University of Geneva Medical School, Geneva, Switzerland
| | - Thomas Ernandez
- Division of Nephrology, Department of Medicine, University Hospital of Geneva, Geneva, Switzerland
| | - Amandeep Kaur
- Transplantation and Clinical Virology, Department Biomedicine, University of Basel, Basel, Switzerland
| | - Hans H. Hirsch
- Transplantation and Clinical Virology, Department Biomedicine, University of Basel, Basel, Switzerland
| | - Thomas A. McKee
- Diagnostic Department, Geneva University Hospital, and Department of Pathology and Immunology, University of Geneva Medical School, Geneva, Switzerland
| | - Christian Toso
- Abdominal Transplant Surgery, Department of Surgery, Geneva University Hospital and University of Geneva Medical School, Geneva, Switzerland
| | - Jean Villard
- Immunology and Transplant Unit, Department Diagnostic, Geneva University Hospital and University of Geneva Medical School, Geneva, Switzerland
- Division of Nephrology, Department of Medicine, University Hospital of Geneva, Geneva, Switzerland
| | - Thierry Berney
- Abdominal Transplant Surgery, Department of Surgery, Geneva University Hospital and University of Geneva Medical School, Geneva, Switzerland
| |
Collapse
|
22
|
Nickeleit V, Davis VG, Thompson B, Singh HK. The Urinary Polyomavirus-Haufen Test: A Highly Predictive Non-Invasive Biomarker to Distinguish "Presumptive" from "Definitive" Polyomavirus Nephropathy: How to Use It-When to Use It-How Does It Compare to PCR Based Assays? Viruses 2021; 13:135. [PMID: 33477927 PMCID: PMC7833404 DOI: 10.3390/v13010135] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/12/2021] [Accepted: 01/13/2021] [Indexed: 12/17/2022] Open
Abstract
"Definitive" biopsy proven polyomavirus nephropathy (PyVN), usually caused by BK polyomavirus (BKPyV), remains a significant infection of kidney transplants. Diagnosis depends upon an allograft biopsy and outcome depends upon early intervention. Here, we report data on a non-invasive biomarker for PyVN, the urinary PyV-Haufen test. Test results were compared to those of conventional laboratory assays targeting PyV replication, i.e., BKPy-viremia, -viruria and urinary decoy cell shedding. Of 809 kidney transplant recipients, 228 (28%) showed PyV replication with decoy cell shedding and/or BKPy-viremia by quantitative PCR; only a subset of 81/228 (36%) showed "definitive" PyVN. Sensitivity and specificity for identifying patients with PyVN was: 100% and 98%, respectively, urinary PyV-Haufen test; 50% and 54%, respectively, urinary decoy cell shedding; 97% and 32%, respectively, BKPy-viremia with cut-off of ≥250 viral copies/mL; 66% and 80%, respectively, for BKPy-viremia ≥104 viral copies/mL. The PyV-Haufen test showed a very strong correlation with the severity of PyVN (Spearman's ρ = 0.84) and the Banff PyVN disease classes (p < 0.001). In comparison, BKPy-viremia and -viruria levels by PCR displayed modest correlations with PyVN severity (Spearman's ρ = 0.35 and 0.36, respectively) and were not significantly associated with disease classes. No association was found between decoy cell shedding and PyVN severity or disease classes. Pilot data demonstrated that PyVN resolution with decreasing Banff pvl-scores was reflected by a gradual decrease in PyV-Haufen shedding; such a tight association was not noted for BKPy-viremia. In conclusion, urinary PyV-Haufen testing is a highly specific, non-invasive method to accurately diagnose patients with "definitive" PyVN and to optimize patient management. Assay specifics are discussed.
Collapse
Affiliation(s)
| | | | | | - Harsharan K. Singh
- Division of Nephropathology, UNC-School of Medicine, Brinkhous-Bullitt Bldg., Room 409, Campus Box 7525, 160 Medical Drive, Chapel Hill, NC 27599-7525, USA; (V.N.); (V.G.D.); (B.T.)
| |
Collapse
|
23
|
Metastatic Urothelial Carcinoma from Transplanted Kidney with Complete Response to an Immune Checkpoint Inhibitor. Case Rep Urol 2020; 2020:8881841. [PMID: 33425425 PMCID: PMC7773455 DOI: 10.1155/2020/8881841] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 12/09/2020] [Accepted: 12/15/2020] [Indexed: 12/12/2022] Open
Abstract
Background Donor-derived malignancy is a rare complication in patients who undergo organ transplant. Approaches to treatment have largely been individualized based on clinical circumstances given the lack of evidence-based guidelines, with therapeutic options ranging from discontinuation of immunosuppression and transplantectomy to the addition of chemotherapy or radiotherapy. Case Presentation. Herein, we describe a 60-year-old woman with metastatic donor-derived upper tract urothelial carcinoma (UTUC) discovered nine years postrenal transplant. Molecular diagnostic studies using polymerase chain reaction amplification of short tandem repeat alleles and HLA tissue typing proved that the urothelial carcinoma originated from donor tissue. She achieved sustained complete remission with transplant nephroureterectomy, retroperitoneal lymphadenectomy, immunosuppression withdrawal, and immunotherapy with pembrolizumab. Routine radiologic surveillance has demonstrated 15-month progression-free survival to date off pembrolizumab, and she is now under consideration for retransplantation. Conclusions Immunotherapy using checkpoint inhibitors can serve as a novel treatment option for patients in the clinical predicament of having a solid organ transplant and simultaneous metastatic malignancy. In this report, we also discuss the oncogenic potential of BK virus, the use of checkpoint inhibitors in urothelial carcinoma, and the feasibility of retransplant for this patient population.
Collapse
|
24
|
Control of Archetype BK Polyomavirus MicroRNA Expression. J Virol 2020; 95:JVI.01589-20. [PMID: 33115878 DOI: 10.1128/jvi.01589-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 10/21/2020] [Indexed: 12/14/2022] Open
Abstract
BK polyomavirus (BKPyV) is a ubiquitous human pathogen, with over 80% of adults worldwide being persistently infected. BKPyV infection is usually asymptomatic in healthy people; however, it causes polyomavirus-associated nephropathy in renal transplant patients and hemorrhagic cystitis in bone marrow transplant patients. BKPyV has a circular, double-stranded DNA genome that is divided genetically into three parts: an early region, a late region, and a noncoding control region (NCCR). The NCCR contains the viral DNA replication origin and cis-acting elements regulating viral early and late gene expression. It was previously shown that a BKPyV microRNA (miRNA) expressed from the late strand regulates viral large-T-antigen expression and limits the replication capacity of archetype BKPyV. A major unanswered question in the field is how expression of the viral miRNA is regulated. Typically, miRNA is expressed from introns in cellular genes, but there is no intron readily apparent in BKPyV from which the miRNA could derive. Here, we provide evidence for primary RNA transcripts that circle the genome more than once and include the NCCR. We identified splice junctions resulting from splicing of primary transcripts circling the genome more than once, and Sanger sequencing of reverse transcription-PCR (RT-PCR) products indicates that there are viral transcripts that circle the genome up to four times. Our data suggest that the miRNA is expressed from an intron spliced out of these greater-than-genome-size primary transcripts.IMPORTANCE The BK polyomavirus (BKPyV) miRNA plays an important role in regulating viral large-T-antigen expression and limiting the replication of archetype BKPyV, suggesting that the miRNA regulates BKPyV persistence. However, how miRNA expression is regulated is poorly understood. Here, we present evidence that the miRNA is expressed from an intron that is generated by RNA polymerase II transcribing the circular viral genome more than once. We identified splice junctions that could be generated only from primary transcripts that contain tandemly repeated copies of the viral genome. The results indicate another way in which viruses optimize expression of their genes using limited coding capacity.
Collapse
|
25
|
Leuzinger K, Kaur A, Wilhelm M, Hirsch HH. Variations in BK Polyomavirus Immunodominant Large Tumor Antigen-Specific 9mer CD8 T-Cell Epitopes Predict Altered HLA-Presentation and Immune Failure. Viruses 2020; 12:v12121476. [PMID: 33371492 PMCID: PMC7767524 DOI: 10.3390/v12121476] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/14/2020] [Accepted: 12/16/2020] [Indexed: 12/12/2022] Open
Abstract
Failing BK polyomavirus (BKPyV)-specific immune control is underlying onset and duration of BKPyV-replication and disease. We focused on BKPyV-specific CD8 T-cells as key effectors and characterized immunodominant 9mer epitopes in the viral large tumor-antigen (LTag). We investigated the variation of LTag-epitopes and their predicted effects on HLA-class 1 binding and T-cell activation. Available BKPyV sequences in the NCBI-nucleotide (N = 3263), and the NCBI protein database (N = 4189) were extracted (1368 sequences) and analyzed for non-synonymous aa-exchanges in LTag. Variant 9mer-epitopes were assessed for predicted changes in HLA-A and HLA-B-binding compared to immunodominant 9mer reference. We identified 159 non-synonymous aa-exchanges in immunodominant LTag-9mer T-cell epitopes reflecting different BKPyV-genotypes as well as genotype-independent variants altering HLA-A/HLA-B-binding scores. Decreased binding scores for HLA-A/HLA-B were found in 27/159 (17%). This included the immunodominant LPLMRKAYL affecting HLA-B*07:02-, HLA-B*08:01- and HLA-B*51:01-presentation. In two healthy BKPyV-seropositive HLA-B*07:02 blood donors, variant LSLMRKAYL showed reduced CD8 T-cell responses compared to LPLMRKAYL. Thus, despite LTag being highly conserved, aa-exchanges occur in immunodominant CD8 T-cell epitopes of BKPyV-genotypes as well as of genotypes -independent variants, which may contribute to genotype-dependent and genotype-independent failure of cellular immune control over BKPyV-replication. The data warrant epidemiological and immunological investigations in carefully designed clinical studies.
Collapse
Affiliation(s)
- Karoline Leuzinger
- Transplantation & Clinical Virology, Department Biomedicine, University of Basel, Petersplatz 10, CH-4009 Basel, Switzerland; (K.L.); (A.K.); (M.W.)
- Clinical Virology, Laboratory Medicine, University Hospital Basel, Petersgraben 4, CH-4031 Basel, Switzerland
| | - Amandeep Kaur
- Transplantation & Clinical Virology, Department Biomedicine, University of Basel, Petersplatz 10, CH-4009 Basel, Switzerland; (K.L.); (A.K.); (M.W.)
| | - Maud Wilhelm
- Transplantation & Clinical Virology, Department Biomedicine, University of Basel, Petersplatz 10, CH-4009 Basel, Switzerland; (K.L.); (A.K.); (M.W.)
| | - Hans H. Hirsch
- Transplantation & Clinical Virology, Department Biomedicine, University of Basel, Petersplatz 10, CH-4009 Basel, Switzerland; (K.L.); (A.K.); (M.W.)
- Clinical Virology, Laboratory Medicine, University Hospital Basel, Petersgraben 4, CH-4031 Basel, Switzerland
- Infectious Diseases & Hospital Epidemiology, University Hospital Basel, Petersgraben 4, CH-4031 Basel, Switzerland
- Correspondence: ; Tel.: +41-61-207-3266 or +41-61-207-3225
| |
Collapse
|
26
|
Total nephroureterocystectomy and urethrectomy due to urothelial carcinoma associated with the BK polyomavirus infection after kidney transplantation: a case report with literature review. RENAL REPLACEMENT THERAPY 2020. [DOI: 10.1186/s41100-020-00297-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Abstract
Background
BK polyomavirus (BKPyV) infection after kidney transplantation is an important cause of graft failure among kidney transplant recipient and may cause malignant tumor, although the association between BKPyV infection and malignant tumor has been controversial yet.
Case presentation
We report a case of a 39-year-old-male kidney transplantation (KTx) recipient with urine BKPyV replication who developed a graft pelvic tumor with the positive Simian virus 40 large T antigen (SV40 TAg). The patients received a living-related KTx from his 65-year-old mother. A protocol biopsy at 14 months after KTx showed BKPyV-associated nephropathy. Therefore, the dose of immunosuppressants was reduced, resulting in improved BKPyV viremia, but viruria persisted. About 117 months after KTx, urine cytology showed atypical cells suspicious for malignancy. Cystoscopy revealed a tumor on the neck of the bladder. Transurethral resection of the bladder tumor (TUR-BT) was performed; however, the diagnosis of malignancy was not confirmed at that time. Six months after the TUR-BT, urine cytology showed atypical cells definite for malignancy. Computed tomography and retrograde pyelography showed no evidence of urinary tract tumor and metastasis. Subsequently, total nephroureterocystectomy and urethrectomy were performed. Histological examination of the graft ureter revealed a high-grade urothelial carcinoma, with glandular differentiation, pT1. Immunohistochemically, the tumor showed positivities for SV40 TAg and p53, along with increased Ki67 labeling cells were increased. By contrast, nonneoplastic cells were negative for SV40 TAg. At the time of writing the present manuscript, the patient is free from recurrence or residual tumor and being closely monitored without additional therapy, 32 months after the surgery.
Conclusion
The relationship between BKPyV infection after KTx and bladder carcinogenesis remains to be elucidated. However, when the KTx recipients who continue to have BKPyV infection for a long time are treated, the possibility of risk factors for renourinary carcinoma should always be carefully considered.
Collapse
|
27
|
Genome-wide profiling of BK polyomavirus integration in bladder cancer of kidney transplant recipients reveals mechanisms of the integration at the nucleotide level. Oncogene 2020; 40:46-54. [PMID: 33051598 DOI: 10.1038/s41388-020-01502-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 09/21/2020] [Accepted: 09/30/2020] [Indexed: 11/08/2022]
Abstract
Chronic BK polyomavirus (BKPyV) infection is recognized as a potential oncogenic factor of urothelial carcinoma (UC) in renal transplant recipients. Recent studies have reported a positive correlation among BKPyV integration, persistent overexpression of viral large T antigen (TAg), and malignancy, yet little is known about the specific integration mechanisms and the impacts of viral integration. Here, we performed whole-genome sequencing (WGS) and viral capture-based sequencing on high-grade immunohistochemically TAg-positive UCs in two renal transplant recipients. A total of 181 integration sites, including the three found by WGS, were identified by viral capture-based sequencing, indicating its enhanced sensitivity and ability in identifying low-read integration sites in subpopulations of the tumor cells. The microhomologies between human and BKPyV genomes were significantly enriched in the flanking regions of 84.5% the integration sites, with a median length of 7 bp. Notably, 75 human genes formed fusion sequences due to viral insertional integration. Among them, the expression of 15 genes were statistically associated with UC based on GEO2R expression analysis. Our results indicated a multisite and multifragment linear integration pattern and a potential microhomology or nonhomologous end joining integration mechanism at the single-nucleotide level. We put forward a potential selection mechanism driven by immunity and centered on viral integration in the carcinogenesis of BKPyV.
Collapse
|
28
|
Prom A, Jorgenson M, Alagusundaramoorthy S, Parajuli S. Persistent BK polyomavirus-DNAemia may warrant cystoscopy to rule out urologic carcinoma: A case report and review of the literature. Transpl Infect Dis 2020; 22:e13316. [PMID: 32386093 DOI: 10.1111/tid.13316] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 04/20/2020] [Accepted: 05/02/2020] [Indexed: 12/14/2022]
Abstract
There is minimal literature describing the clinical workup of patients with persistent BKPyV-DNAemia despite aggressive immunosuppressive reduction. We present a case herein of persistent BKPyV-DNAemia with significant discordance of BK viruria level in a kidney transplant recipient found to have bladder carcinoma. Based on our findings, we recommend evaluating the urine of patients with persistent BKPyV-DNAemia for BK viruria. If there is significant discordance in the level of BKPyV-DNAemia and viruria, cystoscopy should be pursued to rule out bladder or uroepithelial malignancies.
Collapse
Affiliation(s)
- Alyson Prom
- Department of Pharmacy, University of Wisconsin Hospital and Clinics, Madison, WI, USA
| | - Margaret Jorgenson
- Department of Pharmacy, University of Wisconsin Hospital and Clinics, Madison, WI, USA
| | - Sayee Alagusundaramoorthy
- Division of Nephrology, Department of Internal Medicine, University of Wisconsin School of Medicine and Public Health Madison, WI, USA
| | - Sandesh Parajuli
- Division of Nephrology, Department of Internal Medicine, University of Wisconsin School of Medicine and Public Health Madison, WI, USA
| |
Collapse
|
29
|
Zeng Y, Sun J, Bao J, Zhu T. BK polyomavirus infection promotes growth and aggressiveness in bladder cancer. Virol J 2020; 17:139. [PMID: 32928222 PMCID: PMC7488779 DOI: 10.1186/s12985-020-01399-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 08/14/2020] [Indexed: 02/07/2023] Open
Abstract
Background Recent studies have confirmed the integration of the BK polyomavirus (BKPyV) gene into the cellular genome of urothelial carcinomas in transplant recipients, further confirming the correlation between BKPyV and urothelial carcinomas after transplantation. However, the role BKPyV infections play in the biological function of bladder cancer remains unclear. Methods We developed a BKPyV-infected bladder cancer cell model and a mice tumor model to discuss the role of BKPyV infections. Results Our research proves that BKPyV infections promote the proliferation, invasion and migration of bladder cancer cells, while the activation of β-catenin signaling pathway is one of its mediation mechanisms. Conclusions We first described BKPyV infection promotes the proliferation, invasion and migration of bladder cancer. We verified the role of β-catenin signaling pathway and Epithelial-Mesenchymal Transition effect in BKPyV-infected bladder cancer. These results provide meaningful information towards the diagnosis and treatment of clinical bladder cancer.
Collapse
Affiliation(s)
- Yigang Zeng
- Department of Urology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China
| | - Jiajia Sun
- Department of Urology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China.,Shanghai Key Laboratory of Organ Transplantation, Shanghai, China
| | - Juan Bao
- Department of Urology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China
| | - Tongyu Zhu
- Department of Urology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China. .,Shanghai Key Laboratory of Organ Transplantation, Shanghai, China.
| |
Collapse
|
30
|
Ahye N, Bellizzi A, May D, Wollebo HS. The Role of the JC Virus in Central Nervous System Tumorigenesis. Int J Mol Sci 2020; 21:ijms21176236. [PMID: 32872288 PMCID: PMC7503523 DOI: 10.3390/ijms21176236] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 08/22/2020] [Accepted: 08/24/2020] [Indexed: 12/14/2022] Open
Abstract
Cancer is the second leading cause of mortality worldwide. The study of DNA tumor-inducing viruses and their oncoproteins as a causative agent in cancer initiation and tumor progression has greatly enhanced our understanding of cancer cell biology. The initiation of oncogenesis is a complex process. Specific gene mutations cause functional changes in the cell that ultimately result in the inability to regulate cell differentiation and proliferation effectively. The human neurotropic Polyomavirus JC (JCV) belongs to the family Polyomaviridae and it is the causative agent of progressive multifocal leukoencephalopathy (PML), which is a fatal neurodegenerative disease in an immunosuppressed state. Sero-epidemiological studies have indicated JCV infection is prevalent in the population (85%) and that initial infection usually occurs during childhood. The JC virus has small circular, double-stranded DNA that includes coding sequences for viral early and late proteins. Persistence of the virus in the brain and other tissues, as well as its potential to transform cells, has made it a subject of study for its role in brain tumor development. Earlier observation of malignant astrocytes and oligodendrocytes in PML, as well as glioblastoma formation in non-human primates inoculated with JCV, led to the hypothesis that JCV plays a role in central nervous system (CNS) tumorigenesis. Some studies have reported the presence of both JC viral DNA and its proteins in several primary brain tumor specimens. The discovery of new Polyomaviruses such as the Merkel cell Polyomavirus, which is associated with Merkel cell carcinomas in humans, ignited our interest in the role of the JC virus in CNS tumors. The current evidence known about JCV and its effects, which are sufficient to produce tumors in animal models, suggest it can be a causative factor in central nervous system tumorigenesis. However, there is no clear association between JCV presence in CNS and its ability to initiate CNS cancer and tumor formation in humans. In this review, we will discuss the correlation between JCV and tumorigenesis of CNS in animal models, and we will give an overview of the current evidence for the JC virus’s role in brain tumor formation.
Collapse
|
31
|
Garcia Urbán J, Gurrado K, Brea Rivas PC, Abou Elrous D, Zubimendi Machain M, Romero Gómez M, García Rodríguez J, Vicandi Plaza B, Yébenes Gregorio L, García Fernández E, Jiménez Martín C, López Oliva MO, González García E, Ledesma Sánchez G, Carreño Cornejo G, Selgas Gutiérrez R, Zarauza Santoveña A, Melgosa Hijosa M, Fernández Camblor C, Mozo Del Castillo Y, Sisinni L, Bueno Sánchez D, Pérez-Martínez A, Sánchez Zapardiel E, López Granados E, Monserrat Villatoro J, Hernández Zabala R, Borobia AM, Frías J, Ramírez E. A case-control study to assess the role of polyomavirus in transplant complications: Where do we stand? Transpl Infect Dis 2020; 22:e13432. [PMID: 32738811 DOI: 10.1111/tid.13432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/22/2020] [Accepted: 07/24/2020] [Indexed: 11/27/2022]
Abstract
PURPOSE The study's aim was to assess whether polyomavirus DNAemia screening was associated with different outcomes in patients with positive viremia compared with negative viremia. METHODS Case-control retrospective study of patients with polyomavirus DNAemia (viremia > 1000 copies/mL) matched 1:1 with controls. Control group consists of the patient who received a transplant immediately before or after each identified case and did have nil viremia. FINDING Ultimately, 120 cases of BK polyomavirus (BKPyV) were detected and matched with 130 controls. Of these, 54 were adult kidney transplant recipients (KTRs), 43 were pediatric KTRs, and 23 were undergoing hemato-oncologic therapy, of which 20 were undergoing hematopoietic stem cell transplantation. The odds ratio (OR) for overall risk of poorer outcomes in cases versus controls was 16.07 (95% CI: 5.55-46.54). The unfavorable outcome of switching the immunosuppressive drug (ISD) (14/40,35%) was no different from that of those treated with reduced ISD doses (31/71, 43.6%, P = .250). Acute rejection or graft-versus-host disease, previous transplant, and intensity of immunosuppression (4 ISDs plus induction or conditioning) were risk factors for BKPyV-DNAemia (OR: 13.96, 95% CI: 11.25-15.18, P < .001; OR: 6.14, 95% CI: 3.91-8.80, P < .001; OR: 5.53, 95% CI: 3.37-7.30, P < .001, respectively). CONCLUSIONS Despite viremia screening, dose reduction, and change in therapeutic protocol, patients with positive BKPyV-DNAemia present poorer outcomes and unfavorable results.
Collapse
Affiliation(s)
- Julia Garcia Urbán
- Clinical Pharmacology Department, IdiPaz, School of Medicine, La Paz-Cantoblanco-Carlos III University Hospital, Autonomous University of Madrid, Madrid, Spain
| | - Katia Gurrado
- Clinical Pharmacology Department, IdiPaz, School of Medicine, La Paz-Cantoblanco-Carlos III University Hospital, Autonomous University of Madrid, Madrid, Spain
| | - Paola C Brea Rivas
- Clinical Pharmacology Department, IdiPaz, School of Medicine, La Paz-Cantoblanco-Carlos III University Hospital, Autonomous University of Madrid, Madrid, Spain
| | - Dina Abou Elrous
- Clinical Pharmacology Department, IdiPaz, School of Medicine, La Paz-Cantoblanco-Carlos III University Hospital, Autonomous University of Madrid, Madrid, Spain
| | - Mónica Zubimendi Machain
- Clinical Pharmacology Department, IdiPaz, School of Medicine, La Paz-Cantoblanco-Carlos III University Hospital, Autonomous University of Madrid, Madrid, Spain
| | - María Romero Gómez
- Microbiology Department, IdiPaz, La Paz-Cantoblanco-Carlos III University Hospital, Madrid, Spain
| | - Julio García Rodríguez
- Microbiology Department, IdiPaz, La Paz-Cantoblanco-Carlos III University Hospital, Madrid, Spain
| | - Blanca Vicandi Plaza
- Pathological Anatomy Department, IdiPaz, La Paz-Cantoblanco-Carlos III University Hospital, Madrid, Spain
| | - Laura Yébenes Gregorio
- Pathological Anatomy Department, IdiPaz, La Paz-Cantoblanco-Carlos III University Hospital, Madrid, Spain
| | - Eugenia García Fernández
- Pathological Anatomy Department, IdiPaz, La Paz-Cantoblanco-Carlos III University Hospital, Madrid, Spain
| | - Carlos Jiménez Martín
- Nephrology Department, REDinREN, IRSIN, IdiPaz, La Paz-Cantoblanco-Carlos III University Hospital, Madrid, Spain
| | - María-Ovidia López Oliva
- Nephrology Department, REDinREN, IRSIN, IdiPaz, La Paz-Cantoblanco-Carlos III University Hospital, Madrid, Spain
| | - Elena González García
- Nephrology Department, REDinREN, IRSIN, IdiPaz, La Paz-Cantoblanco-Carlos III University Hospital, Madrid, Spain
| | - Gabriel Ledesma Sánchez
- Nephrology Department, REDinREN, IRSIN, IdiPaz, La Paz-Cantoblanco-Carlos III University Hospital, Madrid, Spain
| | - Gilda Carreño Cornejo
- Nephrology Department, REDinREN, IRSIN, IdiPaz, La Paz-Cantoblanco-Carlos III University Hospital, Madrid, Spain
| | - Rafael Selgas Gutiérrez
- Nephrology Department, REDinREN, IRSIN, IdiPaz, La Paz-Cantoblanco-Carlos III University Hospital, Madrid, Spain
| | | | - Marta Melgosa Hijosa
- Pediatric Nephrology Department, IdiPaz, La Paz-Cantoblanco-Carlos III University Hospital, Madrid, Spain
| | - Carlota Fernández Camblor
- Pediatric Nephrology Department, IdiPaz, La Paz-Cantoblanco-Carlos III University Hospital, Madrid, Spain
| | - Yasmina Mozo Del Castillo
- Pediatric Hematology Oncology Department, IdiPaz, La Paz-Cantoblanco-Carlos III University Hospital, Madrid, Spain
| | - Luisa Sisinni
- Pediatric Hematology Oncology Department, IdiPaz, La Paz-Cantoblanco-Carlos III University Hospital, Madrid, Spain
| | - David Bueno Sánchez
- Pediatric Hematology Oncology Department, IdiPaz, La Paz-Cantoblanco-Carlos III University Hospital, Madrid, Spain
| | - Antonio Pérez-Martínez
- Pediatric Hematology Oncology Department, IdiPaz, La Paz-Cantoblanco-Carlos III University Hospital, Madrid, Spain
| | - Elena Sánchez Zapardiel
- Immunology Department, IdiPaz, La Paz-Cantoblanco-Carlos III University Hospital, Madrid, Spain
| | - Eduardo López Granados
- Immunology Department, IdiPaz, La Paz-Cantoblanco-Carlos III University Hospital, Madrid, Spain
| | - Jaime Monserrat Villatoro
- Clinical Pharmacology Department, IdiPaz, School of Medicine, La Paz-Cantoblanco-Carlos III University Hospital, Autonomous University of Madrid, Madrid, Spain
| | - Rafael Hernández Zabala
- Clinical Pharmacology Department, IdiPaz, School of Medicine, La Paz-Cantoblanco-Carlos III University Hospital, Autonomous University of Madrid, Madrid, Spain
| | - Alberto M Borobia
- Clinical Pharmacology Department, IdiPaz, School of Medicine, La Paz-Cantoblanco-Carlos III University Hospital, Autonomous University of Madrid, Madrid, Spain
| | - Jesús Frías
- Clinical Pharmacology Department, IdiPaz, School of Medicine, La Paz-Cantoblanco-Carlos III University Hospital, Autonomous University of Madrid, Madrid, Spain
| | - Elena Ramírez
- Clinical Pharmacology Department, IdiPaz, School of Medicine, La Paz-Cantoblanco-Carlos III University Hospital, Autonomous University of Madrid, Madrid, Spain
| |
Collapse
|
32
|
Cuenca AG, Rosales I, Lee RJ, Wu CL, Colvin R, Feldman AS, Efstathiou JA, Tolkoff-Rubin N, Elias N. Resolution of a High Grade and Metastatic BK Polyomavirus-Associated Urothelial Cell Carcinoma Following Radical Allograft Nephroureterectomy and Immune Checkpoint Treatment: A Case Report. Transplant Proc 2020; 52:2720-2725. [PMID: 32741665 DOI: 10.1016/j.transproceed.2020.06.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 06/04/2020] [Indexed: 01/20/2023]
Abstract
BACKGROUND BK viral infection in the posttransplant setting continues to cause serious morbidity with effects ranging from allograft nephropathy and dysfunction to urothelial malignancy. RESULTS In this report, we present a patient that developed BK-associated nephropathy and, 6 years later, locally advanced urothelial malignancy in the renal allograft with nodal, muscle, and extremity involvement. Following radical allograft nephroureterectomy, he was treated with palliative radiation and the immune checkpoint inhibitor atezolizumab. Follow-up imaging at 1 year demonstrated radiographic complete response. CONCLUSIONS This report supports the growing body of evidence supporting the association of urothelial malignancy and BK virus infection in renal transplant recipients. Further, it highlights the novel application of immune checkpoint inhibitors in the treatment of advanced posttransplant malignancy, in particular when the allograft is removed and the tumor is possibly of donor origin.
Collapse
Affiliation(s)
- Alex G Cuenca
- Department of Surgery/Division of Transplant Surgery, Massachusetts General Hospital, Boston, MA; Department of Surgery, Boston Children's Hospital, Boston, MA.
| | - Ivy Rosales
- Department of Pathology, Massachusetts General Hospital, Boston, MA
| | - Richard J Lee
- Department of Medicine/Division of Hematology Oncology, Massachusetts General Hospital, Boston, MA
| | - Chin-Lee Wu
- Department of Pathology, Massachusetts General Hospital, Boston, MA
| | - Robert Colvin
- Department of Pathology, Massachusetts General Hospital, Boston, MA
| | - Adam S Feldman
- Department of Urology, Massachusetts General Hospital, Boston, MA
| | - Jason A Efstathiou
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA
| | - Nina Tolkoff-Rubin
- Department of Medicine/Division of Nephrology, Massachusetts General Hospital, Boston, MA
| | - Nahel Elias
- Department of Surgery/Division of Transplant Surgery, Massachusetts General Hospital, Boston, MA
| |
Collapse
|
33
|
Wang Y, Liu Y, Deng W, Fu F, Yan S, Yang H, Liu R, Geng J, Xu J, Wu Y, Ma J, Zhou J, Liu N, Jin Y, Xia R, Elias N, Lee RJ, Feldman AS, Blute ML, Colvin RB, Wu CL, Miao Y. Viral integration in BK polyomavirus-associated urothelial carcinoma in renal transplant recipients: multistage carcinogenesis revealed by next-generation virome capture sequencing. Oncogene 2020; 39:5734-5742. [PMID: 32724161 DOI: 10.1038/s41388-020-01398-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/14/2020] [Accepted: 07/16/2020] [Indexed: 12/11/2022]
Abstract
BK polyomavirus (BKPyV)-associated cancer after transplantation has gained increasing attention. However, the role of BKPyV integration on oncogenesis is still unclear. In this study, next-generation virome capture sequencing of primary and metastatic tumors were performed in three patients with BKPyV-associated urothelial carcinoma after renal transplantation. As a result, a total of 332 viral integration sites were identified in the six tumors. Integration of BKPyV in both primary and metastatic tumors followed the mechanism of microhomology-mediated end joining mostly, since microhomologies between human and BKPyV genomes were significantly enriched in flanking regions of 84% of the integration sites. Viral DNA breakpoints were nonrandom and tended to assemble in large T gene, small T gene and viral protein 2 gene. There were three, one and one consensus integration sites between the primary and metastatic tumors, which affected LINC01924, eIF3c, and NEIL2 genes in the three cases respectively. Thus, we concluded that integration of BKPyV was a continuous process occurring in both primary and metastatic tumors, generating heterogenous tumor cell populations. Through this ongoing process, certain cell populations might have gained growth advantage or metastatic potential, as a result of viral integration either affecting the cellular genes where the viral DNA integrated to or altering the expression or function of the viral genes.
Collapse
Affiliation(s)
- Yuchen Wang
- Department of Organ Transplantation, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yanna Liu
- Department of Organ Transplantation, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wenfeng Deng
- Department of Organ Transplantation, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Fangxiang Fu
- Department of Organ Transplantation, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Susha Yan
- Department of Organ Transplantation, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hongwei Yang
- Department of Organ Transplantation, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Rumin Liu
- Department of Organ Transplantation, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jian Geng
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jian Xu
- Department of Organ Transplantation, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yihan Wu
- Department of Organ Transplantation, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | | | | | - Na Liu
- Mygenostics Co., Beijing, China
| | - Yu Jin
- Department of Organ Transplantation, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Renfei Xia
- Department of Organ Transplantation, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Nahel Elias
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Richard J Lee
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Adam S Feldman
- Department of Urology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Michael L Blute
- Department of Urology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Robert B Colvin
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Chin-Lee Wu
- Department of Urology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA. .,Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA.
| | - Yun Miao
- Department of Organ Transplantation, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
34
|
Bertz S, Ensser A, Stoehr R, Eckstein M, Apel H, Mayr D, Buettner-Herold M, Gaisa NT, Compérat E, Wullich B, Hartmann A, Knöll A. Variant morphology and random chromosomal integration of BK polyomavirus in posttransplant urothelial carcinomas. Mod Pathol 2020; 33:1433-1442. [PMID: 32047230 DOI: 10.1038/s41379-020-0489-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 01/26/2020] [Accepted: 01/29/2020] [Indexed: 02/06/2023]
Abstract
BK polyomavirus (BKPyV) causes major complications in solid organ transplant recipients but little is known about its role in the development of urothelial carcinoma (UC) during immunosuppression. Immunohistochemistry (IHC) screening for polyomavirus large T antigen (LTag) was performed in 94 micropapillary UC (MPUC), 480 unselected UC, 199 muscle invasive UC (including 83 UC with variant differentiation), 76 cases of plasmocytoid, nested and large nested UC and 15 posttransplant UC. LTag expressing UC were reevaluated regarding their histomorphological features and characterized by IHC for p53 and HER2, chromogenic in situ hybridization for HER2 and SNaPshot analysis of the TERT promoter and HRAS. Real-time PCR and next generation sequencing (NGS) were performed to search for BKPyV-DNA and for variants in the tumor and viral genomes. We detected five LTag expressing UC which were diagnosed between 2 and 18 years after kidney (n = 4) or heart (n = 1) transplantation. 89 MPUC without history of organ transplantation and overall 755 UC (including cases with variant histology) were LTag negative. Of the five LTag expressing UC, three were MPUC, one showed extensive divergent differentiation with Mullerian type clear cell carcinoma, and one displayed focal villoglandular differentiation. All five tumors had aberrant nuclear p53 expression, 2/5 were HER2-amplified, and 3/5 had TERT promoter mutations. Within the 50 most common cancer related genes altered in UC we detected very few alterations and no TP53 mutations. BKPyV-DNA was present in 5/5 UC, chromosomal integration of the BKPyV genome was detectable in 4/5 UC. Two UC with BKPyV integration showed small deletions in the BKPyV noncoding control region (NCCR). The only UC without detectable BKPyV integration had a high viral load of human herpesvirus 6 (HHV-6). Our results suggest that LTag expression of integrated BKPyV genomes and resulting p53 inactivation lead to aggressive high-grade UC with unusual, often micropapillary morphology.
Collapse
Affiliation(s)
- Simone Bertz
- Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, 91054, Erlangen, Germany
| | - Armin Ensser
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, 91054, Erlangen, Germany
| | - Robert Stoehr
- Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, 91054, Erlangen, Germany
| | - Markus Eckstein
- Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, 91054, Erlangen, Germany
| | - Hendrik Apel
- Department of Urology and Pediatric Urology, University Hospital Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, 91054, Erlangen, Germany
| | - Doris Mayr
- Institute of Pathology, Ludwig Maximilians University Munich, 80337, Munich, Germany
| | - Maike Buettner-Herold
- Department of Nephropathology, University Hospital Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, 91054, Erlangen, Germany
| | | | - Eva Compérat
- Department of Pathology, Pitié-Salpétrière Hospital, UPMC, 75013, Paris, France
| | - Bernd Wullich
- Department of Urology and Pediatric Urology, University Hospital Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, 91054, Erlangen, Germany
| | - Arndt Hartmann
- Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, 91054, Erlangen, Germany
| | - Antje Knöll
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, 91054, Erlangen, Germany.
| |
Collapse
|
35
|
McIlroy D, Halary F, Bressollette-Bodin C. Intra-patient viral evolution in polyomavirus-related diseases. Philos Trans R Soc Lond B Biol Sci 2020; 374:20180301. [PMID: 30955497 DOI: 10.1098/rstb.2018.0301] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Human polyomaviruses show relatively little genetic polymorphism between isolates, indicating that these viruses are genetically stable between hosts. However, it has become increasingly clear that intra-host molecular evolution is a feature of some polyomavirus (PyV) infections in humans. Mutations inducing premature stop codons in the early region of the integrated Merkel cell PyV genome lead to the expression of a truncated form of the large tumour (LT) antigen that is critical for the transformation of Merkel cell carcinoma (MCC) cells. Non-coding control region (NCCR) rearrangements and point mutations in virion protein (VP) 1 have been described in both JCPyV and BKPyV infections. In the context of JCPyV infection, molecular evolution at both these loci allows the virus to replicate effectively in the central nervous system, thereby leading to the development of progressive multifocal leukoencephalopathy (PML). In BKPyV infection, NCCR rearrangements have been linked to higher rates of virus replication in the kidney, and are proposed to play a direct causal role in the development of PyV-associated nephropathy. In all three of these infections, therefore, intra-host viral evolution appears to be an essential component of the disease process. This article is part of the theme issue 'Silent cancer agents: multi-disciplinary modelling of human DNA oncoviruses'.
Collapse
Affiliation(s)
- Dorian McIlroy
- 1 Centre de Recherche en Transplantation et Immunologie UMR 1064, INSERM, Université de Nantes , 44093 Nantes cedex 01 , France.,2 Faculté des Sciences et des Techniques, Université de Nantes , 44093 Nantes cedex 01 , France.,4 Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes , 44093 Nantes cedex 01 , France
| | - Franck Halary
- 1 Centre de Recherche en Transplantation et Immunologie UMR 1064, INSERM, Université de Nantes , 44093 Nantes cedex 01 , France.,4 Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes , 44093 Nantes cedex 01 , France
| | - Céline Bressollette-Bodin
- 1 Centre de Recherche en Transplantation et Immunologie UMR 1064, INSERM, Université de Nantes , 44093 Nantes cedex 01 , France.,3 Faculté de Médecine, Université de Nantes , 44093 Nantes cedex 01 , France.,4 Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes , 44093 Nantes cedex 01 , France.,5 Service de Virologie, CHU Nantes , 44093 Nantes cedex 01 , France
| |
Collapse
|
36
|
Roy S, Mieczkowski PA, Weida C, Huo J, Roehrs P, Singh HK, Nickeleit V. BK polyomavirus nephropathy with systemic viral spread: Whole genome sequencing data from a fatal case of BKPyV infection. Transpl Infect Dis 2020; 22:e13269. [PMID: 32090422 DOI: 10.1111/tid.13269] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 01/26/2020] [Accepted: 02/16/2020] [Indexed: 12/25/2022]
Abstract
BK polyomavirus (BKPyV) infections with multi-organ involvement are rare. Here, we report for the first time whole genome sequencing data from a patient with systemic BKPyV disease. She presented post stem cell transplantation with graft-vs-host disease, suffered from profound immunosuppression, and developed fatal BKPyV disease of kidneys, lungs, and pancreas. The lytic infection was caused by an episomal BKPyV-Ib strain with canonical structural and receptor encoding gene sequences. However, DNA from all infected tissue sites showed diverse BKPyV-NCCR rearrangements (rr-NCCR) involving the P, Q, and R domains, while largely sparing O and S, carrying initiation sites for early and late BKPyV gene transcripts crucial for viral replication and assembly. Common to all rr-NCCR variants was a break point in Q (position 17-27) that can form the nidus for double DNA strand break formation and gene rearrangements. Metastatic clonal BKPyV spread from kidneys to other organs was not detected. We hypothesize that lack of immune surveillance and a specific NCCR break point promote profound gene rearrangements of NCCR-P, Q, and R with alterations of regulatory feedback loops. As a result, viral replication and pathogenicity are enhanced leading to severe, often fatal systemic disease not caused by the common archetypical BKPyV strains.
Collapse
Affiliation(s)
- Sanjeet Roy
- Division of Nephropathology, The University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Piotr A Mieczkowski
- Department of Genetics, The University of North Carolina, Chapel Hill, NC, USA
| | - Carol Weida
- Carolinas Pathology Group, Charlotte, NC, USA
| | - Jeffrey Huo
- Division of Pediatric Hematology/Oncology/BMT, Levine Children's Hospital, Charlotte, NC, USA
| | - Philip Roehrs
- Division of Pediatric Hematology/Oncology/BMT, Levine Children's Hospital, Charlotte, NC, USA
| | - Harsharan K Singh
- Division of Nephropathology, The University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Volker Nickeleit
- Division of Nephropathology, The University of North Carolina School of Medicine, Chapel Hill, NC, USA
| |
Collapse
|
37
|
Chu YH, Zhong W, Rehrauer W, Pavelec DM, Ong IM, Arjang D, Patel SS, Hu R. Clinicopathologic Characterization of Post-Renal Transplantation BK Polyomavirus-Associated Urothelial CarcinomaSingle Institutional Experience. Am J Clin Pathol 2020; 153:303-314. [PMID: 31628837 DOI: 10.1093/ajcp/aqz167] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
OBJECTIVES To review rare cases of BK polyomavirus (BKPyV) associated urologic carcinomas in kidney transplant recipients at one institution and in the literature. METHODS We describe the clinicopathologic features of BKPyV-associated urologic carcinomas in a single-institution cohort. RESULTS Among 4,772 kidney recipients during 1994 to 2014, 26 (0.5%) and 26 (0.5%) developed posttransplantation urothelial carcinomas (UCs) and renal cell carcinomas (RCCs), respectively, as of 2017. Six (27%) UCs but none of the RCCs expressed large T antigen (TAg). TAg-expressing UCs were high grade with p16 and p53 overexpression (P < .05 compared to TAg-negative UCs). Tumor genome sequencing revealed BKPyV integration and a lack of pathogenic mutations in 50 cancer-relevant genes. Compared to TAg-negative UCs, TAg-expressing UCs more frequently presented at advanced stages (50% T3-T4) with lymph node involvement (50%) and higher UC-specific mortality (50%). CONCLUSIONS Post-renal transplantation BKPyV-associated UCs are aggressive and genetically distinct from most non-BKPyV-related UCs.
Collapse
Affiliation(s)
- Ying-Hsia Chu
- Department of Pathology and Laboratory Medicine, Madison
| | - Weixiong Zhong
- Department of Pathology and Laboratory Medicine, Madison
- Department of Pathology and Laboratory Medicine Service, William S. Middleton Memorial Veterans Hospital, Madison, WI
| | | | - Derek M Pavelec
- Department of Bioinformatics Resource Center, University of Wisconsin Biotechnology Center, Madison
- Department of Cancer Informatics Shared Resource, University of Wisconsin Carbone Cancer Center, Madison
| | - Irene M Ong
- Department of Bioinformatics Resource Center, University of Wisconsin Biotechnology Center, Madison
| | - Djamali Arjang
- Department of Medicine, University of Wisconsin Hospital and Clinics, Madison
| | - Sanjay S Patel
- Department of Pathology and Laboratory Medicine, Madison
| | - Rong Hu
- Department of Pathology and Laboratory Medicine, Madison
| |
Collapse
|
38
|
Starrett GJ, Buck CB. The case for BK polyomavirus as a cause of bladder cancer. Curr Opin Virol 2019; 39:8-15. [PMID: 31336246 PMCID: PMC6901737 DOI: 10.1016/j.coviro.2019.06.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 06/20/2019] [Accepted: 06/21/2019] [Indexed: 12/17/2022]
Abstract
In 2014, the International Agency for Research on Cancer judged Merkel cell polyomavirus (MCPyV) to be a probable human carcinogen. BK polyomavirus (BKPyV, a distant cousin of MCPyV) was ruled a possible carcinogen. In this review, we argue that it has recently become reasonable to view both of these viruses as known human carcinogens. In particular, several complementary lines of evidence support a causal role for BKPyV in the development of bladder carcinomas affecting organ transplant patients. The expansion of inexpensive deep sequencing has opened new approaches to investigating the important question of whether BKPyV causes urinary tract cancers in the general population.
Collapse
Affiliation(s)
- Gabriel J Starrett
- National Cancer Institute, Building 37 Room 4118, 9000 Rockville Pike, Bethesda, MD 20892-4263, United States.
| | - Christopher B Buck
- National Cancer Institute, Building 37 Room 4118, 9000 Rockville Pike, Bethesda, MD 20892-4263, United States
| |
Collapse
|
39
|
|
40
|
Kumari K, Pradeep I, Kakkar A, Dinda AK, Seth A, Nayak B, Singh G. BK polyomavirus and urothelial carcinoma: Experience at a tertiary care centre in India with review of literature. Ann Diagn Pathol 2019; 40:77-80. [PMID: 31075667 DOI: 10.1016/j.anndiagpath.2019.04.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 04/12/2019] [Accepted: 04/22/2019] [Indexed: 11/26/2022]
Abstract
INTRODUCTION BK polyomavirus is ubiquitous and remains dormant in the urothelial tract, reactivating and replicating in the immunocompromised state especially in the setting of post-renal transplantation where it is believed to be directly oncogenic based on recent reports. Its oncogenic role in the immunocompetent host is controversial. This study aimed to investigate the association of BK polyomavirus in Urothelial Carcinoma. MATERIAL AND METHODS Patients with suspected urothelial carcinoma (UC) admitted under Department of Urology over a period of one year were recruited and transuretheral bladder tumor (TURBT) resection was performed, along with sampling of cystoscopically normal-appearing urothelium away from the tumor. In addition, cystectomy specimens with UC were included, with sampling of grossly normal-appearing urothelium away from the tumor. Immunohistochemistry (IHC) for SV40 T-Antigen and chromogenic in situ hybridization (CISH) using BK polyomavirus specific probe was performed on the paired samples (tumor and normal). RESULTS Twenty-three TURBT and 14 cystectomy specimens were assessed. None of the cases showed evidence of BK polyomavirus infection in tumor or in surrounding mucosa by IHC. CISH performed in ten cases were also found to be negative. In comparison, one post-renal transplant urothelial carcinoma in our experience showed diffuse SV40 staining. CONCLUSIONS This study suggests that BK polyomavirus infection is not associated with urothelial malignancy in the immunocompetent setting unlike in the immunocompromised setting where it should always be investigated for.
Collapse
Affiliation(s)
- Kalpana Kumari
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
| | - Immanuel Pradeep
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
| | - Aanchal Kakkar
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
| | - Amit Kumar Dinda
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
| | - Amlesh Seth
- Department of Urology, All India Institute of Medical Sciences, New Delhi, India
| | - B Nayak
- Department of Urology, All India Institute of Medical Sciences, New Delhi, India
| | - Geetika Singh
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India.
| |
Collapse
|
41
|
Hirsch HH, Randhawa PS. BK polyomavirus in solid organ transplantation-Guidelines from the American Society of Transplantation Infectious Diseases Community of Practice. Clin Transplant 2019; 33:e13528. [PMID: 30859620 DOI: 10.1111/ctr.13528] [Citation(s) in RCA: 266] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 02/26/2019] [Indexed: 02/07/2023]
Abstract
The present AST-IDCOP guidelines update information on BK polyomavirus (BKPyV) infection, replication, and disease, which impact kidney transplantation (KT), but rarely non-kidney solid organ transplantation (SOT). As pretransplant risk factors in KT donors and recipients presently do not translate into clinically validated measures regarding organ allocation, antiviral prophylaxis, or screening, all KT recipients should be screened for BKPyV-DNAemia monthly until month 9, and then every 3 months until 2 years posttransplant. Extended screening after 2 years may be considered in pediatric KT. Stepwise immunosuppression reduction is recommended for KT patients with plasma BKPyV-DNAemia of >1000 copies/mL sustained for 3 weeks or increasing to >10 000 copies/mL reflecting probable and presumptive BKPyV-associated nephropathy, respectively. Reducing immunosuppression is also the primary intervention for biopsy-proven BKPyV-associated nephropathy. Hence, allograft biopsy is not required for treating BKPyV-DNAemic patients with baseline renal function. Despite virological rationales, proper randomized clinical trials are lacking to generally recommend treatment by switching from tacrolimus to cyclosporine-A, from mycophenolate to mTOR inhibitors or leflunomide or by the adjunct use of intravenous immunoglobulins, leflunomide, or cidofovir. Fluoroquinolones are not recommended for prophylaxis or therapy. Retransplantation after allograft loss due to BKPyV nephropathy can be successful if BKPyV-DNAemia is definitively cleared, independent of failed allograft nephrectomy.
Collapse
Affiliation(s)
- Hans H Hirsch
- Transplantation & Clinical Virology, Department of Biomedicine, University of Basel, Basel, Switzerland.,Infectious Diseases & Hospital Epidemiology, University Hospital Basel, Basel, Switzerland
| | - Parmjeet S Randhawa
- Division of Transplantation Pathology, Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania.,Thomas E Starzl Transplantation Institute, Pittsburgh, Pennsylvania
| | | |
Collapse
|
42
|
Schrama D, Sarosi EM, Adam C, Ritter C, Kaemmerer U, Klopocki E, König EM, Utikal J, Becker JC, Houben R. Characterization of six Merkel cell polyomavirus-positive Merkel cell carcinoma cell lines: Integration pattern suggest that large T antigen truncating events occur before or during integration. Int J Cancer 2019; 145:1020-1032. [PMID: 30873613 DOI: 10.1002/ijc.32280] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 02/06/2019] [Accepted: 03/11/2019] [Indexed: 12/16/2022]
Abstract
Merkel cell carcinoma (MCC), an aggressive neuroendocrine skin tumor, is a polyomavirus-induced human cancer. To study the causal relationship of MCC carcinogenesis with the integrated Merkel cell polyomavirus (MCPyV) in detail, well-characterized MCC cell lines are needed. Consequently, in the current study, we established and characterized six MCPyV-positive MCC cell lines. Microarray-based comparative genomic hybridization revealed a stable genome carrying only a limited number of chromosomal gains and deletions. All cell lines expressed MCC markers Keratin-20 and neuron-specific enolase as well as truncated MCPyV-encoded large T antigen (LT). For five cell lines, we were able to identify the MCPyV-integration sites in introns of different genes. The LT-truncating stop codon mutations and integration sites were affirmed in the respective clinical patient samples. Inverse PCR suggested that three of the cell lines contained MCPyV genomes as concatemers. This notion was confirmed for the two cell lines with known integration sites. Importantly, our observation of distinct stop codon mutations in cell lines with concatemeric MCPyV integration indicates that these LT-truncating mutations occur before integration. In summary, we provide the detailed characterization of six MCPyV-positive MCC cell lines, which are likely to serve as valuable tools in future MCC research.
Collapse
Affiliation(s)
- David Schrama
- Department of Dermatology, University Hospital Würzburg, Würzburg, Germany
| | - Eva-Maria Sarosi
- Department of Dermatology, University Hospital Würzburg, Würzburg, Germany
| | - Christian Adam
- Department of Dermatology, University Hospital Würzburg, Würzburg, Germany
| | - Cathrin Ritter
- Department of Translational Skin Cancer Research (tscr), University Hospital Essen, Essen, Germany.,German Cancer Consortium (DKTK/DKFZ), Heidelberg, Germany
| | - Ulrike Kaemmerer
- Department of Gynecology, University Hospital Würzburg, Würzburg, Germany
| | - Eva Klopocki
- Institute for Human Genetics, University of Würzburg, Würzburg, Germany
| | - Eva-Maria König
- Institute for Human Genetics, University of Würzburg, Würzburg, Germany
| | - Jochen Utikal
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Germany
| | - Jürgen C Becker
- Department of Translational Skin Cancer Research (tscr), University Hospital Essen, Essen, Germany.,German Cancer Consortium (DKTK/DKFZ), Heidelberg, Germany
| | - Roland Houben
- Department of Dermatology, University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|
43
|
Masutani K. Viral infections directly involved in kidney allograft function. Nephrology (Carlton) 2018; 23 Suppl 2:31-37. [PMID: 29968408 DOI: 10.1111/nep.13285] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/16/2018] [Indexed: 12/22/2022]
Abstract
Modern immunosuppressive therapy has dramatically reduced the incidence of acute rejection and improved graft survival in kidney transplant patients. However, infectious complications remain an important issue. Amongst the various pathogens, viruses such as adenovirus and polyomavirus BK can directly cause acute or chronic graft dysfunction. Adenovirus mainly causes haemorrhagic cystitis and tubulointerstitial nephritis in kidney transplant patients. While patients show apparent clinical symptoms such as fever, dysuria, gross haematuria, frequency and urgency of urination, and most patients show acute graft dysfunction, these symptoms and graft dysfunction are reversible. Polyomavirus BK infection, however, is asymptomatic but graft outcome is poor if the patient develops tissue-invasive nephropathy confirmed by graft biopsy. Recently, an attempt to create a pathological classification for predicting the clinical course has been made by the Banff Working Group on Polyomavirus Nephropathy. With regards to treatment, the basic strategy is a reduction of calcineurin inhibitor and/or antimetabolites, and the effectiveness of several adjunct treatments has been investigated in several clinical trials. There are other unresolved issues, such as the diagnosis of subsequent acute rejection, the definition of remission, methods of resuming immunosuppression and long-term follow-up. Most of all, development of effective vaccines and novel drug discovery are necessary to prevent the development and progression of BKV-associated nephropathy.
Collapse
Affiliation(s)
- Kosuke Masutani
- Division of Nephrology and Rheumatology, Fukuoka University, Fukuoka, Japan
| |
Collapse
|
44
|
Tamura D, Maeda D, Halimi SA, Okimura M, Kudo-Asabe Y, Ito S, Sato N, Shibahara J, Nanjo H, Terada Y, Goto A. Adenomatoid tumour of the uterus is frequently associated with iatrogenic immunosuppression. Histopathology 2018; 73:1013-1022. [DOI: 10.1111/his.13726] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 08/07/2018] [Indexed: 12/11/2022]
Affiliation(s)
- Daisuke Tamura
- Department of Cellular and Organ Pathology; Graduate School of Medicine; Akita University; Akita Japan
- Department of Obstetrics and Gynecology; Graduate School of Medicine; Akita University; Akita Japan
| | - Daichi Maeda
- Department of Cellular and Organ Pathology; Graduate School of Medicine; Akita University; Akita Japan
- Department of Clinical Genomics; Graduate School of Medicine; Osaka University; Osaka Japan
| | - Sultan Ahmad Halimi
- Department of Cellular and Organ Pathology; Graduate School of Medicine; Akita University; Akita Japan
- Department of Histopathology; Kabul Medical University; Kabul Afghanistan
| | - Masato Okimura
- Department of Cellular and Organ Pathology; Graduate School of Medicine; Akita University; Akita Japan
- Faculty of Medicine; Akita University; Akita Japan
| | - Yukitsugu Kudo-Asabe
- Department of Cellular and Organ Pathology; Graduate School of Medicine; Akita University; Akita Japan
| | - Satoru Ito
- Department of Pathology; Akita University Hospital; Akita Japan
| | - Naoki Sato
- Department of Obstetrics and Gynecology; Graduate School of Medicine; Akita University; Akita Japan
| | | | - Hiroshi Nanjo
- Department of Pathology; Akita University Hospital; Akita Japan
| | - Yukihiro Terada
- Department of Obstetrics and Gynecology; Graduate School of Medicine; Akita University; Akita Japan
| | - Akiteru Goto
- Department of Cellular and Organ Pathology; Graduate School of Medicine; Akita University; Akita Japan
| |
Collapse
|
45
|
Nucleic Acid Tests for BK Polyomavirus Is Critical in Renal Transplant Recipients. Transplant Proc 2018; 50:2489-2492. [PMID: 30316383 DOI: 10.1016/j.transproceed.2018.03.100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 03/02/2018] [Indexed: 11/21/2022]
Abstract
This study evaluates the incidence of BK polyomavirus (BKV) and prognosis of BKV infection in kidney transplant recipients (KTRs) who received transplantation in our hospital before and after regular BKV nucleic acid test (NAT) was implemented. METHODS The study included 74 KTRs who received a single kidney either from standard- or expanded-criteria deceased donor between March 2011 and March 2017. BKV NATs were regularly checked in 26 patients (group 1) in the first posttransplant year in accordance with current guidelines since NAT was implemented in our laboratory in 2014. We retrospectively compared 48 KTRs (group 2) who either received NAT when necessary in another laboratory or were not checked before 2014. RESULTS There was no significant difference in patient characteristics between groups. BKV viruria were confirmed in 8 of 26 (30.8%) group 1 patients, whereas only 2 of 48 (4.2%) BKV infections were confirmed in group 2. None of the BKV(+) KTRs in group 1 developed BK polyomavirus-associated nephropathy (BKVAN), whereas 2 BKV(+) patients (100%) of group 2 developed BKVAN, which indicates renal function deterioration and biopsy-validated nephropathy. There was no significant difference in graft survival and renal function between the 2 groups. CONCLUSIONS The risk of BKV infection is considerably higher in KTRs using NAT. Because there is no approval treatment, early diagnosis of BKV infection and early reduction of immunosuppression agents is critical for KTRs. Implementation of regular BKV NAT is mandatory before BKVAN and malignant neoplasms develop.
Collapse
|
46
|
Prado JCM, Monezi TA, Amorim AT, Lino V, Paladino A, Boccardo E. Human polyomaviruses and cancer: an overview. Clinics (Sao Paulo) 2018; 73:e558s. [PMID: 30328951 PMCID: PMC6157077 DOI: 10.6061/clinics/2018/e558s] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 05/15/2018] [Indexed: 12/27/2022] Open
Abstract
The name of the family Polyomaviridae, derives from the early observation that cells infected with murine polyomavirus induced multiple (poly) tumors (omas) in immunocompromised mice. Subsequent studies showed that many members of this family exhibit the capacity of mediating cell transformation and tumorigenesis in different experimental models. The transformation process mediated by these viruses is driven by viral pleiotropic regulatory proteins called T (tumor) antigens. Similar to other viral oncoproteins T antigens target cellular regulatory factors to favor cell proliferation, immune evasion and downregulation of apoptosis. The first two human polyomaviruses were isolated over 45 years ago. However, recent advances in the DNA sequencing technologies led to the rapid identification of additional twelve new polyomaviruses in different human samples. Many of these viruses establish chronic infections and have been associated with conditions in immunosuppressed individuals, particularly in organ transplant recipients. This has been associated to viral reactivation due to the immunosuppressant therapy applied to these patients. Four polyomaviruses namely, Merkel cell polyomavirus (MCPyV), Trichodysplasia spinulosa polyomavirus (TSPyV), John Cunningham Polyomavirus (JCPyV) and BK polyomavirus (BKPyV) have been associated with the development of specific malignant tumors. However, present evidence only supports the role of MCPyV as a carcinogen to humans. In the present review we present a summarized discussion on the current knowledge concerning the role of MCPyV, TSPyV, JCPyV and BKPyV in human cancers.
Collapse
Affiliation(s)
- José Carlos Mann Prado
- Departamento de Microbiologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo, SP, BR
| | - Telma Alves Monezi
- Departamento de Microbiologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo, SP, BR
| | - Aline Teixeira Amorim
- Departamento de Microbiologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo, SP, BR
| | - Vanesca Lino
- Departamento de Microbiologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo, SP, BR
| | - Andressa Paladino
- Departamento de Microbiologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo, SP, BR
| | - Enrique Boccardo
- Departamento de Microbiologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo, SP, BR
- *Corresponding author. E-mail:
| |
Collapse
|
47
|
Odetola OE, Isaila B, Pambuccian SE, Barkan GA. Unusual BK polyomavirus-associated urologic malignancies in renal transplant recipients: Report of two cases and review of the literature. Diagn Cytopathol 2018; 46:1050-1059. [DOI: 10.1002/dc.24044] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 07/03/2018] [Accepted: 07/09/2018] [Indexed: 12/18/2022]
Affiliation(s)
- Oluwatobi E. Odetola
- Department of Pathology and Laboratory Medicine; Loyola University Medical Center; Maywood Illinois
| | - Bogdan Isaila
- Department of Pathology and Laboratory Medicine; Loyola University Medical Center; Maywood Illinois
| | - Stefan E. Pambuccian
- Department of Pathology and Laboratory Medicine; Loyola University Medical Center; Maywood Illinois
| | - Güliz A. Barkan
- Department of Pathology and Laboratory Medicine; Loyola University Medical Center; Maywood Illinois
| |
Collapse
|
48
|
Sirohi D, Vaske C, Sanborn Z, Smith SC, Don MD, Lindsey KG, Federman S, Vankalakunti M, Koo J, Bose S, Peralta-Venturina MD, Ziffle JV, Grenert JP, Miller S, Chiu C, Amin MB, Simko JP, Stohr BA, Luthringer DJ. Polyoma virus-associated carcinomas of the urologic tract: a clinicopathologic and molecular study. Mod Pathol 2018; 31:1429-1441. [PMID: 29765141 DOI: 10.1038/s41379-018-0065-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Revised: 03/29/2018] [Accepted: 03/30/2018] [Indexed: 12/11/2022]
Abstract
In recent years, there has been increased interest in carcinomas of the urologic tract, that demonstrate association with the polyoma virus BK arising in immunosuppressed individuals, though the nature of this association is uncertain. To begin to understand this phenomenon, we reviewed the clinical, morphological, and immunohistochemical features of 11 carcinomas of the urologic tract, mainly urothelial (N = 9) and collecting duct carcinomas (N = 2), occurring during immunosuppression, and expressing polyoma virus T-antigen by immunohistochemistry. These were compared to a control group of carcinomas (N = 8), also arising during immunosuppression, but without T-antigen expression. A subset of both groups were also studied by hybrid capture-based DNA sequencing, probing not only for 479 cancer-related human genes, but also for polyoma and other viral sequences. Polyoma T-antigen-expressing tumors arose in 7 males and 4 females, at a median age of 66, and were aggressive, high-grade tumors with more than 1 variant morphologic pattern identified in 81% of cases, and a majority (73%) presenting at high stage category (>pT3). Diffuse polyoma T-antigen staining was seen in 91% of cases, with co-localization of aberrant p53 staining in 89%. Sequencing detected a lower number of deleterious mutations among T-antigen-expressing cases (average 1.62; 1/8 with TP53 mutation) compared to control cases (average 3.5, 2/4 with TP53 mutation). Only BK virus was detected with clonal integration and breakpoints randomly distributed across the human and viral genomes in 5/5 of the polyoma T-antigen-expressing carcinomas, and in none of the controls (0/4). In summary, these findings identify aggressive clinicopathologic features of polyoma T-antigen-expressing carcinomas, document BK as the strain involved, and associate BK viral integration with T-antigen expression and p53 aberrancy. While the apparent randomness of viral insertion sites is functionally unclear, the differing rates of mutations between T-antigen-expressing and control cases is intriguing.
Collapse
Affiliation(s)
- Deepika Sirohi
- Department of Pathology and Laboratory Medicine, University of California, San Francisco, CA, USA.
| | | | | | - Steven C Smith
- Departments of Pathology and Urology, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Michelle D Don
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | | | - Scot Federman
- Department of Pathology and Laboratory Medicine, University of California, San Francisco, CA, USA
| | - Mahesha Vankalakunti
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Jamie Koo
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Shikha Bose
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | | | - Jessica van Ziffle
- Department of Pathology and Laboratory Medicine, University of California, San Francisco, CA, USA
| | - James P Grenert
- Department of Pathology and Laboratory Medicine, University of California, San Francisco, CA, USA
| | - Steve Miller
- Department of Pathology and Laboratory Medicine, University of California, San Francisco, CA, USA
| | - Charles Chiu
- Department of Pathology and Laboratory Medicine, University of California, San Francisco, CA, USA
| | - Mahul B Amin
- Department of Pathology and Laboratory Medicine and Urology, University of Tennessee Health Science, Memphis, TN, USA
| | - Jeffry P Simko
- Department of Pathology and Laboratory Medicine, University of California, San Francisco, CA, USA
| | - Bradley A Stohr
- Department of Pathology and Laboratory Medicine, University of California, San Francisco, CA, USA
| | - Daniel J Luthringer
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
49
|
Occurrence and regression of BK polyomavirus associated carcinoma: a clinical and next-generation sequencing study. Clin Sci (Lond) 2018; 132:1753-1763. [PMID: 30026258 DOI: 10.1042/cs20180443] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 07/07/2018] [Accepted: 07/17/2018] [Indexed: 12/13/2022]
Abstract
Low-level BK polyomavirus (BKPyV) shedding is seen in at least 10% of seropositive immunocompetent adults. Moreover, BKPyV infection is highly prevalent amongst immunocompromised populations, yet little is known on its relationship with malignancy. We studied a female patient with BKPyV-associated and donor-derived de novo high-grade sarcomatoid urothelial carcinoma developed 8 years after kidney transplantation from a male donor. Through whole-genome sequencing, we discovered integration of genotype IV BKPyV genome into the non-coding RNA (ncRNA) intronic region of human chromosome 18. The two breakpoints in the virus genome were located at the non-coding control region (NCCR) and large T antigen (TAg) coding region, respectively. Nevertheless, the TAg was overexpressed. We, therefore, inferred that the BKPyV was clonally integrated into the human genome in the form of concatemers, facilitating the expression of the TAg. The patient presented with multiorgan metastases, which were reduced in size and number throughout the body after removal of the graft and cessation of immunosuppressants. The few remaining lesions located in the liver were identified, through biopsy to be necrotic tumor tissue with TAg detected; additionally, genomic sequencing of the liver mass found Y chromosome. In conclusion, we propose that integration of the BKPyV genome is closely related to oncogenesis in this patient; while oncogenesis occurred when host immunity was impaired, recovery of the patient's native immunity effectively curbed viral replication and eliminated the metastatic lesions.
Collapse
|
50
|
Nickeleit V, Singh HK, Kenan DJ, Mieczkowski PA. The two-faced nature of BK polyomavirus: lytic infection or non-lytic large-T-positive carcinoma. J Pathol 2018; 246:7-11. [PMID: 29931826 PMCID: PMC6120561 DOI: 10.1002/path.5127] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 06/07/2018] [Accepted: 06/18/2018] [Indexed: 12/13/2022]
Abstract
In immunocompromised patients, reactivation of latent BK polyomavirus (BKPyV) can cause disease with lytic infections of the kidneys and the lower urinary tract. Emerging evidence also links BKPyV to oncogenesis and high‐grade intrarenal and transitional cell carcinomas. These neoplasms strongly express polyomavirus large‐T antigen as a defining feature; that is, they are ‘large‐T‐positive carcinomas’. Such neoplasms arise in immunocompromised patients, typically in renal allograft recipients, and preferentially in tissues harbouring latent BKPyV. In recent articles in this journal, it was shown that tumour cells harbour replication‐incompetent clonal BKPyV. The virus can be truncated and randomly integrated into the genome, and/or it can be mutated in an episomal state. Truncation and/or deletions in the BKPyV non‐coding control region can hamper late viral gene expression, replication, and cell lysis, while facilitating overexpression of early genes, including that encoding large‐T. Biologically active fusion proteins or alterations in human tumour suppressor or promoter function have not been described so far, making uncontrolled large‐T gene expression in non‐lytically infected cells a prime suspect for neoplastic transformation. Current concepts of BKPyV‐induced disease, including recent reports from this journal, are discussed, and evolving paradigms of BKPyV‐associated oncogenesis are highlighted. © 2018 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Volker Nickeleit
- Division of Nephropathology, Department of Pathology and Laboratory Medicine, The University of North Carolina, Chapel Hill, NC, USA
| | - Harsharan K Singh
- Division of Nephropathology, Department of Pathology and Laboratory Medicine, The University of North Carolina, Chapel Hill, NC, USA
| | - Daniel J Kenan
- Division of Nephropathology, Department of Pathology and Laboratory Medicine, The University of North Carolina, Chapel Hill, NC, USA
| | - Piotr A Mieczkowski
- Department of Genetics, The University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|