1
|
Chai L, Liu Z, Zeng J, Gong L, Xiang S, Yu J, Sun H, Wen C, Wang F, Li N, Shen B, Mei M. Apoc1 Knockdown Alleviates High Glucose-induced Oxidative Stress and Apoptosis of Renal Tubular Cells by Binding to Clusterin. Cell Biochem Biophys 2025; 83:2253-2263. [PMID: 39630345 DOI: 10.1007/s12013-024-01636-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/21/2024] [Indexed: 05/20/2025]
Abstract
Diabetic nephropathy (DN) is a serious diabetic complication. Renal tubular damage is an important aspect of DN. Increased apolipoprotein C1 (Apoc1) has been confirmed in serum of patients with DN. The exact mechanism of Apoc1 in DN is unclear as yet. We aimed to elaborate the molecular mechanism underlying high glucose (HG)-induced renal tubular epithelial damage. In this content, a DN mouse model was established to assess renal damage. Apoc1 and Clusterin expression in renal tissue was detected using immunoblotting and immunofluorescence staining. In vitro, human kidney proximal tubular epithelial cells (HK-2 cells) were exposed to HG to simulate the DN model. After Apoc1 and/or Clusterin knockdown, HK-2 cell viability under HG conditions was detected using CCK-8 assay. DCFH-DA staining was used to examine the production of intracellular reactive oxygen species (ROS). MDA and SOD levels were tested by kits. Moreover, cell apoptosis was measured using TUNEL staining. Immunoblotting was employed to evaluate the expression of proteins. Additionally, the binding between Apoc1 and Clusterin was analyzed using co-immunoprecipitation experiments. Our data revealed that Apoc1 expression was upregulated while Clusterin expression was downregulated in renal tissue of DN mice and HG-treated HK-2 cells. Apoc1 knockdown alleviated oxidative stress and apoptosis in HG-treated HK-2 cells. Importantly, Apoc1 could bind to Clusterin and regulate Clusterin expression in HK-2 cells. Finally, Clusterin silencing blocked the influences of Apoc1 knockdown on the oxidative stress and apoptosis in HK-2 cells under HG conditions. Collectively, Apoc1 knockdown exerts potential anti-DN effects by binding to Clusterin to alleviate HG-induced renal tubular damage, suggesting that Apoc1/Clusterin can be used as a valuable therapeutic target for DN.
Collapse
Affiliation(s)
- Liyin Chai
- Department of Nephrology, Chongqing University Central Hospital (Chongqing Emergency Medical Center), Chongqing Key Laboratory of Emergency Medicine, School of Medicine, Chongqing University, Chongqing, 400014, China
| | - Zhengyang Liu
- Department of Nephrology, Chongqing University Central Hospital (Chongqing Emergency Medical Center), Chongqing Key Laboratory of Emergency Medicine, School of Medicine, Chongqing University, Chongqing, 400014, China
| | - Jun Zeng
- Department of Nephrology, Chongqing University Central Hospital (Chongqing Emergency Medical Center), Chongqing Key Laboratory of Emergency Medicine, School of Medicine, Chongqing University, Chongqing, 400014, China
| | - Li Gong
- Department of Nephrology, Chongqing University Central Hospital (Chongqing Emergency Medical Center), Chongqing Key Laboratory of Emergency Medicine, School of Medicine, Chongqing University, Chongqing, 400014, China
| | - Sha Xiang
- Department of Nephrology, Chongqing University Central Hospital (Chongqing Emergency Medical Center), Chongqing Key Laboratory of Emergency Medicine, School of Medicine, Chongqing University, Chongqing, 400014, China
| | - Jing Yu
- Department of Nephrology, Chongqing University Central Hospital (Chongqing Emergency Medical Center), Chongqing Key Laboratory of Emergency Medicine, School of Medicine, Chongqing University, Chongqing, 400014, China
| | - Haili Sun
- Department of Nephrology, Chongqing University Central Hospital (Chongqing Emergency Medical Center), Chongqing Key Laboratory of Emergency Medicine, School of Medicine, Chongqing University, Chongqing, 400014, China
| | - Chaolin Wen
- Department of Nephrology, Chongqing University Central Hospital (Chongqing Emergency Medical Center), Chongqing Key Laboratory of Emergency Medicine, School of Medicine, Chongqing University, Chongqing, 400014, China
| | - Fang Wang
- Department of Nephrology, Chongqing University Central Hospital (Chongqing Emergency Medical Center), Chongqing Key Laboratory of Emergency Medicine, School of Medicine, Chongqing University, Chongqing, 400014, China
| | - Ning Li
- Department of Nephrology, Chongqing University Central Hospital (Chongqing Emergency Medical Center), Chongqing Key Laboratory of Emergency Medicine, School of Medicine, Chongqing University, Chongqing, 400014, China
| | - Bingbing Shen
- Department of Nephrology, Chongqing University Central Hospital (Chongqing Emergency Medical Center), Chongqing Key Laboratory of Emergency Medicine, School of Medicine, Chongqing University, Chongqing, 400014, China.
| | - Mei Mei
- Department of Nephrology & Rheumatology, Chongqing University Shapingba Hospital, People's Hospital of Shapingba District, Chongqing, 400030, China
| |
Collapse
|
2
|
Feng Y, Zhang Y, Gao F, Liu M, Luo Y. HOXD9/APOC1 axis promotes macrophage M1 polarization to exacerbate diabetic kidney disease progression through activating NF-κB signaling pathway. Hereditas 2024; 161:40. [PMID: 39511608 PMCID: PMC11542400 DOI: 10.1186/s41065-024-00345-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 10/30/2024] [Indexed: 11/15/2024] Open
Abstract
BACKGROUND Diabetic kidney disease (DKD) is a complication caused by end-stage diabetes mellitus and usually results in glomerular podocyte injury. Exosomes are important for intercellular information exchange. However, the effect of podocyte exosomes on DKD has not been elucidated. METHODS GEO, PROMO, and GSE1009 databases were used to identify the gene APOC1 and transcription factor HOXD9. qRT-PCR, western blot, and transmission electron microscopy (TEM) were investigated to confirm APOC1 change in high glucose-treated podocytes and exosomes. Flow cytometry, immunofluorescence, qPCR, immunoblotting, wound healing, Transwell invasion assays, dual luciferase assay, and ChIP-PCR assay were performed to detect the effect of APOC1 and HOXD9 on macrophage polarization in high glucose-treated podocytes and exosomes. qRT-PCR and immunoblotting assays were employed to assess the impact of APOC1 knockdown on the M1 polarization of macrophages in response to liraglutide treatment. RESULTS The results suggested that the expression of APOC1 in human podocytes (HPC) and exosomes was elevated. High glucose-treated HPC exosomes promoted macrophage M1-type polarization, which was reversed by adding sh-APOC1. Afterward, HOXD9 was identified as a potential transcription factor for APOC1. Knockdown of HOXD9 led to macrophage M2 polarization, and overexpression of APOC1 polarized macrophage M1. In addition, enhanced p65 phosphorylation verified that HOXD9/APOC1 induced macrophage M1-type polarization by activating the NF-κB signaling pathway. Knocking down APOC1 enhanced the inhibitory effect of liraglutide on macrophage M1 polarization. CONCLUSION Our findings highlighted that HOXD9/APOC1 was a key player in causing podocyte injury in diabetic kidney disease and led to macrophage M1 polarization through the NF-κB signaling pathway.
Collapse
Affiliation(s)
- Ya Feng
- Department of Nephrology, The First Affiliated Hospital of Chengdu Medical College, No. 278, Baoguang Avenue, Xindu District, Chengdu, 610500, China
- School of Clinical Medicine, Chengdu Medical College, Chengdu, 610500, China
| | - Yalan Zhang
- Department of Nephrology, The First Affiliated Hospital of Chengdu Medical College, No. 278, Baoguang Avenue, Xindu District, Chengdu, 610500, China
- School of Clinical Medicine, Chengdu Medical College, Chengdu, 610500, China
| | - Fang Gao
- Department of Nephrology, The First Affiliated Hospital of Chengdu Medical College, No. 278, Baoguang Avenue, Xindu District, Chengdu, 610500, China
- School of Clinical Medicine, Chengdu Medical College, Chengdu, 610500, China
| | - Miaomiao Liu
- Department of Nephrology, The First Affiliated Hospital of Chengdu Medical College, No. 278, Baoguang Avenue, Xindu District, Chengdu, 610500, China
| | - Yangyan Luo
- Department of Nephrology, The First Affiliated Hospital of Chengdu Medical College, No. 278, Baoguang Avenue, Xindu District, Chengdu, 610500, China.
- School of Clinical Medicine, Chengdu Medical College, Chengdu, 610500, China.
| |
Collapse
|
3
|
Zhang K, Wang S, Qiu Y, Bai B, Zhang Q, Xie X. Retrospective studies and quantitative proteomics reveal that abnormal expression of blood pressure, blood lipids, and coagulation related proteins is associated with hypospadias. Hum Genet 2024; 143:1175-1191. [PMID: 38850429 DOI: 10.1007/s00439-024-02676-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 05/04/2024] [Indexed: 06/10/2024]
Abstract
Hypospadias refers to the abnormal position of the male urethral orifice, which not only leads to urination disorder but also causes sexual dysfunction in adulthood. However, the complex and diverse pathogenic factors of hypospadias are still unclear. To study the pathogenesis and prognosis of hypospadias, we counted the serological indexes of children with hypospadias, and found that sSBP, TC and LDL increased in children with mild, moderate and severe hypospadias. Subsequently, we used quantitative proteomics to find differential proteins in mild, moderate and severe hypospadias. After bioinformatics analysis and biochemical experiments on the screened DEPs, we found that the expression of proteins related to immune inflammation, coagulation, blood pressure and inflammation, and blood lipid were differential expressed in the prepuce tissue of children with hypospadias. We further confirmed that the proteins FGB, FGG, SERPINA1, and AGT involved in the angiotensin system, cholesterol metabolism, and coagulation were significantly up-regulated by biochemical experiments. In particular, the AGT protein of the angiotensin system involved in blood pressure regulation, we have shown that it increases with the severity of hypospadias. This study suggests that children with hypospadias are more likely to suffer from hyperlipidemia and cardiovascular disease (CVD). Our findings provide a theoretical basis for early monitoring of blood lipids and blood pressure to prevent CVD in children with hypospadias.
Collapse
Affiliation(s)
- Kexin Zhang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Shengxiong Wang
- Department of Urology, Affiliated Children's Hospital, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Ying Qiu
- Department of Urology, Affiliated Children's Hospital, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Baoling Bai
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, 100020, China.
| | - Qin Zhang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, 100020, China.
| | - Xianghui Xie
- Department of Urology, Affiliated Children's Hospital, Capital Institute of Pediatrics, Beijing, 100020, China.
| |
Collapse
|
4
|
Yang J, Zhuang H, Li J, Nunez-Nescolarde AB, Luo N, Chen H, Li A, Qu X, Wang Q, Fan J, Bai X, Ye Z, Gu B, Meng Y, Zhang X, Wu D, Sia Y, Jiang X, Chen W, Combes AN, Nikolic-Paterson DJ, Yu X. The secreted micropeptide C4orf48 enhances renal fibrosis via an RNA-binding mechanism. J Clin Invest 2024; 134:e178392. [PMID: 38625739 PMCID: PMC11093611 DOI: 10.1172/jci178392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/27/2024] [Indexed: 04/17/2024] Open
Abstract
Renal interstitial fibrosis is an important mechanism in the progression of chronic kidney disease (CKD) to end-stage kidney disease. However, we lack specific treatments to slow or halt renal fibrosis. Ribosome profiling identified upregulation of a secreted micropeptide, C4orf48 (Cf48), in mouse diabetic nephropathy. Cf48 RNA and protein levels were upregulated in tubular epithelial cells in human and experimental CKD. Serum Cf48 levels were increased in human CKD and correlated with loss of kidney function, increasing CKD stage, and the degree of active interstitial fibrosis. Cf48 overexpression in mice accelerated renal fibrosis, while Cf48 gene deletion or knockdown by antisense oligonucleotides significantly reduced renal fibrosis in CKD models. In vitro, recombinant Cf48 (rCf48) enhanced TGF-β1-induced fibrotic responses in renal fibroblasts and epithelial cells independently of Smad3 phosphorylation. Cellular uptake of Cf48 and its profibrotic response in fibroblasts operated via the transferrin receptor. RNA immunoprecipitation-sequencing identified Cf48 binding to mRNA of genes involved in the fibrotic response, including Serpine1, Acta2, Ccn2, and Col4a1. rCf48 binds to the 3'UTR of Serpine1 and increases mRNA half-life. We identify the secreted Cf48 micropeptide as a potential enhancer of renal fibrosis that operates as an RNA-binding peptide to promote the production of extracellular matrix.
Collapse
Affiliation(s)
- Jiayi Yang
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Nephrology, National Health Commission and Guangdong Province, Guangzhou, China
| | - Hongjie Zhuang
- Department of Paediatrics, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jinhua Li
- Department of Nephrology and
- Guangdong-Hong Kong Joint Laboratory on Immunological and Genetic Kidney Diseases, Guangdong Provincial People’s Hospital and Guangdong Academy of Medical Sciences, Guangzhou, China
- The Second Clinical College, Guangdong Medical University, Dongguan, Guangdong, China
- Department of Nephrology, Monash Health and Department of Medicine and
| | - Ana B. Nunez-Nescolarde
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Ning Luo
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Nephrology, National Health Commission and Guangdong Province, Guangzhou, China
| | - Huiting Chen
- The Second Clinical College, Guangdong Medical University, Dongguan, Guangdong, China
| | - Andy Li
- Department of Nephrology, Monash Health and Department of Medicine and
| | - Xinli Qu
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Qing Wang
- Department of Nephrology and
- Guangdong-Hong Kong Joint Laboratory on Immunological and Genetic Kidney Diseases, Guangdong Provincial People’s Hospital and Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Jinjin Fan
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Nephrology, National Health Commission and Guangdong Province, Guangzhou, China
| | - Xiaoyan Bai
- Department of Nephrology and
- Guangdong-Hong Kong Joint Laboratory on Immunological and Genetic Kidney Diseases, Guangdong Provincial People’s Hospital and Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Zhiming Ye
- Department of Nephrology and
- Guangdong-Hong Kong Joint Laboratory on Immunological and Genetic Kidney Diseases, Guangdong Provincial People’s Hospital and Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Bing Gu
- Department of Clinical Laboratory, Guangdong Provincial People’s Hospital and Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yue Meng
- Department of Clinical Laboratory, Guangdong Provincial People’s Hospital and Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Xingyuan Zhang
- Department of Biostatistics, UNC Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Di Wu
- Department of Biostatistics, UNC Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Youyang Sia
- School of Life Science, Tsinghua University, Beijing, China
| | - Xiaoyun Jiang
- Department of Paediatrics, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wei Chen
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Nephrology, National Health Commission and Guangdong Province, Guangzhou, China
| | - Alexander N. Combes
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | | | - Xueqing Yu
- Department of Nephrology and
- Guangdong-Hong Kong Joint Laboratory on Immunological and Genetic Kidney Diseases, Guangdong Provincial People’s Hospital and Guangdong Academy of Medical Sciences, Guangzhou, China
| |
Collapse
|
5
|
Peng QY, An Y, Jiang ZZ, Xu Y. The Role of Immune Cells in DKD: Mechanisms and Targeted Therapies. J Inflamm Res 2024; 17:2103-2118. [PMID: 38601771 PMCID: PMC11005934 DOI: 10.2147/jir.s457526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 03/19/2024] [Indexed: 04/12/2024] Open
Abstract
Diabetic kidney disease (DKD), is a common microvascular complication and a major cause of death in patients with diabetes. Disorders of immune cells and immune cytokines can accelerate DKD development of in a number of ways. As the kidney is composed of complex and highly differentiated cells, the interactions among different cell types and immune cells play important regulatory roles in disease development. Here, we summarize the latest research into the molecular mechanisms underlying the interactions among various immune and renal cells in DKD. In addition, we discuss the most recent studies related to single cell technology and bioinformatics analysis in the field of DKD. The aims of our review were to explore immune cells as potential therapeutic targets in DKD and provide some guidance for future clinical treatments.
Collapse
Affiliation(s)
- Qiu-Yue Peng
- Department of Endocrinology and Metabolism, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Sichuan, People’s Republic of China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, Sichuan, People’s Republic of China
| | - Ying An
- Department of Endocrinology and Metabolism, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Sichuan, People’s Republic of China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, Sichuan, People’s Republic of China
| | - Zong-Zhe Jiang
- Department of Endocrinology and Metabolism, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Sichuan, People’s Republic of China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, Sichuan, People’s Republic of China
| | - Yong Xu
- Department of Endocrinology and Metabolism, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Sichuan, People’s Republic of China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, Sichuan, People’s Republic of China
| |
Collapse
|
6
|
Ploypetch S, Wongbandue G, Roytrakul S, Phaonakrop N, Prapaiwan N. Comparative Serum Proteome Profiling of Canine Benign Prostatic Hyperplasia before and after Castration. Animals (Basel) 2023; 13:3853. [PMID: 38136890 PMCID: PMC10740436 DOI: 10.3390/ani13243853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 11/18/2023] [Accepted: 12/01/2023] [Indexed: 12/24/2023] Open
Abstract
BPH is the most prevalent prostatic condition in aging dogs. Nevertheless, clinical diagnosis and management remain inconsistent. This study employed in-solution digestion coupled with nano-liquid chromatography tandem mass spectrometry to assess serum proteome profiling of dogs with BPH and those dogs after castration. Male dogs were divided into two groups; control and BPH groups. In the BPH group, each dog was evaluated at two time points: Day 0 (BF subgroup) and Day 30 after castration (AT subgroup). In the BF subgroup, three proteins were significantly upregulated and associated with dihydrotestosterone: solute carrier family 5 member 5, tyrosine-protein kinase, and FRAT regulator of WNT signaling pathway 1. Additionally, the overexpression of polymeric immunoglobulin receptors in the BF subgroup hints at its potential as a novel protein linked to the BPH development process. Conversely, alpha-1-B glycoprotein (A1BG) displayed significant downregulation in the BF subgroup, suggesting A1BG's potential as a predictive protein for canine BPH. Finasteride was associated with increased proteins in the AT subgroup, including apolipoprotein C-I, apolipoprotein E, apolipoprotein A-II, TAO kinase 1, DnaJ homolog subfamily C member 16, PH domain and leucine-rich repeat protein phosphatase 1, neuregulin 1, and pseudopodium enriched atypical kinase 1. In conclusion, this pilot study highlighted alterations in various serum proteins in canine BPH, reflecting different pathological changes occurring in this condition. These proteins could be a source of potential non-invasive biomarkers for diagnosing this disease.
Collapse
Affiliation(s)
- Sekkarin Ploypetch
- Department of Clinical Sciences and Public Health, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom 73170, Thailand; (S.P.); (G.W.)
| | - Grisnarong Wongbandue
- Department of Clinical Sciences and Public Health, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom 73170, Thailand; (S.P.); (G.W.)
| | - Sittiruk Roytrakul
- Functional Proteomics Technology Laboratory, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani 12120, Thailand; (S.R.); (N.P.)
| | - Narumon Phaonakrop
- Functional Proteomics Technology Laboratory, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani 12120, Thailand; (S.R.); (N.P.)
| | - Nawarus Prapaiwan
- Department of Clinical Sciences and Public Health, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom 73170, Thailand; (S.P.); (G.W.)
| |
Collapse
|
7
|
Liu S, Zhang F, Liang Y, Wu G, Liu R, Li X, Saw PE, Yang Z. Nanoparticle (NP)-mediated APOC1 silencing to inhibit MAPK/ERK and NF-κB pathway and suppress breast cancer growth and metastasis. SCIENCE CHINA. LIFE SCIENCES 2023; 66:2451-2465. [PMID: 37668862 DOI: 10.1007/s11427-022-2329-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 03/14/2023] [Indexed: 09/06/2023]
Abstract
Breast cancer is one of the most common malignant tumors with high mortality and poor prognosis in women. There is an urgent need to discover new therapeutic targets for breast cancer metastasis. Herein, we identified that Apolipoprotein C1 (APOC1) was up-regulated in primary tumor of breast cancer patient that recurrence and metastasis by immunohistochemistry (IHC). Kaplan-Meier Plotter database showed that high levels of APOC1 in breast cancer patients were strongly associated with worse overall survival (OS) and relapse-free survival (RFS). Mechanistically, APOC1 silencing significantly inhibits MAPK/ERK kinase pathway and restrains the NF-κB to decrease the transcription of target genes related to growth and metastasis in vitro. Based on this regulatory mechanism, we developed these findings into potential therapeutic drugs, glutathione (GSH) responsive nano-particles (NPs) were used for systemic APOC1 siRNA delivery, NPs (siAPOC1) silenced APOC1 expression, and subsequently resulted in positive anti-tumor effects in orthotopic and liver metastasis models in vivo. Taken together, GSH responsive NP-mediated siAPOC1 delivery was proved to be effective in regulating growth and metastasis in multiple tumor models. These findings show that APOC1 could be a potential biomarker to predict the prognosis of breast cancer patients and NP-mediated APOC1 silencing could be new strategies for exploration of new treatments for breast cancer metastasis.
Collapse
Affiliation(s)
- Shaomin Liu
- Department of Biochemistry, Molecular Cancer Research Center, School of Medicine, Sun Yat-sen University, Shenzhen, 518107, China
| | - Fengqian Zhang
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-sen Memorial Hospital, Foshan, 528200, China
| | - Yixia Liang
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-sen Memorial Hospital, Foshan, 528200, China
| | - Guo Wu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, University of South China, Hengyang, 421001, China
| | - Rong Liu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, University of South China, Hengyang, 421001, China
| | - Xiuling Li
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-sen Memorial Hospital, Foshan, 528200, China
| | - Phei Er Saw
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-sen Memorial Hospital, Foshan, 528200, China.
| | - Zhonghan Yang
- Department of Biochemistry, Molecular Cancer Research Center, School of Medicine, Sun Yat-sen University, Shenzhen, 518107, China.
| |
Collapse
|
8
|
Xu J, Liu J, Qu Y, Jiang L, Liang R, Li B, Li L, Jiang Y. Label-free quantitative proteomic analysis of serum exosomes in mice with thoracic aortic aneurysm. Proteome Sci 2023; 21:19. [PMID: 37875866 PMCID: PMC10594717 DOI: 10.1186/s12953-023-00220-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 10/03/2023] [Indexed: 10/26/2023] Open
Abstract
OBJECTIVE Thoracic aortic aneurysm (TAA) is a cardiovascular disease with high morbidity and mortality. However, the causes and mechanisms of TAA are not fully understood. Serum exosomes from mice with TAA were used to explore the markers associated with this disease. METHODS C57BL/6 mice were divided into three groups and given ordinary drinking water, ordinary drinking water plus a saline osmotic pump, or drinking water containing β-aminopropionitrile (BAPN) (1 g/kg/d) plus an angiotensin II (Ang II) (1 μg/kg/min) osmotic pump. Haematoxylin and eosin staining of thoracic aortic tissues was performed. The basic characteristics of exosomes were analysed. Differentially expressed proteins (DEPs) were identified by LC‒MS/MS. Protein‒protein networks and enrichment analysis were used to explore possible molecular mechanisms. RESULTS The present study elucidated the protein expression profile of serum exosomes in mice with TAA induced by BAPN combined with Ang II. In this work, the expression of a total of 196 proteins was significantly dysregulated in serum exosomes of mice with TAA, with 122 proteins significantly upregulated and 74 proteins markedly downregulated. Notably, Haptoglobin (Hp) and Serum amyloid p-component (Sap) identified based on the PPI network were significantly upregulated and have been strongly linked to cardiovascular disease. Interestingly, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis showed that the upregulated and downregulated proteins were involved in the complement and coagulation cascade pathways. CONCLUSIONS This study showed that the identified DEPs have potential as biomarkers for the diagnosis of TAA and provided a more comprehensive understanding of the pathophysiological mechanisms of TAA.
Collapse
Affiliation(s)
- Jia Xu
- Department of Anesthesiology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, Guangdong, China
- Department of Cardiovascular Surgery, Affiliated Guangdong Second Provincial General Hospital, Jinan University, Guangzhou, 510000, Guangdong, China
| | - Jiacheng Liu
- Guangdong Provincial Key Laboratory of Proteomics, State Key Laboratory of Organ Failure Research, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510000, Guangdong, China
| | - Yibai Qu
- Department of Anesthesiology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, Guangdong, China
| | - Linhui Jiang
- Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510000, Guangdong, China
| | - Rongxin Liang
- Department of Cardiovascular Surgery, Affiliated Guangdong Second Provincial General Hospital, Jinan University, Guangzhou, 510000, Guangdong, China
| | - Bohai Li
- Department of Cardiovascular Surgery, Affiliated Guangdong Second Provincial General Hospital, Jinan University, Guangzhou, 510000, Guangdong, China
| | - Lei Li
- Department of Neurology, Shenzhen Hospital of Southern Medical University, Shenzhen, 518000, Guangdong, China.
| | - Yong Jiang
- Guangdong Provincial Key Laboratory of Proteomics, State Key Laboratory of Organ Failure Research, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510000, Guangdong, China.
| |
Collapse
|
9
|
Yu K, Ding L, An X, Yang Y, Zhang X, Li L, Wang C, Bai F, Yang X. APOC1 exacerbates renal fibrosis through the activation of the NF-κB signaling pathway in IgAN. Front Pharmacol 2023; 14:1181435. [PMID: 37305534 PMCID: PMC10248024 DOI: 10.3389/fphar.2023.1181435] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 05/02/2023] [Indexed: 06/13/2023] Open
Abstract
Introduction: IgA nephropathy (IgAN) is the most common disease leading to end-stage renal disease, and tubular fibrosis represents an important risk factor for disease progression. However, research on early molecular diagnostic indicators of tubular fibrosis and the mechanisms underlying disease progression is still lacking. Methods: The GSE93798 dataset was downloaded from the GEO database. DEGs were screened and analyzed for GO and KEGG enrichment in IgAN. The least absolute shrinkage and selection operator (LASSO) and support vector machine recursive feature elimination (SVM-RFE) algorithms were applied to screen for hub secretory genes. The expression and diagnostic efficacy of hub genes were confirmed by the GSE35487 dataset. ELISA was applied to detect the expression of APOC1 in serum. The expression and localization of hub genes in IgAN were verified by the expression of IHC and IF in human kidney tissues, and the correlation of expression with clinical data was verified in the Nephroseq database. Finally, cellular experiments clarified the role of hub genes in the signaling pathway. Results: A total of 339 DEGs were identified in IgAN, of which 237 were upregulated and 102 downregulated. The KEGG signaling pathway is enriched in the ECM-receptor interaction and AGE-RAGE signaling pathway. APOC1, ALB, CCL8, CXCL2, SRPX2, and TGFBI identified six hub secretory genes using the LASSO and SVM-RFE algorithms. In vivo and in vitro experiments demonstrated that APOC1 expression was elevated in IgAN. The serum concentration of APOC1 was 1.232 ± 0.1812 μg/ml in IgAN patients, whereas it was 0.3956 ± 0.1233 μg/ml in healthy individuals. APOC1 exhibited high diagnostic efficacy for IgAN (AUC of 99.091%, specificity of 95.455%, and sensitivity of 99.141%) in the GSE93798 dataset. APOC1 expression negatively correlated with eGFR (R 2 = 0.2285, p = 0.0385) and positively correlated with serum creatinine (R 2 = 0.41, p = 0.000567) in IgAN. APOC1 exacerbated renal fibrosis, possibly in part by activating the NF-κB pathway in IgAN. Conclusion: APOC1 was identified as the core secretory gene of IgAN, which was closely associated with blood creatinine and eGFR and had significant efficacy in the diagnosis of IgAN. Mechanistic studies revealed that the knockdown of APOC1 could improve IgAN renal fibrosis by inhibiting the NF pathway, which may be a potential therapeutic target for improving renal fibrosis in IgAN.
Collapse
Affiliation(s)
- Kuipeng Yu
- Department of Nephrology, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Department of Blood Purification, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Laboratory of Basic Medical Sciences, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Lin Ding
- Department of Nephrology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Xin An
- Department of Nephrology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Yanjiang Yang
- Department of Nephrology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Xiaoning Zhang
- Department of Nephrology, Shengli Oilfield Central Hospital, Dongying, Shandong, China
| | - Luyao Li
- Department of Nephrology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Chunjie Wang
- Department of Nephrology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Fang Bai
- Department of Nephrology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Xiangdong Yang
- Department of Nephrology, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Department of Blood Purification, Qilu Hospital of Shandong University, Jinan, Shandong, China
| |
Collapse
|
10
|
Liang R, Zhang G, Xu W, Liu W, Tang Y. ApoC1 promotes glioma metastasis by enhancing epithelial-mesenchymal transition and activating the STAT3 pathway. Neurol Res 2023; 45:268-275. [PMID: 36302088 DOI: 10.1080/01616412.2022.2132458] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
OBJECTIVE One of the apolipoprotein's members, apolipoprotein C1 (ApoC1), is critical in the metabolism of both very-low-density lipoprotein (VLDL) and high-density lipoprotein (HDL) cholesterols. Multiple studies have recently revealed that ApoC1 may be a viable therapeutic target in solid malignancies. However, the motor protein ApoC1's specific role and mechanism in glioblastoma remain unknown. METHODS In this study, the Cancer Genome Atlas (TCGA) database was used to look at the level of ApoC1 in glioma tissues and normal tissues, as well as how it related to the prognosis of glioma. Glioma cell lines (U87 and U251) were subjected to a wide range of experiments to determine the involvement of ApoC1 in cell proliferation, migration, and invasion. RESULTS Cell proliferation, migration, and invasion decreased in glioma cell lines when ApoC1 was silenced. Furthermore, ApoC1 increased glioma cell metastasis through the epithelial-mesenchymal transition (EMT), while ApoC1 deletion reduced this impact. Additionally, APOC1 influenced the evolution of glioma by affecting the STAT3 pathway. In addition, APOC1 knockdown reduced the activation of the phosphorylated-total signal transducer and activator of transcription (STAT3) in the glioma cells. ApoC1-induced glioma cell metastatic ability was prevented by niclosamide (a STAT3 inhibitor). CONCLUSIONS These results uncover that ApoC1 may serve as a biomarker or therapeutic target for future fundamental study or clinical treatment of glioma.
Collapse
Affiliation(s)
- Rui Liang
- Department of Neurosurgery, The First Hospital of Jiujiang City, Jiujiang, China
| | - Guofeng Zhang
- Department of Neurosurgery, The First Hospital of Jiujiang City, Jiujiang, China
| | - Wenhua Xu
- Department of Neurosurgery, The First Hospital of Jiujiang City, Jiujiang, China
| | - Weibing Liu
- Department of Neurosurgery, The First Hospital of Jiujiang City, Jiujiang, China
| | - Youjia Tang
- Department of Neurosurgery, The First Hospital of Jiujiang City, Jiujiang, China
| |
Collapse
|
11
|
Rouland A, Masson D, Lagrost L, Vergès B, Gautier T, Bouillet B. Role of apolipoprotein C1 in lipoprotein metabolism, atherosclerosis and diabetes: a systematic review. Cardiovasc Diabetol 2022; 21:272. [PMID: 36471375 PMCID: PMC9724408 DOI: 10.1186/s12933-022-01703-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022] Open
Abstract
Apolipoprotein C1 (apoC1) is a small size apolipoprotein whose exact role is not totally clarified but which seems to modulate significantly the metabolism of lipoproteins. ApoC1 is involved in the metabolism of triglyceride-rich lipoproteins by inhibiting the binding of very low density lipoproteins (VLDL) to VLDL-receptor (VLDL-R), to low density lipoprotein receptor (LDL-R) and to LDL receptor related protein (LRP), by reducing the activity of lipoprotein lipase (LPL) and by stimulating VLDL production, all these effects leading to increase plasma triglycerides. ApoC1 takes also part in the metabolism of high density lipoproteins (HDL) by inhibiting Cholesterol Ester Transfer Protein (CETP). The functionality of apoC1 on CETP activity is impaired in diabetes that might account, at least in part, for the increased plasma CETP activity observed in patients with diabetes. Its different effects on lipoprotein metabolism with a possible role in the modulation of inflammation makes the net impact of apoC1 on cardiometabolic risk difficult to figure out and apoC1 might be considered as pro-atherogenic or anti-atherogenic depending on the overall metabolic context. Making the link between total plasma apoC1 levels and the risk of cardio-metabolic diseases is difficult due to the high exchangeability of this small protein whose biological effects might depend essentially on its association with VLDL or HDL. The role of apoC1 in humans is not entirely elucidated and further studies are needed to determine its precise role in lipid metabolism and its possible pleiotropic effects on inflammation and vascular wall biology. In this review, we will present data on apoC1 structure and distribution among lipoproteins, on the effects of apoC1 on VLDL metabolism and HDL metabolism and we will discuss the possible links between apoC1, atherosclerosis and diabetes.
Collapse
Affiliation(s)
- Alexia Rouland
- grid.31151.37Endocrinology and Diabetology Unit, University Hospital, Dijon, France ,grid.493090.70000 0004 4910 6615INSERM/University of Bourgogne Franche-Comté, LNC UMR1231, Dijon, France
| | - David Masson
- grid.493090.70000 0004 4910 6615INSERM/University of Bourgogne Franche-Comté, LNC UMR1231, Dijon, France ,LipSTIC LabEx, UFR Sciences de Santé, Dijon, France
| | - Laurent Lagrost
- grid.493090.70000 0004 4910 6615INSERM/University of Bourgogne Franche-Comté, LNC UMR1231, Dijon, France ,LipSTIC LabEx, UFR Sciences de Santé, Dijon, France
| | - Bruno Vergès
- grid.31151.37Endocrinology and Diabetology Unit, University Hospital, Dijon, France ,grid.493090.70000 0004 4910 6615INSERM/University of Bourgogne Franche-Comté, LNC UMR1231, Dijon, France
| | - Thomas Gautier
- grid.493090.70000 0004 4910 6615INSERM/University of Bourgogne Franche-Comté, LNC UMR1231, Dijon, France ,LipSTIC LabEx, UFR Sciences de Santé, Dijon, France
| | - Benjamin Bouillet
- grid.31151.37Endocrinology and Diabetology Unit, University Hospital, Dijon, France ,grid.493090.70000 0004 4910 6615INSERM/University of Bourgogne Franche-Comté, LNC UMR1231, Dijon, France ,grid.31151.37Service Endocrinologie, Diabétologie et Maladies Métaboliques, Hôpital François Mitterrand, CHU Dijon, BP 77908, 21079 Dijon, France
| |
Collapse
|
12
|
The VEGF Inhibitor Soluble Fms-like Tyrosine Kinase 1 Does Not Promote AKI-to-CKD Transition. Int J Mol Sci 2022; 23:ijms23179660. [PMID: 36077058 PMCID: PMC9456014 DOI: 10.3390/ijms23179660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/19/2022] [Accepted: 08/22/2022] [Indexed: 11/17/2022] Open
Abstract
(1) Background: Soluble Fms-like tyrosine kinase 1 (sFLT1) is an endogenous VEGF inhibitor. sFLT1 has been described as an anti-inflammatory treatment for diabetic nephropathy and heart fibrosis. However, sFLT1 has also been related to peritubular capillary (PTC) loss, which promotes fibrogenesis. Here, we studied whether transfection with sFlt1 aggravates experimental AKI-to-CKD transition and whether sFLT1 is increased in human kidney fibrosis. (2) Methods: Mice were transfected via electroporation with sFlt1. After confirming transfection efficacy, mice underwent unilateral ischemia/reperfusion injury (IRI) and were sacrificed 28 days later. Kidney histology and RNA were analyzed to study renal fibrosis, PTC damage and inflammation. Renal sFLT1 mRNA expression was measured in CKD biopsies and control kidney tissue. (3) Results: sFlt1 transfection did not aggravate renal fibrosis, PTC loss or macrophage recruitment in IRI mice. In contrast, higher transfection efficiency was correlated with reduced expression of pro-fibrotic and pro-inflammatory markers. In the human samples, sFLT1 mRNA levels were similar in CKD and control kidneys and were not correlated with interstitial fibrosis or PTC loss. (4) Conclusion: As we previously found that sFLT1 has therapeutic potential in diabetic nephropathy, our findings indicate that sFLT1 can be administered at a dose that is therapeutically effective in reducing inflammation, without promoting maladaptive kidney damage.
Collapse
|
13
|
Pan X. The Roles of Fatty Acids and Apolipoproteins in the Kidneys. Metabolites 2022; 12:metabo12050462. [PMID: 35629966 PMCID: PMC9145954 DOI: 10.3390/metabo12050462] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/15/2022] [Accepted: 05/17/2022] [Indexed: 12/10/2022] Open
Abstract
The kidneys are organs that require energy from the metabolism of fatty acids and glucose; several studies have shown that the kidneys are metabolically active tissues with an estimated energy requirement similar to that of the heart. The kidneys may regulate the normal and pathological function of circulating lipids in the body, and their glomerular filtration barrier prevents large molecules or large lipoprotein particles from being filtered into pre-urine. Given the permeable nature of the kidneys, renal lipid metabolism plays an important role in affecting the rest of the body and the kidneys. Lipid metabolism in the kidneys is important because of the exchange of free fatty acids and apolipoproteins from the peripheral circulation. Apolipoproteins have important roles in the transport and metabolism of lipids within the glomeruli and renal tubules. Indeed, evidence indicates that apolipoproteins have multiple functions in regulating lipid import, transport, synthesis, storage, oxidation and export, and they are important for normal physiological function. Apolipoproteins are also risk factors for several renal diseases; for example, apolipoprotein L polymorphisms induce kidney diseases. Furthermore, renal apolipoprotein gene expression is substantially regulated under various physiological and disease conditions. This review is aimed at describing recent clinical and basic studies on the major roles and functions of apolipoproteins in the kidneys.
Collapse
Affiliation(s)
- Xiaoyue Pan
- Department of Foundations of Medicine, New York University Long Island School of Medicine, Mineola, New York, NY 11501, USA;
- Diabetes and Obesity Research Center, NYU Langone Hospital—Long Island, Mineola, New York, NY 11501, USA
| |
Collapse
|
14
|
Hong B, Xia T, Ye CJ, Zhan Y, Yang R, Liu J, Li Y, Chen ZX, Yao W, Li K, Wang J, Dong KR, Dong R. Single-cell transcriptional profiling reveals the heterogeneity in embryonal rhabdomyosarcoma. Medicine (Baltimore) 2021; 100:e26775. [PMID: 34397824 PMCID: PMC8341243 DOI: 10.1097/md.0000000000026775] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 06/27/2021] [Accepted: 07/01/2021] [Indexed: 01/06/2023] Open
Abstract
ABSTRACT Rhabdomyosarcoma is the most common soft tissue sarcoma in children, and embryonal rhabdomyosarcoma is the most typical type of rhabdomyosarcoma. The heterogeneity, etiology, and origin of embryonal rhabdomyosarcoma remain unknown.After obtaining the gene expression data of every cell in the tumor tissue by single-cell RNA sequencing, we used the Seurat package in R studio for quality control, analysis, and exploration of the data. All cells are divided into tumor cells and non-tumor cells, and we chose tumor cells by marker genes. Then, we repeated the process to cluster the tumor cells and divided the subgroups by their differentially expressed genes and gene ontology/Kyoto Encyclopedia of Genes and Genomes analysis. Additionally, Monocle 2 was used for pseudo-time analysis to obtain the evolution trajectory of cells in tumor tissues.Tumor cells were divided into 5 subgroups according to their functions, which were characterized by high proliferation, sensing and adaptation to oxygen availability, enhanced epigenetic modification, enhanced nucleoside phosphonic acid metabolism, and ossification. Evolution trajectory of cells in tumor tissues is obtained.We used pseudo-time analysis to distinguish between mesenchymal stem cells and fibroblasts, proved that embryonal rhabdomyosarcoma in the pelvic originated from skeletal muscle progenitor cells, showed the evolutionary trajectory of embryonal rhabdomyosarcoma, and improved the method of evaluating the degree of malignancy of embryonal rhabdomyosarcoma.
Collapse
Affiliation(s)
- Bo Hong
- Department of Pediatric Surgery, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Birth Defect, Shanghai, China
| | - Tian Xia
- Department of Orthopaedics, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Birth Defect, Shanghai, China
| | - Chun-Jing Ye
- Department of Pediatric Surgery, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Birth Defect, Shanghai, China
| | - Yong Zhan
- Department of Pediatric Surgery, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Birth Defect, Shanghai, China
| | - Ran Yang
- Department of Pediatric Surgery, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Birth Defect, Shanghai, China
| | - Jia Liu
- Department of Pediatric Surgery, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Birth Defect, Shanghai, China
| | - Yi Li
- Department of Pediatric Surgery, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Birth Defect, Shanghai, China
| | - Zhi-Xue Chen
- Department of Pediatric Surgery, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Birth Defect, Shanghai, China
| | - Wei Yao
- Department of Pediatric Surgery, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Birth Defect, Shanghai, China
| | - Kai Li
- Department of Pediatric Surgery, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Birth Defect, Shanghai, China
| | - Jia Wang
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Kui-Ran Dong
- Department of Pediatric Surgery, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Birth Defect, Shanghai, China
| | - Rui Dong
- Department of Pediatric Surgery, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Birth Defect, Shanghai, China
| |
Collapse
|
15
|
Xiao H, Xu Y. Overexpression of Apolipoprotein C1 (APOC1) in Clear Cell Renal Cell Carcinoma and Its Prognostic Significance. Med Sci Monit 2021; 27:e929347. [PMID: 33591959 PMCID: PMC7896428 DOI: 10.12659/msm.929347] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Background The aims of this study included 3 aspects: 1) assessing the expression of Apolipoprotein C1 (APOC1) in clear cell renal cell carcinoma (ccRCC) and normal groups; 2) evaluating the prognostic significance of APOC1 expression in the overall survival (OS) of ccRCC patients; and 3) exploring APOC1-related signaling pathways. Material/Methods The APOC1 expression value and clinical data of ccRCC patients were obtained from the cBioPortal database. We then evaluated the association of APOC1 expression with clinical characteristics of ccRCC patients. We also assessed the correlation between APOC1 expression and clinical outcome using Kaplan-Meier method. Our work then verified the independent prognostic factors of ccRCC by Cox regression analysis. Finally, the potential role of genes co-expressed with APOC1 was revealed via functional enrichment analysis. Results Bioinformatic data revealed that APOC1 was expressed at higher levels in ccRCC tissue than in the normal group (all P<0.05). The high expression of APOC1 was associated with unfavorable prognosis of female patients (P<0.01), but not of male patients. APOC1 high expression also shortened the survival time of ccRCC patients age ≥60 years old (P<0.05). Cox regression analysis further indicated that APOC1 expression was an independent prognostic factor for OS of ccRCC patients. Additionally, we found that APOC1 expression was significantly associated with sex, grade, clinical stage, and T stage. Finally, enrichment analysis suggested that APOC1-associated pathways were involved in tumor growth and metastasis. Conclusions The current study indicated that APOC1 was highly expressed in ccRCC and was significantly associated with key clinical features. APOC1 appears to be an independent prognostic factor in patients with ccRCC. Importantly, APOC1 might be a potential therapeutic target for ccRCC via regulating pathways involved in cell growth and metastasis.
Collapse
Affiliation(s)
- Huaying Xiao
- Department of Nephrology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China (mainland)
| | - Yifang Xu
- Department of Nephrology, Dongyang People's Hospital, Dongyang, Zhejiang, China (mainland)
| |
Collapse
|
16
|
Wang HJ, Ma YX, Wang AH, Jiang YS, Jiang XZ. Expression of apolipoprotein C1 in clear cell renal cell carcinoma: An oncogenic gene and a prognostic marker. Kaohsiung J Med Sci 2020; 37:419-426. [PMID: 33305507 DOI: 10.1002/kjm2.12328] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/17/2020] [Accepted: 11/02/2020] [Indexed: 01/04/2023] Open
Abstract
This study aimed to explore whether APOC1 expression has a function in the biological behavior of clear cell renal cell carcinoma (ccRCC) cells and its possible mechanism. Bioinformatics analysis of data TCGA and OnComine was conducted to explore the expression pattern and prognostic value of APOC1, as well as the relationship between APOC1 expression and clinical indicators. Loss- and gain- of APOC1 function assays were carried out to assess the biological functions of APOC1. Western blotting was applied to detect protein expression. We revealed that APOC1 was upregulated in ccRCC tissues. APOC1 expression was related to gender, grade, pathologic-T, pathologic-stage, and pathologic-M in patients with ccRCC. Meanwhile, Kaplan-Meier analysis evidenced that the high APOC1 expression indicated unfavorable outcomes of ccRCC. Functional experiments in vitro revealed that upregulation of APOC1 in UT33A cells promoted cell proliferation, invasion, and migration, while downregulation of APOC1 in 786-O cells had the opposite effect. Furthermore, epithelial mesenchymal transition (EMT) was activated in cells with upregulated APOC1 but inhibited in cells with down-regulated APOC1. Collectively, our data suggested that APOC1 was overexpressed in ccRCC cells and promoted the malignant biological behaviors and EMT of ccRCC cells.
Collapse
Affiliation(s)
- Hai-Jun Wang
- Department of Urology, Qilu Hospital,Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Urology Surgery, Anqiu Hospital of Chinese Traditional Medicine, Anqiu, China
| | - Yong-Xiang Ma
- Department of Urology Surgery, Anqiu Hospital of Chinese Traditional Medicine, Anqiu, China
| | - Ai-Hua Wang
- Department of Urology Surgery, Anqiu Hospital of Chinese Traditional Medicine, Anqiu, China
| | - Yuan-Shun Jiang
- Department of Urology Surgery, Anqiu Hospital of Chinese Traditional Medicine, Anqiu, China
| | - Xian-Zhou Jiang
- Department of Urology, Qilu Hospital,Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
17
|
ApoC1 promotes the metastasis of clear cell renal cell carcinoma via activation of STAT3. Oncogene 2020; 39:6203-6217. [PMID: 32826950 DOI: 10.1038/s41388-020-01428-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 08/05/2020] [Accepted: 08/10/2020] [Indexed: 12/19/2022]
Abstract
Clear cell renal cell carcinoma (ccRCC) is the most common renal cancer and frequently diagnosed at an advanced stage. It is prone to develop unpredictable metastases even with proper treatment. Antiangiogenic therapy is the most effective medical treatment for metastatic ccRCC. Thus, exploration of novel approaches to inhibit angiogenesis and metastasis may potentially lead to a better therapeutic option for ccRCC. Among all the types of cancer, renal cancer samples exhibited the maximum upregulation of ApoC1 as referred to in the Oncomine database. The expression of ApoC1 was increased accompanied by ccRCC progression. A high level of ApoC1 was closely related to poor survival time in ccRCC patients. Furthermore, ApoC1 was over-expressed in the highly invasive ccRCC cells as compared to that in the low-invasive ccRCC cells. Besides, ApoC1 promoted metastasis of ccRCC cells via EMT pathway, whereas depletion of ApoC1 alleviated these effects. ApoC1 as a novel pro-metastatic factor facilitates the activation of STAT3 and enhances the metastasis of ccRCC cells. Meanwhile, ApoC1 in the exosomes were transferred from the ccRCC cells to the vascular endothelial cells and promoted metastasis of the ccRCC cells via activating STAT3. Finally, the metastatic potential of the ccRCC cells driven by ApoC1 was suppressed by DPP-4 inhibition. Our study not only identifies a novel ApoC1-STAT3 pathway in ccRCC metastasis but also provides direction for the exploration of novel strategies to predict and treat metastatic ccRCC in the future.
Collapse
|
18
|
Cui Y, Miao C, Hou C, Wang Z, Liu B. Apolipoprotein C1 (APOC1): A Novel Diagnostic and Prognostic Biomarker for Clear Cell Renal Cell Carcinoma. Front Oncol 2020; 10:1436. [PMID: 32974161 PMCID: PMC7468425 DOI: 10.3389/fonc.2020.01436] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 07/07/2020] [Indexed: 12/24/2022] Open
Abstract
Background: Apolipoprotein C1 (APOC1) has been proved to play a critical role in gastric, breast, lung, and pancreatic cancer. However, the relationship between APOC1 and urinary tumors remains unclear. This study aimed to assess the diagnostic and prognostic value of APOC1 in urinary tumors. Methods: We performed a pan analysis of APOC1 mRNA expression in urinary cancer using the Gene Expression Profiling Interactive Analysis (GEPIA) database. To further investigate the prognostic value of APOC1 expression in urinary cancers, the Kaplan-Meier plotter database was used. Furthermore, we collected the tumor and adjacent normal samples of 32 ccRCC patients to perform qRT-PCR and western blotting assays. A total of 72 cases with ccRCC were analyzed using tissue microarrays (TMAs). Results: Our results based on Kaplan-Meier plotter database indicated that a high expression of APOC1 may lead to poor overall survival (OS, p = 0.0019) in patients with ccRCC. Furthermore, the cancer stages and tumor grade of ccRCC appeared to be strongly linked with APOC1 expression according to UALCAN database. Hence, we reached a preliminary conclusion that APOC1 may play a key role in the tumorigenesis and progression of ccRCC. Furthermore, the Kaplan-Meier survival curve analyses of 72 clinical patients indicated that high expression of APOC1 was associated with poor progression-free survival (PFS, p = 0.007) and OS (p = 0.022). In addition, univariate Cox regression analysis confirmed the significant relationship between APOC1 expression and survival (p = 0.038). The TMAs analysis in combination with the patients' clinicopathological features was also performed. The expression of APOC1 was found to be significantly correlated with the tumor size (p = 0.018) and histological grade (p = 0.016). Conclusions: In conclusion, the findings of our study suggest that APOC1 may serve as a novel diagnostic and prognostic biomarker for ccRCC. Further evidence on the mechanism of APOC1 promoting tumor progression may transform it to a new therapeutic target for the treatment of ccRCC.
Collapse
Affiliation(s)
- Yankang Cui
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Chenkui Miao
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Chao Hou
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zengjun Wang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Bianjiang Liu
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
19
|
Jin J, Gong J, Zhao L, Li Y, Wang Y, He Q. iTRAQ-based comparative proteomics analysis reveals specific urinary biomarkers for various kidney diseases. Biomark Med 2020; 14:839-854. [PMID: 32856461 DOI: 10.2217/bmm-2019-0556] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 05/20/2020] [Indexed: 12/11/2022] Open
Abstract
Background: Proteome studies for multiple renal diseases is bare. Methodology & results: Using isobaric tags for relative and absolute quantitation labeling, many differentially expressed proteins (DEPs) were identified in acute kidney injury (AKI), AKI + chronic kidney disease (CKD), diabetic CKD and nondiabetic CKD with or without IgA nephropathy (IgAN). Comparative analysis indicated that 34, 35, 17, 91 and 14 unique DEPs were found in AKI, AKI + CKD, CKD, diabetic CKD and nondiabetic CKD. Compared with nondiabetic CKD with IgAN, 47 unique DEPs were found in that without IgAN. Serum amyloid A1 (SAA1) and hepatocyte growth factor activator were unregulated in AKI and nondiabetic CKD without IgAN, respectively. Regenerating islet-derived protein 3-α (Reg3A) upregulation is associated with AKI and AKI + CKD patients. Conclusion: This research contributes to urinary biomarker discovery from multiple renal diseases.
Collapse
Affiliation(s)
- Juan Jin
- Department of Nephrology, Zhejiang Provincial People's Hospital, Zhejiang 310014, PR China
- Department of Nephrology, People's Hospital of Hangzhou Medical College, Zhejiang 310014, PR China
- Key Laboratory of Kidney Disease of Traditional Chinese Medicine in Zhejiang Province, Zhejiang 310014, PR China
| | - Jianguang Gong
- Department of Nephrology, Zhejiang Provincial People's Hospital, Zhejiang 310014, PR China
- Department of Nephrology, People's Hospital of Hangzhou Medical College, Zhejiang 310014, PR China
- Key Laboratory of Kidney Disease of Traditional Chinese Medicine in Zhejiang Province, Zhejiang 310014, PR China
| | - Li Zhao
- Department of Nephrology, Zhejiang Provincial People's Hospital, Zhejiang 310014, PR China
- Department of Nephrology, People's Hospital of Hangzhou Medical College, Zhejiang 310014, PR China
- Key Laboratory of Kidney Disease of Traditional Chinese Medicine in Zhejiang Province, Zhejiang 310014, PR China
| | - Yiwen Li
- Department of Nephrology, Zhejiang Provincial People's Hospital, Zhejiang 310014, PR China
- Department of Nephrology, People's Hospital of Hangzhou Medical College, Zhejiang 310014, PR China
- Key Laboratory of Kidney Disease of Traditional Chinese Medicine in Zhejiang Province, Zhejiang 310014, PR China
| | - Yunguang Wang
- Department of Nephrology, Zhejiang Provincial People's Hospital, Zhejiang 310014, PR China
- Department of Nephrology, People's Hospital of Hangzhou Medical College, Zhejiang 310014, PR China
- Key Laboratory of Kidney Disease of Traditional Chinese Medicine in Zhejiang Province, Zhejiang 310014, PR China
| | - Qiang He
- Department of Nephrology, Zhejiang Provincial People's Hospital, Zhejiang 310014, PR China
- Department of Nephrology, People's Hospital of Hangzhou Medical College, Zhejiang 310014, PR China
- Key Laboratory of Kidney Disease of Traditional Chinese Medicine in Zhejiang Province, Zhejiang 310014, PR China
| |
Collapse
|
20
|
Fuior EV, Gafencu AV. Apolipoprotein C1: Its Pleiotropic Effects in Lipid Metabolism and Beyond. Int J Mol Sci 2019; 20:ijms20235939. [PMID: 31779116 PMCID: PMC6928722 DOI: 10.3390/ijms20235939] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 11/19/2019] [Accepted: 11/21/2019] [Indexed: 12/20/2022] Open
Abstract
Apolipoprotein C1 (apoC1), the smallest of all apolipoproteins, participates in lipid transport and metabolism. In humans, APOC1 gene is in linkage disequilibrium with APOE gene on chromosome 19, a proximity that spurred its investigation. Apolipoprotein C1 associates with triglyceride-rich lipoproteins and HDL and exchanges between lipoprotein classes. These interactions occur via amphipathic helix motifs, as demonstrated by biophysical studies on the wild-type polypeptide and representative mutants. Apolipoprotein C1 acts on lipoprotein receptors by inhibiting binding mediated by apolipoprotein E, and modulating the activities of several enzymes. Thus, apoC1 downregulates lipoprotein lipase, hepatic lipase, phospholipase A2, cholesterylester transfer protein, and activates lecithin-cholesterol acyl transferase. By controlling the plasma levels of lipids, apoC1 relates directly to cardiovascular physiology, but its activity extends beyond, to inflammation and immunity, sepsis, diabetes, cancer, viral infectivity, and-not last-to cognition. Such correlations were established based on studies using transgenic mice, associated in the recent years with GWAS, transcriptomic and proteomic analyses. The presence of a duplicate gene, pseudogene APOC1P, stimulated evolutionary studies and more recently, the regulatory properties of the corresponding non-coding RNA are steadily emerging. Nonetheless, this prototypical apolipoprotein is still underexplored and deserves further research for understanding its physiology and exploiting its therapeutic potential.
Collapse
Affiliation(s)
- Elena V. Fuior
- Institute of Cellular Biology and Pathology “N. Simionescu”, 050568 Bucharest, Romania;
| | - Anca V. Gafencu
- Institute of Cellular Biology and Pathology “N. Simionescu”, 050568 Bucharest, Romania;
- Correspondence:
| |
Collapse
|
21
|
van Aanhold CCL, Bus P, Zandbergen M, Bos M, Berbée JFP, Quint KD, Bruijn JA, Baelde HJ. The Vascular Endothelial Growth Factor Inhibitor Soluble FLT-1 Ameliorates Atopic Dermatitis in APOC1 Transgenic Mice. J Invest Dermatol 2019; 140:491-494.e4. [PMID: 31425708 DOI: 10.1016/j.jid.2019.07.700] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 07/18/2019] [Accepted: 07/19/2019] [Indexed: 01/06/2023]
Affiliation(s)
- Cleo C L van Aanhold
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands.
| | - Pascal Bus
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - Malu Zandbergen
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - Manon Bos
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - Jimmy F P Berbée
- Department of Endocrinology, Leiden University Medical Center, Leiden, The Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Koen D Quint
- Department of Dermatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Jan A Bruijn
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - Hans J Baelde
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
22
|
Yi J, Ren L, Wu J, Li W, Zheng X, Du G, Wang J. Apolipoprotein C1 (APOC1) as a novel diagnostic and prognostic biomarker for gastric cancer. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:380. [PMID: 31555694 DOI: 10.21037/atm.2019.07.59] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Background Gastric cancer (GC) is a common malignant cancer in the worldwide, especially in China. Patients with GC have poor prognosis, which is mainly due to lack of early diagnosis. Up to now, there is no good biomarker to detect GC at early stage. Apolipoprotein C1 (APOC1), a component of both triglyceride-rich lipoproteins and high-density lipoproteins, is reported to be involved in numerous biological processes. Methods Expression of APOC1 mRNA was analyzed by in silicon assay. Concentration of APOC1 in serum was measured by ELISA assay. Expression of APOC1 protein in GC tissue array was checked by immunohistochemistry. Results It was firstly found that concentration of APOC1 in serum was significantly higher in GC than that in control. Expression of APOC1 protein was also higher in GC than that in adjacent issues of GC and normal tissues using tissues array by immunohistochemistry. In addition, the expression of APOC1 is significantly associated with clinical stage (P=0.011), tumor classification (P=0.010), as well as with the lymph node metastasis (P=0.048). Area under the curve (AUC) of receiver operating characteristic (ROC) curve of APOC1 was 0.803. Furthermore, elevated APOC1 expression in GC was found to be correlated with decreased overall survival (P=0.00214). Conclusions All these results suggested that APOC1 might be a potential serum biomarker to diagnose GC and a potential prognostic marker for GC.
Collapse
Affiliation(s)
- Jie Yi
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Beijing 100000, China
| | - Liwen Ren
- Beijing Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Jie Wu
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Beijing 100000, China
| | - Wan Li
- Beijing Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Xiangjin Zheng
- Beijing Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Guanhua Du
- Beijing Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Jinhua Wang
- Beijing Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
23
|
Ren H, Chen Z, Yang L, Xiong W, Yang H, Xu K, Zhai E, Ding L, He Y, Song X. Apolipoprotein C1 (APOC1) promotes tumor progression via MAPK signaling pathways in colorectal cancer. Cancer Manag Res 2019; 11:4917-4930. [PMID: 31213910 PMCID: PMC6549782 DOI: 10.2147/cmar.s192529] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Accepted: 02/28/2019] [Indexed: 12/17/2022] Open
Abstract
Aim: Identifying high-efficiency prognostic markers for colorectal cancer (CRC) is necessary for clinical practice. Increasing evidence demonstrates that apolipoprotein C1 (APOC1) promotes carcinogenesis in some human cancers. However, the expression status and biological function of APOC1 in CRC remain unclear. Materials and methods: We detected the association between APOC1 expression and clinicopathological features in 140 CRC patients by immunohistochemistry. Small interfering RNA (siRNA) technology was used to downregulate APOC1 expression in CRC cells. Cell proliferation was estimated by CCK8 and clonogenic assays. The cell cycle and apoptosis were analyzed by flow cytometry. Cell migration and invasion were examined by a transwell assay. Gene set enrichment analysis (GSEA) and protein expression of signaling pathways were used to suggest the possible APOC1-associated pathways in CRC. Results: APOC1 was highly expressed in CRC tissues. High immunohistochemistry (IHC) expression of APOC1 was correlated with the N stage, M stage and TNM stage. High IHC APOC1 expression in CRC tissues was associated with poor prognosis. Univariate and multivariate Cox regression analyses showed that APOC1 was an independent risk factor for OS. Cell proliferation of CRC cell lines was inhibited by the downregulation of APOC1. Moreover, si-APOC1 transfection induced cell cycle arrest but low apoptosis increases by regulating the expression of related proteins. Cell migration and invasion were also inhibited by the downregulation of APOC1. The Cancer Genome Atlas Colorectal Adenocarcinoma (TCGA COAD-READ) dataset analyzed by GSEA showed that APOC1 might be involved in the mitogen-activated protein kinase (MAPK) signaling pathway, which was further preliminarily confirmed by Western blotting. Conclusion: APOC1 was overexpressed in CRC tissues, and a high level of APOC1 contributed to a poor prognosis. APOC1 expression influenced the cell proliferation ability and motility capacity of CRC via the MAPK pathway. APOC1 could act as a novel prognostic biomarker in CRC.
Collapse
Affiliation(s)
- Hui Ren
- Department of Gastrointestinal Surgery Centre, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China.,Center for Digestive Disease, Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, People's Republic of China
| | - Zhihui Chen
- Department of Gastrointestinal Surgery Centre, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Liang Yang
- Department of Gastrointestinal Surgery Centre, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Weixin Xiong
- Department of Gastrointestinal Surgery Centre, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Hong Yang
- Department of Operating Room, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Kaiwu Xu
- Department of Gastrointestinal Surgery Centre, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Ertao Zhai
- Department of Gastrointestinal Surgery Centre, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Li Ding
- Department of Pathology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Yulong He
- Department of Gastrointestinal Surgery Centre, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China.,Center for Digestive Disease, Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, People's Republic of China
| | - Xingming Song
- Department of Gastrointestinal Surgery Centre, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| |
Collapse
|
24
|
Su W, Sun L, Yang S, Zhao H, Zeng T, Wu W, Wang D. Apolipoprotein C1 promotes prostate cancer cell proliferation in vitro. J Biochem Mol Toxicol 2018; 32:e22158. [PMID: 29719090 PMCID: PMC6099310 DOI: 10.1002/jbt.22158] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 04/06/2018] [Indexed: 01/07/2023]
Abstract
Here, we aimed to investigate the carcinogenic effects of apolipoprotein C1 (APOC1) in prostate cancer (PCa). APOC1 expression was evaluated in PCa and normal prostate specimens, and lentivirus-mediated RNA interference was used to knockdown APOC1 in DU145 cells. The effects of APOC1 silencing on cell proliferation, cell cycle arrest, and apoptosis were assessed. APOC1 expression was much higher in PCa tissues than in normal tissues. Moreover, APOC1 silencing inhibited cell proliferation and colony formation, arrested cell cycle progression, and enhanced apoptosis in DU145 cells. Additionally, APOC1 silencing decreased survivin, phospho-Rb, and p21 levels and increased cleaved caspase-3 expression. These data supported the procarcinogenic effects of APOC1 in the pathogenesis of PCa and suggested that targeting APOC1 may have applications in the treatment of PCa.
Collapse
Affiliation(s)
- Wei‐peng Su
- Department of Urology, Fuzhou General HospitalFujian Medical UniversityFuzhouFujian 350025People's Republic of China
| | - Li‐na Sun
- Department of Presbyatrics, Fuzhou General HospitalFujian Medical UniversityFuzhouFujian 350025People's Republic of China
| | - Shun‐liang Yang
- Department of Urology, Fuzhou General HospitalFujian Medical UniversityFuzhouFujian 350025People's Republic of China
| | - Hu Zhao
- Department of Urology, Fuzhou General HospitalFujian Medical UniversityFuzhouFujian 350025People's Republic of China
- Department of Urology, Fuzhou Dongfang HospitalXiamen UniversityXiamenFujian 361005People's Republic of China
| | - Teng‐yue Zeng
- Department of Urology, Fuzhou General HospitalFujian Medical UniversityFuzhouFujian 350025People's Republic of China
| | - Wei‐zhen Wu
- Department of Urology, Fuzhou General HospitalFujian Medical UniversityFuzhouFujian 350025People's Republic of China
| | - Dong Wang
- Department of Urology, Fuzhou General HospitalFujian Medical UniversityFuzhouFujian 350025People's Republic of China
| |
Collapse
|
25
|
Papadopoulou-Marketou N, Kanaka-Gantenbein C, Marketos N, Chrousos GP, Papassotiriou I. Biomarkers of diabetic nephropathy: A 2017 update. Crit Rev Clin Lab Sci 2017; 54:326-342. [DOI: 10.1080/10408363.2017.1377682] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Nektaria Papadopoulou-Marketou
- Diabetes Centre of the Division of Endocrinology, Diabetes and Metabolism, First Department of Pediatrics, National and Kapodistrian University of Athens, “Aghia Sophia” Children’s Hospital, Athens, Greece
- Department of Endocrinology, Department of Medical and Health Sciences, Linkoping University, Linkoping, Sweden
| | - Christina Kanaka-Gantenbein
- Diabetes Centre of the Division of Endocrinology, Diabetes and Metabolism, First Department of Pediatrics, National and Kapodistrian University of Athens, “Aghia Sophia” Children’s Hospital, Athens, Greece
| | | | - George P. Chrousos
- Diabetes Centre of the Division of Endocrinology, Diabetes and Metabolism, First Department of Pediatrics, National and Kapodistrian University of Athens, “Aghia Sophia” Children’s Hospital, Athens, Greece
| | - Ioannis Papassotiriou
- Department of Clinical Biochemistry, “Aghia Sophia” Children’s Hospital, Athens, Greece
| |
Collapse
|
26
|
Guo F, Zhao W, Yang L, Yang Y, Wang S, Wang Y, Li Z, Wang J. Truncated apolipoprotein C-I induces apoptosis in neuroblastoma by activating caspases in the extrinsic and intrinsic pathways. Oncol Rep 2017; 38:1797-1805. [DOI: 10.3892/or.2017.5819] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 07/03/2017] [Indexed: 11/06/2022] Open
|