1
|
Akhter MZ, Yazbeck P, Tauseef M, Anwar M, Hossen F, Datta S, Vellingiri V, Chandra Joshi J, Toth PT, Srivastava N, Lenzini S, Zhou G, Lee J, Jain MK, Shin JW, Mehta D. FAK regulates tension transmission to the nucleus and endothelial transcriptome independent of kinase activity. Cell Rep 2024; 43:114297. [PMID: 38824643 PMCID: PMC11262709 DOI: 10.1016/j.celrep.2024.114297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 01/29/2024] [Accepted: 05/14/2024] [Indexed: 06/04/2024] Open
Abstract
The mechanical environment generated through the adhesive interaction of endothelial cells (ECs) with the matrix controls nuclear tension, preventing aberrant gene synthesis and the transition from restrictive to leaky endothelium, a hallmark of acute lung injury (ALI). However, the mechanisms controlling tension transmission to the nucleus and EC-restrictive fate remain elusive. Here, we demonstrate that, in a kinase-independent manner, focal adhesion kinase (FAK) safeguards tension transmission to the nucleus to maintain EC-restrictive fate. In FAK-depleted ECs, robust activation of the RhoA-Rho-kinase pathway increased EC tension and phosphorylation of the nuclear envelope protein, emerin, activating DNMT3a. Activated DNMT3a methylates the KLF2 promoter, impairing the synthesis of KLF2 and its target S1PR1 to induce the leaky EC transcriptome. Repleting FAK (wild type or kinase dead) or inhibiting RhoA-emerin-DNMT3a activities in damaged lung ECs restored KLF2 transcription of the restrictive EC transcriptome. Thus, FAK sensing and control of tension transmission to the nucleus govern restrictive endothelium to maintain lung homeostasis.
Collapse
Affiliation(s)
- Md Zahid Akhter
- Department of Pharmacology & Regenerative Medicine and Center for Lung and Vascular Biology, Chicago, IL, USA
| | - Pascal Yazbeck
- Department of Pharmacology & Regenerative Medicine and Center for Lung and Vascular Biology, Chicago, IL, USA
| | - Mohammad Tauseef
- Department of Pharmacology & Regenerative Medicine and Center for Lung and Vascular Biology, Chicago, IL, USA
| | - Mumtaz Anwar
- Department of Pharmacology & Regenerative Medicine and Center for Lung and Vascular Biology, Chicago, IL, USA
| | - Faruk Hossen
- Department of Biomedical Engineering, Chicago, IL, USA
| | - Sayanti Datta
- Department of Pharmacology & Regenerative Medicine and Center for Lung and Vascular Biology, Chicago, IL, USA
| | - Vigneshwaran Vellingiri
- Department of Pharmacology & Regenerative Medicine and Center for Lung and Vascular Biology, Chicago, IL, USA
| | - Jagdish Chandra Joshi
- Department of Pharmacology & Regenerative Medicine and Center for Lung and Vascular Biology, Chicago, IL, USA
| | - Peter T Toth
- Department of Pharmacology & Regenerative Medicine and Center for Lung and Vascular Biology, Chicago, IL, USA; Research Resources Center, University of Illinois, Chicago, IL, USA
| | - Nityanand Srivastava
- Department of Pharmacology & Regenerative Medicine and Center for Lung and Vascular Biology, Chicago, IL, USA
| | - Stephen Lenzini
- Department of Pharmacology & Regenerative Medicine and Center for Lung and Vascular Biology, Chicago, IL, USA
| | - Guangjin Zhou
- Department of Population and Quantitative Health Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - James Lee
- Department of Biomedical Engineering, Chicago, IL, USA
| | - Mukesh K Jain
- Division of Biology and Medicine, Warren Alpert Medical School, Brown University, Providence, RI, USA
| | - Jae-Won Shin
- Department of Pharmacology & Regenerative Medicine and Center for Lung and Vascular Biology, Chicago, IL, USA; Department of Biomedical Engineering, Chicago, IL, USA
| | - Dolly Mehta
- Department of Pharmacology & Regenerative Medicine and Center for Lung and Vascular Biology, Chicago, IL, USA.
| |
Collapse
|
2
|
Oria VO, Erler JT. Tumor Angiocrine Signaling: Novel Targeting Opportunity in Cancer. Cells 2023; 12:2510. [PMID: 37887354 PMCID: PMC10605017 DOI: 10.3390/cells12202510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 10/13/2023] [Accepted: 10/20/2023] [Indexed: 10/28/2023] Open
Abstract
The vascular endothelium supplies nutrients and oxygen to different body organs and supports the progression of diseases such as cancer through angiogenesis. Pathological angiogenesis remains a challenge as most patients develop resistance to the approved anti-angiogenic therapies. Therefore, a better understanding of endothelium signaling will support the development of more effective treatments. Over the past two decades, the emerging consensus suggests that the role of endothelial cells in tumor development has gone beyond angiogenesis. Instead, endothelial cells are now considered active participants in the tumor microenvironment, secreting angiocrine factors such as cytokines, growth factors, and chemokines, which instruct their proximate microenvironments. The function of angiocrine signaling is being uncovered in different fields, such as tissue homeostasis, early development, organogenesis, organ regeneration post-injury, and tumorigenesis. In this review, we elucidate the intricate role of angiocrine signaling in cancer progression, including distant metastasis, tumor dormancy, pre-metastatic niche formation, immune evasion, and therapy resistance.
Collapse
Affiliation(s)
- Victor Oginga Oria
- Biotech Research and Innovation Centre (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen, Denmark;
| | | |
Collapse
|
3
|
D'Amico G, Fernandez I, Gómez-Escudero J, Kim H, Maniati E, Azman MS, Mardakheh FK, Serrels B, Serrels A, Parsons M, Squire A, Birdsey GM, Randi AM, Bolado-Carrancio A, Gangeswaran R, Reynolds LE, Bodrug N, Wang Y, Wang J, Meier P, Hodivala-Dilke KM. ERG activity is regulated by endothelial FAK coupling with TRIM25/USP9x in vascular patterning. Development 2022; 149:dev200528. [PMID: 35723257 PMCID: PMC9340553 DOI: 10.1242/dev.200528] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 04/29/2022] [Indexed: 11/20/2022]
Abstract
Precise vascular patterning is crucial for normal growth and development. The ERG transcription factor drives Delta-like ligand 4 (DLL4)/Notch signalling and is thought to act as a pivotal regulator of endothelial cell (EC) dynamics and developmental angiogenesis. However, molecular regulation of ERG activity remains obscure. Using a series of EC-specific focal adhesion kinase (FAK)-knockout (KO) and point-mutant FAK-knock-in mice, we show that loss of ECFAK, its kinase activity or phosphorylation at FAK-Y397, but not FAK-Y861, reduces ERG and DLL4 expression levels together with concomitant aberrations in vascular patterning. Rapid immunoprecipitation mass spectrometry of endogenous proteins identified that endothelial nuclear-FAK interacts with the deubiquitinase USP9x and the ubiquitin ligase TRIM25. Further in silico analysis confirms that ERG interacts with USP9x and TRIM25. Moreover, ERG levels are reduced in FAKKO ECs via a ubiquitin-mediated post-translational modification programme involving USP9x and TRIM25. Re-expression of ERG in vivo and in vitro rescues the aberrant vessel-sprouting defects observed in the absence of ECFAK. Our findings identify ECFAK as a regulator of retinal vascular patterning by controlling ERG protein degradation via TRIM25/USP9x.
Collapse
Affiliation(s)
- Gabriela D'Amico
- Centre for Tumour Microenvironment, Barts Cancer Institute – a CR-UK Centre of Excellence, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - Isabelle Fernandez
- Centre for Tumour Microenvironment, Barts Cancer Institute – a CR-UK Centre of Excellence, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - Jesús Gómez-Escudero
- Centre for Tumour Microenvironment, Barts Cancer Institute – a CR-UK Centre of Excellence, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - Hyojin Kim
- The Breakthrough Toby Robins Breast Cancer Research Centre, Institute of Cancer Research, Chester Beatty Laboratories, Fulham Road, London SW3 6JB, UK
| | - Eleni Maniati
- Centre for Cancer Genomics and Computational Biology, Barts Cancer Institute – a CR-UK Centre of Excellence, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - Muhammad Syahmi Azman
- Centre for Cancer Cell and Molecular Biology, Barts Cancer Institute – a CR-UK Centre of Excellence, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - Faraz K. Mardakheh
- Centre for Cancer Cell and Molecular Biology, Barts Cancer Institute – a CR-UK Centre of Excellence, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - Bryan Serrels
- Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Bearsden G61 1QH, UK
| | - Alan Serrels
- Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh BioQuarter, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Maddy Parsons
- Kings College London, Randall Centre of Cell and Molecular Biophysics, Room 3.22B, New Hunts House, Guys Campus, London SE1 1UL, UK
| | - Anthony Squire
- IMCES - Imaging Centre Essen, Institute for Experimental Immunology and Imaging, University Clinic Essen, Hufelandstrasse 55, 45122 Essen, Germany
| | - Graeme M. Birdsey
- National Heart & Lung Institute, Imperial College London, Hammersmith Hospital, Du Cane Road, London W12 0NN, UK
| | - Anna M. Randi
- National Heart & Lung Institute, Imperial College London, Hammersmith Hospital, Du Cane Road, London W12 0NN, UK
| | | | - Rathi Gangeswaran
- Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute – a CR-UK Centre of Excellence, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - Louise E. Reynolds
- Centre for Tumour Microenvironment, Barts Cancer Institute – a CR-UK Centre of Excellence, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - Natalia Bodrug
- Centre for Tumour Microenvironment, Barts Cancer Institute – a CR-UK Centre of Excellence, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - Yaohe Wang
- Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute – a CR-UK Centre of Excellence, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - Jun Wang
- Centre for Cancer Cell and Molecular Biology, Barts Cancer Institute – a CR-UK Centre of Excellence, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - Pascal Meier
- The Breakthrough Toby Robins Breast Cancer Research Centre, Institute of Cancer Research, Chester Beatty Laboratories, Fulham Road, London SW3 6JB, UK
| | - Kairbaan M. Hodivala-Dilke
- Centre for Tumour Microenvironment, Barts Cancer Institute – a CR-UK Centre of Excellence, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| |
Collapse
|
4
|
Roy-Luzarraga M, Reynolds LE, de Luxán-Delgado B, Maiques O, Wisniewski L, Newport E, Rajeeve V, Drake RJ, Gómez-Escudero J, Richards FM, Weller C, Dormann C, Meng YM, Vermeulen PB, Saur D, Sanz-Moreno V, Wong PP, Géraud C, Cutillas PR, Hodivala-Dilke K. Suppression of Endothelial Cell FAK Expression Reduces Pancreatic Ductal Adenocarcinoma Metastasis after Gemcitabine Treatment. Cancer Res 2022; 82:1909-1925. [PMID: 35350066 PMCID: PMC9381116 DOI: 10.1158/0008-5472.can-20-3807] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 02/07/2022] [Accepted: 03/25/2022] [Indexed: 02/02/2023]
Abstract
Despite substantial advances in the treatment of solid cancers, resistance to therapy remains a major obstacle to prolonged progression-free survival. Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive cancers, with a high level of liver metastasis. Primary PDAC is highly hypoxic, and metastases are resistant to first-line treatment, including gemcitabine. Recent studies have indicated that endothelial cell (EC) focal adhesion kinase (FAK) regulates DNA-damaging therapy-induced angiocrine factors and chemosensitivity in primary tumor models. Here, we show that inducible loss of EC-FAK in both orthotopic and spontaneous mouse models of PDAC is not sufficient to affect primary tumor growth but reduces liver and lung metastasis load and improves survival rates in gemcitabine-treated, but not untreated, mice. EC-FAK loss did not affect primary tumor angiogenesis, tumor blood vessel leakage, or early events in metastasis, including the numbers of circulating tumor cells, tumor cell homing, or metastatic seeding. Phosphoproteomics analysis showed a downregulation of the MAPK, RAF, and PAK signaling pathways in gemcitabine-treated FAK-depleted ECs compared with gemcitabine-treated wild-type ECs. Moreover, low levels of EC-FAK correlated with increased survival and reduced relapse in gemcitabine-treated patients with PDAC, supporting the clinical relevance of these findings. Altogether, we have identified a new role of EC-FAK in regulating PDAC metastasis upon gemcitabine treatment that impacts outcome. SIGNIFICANCE These findings establish the potential utility of combinatorial endothelial cell FAK targeting together with gemcitabine in future clinical applications to control metastasis in patients with pancreatic ductal adenocarcinoma.
Collapse
Affiliation(s)
- Marina Roy-Luzarraga
- Barts Cancer Institute—A CR-UK Center of Excellence, Queen Mary University of London, John Vane Science Center, Charterhouse Square, London, United Kingdom
| | - Louise E. Reynolds
- Barts Cancer Institute—A CR-UK Center of Excellence, Queen Mary University of London, John Vane Science Center, Charterhouse Square, London, United Kingdom
| | - Beatriz de Luxán-Delgado
- Barts Cancer Institute—A CR-UK Center of Excellence, Queen Mary University of London, John Vane Science Center, Charterhouse Square, London, United Kingdom
| | - Oscar Maiques
- Barts Cancer Institute—A CR-UK Center of Excellence, Queen Mary University of London, John Vane Science Center, Charterhouse Square, London, United Kingdom
| | - Laura Wisniewski
- Barts Cancer Institute—A CR-UK Center of Excellence, Queen Mary University of London, John Vane Science Center, Charterhouse Square, London, United Kingdom
| | - Emma Newport
- Barts Cancer Institute—A CR-UK Center of Excellence, Queen Mary University of London, John Vane Science Center, Charterhouse Square, London, United Kingdom
| | - Vinothini Rajeeve
- Barts Cancer Institute—A CR-UK Center of Excellence, Queen Mary University of London, John Vane Science Center, Charterhouse Square, London, United Kingdom
| | - Rebecca J.G. Drake
- Barts Cancer Institute—A CR-UK Center of Excellence, Queen Mary University of London, John Vane Science Center, Charterhouse Square, London, United Kingdom
| | - Jesús Gómez-Escudero
- Barts Cancer Institute—A CR-UK Center of Excellence, Queen Mary University of London, John Vane Science Center, Charterhouse Square, London, United Kingdom
| | - Frances M. Richards
- Translational Medicine Operations, Astrazeneca Oncology, Darwin Building, Cambridge Science Park, Milton Road, Cambridge, United Kingdom
| | - Céline Weller
- Department of Dermatology, Section of Clinical and Molecular Dermatology, Venereology and Allergology, University Medical Center and European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Christof Dormann
- Department of Dermatology, Section of Clinical and Molecular Dermatology, Venereology and Allergology, University Medical Center and European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Ya-Ming Meng
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Peter B. Vermeulen
- Department of Oncological Research, Translational Cancer Research Unit, Oncology Center GZA—GZA Hospitals St. Augustinus and University of Antwerp, Antwerp, Belgium
| | - Dieter Saur
- Division of Translational Cancer Research, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg and Chair of Translational Cancer Research and Institute for Experimental Cancer Therapy, Klinikum rechts der Isar, School of Medicine, Technische Universität München, München, Germany
| | - Victoria Sanz-Moreno
- Barts Cancer Institute—A CR-UK Center of Excellence, Queen Mary University of London, John Vane Science Center, Charterhouse Square, London, United Kingdom
| | - Ping-Pui Wong
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Cyrill Géraud
- Department of Dermatology, Section of Clinical and Molecular Dermatology, Venereology and Allergology, University Medical Center and European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Pedro R. Cutillas
- Barts Cancer Institute—A CR-UK Center of Excellence, Queen Mary University of London, John Vane Science Center, Charterhouse Square, London, United Kingdom
| | - Kairbaan Hodivala-Dilke
- Barts Cancer Institute—A CR-UK Center of Excellence, Queen Mary University of London, John Vane Science Center, Charterhouse Square, London, United Kingdom
| |
Collapse
|
5
|
Newport E, Pedrosa AR, Lees D, Dukinfield M, Carter E, Gomez-Escudero J, Casado P, Rajeeve V, Reynolds LE, R Cutillas P, Duffy SW, De Luxán Delgado B, Hodivala-Dilke K. Elucidating the role of the kinase activity of endothelial cell focal adhesion kinase in angiocrine signalling and tumour growth. J Pathol 2022; 256:235-247. [PMID: 34743335 DOI: 10.1002/path.5833] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 10/21/2021] [Accepted: 11/03/2021] [Indexed: 11/08/2022]
Abstract
A common limitation of cancer treatments is chemotherapy resistance. We have previously identified that endothelial cell (EC)-specific deletion of focal adhesion kinase (FAK) sensitises tumour cells to DNA-damaging therapies, reducing tumour growth in mice. The present study addressed the kinase activity dependency of EC FAK sensitisation to the DNA-damaging chemotherapeutic drug, doxorubicin. FAK is recognised as a therapeutic target in tumour cells, leading to the development of a range of inhibitors, the majority being ATP competitive kinase inhibitors. We demonstrate that inactivation of EC FAK kinase domain (kinase dead; EC FAK-KD) in established subcutaneous B16F0 tumours improves melanoma cell sensitisation to doxorubicin. Doxorubicin treatment in EC FAK-KD mice reduced the percentage change in exponential B16F0 tumour growth further than in wild-type mice. There was no difference in tumour blood vessel numbers, vessel perfusion or doxorubicin delivery between genotypes, suggesting a possible angiocrine effect on the regulation of tumour growth. Doxorubicin reduced perivascular malignant cell proliferation, while enhancing perivascular tumour cell apoptosis and DNA damage in tumours grown in EC FAK-KD mice 48 h after doxorubicin injection. Human pulmonary microvascular ECs treated with the pharmacological FAK kinase inhibitors defactinib, PF-562,271 or PF-573,228 in combination with doxorubicin also reduced cytokine expression levels. Together, these data suggest that targeting EC FAK kinase activity may alter angiocrine signals that correlate with improved acute tumour cell chemosensitisation. © 2021 The Authors. The Journal of Pathology published by John Wiley & Sons, Ltd. on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
MESH Headings
- Angiogenesis Inhibitors/pharmacology
- Animals
- Antibiotics, Antineoplastic/pharmacology
- Apoptosis
- Cell Line, Tumor
- Cell Proliferation
- Cytokines/metabolism
- Doxorubicin/pharmacology
- Drug Resistance, Neoplasm
- Endothelial Cells/enzymology
- Female
- Focal Adhesion Kinase 1/antagonists & inhibitors
- Focal Adhesion Kinase 1/genetics
- Focal Adhesion Kinase 1/metabolism
- Humans
- Male
- Melanoma, Experimental/drug therapy
- Melanoma, Experimental/enzymology
- Melanoma, Experimental/genetics
- Melanoma, Experimental/pathology
- Mice, Inbred C57BL
- Mice, Knockout
- Neovascularization, Physiologic
- Protein Kinase Inhibitors/pharmacology
- Signal Transduction
- Skin Neoplasms/drug therapy
- Skin Neoplasms/enzymology
- Skin Neoplasms/genetics
- Skin Neoplasms/pathology
- Tumor Burden
- Mice
Collapse
Affiliation(s)
- Emma Newport
- Centre for Tumour Microenvironment, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, London, UK
| | - Ana Rita Pedrosa
- Centre for Tumour Microenvironment, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, London, UK
| | - Delphine Lees
- Centre for Tumour Microenvironment, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, London, UK
| | - Matthew Dukinfield
- Centre for Tumour Microenvironment, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, London, UK
| | - Edward Carter
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, London, UK
| | - Jesus Gomez-Escudero
- Centre for Tumour Microenvironment, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, London, UK
| | - Pedro Casado
- Centre for Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, London, UK
| | - Vinothini Rajeeve
- Centre for Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, London, UK
| | - Louise E Reynolds
- Centre for Tumour Microenvironment, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, London, UK
| | - Pedro R Cutillas
- Centre for Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, London, UK
| | | | - Beatriz De Luxán Delgado
- Centre for Tumour Microenvironment, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, London, UK
| | - Kairbaan Hodivala-Dilke
- Centre for Tumour Microenvironment, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, London, UK
| |
Collapse
|
6
|
Mohapatra PK, Srivastava R, Varshney KK, Babu SH. Formulation and Evaluation of Isradipine Nanosuspension and Exploring its Role as a Potential Anticancer Drug by Computational Approach. Anticancer Agents Med Chem 2021; 22:1984-2001. [PMID: 34353274 DOI: 10.2174/1871520621666210805125426] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 06/16/2021] [Accepted: 06/28/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND T-type calcium channels are aberrantly expressed in different human cancers and regulate cell cycle progression, proliferation, migration, and survival. FAK-1 can promote tumor protein degradation (p53) through ubiquitination, leading to cancer cell growth and proliferation. Similar findings are obtained regarding protease inhibitors' effect on cytokine-induced neutrophil activation that suppresses Granulocyte-macrophage colony-stimulating-factor (GM-CSF) TNF-α-induced O2 release and adherence in human neutrophils without affecting phosphorylation of Extracellular signal-regulated kinase (ERK) and p38. Nanosuspensions are carrier-free, submicron colloidal dispersions which consist of pure drugs and stabilizers. Incorporating drug loaded in nanosuspensions possessed great advantages of passive drug targeting with improved solubility, stability, and bioavailability, as well as lower systemic toxicity. OBJECTIVE The present investigation objective was to establish a molecular association of Protease and Focal Adhesion Kinase 1 as cancer targets for isradipine a calcium channel blocker (CCB). Furthermore, the study also aimed to formulate its optimized nanosuspension and how the physical, morphological, and dissolution properties of isradipine impact nanosuspension stability. MATERIAL AND METHOD Five different molecular targets, namely Cysteine Proteases (Cathepsin B), Serine Proteases (Matriptase), Aspartate Proteases, Matrix Metalloproteases (MMP), and FAK-1 were obtained from RCSB-PDB, which has some leading associations with the inhibition in cancer pathogenesis. Molecular interactions of these targets with CCB isradipine were identified and established by the molecular simulation docking studies. Isradipine-loaded nanosuspension was prepared by precipitation technique by employing a 23 factorial design. PVP K-30, poloxamer 188, and sodium lauryl sulfate (SLS) were used as polymer, co-polymer, and surfactant. The nanosuspension particles are characterized for particle size, zeta potential, viscosity, polydispersity index (PDI), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), In-vitro drug release kinetics, and short-term stability study. RESULT It was found to show considerable interaction with Cysteine, Serine, Aspartate, Threonine, and Matrix metalloproteases with the binding energy of -3.91, -6.7, -3.48, -8.42, respectively. Furthermore, the interaction of isradipine with FAK-1 was compared with 7 native ligands and was found to show significant interaction with a binding energy of -8.62, -7.27, -7.69, -5.67, -5.41, -7.44, -8.21. The optimized nanosuspension was evaluated and exhibited the particle size of 754.9 nm, zeta potential of 32.5 mV, the viscosity of 1.287 cp, and PDI of 1.000. The in-vitro dissolution of the optimized formulation (F8) was higher (96.57%). CONCLUSION Isradipine could act as a potential inhibitor of different proteases and FAK-1 associated with tumor growth initiation, progression, and metastasis. Furthermore, isradipine-loaded nanosuspension with optimized release could be utilized to deliver the anticancer drug in a more targeted way as emerging cancer nanotechnology.
Collapse
Affiliation(s)
- Prasanta Kumar Mohapatra
- Moradabad Educational Trust Group of Institutions Faculty of Pharmacy, Moradabad, Uttar Pradesh. India
| | - Rajnish Srivastava
- Moradabad Educational Trust Group of Institutions Faculty of Pharmacy, Moradabad, Uttar Pradesh. India
| | - Krishna Kumar Varshney
- Moradabad Institute of Technology (MIT) College of Pharmacy, Moradabad, Uttar Pradesh. India
| | - S Haresh Babu
- Lydia College of Pharmacy, Ravulapalem, Andhra Pradesh. India
| |
Collapse
|
7
|
Lees DM, Reynolds LE, Pedrosa AR, Roy-Luzarraga M, Hodivala-Dilke KM. Phosphorylation of pericyte FAK-Y861 affects tumour cell apoptosis and tumour blood vessel regression. Angiogenesis 2021; 24:471-482. [PMID: 33730293 PMCID: PMC8292267 DOI: 10.1007/s10456-021-09776-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 02/25/2021] [Indexed: 12/20/2022]
Abstract
Focal adhesion kinase (FAK) is a non-receptor tyrosine kinase that is overexpressed in many cancer types and in vivo studies have shown that vascular endothelial cell FAK expression and FAK-phosphorylation at tyrosine (Y) 397, and subsequently FAK-Y861, are important in tumour angiogenesis. Pericytes also play a vital role in regulating tumour blood vessel stabilisation, but the specific involvement of pericyte FAK-Y397 and FAK-Y861 phosphorylation in tumour blood vessels is unknown. Using PdgfrβCre + ;FAKWT/WT, PdgfrβCre + ;FAKY397F/Y397F and PdgfrβCre + ;FAKY861F/Y861F mice, our data demonstrate that Lewis lung carcinoma tumour growth, tumour blood vessel density, blood vessel perfusion and pericyte coverage were affected only in late stage tumours in PdgfrβCre + ;FAKY861F/Y861F but not PdgfrβCre + ;FAKY397F/Y397F mice. Further examination indicates a dual role for pericyte FAK-Y861 phosphorylation in the regulation of tumour vessel regression and also in the control of pericyte derived signals that influence apoptosis in cancer cells. Overall this study identifies the role of pericyte FAK-Y861 in the regulation of tumour vessel regression and tumour growth control and that non-phosphorylatable FAK-Y861F in pericytes reduces tumour growth and blood vessel density.
Collapse
Affiliation(s)
- Delphine M Lees
- Adhesion and Angiogenesis Laboratory, Centre for Tumour Microenvironment, Barts Cancer Institute - a CR-UK Centre of Excellence, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London, EC1M 6BQ, UK
| | - Louise E Reynolds
- Adhesion and Angiogenesis Laboratory, Centre for Tumour Microenvironment, Barts Cancer Institute - a CR-UK Centre of Excellence, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London, EC1M 6BQ, UK
| | - Ana Rita Pedrosa
- Adhesion and Angiogenesis Laboratory, Centre for Tumour Microenvironment, Barts Cancer Institute - a CR-UK Centre of Excellence, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London, EC1M 6BQ, UK
| | - Marina Roy-Luzarraga
- Adhesion and Angiogenesis Laboratory, Centre for Tumour Microenvironment, Barts Cancer Institute - a CR-UK Centre of Excellence, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London, EC1M 6BQ, UK
| | - Kairbaan M Hodivala-Dilke
- Adhesion and Angiogenesis Laboratory, Centre for Tumour Microenvironment, Barts Cancer Institute - a CR-UK Centre of Excellence, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London, EC1M 6BQ, UK.
| |
Collapse
|
8
|
Zhou Q, Jiang J, Chen G, Qian C, Sun G. Inflammatory Immune Cytokine TNF-α Modulates Ezrin Protein Activation via FAK/RhoA Signaling Pathway in PMVECs Hyperpermeability. Front Pharmacol 2021; 12:676817. [PMID: 34054551 PMCID: PMC8152434 DOI: 10.3389/fphar.2021.676817] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 03/29/2021] [Indexed: 12/18/2022] Open
Abstract
Background: One of the important pathogenesis of acute respiratory distress syndrome (ARDS) is the dysfunction of pulmonary microvascular endothelial barrier induced by a hyperinflammatory immune response. However, the potential mechanisms of such an imbalance in pulmonary microvascular endothelial cells (PMVECs) are not yet understood. Purpose: Explore the molecular mechanism of endothelial barrier dysfunction induced by inflammatory immune cytokines in ARDS, and find a therapeutic target for this syndrome. Methods: Rat PMVECs were cultured to form a monolayer. Immunofluorescence, flow cytometry, and Western blotting were selected to detect the distribution and the expression level of phosphorylated Ezrin protein and Ezrin protein. Transendothelial electrical resistance (TER) and transendothelial fluxes of fluorescein isothiocyanate (FITC)-labeled bovine serum albumin (BSA) were utilized to measure the permeability of the cell monolayer. Ezrin short hairpin RNA (shRNA) and Ezrin 567-site threonine mutant (EzrinT567A) were used to examine the role of Ezrin protein and phosphorylated Ezrin protein in endothelial response induced by tumor necrosis factor-alpha (TNF-α), respectively. The function of focal adhesion kinase (FAK) and Ras homolog gene family, member A (RhoA) signaling pathways were estimated by inhibitors and RhoA/FAK shRNA in TNF-α-stimulated rat PMVECs. The activation of FAK and RhoA was assessed by Western blotting or pull-down assay plus Western blotting. Results: The TER was decreased after TNF-α treatment, while the Ezrin protein phosphorylation was increased in a time- and dose-dependent manner. The phosphorylated Ezrin protein was localized primarily at the cell periphery, resulting in filamentous actin (F-actin) rearrangement, followed by a significant decrease in TER and increase in fluxes of FITC-BSA. Moreover, FAK and RhoA signaling pathways were required in the phosphorylation of Ezrin protein, and the former positively regulated the latter. Conclusion: The phosphorylated Ezrin protein was induced by TNF-α via the FAK/RhoA signaling pathway leading to endothelial hyperpermeability in PMVECs.
Collapse
Affiliation(s)
- Qun Zhou
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Department of Geriatric Respiratory Medicine, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Jianjun Jiang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Guanjun Chen
- The Center for Scientific Research of Anhui Medical University, Hefei, China
| | - Cheng Qian
- The Center for Scientific Research of Anhui Medical University, Hefei, China
| | - Gengyun Sun
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
9
|
Nikolopoulou PA, Koufaki MA, Kostourou V. The Adhesome Network: Key Components Shaping the Tumour Stroma. Cancers (Basel) 2021; 13:525. [PMID: 33573141 PMCID: PMC7866493 DOI: 10.3390/cancers13030525] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/22/2021] [Accepted: 01/25/2021] [Indexed: 02/07/2023] Open
Abstract
Beyond the conventional perception of solid tumours as mere masses of cancer cells, advanced cancer research focuses on the complex contributions of tumour-associated host cells that are known as "tumour microenvironment" (TME). It has been long appreciated that the tumour stroma, composed mainly of blood vessels, cancer-associated fibroblasts and immune cells, together with the extracellular matrix (ECM), define the tumour architecture and influence cancer cell properties. Besides soluble cues, that mediate the crosstalk between tumour and stroma cells, cell adhesion to ECM arises as a crucial determinant in cancer progression. In this review, we discuss how adhesome, the intracellular protein network formed at cell adhesions, regulate the TME and control malignancy. The role of adhesome extends beyond the physical attachment of cells to ECM and the regulation of cytoskeletal remodelling and acts as a signalling and mechanosensing hub, orchestrating cellular responses that shape the tumour milieu.
Collapse
Affiliation(s)
| | | | - Vassiliki Kostourou
- Biomedical Sciences Research Centre “Alexander Fleming”, Institute of Bioinnovation, 34 Fleming Str., 16672 Vari-Athens, Greece; (P.A.N.); (M.A.K.)
| |
Collapse
|
10
|
Xu B, Deng C, Wu X, Ji T, Zhao L, Han Y, Yang W, Qi Y, Wang Z, Yang Z, Yang Y. CCR9 and CCL25: A review of their roles in tumor promotion. J Cell Physiol 2020; 235:9121-9132. [PMID: 32401349 DOI: 10.1002/jcp.29782] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 04/25/2020] [Accepted: 05/02/2020] [Indexed: 12/16/2022]
Abstract
Chemokines constitute a superfamily of small chemotactic cytokines with functions that are based on interactions with their corresponding receptors. It has been found that, among other functions, chemokines regulate the migratory and invasive abilities of cancer cells. Multiple studies have confirmed that chemokine receptor 9 (CCR9) and its exclusive ligand, chemokine 25 (CCL25), are overexpressed in a variety of malignant tumors and are closely associated with tumor proliferation, apoptosis, invasion, migration and drug resistance. This review evaluates recent advances in understanding the role of CCR9/CCL25 in cancer development. First, we outline the general background of chemokines in cancer and the structure and function of CCR9 and CCL25. Next, we describe the basic function of CCR9/CCL25 in the cancer process. Then, we introduce the role of CCR9/CCL25 and related signaling pathways in various cancers. Finally, future research directions are proposed. In general, this paper is intended to serve as a comprehensive repository of information on this topic and is expected to contribute to the design of other research projects and future efforts to develop treatment strategies for ameliorating the effects of CCR9/CCL25 in cancer.
Collapse
Affiliation(s)
- Baoping Xu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, Northwest University, Xi'an, China
| | - Chao Deng
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xue Wu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, Northwest University, Xi'an, China
| | - Ting Ji
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, Northwest University, Xi'an, China
| | - Lin Zhao
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Yuehu Han
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Wenwen Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, Northwest University, Xi'an, China
| | - Yating Qi
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, Northwest University, Xi'an, China
| | - Zheng Wang
- Department of Cardiothoracic Surgery, Central Theater Command General Hospital of Chinese People's Liberation Army, Wuhan, China
| | - Zhi Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, Northwest University, Xi'an, China
| | - Yang Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, Northwest University, Xi'an, China
| |
Collapse
|
11
|
Guo X, Eitnier RA, Beard RS, Meegan JE, Yang X, Aponte AM, Wang F, Nelson PR, Wu MH. Focal adhesion kinase and Src mediate microvascular hyperpermeability caused by fibrinogen- γC- terminal fragments. PLoS One 2020; 15:e0231739. [PMID: 32352989 PMCID: PMC7192500 DOI: 10.1371/journal.pone.0231739] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 03/30/2020] [Indexed: 12/31/2022] Open
Abstract
Objectives We previously reported microvascular leakage resulting from fibrinogen-γ chain C-terminal products (γC) occurred via a RhoA-dependent mechanism. The objective of this study was to further elucidate the signaling mechanism by which γC induces endothelial hyperpermeability. Since it is known that γC binds and activates endothelial αvβ3, a transmembrane integrin receptor involved in intracellular signaling mediated by the tyrosine kinases FAK and Src, we hypothesized that γC alters endothelial barrier function by activating the FAK-Src pathway leading to junction dissociation and RhoA driven cytoskeletal stress-fiber formation. Methods and results Using intravital microscopy of rat mesenteric microvessels, we show increased extravasation of plasma protein (albumin) resulting from γC administration. In addition, capillary fluid filtration coefficient (Kfc) indicated γC-induced elevated lung vascular permeability. Furthermore, γC decreased transendothelial barrier resistance in a time-dependent and dose-related fashion in cultured rat lung microvascular endothelial cells (RLMVECs), accompanied by increased FAK/Src phosphorylation detection by western blot. Experiments with pharmacological inhibition or gene silencing of FAK showed significantly reduced γC-induced albumin and fluid leakage across microvessels, stress-fiber formation, VE-cadherin tyrosine phosphorylation, and improved γC-induced endothelial barrier dysfunction, indicating the involvement of FAK in γC mediated hyperpermeability. Comparable results were found when Src was targeted in a similar manner, however inhibition of FAK prevented Src activation, suggesting that FAK is upstream of Src in γC-mediated hyperpermeability. In addition, γC-induced cytoskeletal stress-fiber formation was attenuated during inhibition or silencing of these tyrosine kinases, concomitantly with RhoA inhibition. Conclusion The FAK-Src pathway contributes to γC-induced microvascular barrier dysfunction, junction protein phosphorylation and disorganization in a manner that involves RhoA and stress-fiber formation.
Collapse
Affiliation(s)
- Xiaohua Guo
- Department of Surgery, University of South Florida Morsani College of Medicine, Tampa, FL, United States of America
| | - Rebecca A. Eitnier
- Department of Surgery, University of South Florida Morsani College of Medicine, Tampa, FL, United States of America
| | - Richard S. Beard
- Department of Biomolecular Research, Boise State University, Boise, ID, United States of America
| | - Jamie E. Meegan
- Department of Molecular Pharmacology and Physiology, University of South Florida Morsani College of Medicine, Tampa, FL, United States of America
| | - Xiaoyuan Yang
- Department of Molecular Pharmacology and Physiology, University of South Florida Morsani College of Medicine, Tampa, FL, United States of America
| | - Alexandra M. Aponte
- Department of Surgery, University of South Florida Morsani College of Medicine, Tampa, FL, United States of America
| | - Fang Wang
- Department of Surgery, University of South Florida Morsani College of Medicine, Tampa, FL, United States of America
| | - Peter R. Nelson
- Department of Surgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States of America
| | - Mack H. Wu
- Department of Surgery, University of South Florida Morsani College of Medicine, Tampa, FL, United States of America
- * E-mail:
| |
Collapse
|
12
|
Xu L, Bi Y, Xu Y, Zhang Z, Xu W, Zhang S, Chen J. Oridonin inhibits the migration and epithelial-to-mesenchymal transition of small cell lung cancer cells by suppressing FAK-ERK1/2 signalling pathway. J Cell Mol Med 2020; 24:4480-4493. [PMID: 32168416 PMCID: PMC7176879 DOI: 10.1111/jcmm.15106] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 01/12/2020] [Accepted: 01/31/2020] [Indexed: 12/16/2022] Open
Abstract
Small cell lung cancer (SCLC) is a severe malignant with high morbidity; however, few effective and secure therapeutic strategy is used in current clinical practice. Oridonin is a small molecule from the traditional Chinese herb Rabdosia rubescens. This study mainly aimed to investigate the role of oridonin on inhibiting the process of H1688, a kind of small cell lung cancer cells from human. Oridonin could suppress H1688 cell proliferation and induce their apoptosis in a high dosage treatment (20 μmol/L). Meanwhile, cell migration was suppressed by oridonin (5 and 10 μmol/L) that did not affect cell proliferation and apoptosis. The expression level of E-cadherin was significantly increased, and the expression of vimentin, snail and slug was reduced after administration of oridonin. These expression changes were associated with the suppressed integrin β1, phosphorylation of focal adhesion kinase (FAK) and ERK1/2. In addition, oridonin (5 and 10 mg/kg) inhibited tumour growth in a nude mouse model; however, HE staining revealed a certain degree of cytotoxicity in hepatic tissue after treatment oridonin (10 mg/kg). Furthermore, the concentration of alanine aminotransferase (ALP) was significantly increased and lactate dehydrogenase (LDH) was reduced after oridonin treatment (10 mg/kg). Immunohistochemical analysis further revealed that oridonin increased E-cadherin expression and reduced vimentin and phospho-FAK levels in vivo. These findings indicated that oridonin can inhibit the migration and epithelial-to-mesenchymal transition (EMT) of SCLC cells by suppressing the FAK-ERK1/2 signalling pathway. Thus, oridonin may be a new drug candidate to offer an effect of anti-SCLC with relative safety.
Collapse
Affiliation(s)
- Linhao Xu
- Department of Cardiology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China.,School of Basic Medical Sciences & Forensic Medicine, Hangzhou Medical College, Hangzhou, China.,Translational Medicine Research Center, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yanli Bi
- Department of Clinical Laboratorial Examination, Air Force Hangzhou Special Service Recuperation Center Sanatorium Area 3, Hangzhou, China
| | - Yizhou Xu
- Department of Cardiology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhuocheng Zhang
- School of Basic Medical Sciences & Forensic Medicine, Hangzhou Medical College, Hangzhou, China
| | - Wenjie Xu
- School of Basic Medical Sciences & Forensic Medicine, Hangzhou Medical College, Hangzhou, China
| | - Sisi Zhang
- School of Basic Medical Sciences & Forensic Medicine, Hangzhou Medical College, Hangzhou, China
| | - Jian Chen
- School of Basic Medical Sciences & Forensic Medicine, Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
13
|
Pedrosa AR, Bodrug N, Gomez-Escudero J, Carter EP, Reynolds LE, Georgiou PN, Fernandez I, Lees DM, Kostourou V, Alexopoulou AN, Batista S, Tavora B, Serrels B, Parsons M, Iskratsch T, Hodivala-Dilke KM. Tumor Angiogenesis Is Differentially Regulated by Phosphorylation of Endothelial Cell Focal Adhesion Kinase Tyrosines-397 and -861. Cancer Res 2019; 79:4371-4386. [PMID: 31189647 DOI: 10.1158/0008-5472.can-18-3934] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 04/26/2019] [Accepted: 06/06/2019] [Indexed: 11/16/2022]
Abstract
Expression of focal adhesion kinase (FAK) in endothelial cells (EC) is essential for angiogenesis, but how FAK phosphorylation at tyrosine-(Y)397 and Y861 regulate tumor angiogenesis in vivo is unknown. Here, we show that tumor growth and angiogenesis are constitutively reduced in inducible, ECCre+;FAKY397F/Y397F -mutant mice. Conversely, ECCre+;FAKY861F/Y861F mice exhibit normal tumor growth with an initial reduction in angiogenesis that recovered in end-stage tumors. Mechanistically, FAK-Y397F ECs exhibit increased Tie2 expression, reduced Vegfr2 expression, decreased β1 integrin activation, and disrupted downstream FAK/Src/PI3K(p55)/Akt signaling. In contrast, FAK-Y861F ECs showed decreased Vegfr2 and Tie2 expression with an enhancement in β1 integrin activation. This corresponds with a decrease in Vegfa-stimulated response, but an increase in Vegfa+Ang2- or conditioned medium from tumor cell-stimulated cellular/angiogenic responses, mimicking responses in end-stage tumors with elevated Ang2 levels. Mechanistically, FAK-Y861F, but not FAK-Y397F ECs showed enhanced p190RhoGEF/P130Cas-dependent signaling that is required for the elevated responses to Vegfa+Ang2. This study establishes the differential requirements of EC-FAK-Y397 and EC-FAK-Y861 phosphorylation in the regulation of EC signaling and tumor angiogenesis in vivo. SIGNIFICANCE: Distinct motifs of the focal adhesion kinase differentially regulate tumor blood vessel formation and remodeling.
Collapse
Affiliation(s)
- Ana-Rita Pedrosa
- Centre for Tumour Biology, Barts Cancer Institute-a CR-UK Centre of Excellence, Queen Mary University of London, London, United Kingdom
| | - Natalia Bodrug
- Centre for Tumour Biology, Barts Cancer Institute-a CR-UK Centre of Excellence, Queen Mary University of London, London, United Kingdom
| | - Jesus Gomez-Escudero
- Centre for Tumour Biology, Barts Cancer Institute-a CR-UK Centre of Excellence, Queen Mary University of London, London, United Kingdom
| | - Edward P Carter
- Centre for Tumour Biology, Barts Cancer Institute-a CR-UK Centre of Excellence, Queen Mary University of London, London, United Kingdom
| | - Louise E Reynolds
- Centre for Tumour Biology, Barts Cancer Institute-a CR-UK Centre of Excellence, Queen Mary University of London, London, United Kingdom
| | - Paraskivi Natalia Georgiou
- Centre for Tumour Biology, Barts Cancer Institute-a CR-UK Centre of Excellence, Queen Mary University of London, London, United Kingdom
| | - Isabelle Fernandez
- Centre for Tumour Biology, Barts Cancer Institute-a CR-UK Centre of Excellence, Queen Mary University of London, London, United Kingdom
| | - Delphine M Lees
- Centre for Tumour Biology, Barts Cancer Institute-a CR-UK Centre of Excellence, Queen Mary University of London, London, United Kingdom
| | - Vassiliki Kostourou
- Centre for Tumour Biology, Barts Cancer Institute-a CR-UK Centre of Excellence, Queen Mary University of London, London, United Kingdom
| | - Annika N Alexopoulou
- Centre for Tumour Biology, Barts Cancer Institute-a CR-UK Centre of Excellence, Queen Mary University of London, London, United Kingdom
| | - Silvia Batista
- Centre for Tumour Biology, Barts Cancer Institute-a CR-UK Centre of Excellence, Queen Mary University of London, London, United Kingdom
| | - Bernardo Tavora
- Centre for Tumour Biology, Barts Cancer Institute-a CR-UK Centre of Excellence, Queen Mary University of London, London, United Kingdom
| | - Bryan Serrels
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Maddy Parsons
- Randall Centre for Cell and Molecular Biophysics, King's College London, London, United Kingdom
| | - Thomas Iskratsch
- Division of Bioengineering, School of Engineering and Materials Science, Queen Mary University of London, London, United Kingdom
| | - Kairbaan M Hodivala-Dilke
- Centre for Tumour Biology, Barts Cancer Institute-a CR-UK Centre of Excellence, Queen Mary University of London, London, United Kingdom.
| |
Collapse
|
14
|
Zhou J, Yi Q, Tang L. The roles of nuclear focal adhesion kinase (FAK) on Cancer: a focused review. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:250. [PMID: 31186061 PMCID: PMC6560741 DOI: 10.1186/s13046-019-1265-1] [Citation(s) in RCA: 201] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 06/03/2019] [Indexed: 12/15/2022]
Abstract
FAK is a tyrosine kinase overexpressed in cancer cells and plays an important role in the progression of tumors to a malignant phenotype. Except for its typical role as a cytoplasmic kinase downstream of integrin and growth factor receptor signaling, related studies have shown new aspects of the roles of FAK in the nucleus. FAK can promote p53 degradation through ubiquitination, leading to cancer cell growth and proliferation. FAK can also regulate GATA4 and IL-33 expression, resulting in reduced inflammatory responses and immune escape. These findings establish a new model of FAK from the cytoplasm to the nucleus. Activated FAK binds to transcription factors and regulates gene expression. Inactive FAK synergizes with different E3 ligases to promote the turnover of transcription factors by enhancing ubiquitination. In the tumor microenvironment, nuclear FAK can regulate the formation of new blood vessels, affecting the tumor blood supply. This article reviews the roles of nuclear FAK in regulating gene expression. In addition, the use of FAK inhibitors to target nuclear FAK functions will also be emphasized.
Collapse
Affiliation(s)
- Jin Zhou
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Qian Yi
- Department of Physiology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, Sichuan, China.
| | - Liling Tang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China.
| |
Collapse
|
15
|
Targeting Focal Adhesion Kinase Using Inhibitors of Protein-Protein Interactions. Cancers (Basel) 2018; 10:cancers10090278. [PMID: 30134553 PMCID: PMC6162372 DOI: 10.3390/cancers10090278] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 08/08/2018] [Accepted: 08/14/2018] [Indexed: 12/19/2022] Open
Abstract
Focal adhesion kinase (FAK) is a cytoplasmic non-receptor protein tyrosine kinase that is overexpressed and activated in many human cancers. FAK transmits signals to a wide range of targets through both kinase-dependant and independent mechanism thereby playing essential roles in cell survival, proliferation, migration and invasion. In the past years, small molecules that inhibit FAK kinase function have been developed and show reduced cancer progression and metastasis in several preclinical models. Clinical trials have been conducted and these molecules display limited adverse effect in patients. FAK contain multiple functional domains and thus exhibit both important scaffolding functions. In this review, we describe the major FAK interactions relevant in cancer signalling and discuss how such knowledge provide rational for the development of Protein-Protein Interactions (PPI) inhibitors.
Collapse
|
16
|
Lederer PA, Zhou T, Chen W, Epshtein Y, Wang H, Mathew B, Jacobson JR. Attenuation of murine acute lung injury by PF-573,228, an inhibitor of focal adhesion kinase. Vascul Pharmacol 2018; 110:16-23. [PMID: 29969688 DOI: 10.1016/j.vph.2018.06.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 05/01/2018] [Accepted: 06/29/2018] [Indexed: 01/07/2023]
Abstract
Acute lung injury (ALI) is characterized by endothelial barrier disruption resulting in increased vascular permeability. As focal adhesion kinase (FAK), a non-receptor protein tyrosine kinase, is involved in endothelial cell (EC) barrier regulation, we hypothesized that FAK inhibition could attenuate agonist-induced EC barrier disruption relevant to ALI. Human lung EC were pretreated with one of three pharmacologic FAK inhibitors, PF-573,228 (PF-228, 10 μM), PF-562,271 (PF-271, 5 μM) or NVP-TAE226 (TAE226, 5 μM) for 30 min prior to treatment with thrombin (1 U/ml, 30 min). Western blotting confirmed attenuated thrombin-induced FAK phosphorylation associated with all three inhibitors. Subsequently, EC were pretreated with either PF-228 (10 μM), TAE226 (5 μM) or PF-271 (5 μM) for 30 min prior to thrombin stimulation (1 U/ml) followed by measurements of barrier integrity by transendothelial electrical resistance (TER). Separately, EC grown in transwell inserts prior to thrombin (1 U/ml) with measurements of FITC-dextran flux after 30 min confirmed a significant attenuation of thrombin-induced EC barrier disruption by PF-228 alone. Finally, in a murine ALI model induced by LPS (1.25 mg/ml, IT), rescue treatment with PF-228 was associated with significantly reduced lung injury. Our findings PF-228, currently being studied in clinical trials, may serve as a novel and effective therapeutic agent for ALI.
Collapse
Affiliation(s)
- Paul A Lederer
- Division of Pulmonary, Critical Care, Sleep and Allergy, University of Illinois at Chicago, Chicago, IL, United States
| | - Tingting Zhou
- Division of Pulmonary, Critical Care, Sleep and Allergy, University of Illinois at Chicago, Chicago, IL, United States
| | - Weiguo Chen
- Division of Pulmonary, Critical Care, Sleep and Allergy, University of Illinois at Chicago, Chicago, IL, United States
| | - Yulia Epshtein
- Division of Pulmonary, Critical Care, Sleep and Allergy, University of Illinois at Chicago, Chicago, IL, United States
| | - Huashan Wang
- Division of Pulmonary, Critical Care, Sleep and Allergy, University of Illinois at Chicago, Chicago, IL, United States
| | - Biji Mathew
- Division of Pulmonary, Critical Care, Sleep and Allergy, University of Illinois at Chicago, Chicago, IL, United States
| | - Jeffrey R Jacobson
- Division of Pulmonary, Critical Care, Sleep and Allergy, University of Illinois at Chicago, Chicago, IL, United States.
| |
Collapse
|
17
|
Kazemi K, Nikeghbalian Z, Yaghmaei S, Nikeghbalian S, Shamsaeifar A, Asgharnia Y, Dehghankhalili M, Golchini A, Malekhosseini SA. University of Wisconsin vs normal saline solutions for preservation of blood vessels of brain dead donors: A histopathological study. Clin Transplant 2018; 32:e13241. [PMID: 29573462 DOI: 10.1111/ctr.13241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/09/2018] [Indexed: 11/29/2022]
Abstract
OBJECTIVE To compare the cellular changes of harvested arteries which were preserved in normal saline (NS) and the standard and routinely used University of Wisconsin (UW) solution. METHODS This experimental study was conducted on 20 brain dead patients. The femoral and iliac arteries were bilaterally removed and were placed in NS and UW solutions. The vascular change indices including endothelial detachment (ED), medial detachment (MD), and internal elastic membrane disruption (IEMD) were surveyed for each preserver in the first, 5th, 10th, and 21st day. RESULTS The mean age of the included patients was 32.28 ± 8.88 years, and there were 13 (65.0%) men and 7 (35.0%) women among the patients. The NS and UW preservation solutions were comparable regarding the indices of vascular changes at first, 5th, and 10th day of the study. Only in 21st day of the study, there was a significant difference between 2 group regarding MD changes (P = .049). CONCLUSION The results of this in vitro study demonstrated that NS can be used as a worthy preserver for harvested vessels for up to 21 days, especially in resource-limited transplantation centers.
Collapse
Affiliation(s)
- Kourosh Kazemi
- Shiraz Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Nikeghbalian
- Shiraz Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shekoofeh Yaghmaei
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Saman Nikeghbalian
- Shiraz Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Alireza Shamsaeifar
- Shiraz Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Yasaman Asgharnia
- Student Research Committee, Guilan University of Medical Sciences, Rasht, Iran
| | - Maryam Dehghankhalili
- Resident of General Surgery, Department of General Surgery, Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Alireza Golchini
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | | |
Collapse
|