1
|
Dai W, Ko JMY, Yu VZ, Hou Z, Chow LKY, Chung MKY, Islam KA, Ng BHY, Wong CWY, Leung KK, Chen C, Wong IYH, Law SYK, Lo AWI, Lam AKY, Lung ML. Characterizing chromosome instability reveals its association with lipid-associated macrophages and clonal evolution of lymph node metastasis in esophageal squamous cell carcinoma. Cancer Lett 2025; 628:217874. [PMID: 40516322 DOI: 10.1016/j.canlet.2025.217874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2025] [Revised: 06/02/2025] [Accepted: 06/12/2025] [Indexed: 06/16/2025]
Abstract
Esophageal cancer is an aggressive cancer, and metastasis is one of the major factors contributing to treatment failure, leading to poor clinical outcomes. Chromosome instability (CIN) is frequently observed in esophageal squamous cell carcinoma (ESCC). However, the functional impact of CIN is not well studied in ESCC metastasis. We aim to study the role and underlying mechanisms of CIN in lymph node (LN) metastasis. Integrated analysis was performed using single-cell RNA sequencing data with matched whole-exome sequencing in primary ESCC, genomic sequencing in ESCC organoids and clinical specimens, and spatial protein profiling to characterize CIN and relevant tumor immune microenvironment (TIME) associated with LN metastasis. CIN in primary ESCC is significantly associated with LN metastasis at diagnosis, particularly in those patients with homologous recombination deficiency and use of alternative end joining (alt-EJ). Primary CIN ESCC exhibited increased epithelial-mesenchymal transition (EMT), hypoxia, angiogenesis, RNA metabolism, and heat stress, associated with a strong metastatic potential. Although CIN ESCC has elevated neoantigen loads, its TIME was enriched for immunosuppressive lipid-associated tumor-associated macrophages (LA-TAMs). Secreted phosphoprotein 1 (SPP1) plays a key role in mediating the communications of CIN ESCC cells and LA-TAMs. In LN metastases, structural CIN (sCIN) with retrotransposon insertion and reactivation is important for ESCC clonal evolution and cell proliferation, associated with increased LA-TAMs infiltration and poor overall patient survival. ESCC with high CIN has a strong metastatic potential. Our findings reveal a novel link between error-prone DSB repair pathways and LA-TAMs through CIN in LN metastasis.
Collapse
Affiliation(s)
- Wei Dai
- Department of Clinical Oncology, Centre of Cancer Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region of China; Department of Clinical Oncology, Shenzhen Key Laboratory for Cancer Metastasis and Personalized Therapy, The University of Hong Kong-Shenzhen Hospital, Shenzhen, PR China.
| | - Josephine Mun-Yee Ko
- Department of Clinical Oncology, Centre of Cancer Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Valen Zhuoyou Yu
- Department of Clinical Oncology, Centre of Cancer Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Zhaozheng Hou
- Department of Clinical Oncology, Centre of Cancer Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Larry Ka-Yue Chow
- Department of Clinical Oncology, Centre of Cancer Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Michael King Yung Chung
- Department of Clinical Oncology, Centre of Cancer Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Kazi Anisha Islam
- Department of Clinical Oncology, Centre of Cancer Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Bianca Hoi-Yan Ng
- Department of Clinical Oncology, Centre of Cancer Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Carissa Wing-Yan Wong
- Department of Clinical Oncology, Centre of Cancer Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Ka-Kiu Leung
- Department of Clinical Oncology, Centre of Cancer Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Cancan Chen
- Department of Clinical Oncology, Centre of Cancer Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Ian Yu Hong Wong
- Department of Surgery, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Simon Ying-Kit Law
- Department of Surgery, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Anthony Wing-Ip Lo
- Division of Anatomical Pathology, Queen Mary Hospital, Hong Kong Special Administrative Region of China
| | - Alfred King-Yin Lam
- Department of Cancer Molecular Pathology, School of Medicine and Dentistry and Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland, Australia
| | - Maria Li Lung
- Department of Clinical Oncology, Centre of Cancer Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region of China.
| |
Collapse
|
2
|
Zhang Z, Geng C, Song M, Liang H, Zhou K, Liu Y, Wu J, Huang X, Zhou J, Fan J, Peng DH, Zhang L, Cang Y, Sun Y. Loss of SGK1 supports metastatic colonization in hepatocellular carcinoma by promoting resistance to T cell-mediated immunity. J Hepatol 2025:S0168-8278(25)00064-9. [PMID: 39892819 DOI: 10.1016/j.jhep.2025.01.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 01/10/2025] [Accepted: 01/15/2025] [Indexed: 02/04/2025]
Abstract
BACKGROUND & AIMS Immune evasion by tumor cells is a principal obstacle to effectively targeting metastasis in hepatocellular carcinoma (HCC). However, the specific molecular mechanisms facilitating immune escape during metastatic seeding are not fully elucidated. METHODS Utilizing in vivo CRISPR library screening in murine HCC metastasis models under conditions of both intact and depleted T-cell immunity, we identified genes critical to tumor immune evasion during metastatic colonization and investigated intrinsic mechanisms using several experimental approaches. RESULTS Our screens identified Sgk1 as an essential suppressor of metastatic colonization under T-cell immunosurveillance. Sgk1-deficient tumor cells displayed significantly enhanced metastatic capacity in the presence of CD8+ T cells, underscoring the role of Sgk1 in regulating immune escape. Clinical analyses corroborated these findings, showing markedly lower SGK1 expression in circulating tumor cells and metastatic lesions relative to matched primary tumors in patients with HCC, with low SGK1 expression associating with compromised T-cell function and poorer clinical outcomes. Mechanistically, Sgk1 inactivation in tumor cells attenuated CD8+ T cell-mediated, RIPK1-dependent necroptosis - a cell death pathway essential for cytotoxic T cell-mediated restriction of metastasis. Loss of Sgk1 consequently enabled tumor cells to circumvent T cell-induced cytotoxicity, thereby promoting metastatic colonization. Furthermore, the outgrowth of Sgk1-deficient metastatic cells induced a microenvironmental shift toward terminal T-cell exhaustion, establishing conditions conducive to sustained immune evasion. CONCLUSIONS These findings establish SGK1 as a crucial regulator of immune-mediated control over metastatic growth in HCC. SGK1 expression in metastatic lesions may serve as a predictive biomarker for response to immune checkpoint inhibitors, presenting new avenues for therapeutic intervention to overcome immune resistance in metastatic HCC. IMPACT AND IMPLICATIONS Despite metastasis being a common occurrence and lethal determinant in cancers, the mechanism underlying tumor immune evasion during metastatic seeding is unclear. Our study reveals that loss of Sgk1 confers metastatic tumor cells with a survival advantage by abrogating CD8+ T cell-induced RIPK1-dependent necroptosis. Growth of Sgk1-silenced metastasis led to infiltration of terminally exhausted CD8+ T cells, which could be reversed by immune checkpoint inhibitors administered at an early stage of metastatic seeding. These findings provide valuable insights into potential therapeutic strategies targeting resistance to T-cell immunity in cancer metastasis.
Collapse
Affiliation(s)
- Zefan Zhang
- Department of Hepatobiliary Surgery and Liver Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai 200032, China
| | - Chenlu Geng
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Minfang Song
- Research Center for Life Sciences Computing, Zhejiang Lab, Hangzhou, Zhejiang 311121, China
| | - Hengbin Liang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Kaiqian Zhou
- Department of Hepatobiliary Surgery and Liver Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai 200032, China
| | - Yang Liu
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Jing Wu
- Department of Hepatobiliary Surgery and Liver Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai 200032, China
| | - Xingxu Huang
- Research Center for Life Sciences Computing, Zhejiang Lab, Hangzhou, Zhejiang 311121, China
| | - Jian Zhou
- Department of Hepatobiliary Surgery and Liver Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai 200032, China
| | - Jia Fan
- Department of Hepatobiliary Surgery and Liver Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai 200032, China
| | - David H Peng
- Dunwill Med-Tech Co., Ltd, Shanghai 201210, China.
| | - Liye Zhang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| | - Yong Cang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| | - Yunfan Sun
- Department of Hepatobiliary Surgery and Liver Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai 200032, China.
| |
Collapse
|
3
|
Wang L, Zhu Y, Zhang N, Xian Y, Tang Y, Ye J, Reza F, He G, Wen X, Jiang X. The multiple roles of interferon regulatory factor family in health and disease. Signal Transduct Target Ther 2024; 9:282. [PMID: 39384770 PMCID: PMC11486635 DOI: 10.1038/s41392-024-01980-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/12/2024] [Accepted: 09/10/2024] [Indexed: 10/11/2024] Open
Abstract
Interferon Regulatory Factors (IRFs), a family of transcription factors, profoundly influence the immune system, impacting both physiological and pathological processes. This review explores the diverse functions of nine mammalian IRF members, each featuring conserved domains essential for interactions with other transcription factors and cofactors. These interactions allow IRFs to modulate a broad spectrum of physiological processes, encompassing host defense, immune response, and cell development. Conversely, their pivotal role in immune regulation implicates them in the pathophysiology of various diseases, such as infectious diseases, autoimmune disorders, metabolic diseases, and cancers. In this context, IRFs display a dichotomous nature, functioning as both tumor suppressors and promoters, contingent upon the specific disease milieu. Post-translational modifications of IRFs, including phosphorylation and ubiquitination, play a crucial role in modulating their function, stability, and activation. As prospective biomarkers and therapeutic targets, IRFs present promising opportunities for disease intervention. Further research is needed to elucidate the precise mechanisms governing IRF regulation, potentially pioneering innovative therapeutic strategies, particularly in cancer treatment, where the equilibrium of IRF activities is of paramount importance.
Collapse
Affiliation(s)
- Lian Wang
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yanghui Zhu
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Nan Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yali Xian
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yu Tang
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jing Ye
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Fekrazad Reza
- Radiation Sciences Research Center, Laser Research Center in Medical Sciences, AJA University of Medical Sciences, Tehran, Iran
- International Network for Photo Medicine and Photo Dynamic Therapy (INPMPDT), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Gu He
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiang Wen
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Xian Jiang
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
4
|
Yu VZ, So SS, Lung BCC, Hou GZ, Wong CWY, Chow LKY, Chung MKY, Wong IYH, Wong CLY, Chan DKK, Chan FSY, Law BTT, Xu K, Tan ZZ, Lam KO, Lo AWI, Lam AKY, Kwong DLW, Ko JMY, Dai W, Law S, Lung ML. ΔNp63-restricted viral mimicry response impedes cancer cell viability and remodels tumor microenvironment in esophageal squamous cell carcinoma. Cancer Lett 2024; 595:216999. [PMID: 38823762 DOI: 10.1016/j.canlet.2024.216999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 05/10/2024] [Accepted: 05/27/2024] [Indexed: 06/03/2024]
Abstract
Tumor protein p63 isoform ΔNp63 plays roles in the squamous epithelium and squamous cell carcinomas (SCCs), including esophageal SCC (ESCC). By integrating data from cell lines and our latest patient-derived organoid cultures, derived xenograft models, and clinical sample transcriptomic analyses, we identified a novel and robust oncogenic role of ΔNp63 in ESCC. We showed that ΔNp63 maintains the repression of cancer cell endogenous retrotransposon expression and cellular double-stranded RNA sensing. These subsequently lead to a restricted cancer cell viral mimicry response and suppressed induction of tumor-suppressive type I interferon (IFN-I) signaling through the regulations of Signal transducer and activator of transcription 1, Interferon regulatory factor 1, and cGAS-STING pathway. The cancer cell ΔNp63/IFN-I signaling axis affects both the cancer cell and tumor-infiltrating immune cell (TIIC) compartments. In cancer cells, depletion of ΔNp63 resulted in reduced cell viability. ΔNp63 expression is negatively associated with the anticancer responses to viral mimicry booster treatments targeting cancer cells. In the tumor microenvironment, cancer cell TP63 expression negatively correlates with multiple TIIC signatures in ESCC clinical samples. ΔNp63 depletion leads to increased cancer cell antigen presentation molecule expression and enhanced recruitment and reprogramming of tumor-infiltrating myeloid cells. Similar IFN-I signaling and TIIC signature association with ΔNp63 were also observed in lung SCC. These results support the potential application of ΔNp63 as a therapeutic target and a biomarker to guide candidate anticancer treatments exploring viral mimicry responses.
Collapse
Affiliation(s)
- Valen Zhuoyou Yu
- Department of Clinical Oncology, Centre of Cancer Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Shan Shan So
- Department of Clinical Oncology, Centre of Cancer Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Bryan Chee-Chad Lung
- Department of Clinical Oncology, Centre of Cancer Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - George Zhaozheng Hou
- Department of Clinical Oncology, Centre of Cancer Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Carissa Wing-Yan Wong
- Department of Clinical Oncology, Centre of Cancer Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Larry Ka-Yue Chow
- Department of Clinical Oncology, Centre of Cancer Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Michael King-Yung Chung
- Department of Clinical Oncology, Centre of Cancer Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Ian Yu-Hong Wong
- Department of Surgery, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Claudia Lai-Yin Wong
- Department of Surgery, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Desmond Kwan-Kit Chan
- Department of Surgery, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Fion Siu-Yin Chan
- Department of Surgery, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Betty Tsz-Ting Law
- Department of Surgery, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Kaiyan Xu
- Department of Clinical Oncology, Centre of Cancer Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Zack Zhen Tan
- Department of Clinical Oncology, Centre of Cancer Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Ka-On Lam
- Department of Clinical Oncology, Centre of Cancer Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Anthony Wing-Ip Lo
- Division of Anatomical Pathology, Queen Mary Hospital, Pokfulam, Hong Kong
| | - Alfred King-Yin Lam
- Divsion of Cancer Molecular Pathology, School of Medicine and Dentistry and Menzies Health Institute Queensland, Griffith University, Gold Coast, Australia
| | - Dora Lai-Wan Kwong
- Department of Clinical Oncology, Centre of Cancer Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Josephine Mun-Yee Ko
- Department of Clinical Oncology, Centre of Cancer Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Wei Dai
- Department of Clinical Oncology, Centre of Cancer Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Simon Law
- Department of Surgery, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Maria Li Lung
- Department of Clinical Oncology, Centre of Cancer Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong.
| |
Collapse
|
5
|
Pan H, Fang H, Zhu C, Li S, Yi H, Zhang X, Yin X, Song Y, Chen D, Yin C. Molecular and immunological characteristics of postoperative relapse in lymph node-positive esophageal squamous cell cancer. Cancer Med 2024; 13:e7228. [PMID: 38733174 PMCID: PMC11087845 DOI: 10.1002/cam4.7228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 04/07/2024] [Accepted: 04/18/2024] [Indexed: 05/13/2024] Open
Abstract
BACKGROUND The molecular and immunological characteristics of primary tumors and positive lymph nodes in esophageal squamous cell carcinoma (ESCC) are unknown and the relationship with recurrence is unclear, which this study attempted to explore. METHODS A total of 30 ESCC patients with lymph node positive (IIB-IVA) were enrolled. Among them, primary tumor and lymph node specimens were collected from each patient, and subjected to 551-tumor-targeted DNA sequencing and 289-immuno-oncology RNA panel sequencing to identify the different molecular basis and immunological features, respectively. RESULTS The primary tumors exhibited a higher mutation burden than lymph nodes (p < 0.001). One-year recurrent ESCC exhibited a higher Mucin16 (MUC16) mutation rate (p = 0.038), as well as univariate and multivariate analysis revealed that MUC16 mutation is independent genetic factor associated with reduced relapse-free survival (univariate, HR: 5.39, 95% CI: 1.67-17.4, p = 0.005; multivariate, HR: 7.36, 95% CI: 1.79-30.23, p = 0.006). Transcriptomic results showed non-relapse group had higher cytolytic activity (CYT) score (p = 0.025), and was enriched in the IFN-α pathway (p = 0.036), while those in the relapsed group were enriched in the TNF-α/NF-κB (p = 0.001) and PI3K/Akt pathway (p = 0.014). CONCLUSION The difference in molecular characteristics between primary lesions and lymph nodes may be the cause of the inconsistent clinical outcomes. Mutations of MUC16 and poor immune infiltration are associated with rapid relapse of nodes-positive ESCC.
Collapse
Affiliation(s)
- Hua‐guang Pan
- Department of Thoracic SurgeryThe First Affiliated Hospital of Anhui Medical UniversityHefeiAnhuiChina
| | - Han‐lin Fang
- Department of Thoracic SurgeryThe First Affiliated Hospital of Anhui Medical UniversityHefeiAnhuiChina
| | - Chan Zhu
- Jiangsu Simcere Diagnostics Co., Ltd., Nanjing Simcere Medical Laboratory Science Co., Ltd.The State Key Lab of Translational Medicine and Innovative Drug DevelopmentNanjingChina
| | - Si Li
- Jiangsu Simcere Diagnostics Co., Ltd., Nanjing Simcere Medical Laboratory Science Co., Ltd.The State Key Lab of Translational Medicine and Innovative Drug DevelopmentNanjingChina
| | - Huan Yi
- Jiangsu Simcere Diagnostics Co., Ltd., Nanjing Simcere Medical Laboratory Science Co., Ltd.The State Key Lab of Translational Medicine and Innovative Drug DevelopmentNanjingChina
| | - Xing Zhang
- Jiangsu Simcere Diagnostics Co., Ltd., Nanjing Simcere Medical Laboratory Science Co., Ltd.The State Key Lab of Translational Medicine and Innovative Drug DevelopmentNanjingChina
| | - Xiang‐yu Yin
- Jiangsu Simcere Diagnostics Co., Ltd., Nanjing Simcere Medical Laboratory Science Co., Ltd.The State Key Lab of Translational Medicine and Innovative Drug DevelopmentNanjingChina
- Department of Biological SciencesXi'an Jiaotong‐Liverpool UniversitySuzhouChina
| | - Yun‐jie Song
- Jiangsu Simcere Diagnostics Co., Ltd., Nanjing Simcere Medical Laboratory Science Co., Ltd.The State Key Lab of Translational Medicine and Innovative Drug DevelopmentNanjingChina
| | - Dongsheng Chen
- Jiangsu Simcere Diagnostics Co., Ltd., Nanjing Simcere Medical Laboratory Science Co., Ltd.The State Key Lab of Translational Medicine and Innovative Drug DevelopmentNanjingChina
| | - Chun‐tong Yin
- Department of Thoracic SurgeryThe First Affiliated Hospital of Anhui Medical UniversityHefeiAnhuiChina
| |
Collapse
|
6
|
Jeong SU, Song JS, Lee HJ, Sa HS, Cho KJ. Prognostic Significance of Tumor-Infiltrating Lymphocytes and High-Risk Human Papillomavirus in Ocular Sebaceous Carcinoma: A Comprehensive Analysis. Mod Pathol 2024; 37:100449. [PMID: 38369185 DOI: 10.1016/j.modpat.2024.100449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 02/01/2024] [Accepted: 02/06/2024] [Indexed: 02/20/2024]
Abstract
High-risk human papillomavirus (hrHPV) and tumor-infiltrating lymphocytes (TILs) are known to have prognostic significance in oropharyngeal squamous cell carcinoma. However, their significance in ocular sebaceous carcinoma (OSC) remains unverified because of the rarity of the condition. This study aimed to investigate the association between clinicopathologic features, biomarkers, and hrHPV infection and their potential to predict prognosis in OSC patients. We analyzed the clinicopathologic features of 81 OSC patients from Asan Medical Center between 2000 and 2022. Seventeen biomarkers and hrHPV were examined using immunohistochemistry and DNA in situ hybridization on tissue microarray cores. hrHPV was identified in 31 cases (38.3%). Univariate analysis revealed that hrHPV infection was associated with comedonecrosis (P = .032), high Ki-67 labeling index (≥30%, P = .042), lower expression of E-cadherin (P = .033), and loss of expression of zinc finger protein 750 (P = .023). Multivariate analysis revealed that loss of expression of zinc finger protein 750 (P = .026) remained an independently associated factor for hrHPV. Progression-free survival analysis was performed on 28 patients who were continuously observed for more than 5 years. During a median follow-up duration of 86 months, recurrence or metastasis developed in 14 patients (50%) within the survival cohort, occurring at a median time of 48 months after excision. Univariate analysis indicated that recurrence or metastasis was associated with tumor size (P = .010), high TILs (≥10%; P = .025), lymphovascular invasion (P = 0.043), site of origin (P = .025), and high expression of bcl-2-associated athanogene 3 (P = .039). Multivariate analysis demonstrated that high TILs (P = .017) and site of origin (P = .025) were independent prognostic factors. The prognosis of OSC was hrHPV-independent, and a better prognosis was associated with the site of origin in the order of the gland of Zeis, meibomian gland, and multicentric site, as well as with high TILs.
Collapse
Affiliation(s)
- Se Un Jeong
- Department of Pathology, Ewha Womans University Mokdong Hospital, Ewha Womans University College of Medicine, Seoul, Republic of Korea
| | - Joon Seon Song
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Hee Jin Lee
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Ho-Seok Sa
- Department of Ophthalmology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Kyung-Ja Cho
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
7
|
Chuwdhury GS, Guo Y, Chiang CL, Lam KO, Kam NW, Liu Z, Dai W. ImmuneMirror: A machine learning-based integrative pipeline and web server for neoantigen prediction. Brief Bioinform 2024; 25:bbae024. [PMID: 38343325 PMCID: PMC10859690 DOI: 10.1093/bib/bbae024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 12/05/2023] [Accepted: 01/16/2024] [Indexed: 02/15/2024] Open
Abstract
Neoantigens are derived from somatic mutations in the tumors but are absent in normal tissues. Emerging evidence suggests that neoantigens can stimulate tumor-specific T-cell-mediated antitumor immune responses, and therefore are potential immunotherapeutic targets. We developed ImmuneMirror as a stand-alone open-source pipeline and a web server incorporating a balanced random forest model for neoantigen prediction and prioritization. The prediction model was trained and tested using known immunogenic neopeptides collected from 19 published studies. The area under the curve of our trained model was 0.87 based on the testing data. We applied ImmuneMirror to the whole-exome sequencing and RNA sequencing data obtained from gastrointestinal tract cancers including 805 tumors from colorectal cancer (CRC), esophageal squamous cell carcinoma (ESCC) and hepatocellular carcinoma patients. We discovered a subgroup of microsatellite instability-high (MSI-H) CRC patients with a low neoantigen load but a high tumor mutation burden (> 10 mutations per Mbp). Although the efficacy of PD-1 blockade has been demonstrated in advanced MSI-H patients, almost half of such patients do not respond well. Our study identified a subset of MSI-H patients who may not benefit from this treatment with lower neoantigen load for major histocompatibility complex I (P < 0.0001) and II (P = 0.0008) molecules, respectively. Additionally, the neopeptide YMCNSSCMGV-TP53G245V, derived from a hotspot mutation restricted by HLA-A02, was identified as a potential actionable target in ESCC. This is so far the largest study to comprehensively evaluate neoantigen prediction models using experimentally validated neopeptides. Our results demonstrate the reliability and effectiveness of ImmuneMirror for neoantigen prediction.
Collapse
Affiliation(s)
- Gulam Sarwar Chuwdhury
- Department of Clinical Oncology, Center of Cancer Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong (SAR), P. R. China
| | - Yunshan Guo
- Department of Biostatistics, Yale School of Public Health, New Haven, Connecticut, USA
| | - Chi-Leung Chiang
- Department of Clinical Oncology, Center of Cancer Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong (SAR), P. R. China
| | - Ka-On Lam
- Department of Clinical Oncology, Center of Cancer Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong (SAR), P. R. China
| | - Ngar-Woon Kam
- Department of Clinical Oncology, Center of Cancer Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong (SAR), P. R. China
- Laboratory for Synthetic Chemistry and Chemical Biology Limited, Hong Kong Science Park, Shatin, Hong Kong
| | - Zhonghua Liu
- Department of Biostatistics, Columbia University, New York, NY, USA
| | - Wei Dai
- Department of Clinical Oncology, Center of Cancer Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong (SAR), P. R. China
- University of Hong Kong-Shenzhen Hospital, Shenzhen, P. R. China
| |
Collapse
|
8
|
Roberts BK, Collado G, Barnes BJ. Role of interferon regulatory factor 5 (IRF5) in tumor progression: Prognostic and therapeutic potential. Biochim Biophys Acta Rev Cancer 2024; 1879:189061. [PMID: 38141865 PMCID: PMC11977173 DOI: 10.1016/j.bbcan.2023.189061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 12/25/2023]
Abstract
Canonically, the transcription factor interferon regulatory factor 5 (IRF5) is a key mediator of innate and adaptive immunity downstream of pathogen recognition receptors such as Toll-like receptors (TLRs). Hence, dysregulation of IRF5 function has been widely implicated in inflammatory and autoimmune diseases. Over the last few decades, dysregulation of IRF5 expression has been also reported in hematologic malignancies and solid cancers that support a role for IRF5 in malignant transformation, tumor immune regulation, clinical prognosis, and treatment response. This review will provide an in-depth overview of the current literature regarding the mechanisms by which IRF5 functions as either a tumor suppressor or oncogene, its role in metastasis, regulation of the tumor-immune microenvironment, utility as a prognostic indicator of disease, and new developments in IRF5 therapeutics that may be used to remodel tumor immunity.
Collapse
Affiliation(s)
- Bailey K Roberts
- Center for Autoimmune Musculoskeletal and Hematopoietic Disease, The Feinstein Institutes for Medical Research, Manhasset, NY 11030, United States of America; Elmezzi Graduate School of Molecular Medicine, Northwell Health, Manhasset, NY 11030, United States of America
| | - Gilbert Collado
- Center for Autoimmune Musculoskeletal and Hematopoietic Disease, The Feinstein Institutes for Medical Research, Manhasset, NY 11030, United States of America
| | - Betsy J Barnes
- Center for Autoimmune Musculoskeletal and Hematopoietic Disease, The Feinstein Institutes for Medical Research, Manhasset, NY 11030, United States of America; Departments of Pediatrics and Molecular Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, United States of America.
| |
Collapse
|
9
|
Brune Z, Li D, Song S, Li DI, Castro I, Rasquinha R, Rice MR, Guo Q, Kampta K, Moss M, Lallo M, Pimenta E, Somerville C, Lapan M, Nelson V, Dos Santos CO, Blanc L, Pruitt K, Barnes BJ. Loss of IRF5 increases ribosome biogenesis leading to alterations in mammary gland architecture and metastasis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.01.538998. [PMID: 37292919 PMCID: PMC10246023 DOI: 10.1101/2023.05.01.538998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Despite the progress made in identifying cellular factors and mechanisms that predict progression and metastasis, breast cancer remains the second leading cause of death for women in the US. Using The Cancer Genome Atlas and mouse models of spontaneous and invasive mammary tumorigenesis, we identified that loss of function of interferon regulatory factor 5 (IRF5) is a predictor of metastasis and survival. Histologic analysis of Irf5 -/- mammary glands revealed expansion of luminal and myoepithelial cells, loss of organized glandular structure, and altered terminal end budding and migration. RNA-seq and ChIP-seq analyses of primary mammary epithelial cells from Irf5 +/+ and Irf5 -/- littermate mice revealed IRF5-mediated transcriptional regulation of proteins involved in ribosomal biogenesis. Using an invasive model of breast cancer lacking Irf5 , we demonstrate that IRF5 re-expression inhibits tumor growth and metastasis via increased trafficking of tumor infiltrating lymphocytes and altered tumor cell protein synthesis. These findings uncover a new function for IRF5 in the regulation of mammary tumorigenesis and metastasis. Highlights Loss of IRF5 is a predictor of metastasis and survival in breast cancer.IRF5 contributes to the regulation of ribosome biogenesis in mammary epithelial cells.Loss of IRF5 function in mammary epithelial cells leads to increased protein translation.
Collapse
|
10
|
Li Y, Cheng Q, Xiong Z, Paiboonrungruang C, Adekoya T, Li Y, Chen X. Lymphatic Drainage System and Lymphatic Metastasis of Cancer Cells in the Mouse Esophagus. Dig Dis Sci 2023; 68:803-812. [PMID: 35727424 PMCID: PMC9938949 DOI: 10.1007/s10620-022-07586-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 06/02/2022] [Indexed: 01/27/2023]
Abstract
BACKGROUND Lymphatic metastasis is commonly seen in patients with esophageal squamous cell carcinoma (ESCC). Both lymphatic metastasis and the number of involved nodes are prognostic for post-operative survival. To better understand lymphatic metastasis of ESCC, there is a need to develop proper animal models. AIMS This study is aimed to characterize the morphology and function of the lymphatic drainage system in the mouse esophagus. METHODS Immunostaining and fluorescence imaging were used to visualize the lymphatic drainage system in the mouse esophagus. Tracers and cancer cells were orthotopically inoculated into the submucosa of the mouse esophagus to mimic lymphatic metastasis of T1 ESCC. RESULTS Using immunostaining of a lymphatic vessel marker (LYVE1), we found that lymphatic vessels were located in the submucosa and muscularis propria of the mouse esophagus, similar to the human esophagus. In the esophagus of ProxTom mice expressing tdTomato in the lymphatic vessels, we discovered a microscopic meshwork of lymphatic vessels. Functionally, orthotopically inoculated tracers (Indian ink and FITC-dextran) were drained from the submucosa into peri-esophageal lymph nodes via lymphatic vessels. Orthotopically inoculated mouse cancer cells (LLC-eGFP, MOC2) metastasized from the submucosa to lymphatic vessels, peri-esophageal lymph nodes, and distant organs (liver and lung) in immunocompetent mice. Similarly, in immunodeficient mice, orthotopically inoculated human ESCC cells (KYSE450-eGFP-Luc) metastasized via the same route. CONCLUSION We have characterized the morphology and function of the lymphatic drainage system of the mouse esophagus. These observations lay a foundation for mechanistic and therapeutic studies on lymphatic metastasis of T1 ESCC.
Collapse
Affiliation(s)
- Yahui Li
- Cancer Research Program, Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University, 700 George Street, Durham, NC, 27707, USA
| | - Qing Cheng
- Cancer Research Program, Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University, 700 George Street, Durham, NC, 27707, USA
| | - Zhaohui Xiong
- Cancer Research Program, Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University, 700 George Street, Durham, NC, 27707, USA
| | - Chorlada Paiboonrungruang
- Cancer Research Program, Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University, 700 George Street, Durham, NC, 27707, USA
| | - Timothy Adekoya
- Cancer Research Program, Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University, 700 George Street, Durham, NC, 27707, USA
| | - Yong Li
- Cancer Research Program, Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University, 700 George Street, Durham, NC, 27707, USA
- Department of Thoracic Surgery, National Cancer Center, Cancer Hospital of Chinese Academy of Medical Sciences, 17 Panjiayuan Nanli Road, Beijing, 100021, China
| | - Xiaoxin Chen
- Cancer Research Program, Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University, 700 George Street, Durham, NC, 27707, USA.
- Center for Gastrointestinal Biology and Disease, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
11
|
Aukema SM, Glaser S, van den Hout MFCM, Dahlum S, Blok MJ, Hillmer M, Kolarova J, Sciot R, Schott DA, Siebert R, Stumpel CTRM. Molecular characterization of an embryonal rhabdomyosarcoma occurring in a patient with Kabuki syndrome: report and literature review in the light of tumor predisposition syndromes. Fam Cancer 2023; 22:103-118. [PMID: 35856126 PMCID: PMC9829644 DOI: 10.1007/s10689-022-00306-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 07/05/2022] [Indexed: 01/13/2023]
Abstract
Kabuki syndrome is a well-recognized syndrome characterized by facial dysmorphism and developmental delay/intellectual disability and in the majority of patients a germline variant in KMT2D is found. As somatic KMT2D variants can be found in 5-10% of tumors a tumor predisposition in Kabuki syndrome is discussed. So far less than 20 patients with Kabuki syndrome and a concomitant malignancy have been published. Here we report on a female patient with Kabuki syndrome and a c.2558_2559delCT germline variant in KMT2D who developed an embryonal rhabdomyosarcoma (ERMS) at 10 years. On tumor tissue we performed DNA-methylation profiling and exome sequencing (ES). Copy number analyses revealed aneuploidies typical for ERMS including (partial) gains of chromosomes 2, 3, 7, 8, 12, 15, and 20 and 3 focal deletions of chromosome 11p. DNA methylation profiling mapped the case to ERMS by a DNA methylation-based sarcoma classifier. Sequencing suggested gain of the wild-type KMT2D allele in the trisomy 12. Including our patient literature review identified 18 patients with Kabuki syndrome and a malignancy. Overall, the landscape of malignancies in patients with Kabuki syndrome was reminiscent of that of the pediatric population in general. Histopathological and molecular data were only infrequently reported and no report included next generation sequencing and/or DNA-methylation profiling. Although we found no strong arguments pointing towards KS as a tumor predisposition syndrome, based on the small numbers any relation cannot be fully excluded. Further planned studies including profiling of additional tumors and long term follow-up of KS-patients into adulthood could provide further insights.
Collapse
Affiliation(s)
- Sietse M Aukema
- Department of Clinical Genetics, Maastricht University Medical Centre (MUMC+), PO Box 5800, 6202 AZ, Maastricht, The Netherlands.
| | - Selina Glaser
- Institute of Human Genetics, Ulm University and Ulm University Medical Center, Ulm, Germany
| | - Mari F C M van den Hout
- Department of Pathology, Research Institute GROW, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Sonja Dahlum
- Institute of Human Genetics, Ulm University and Ulm University Medical Center, Ulm, Germany
| | - Marinus J Blok
- Department of Clinical Genetics, Maastricht University Medical Centre (MUMC+), PO Box 5800, 6202 AZ, Maastricht, The Netherlands
| | - Morten Hillmer
- Institute of Human Genetics, Ulm University and Ulm University Medical Center, Ulm, Germany
| | - Julia Kolarova
- Institute of Human Genetics, Ulm University and Ulm University Medical Center, Ulm, Germany
| | - Raf Sciot
- Department of Pathology, University Hospital, University of Leuven, 3000, Louvain, Belgium
| | - Dina A Schott
- Department of Clinical Genetics, Maastricht University Medical Centre (MUMC+), PO Box 5800, 6202 AZ, Maastricht, The Netherlands
- Department of Pediatrics, Zuyderland Medical Center, Heerlen, The Netherlands
| | - Reiner Siebert
- Institute of Human Genetics, Ulm University and Ulm University Medical Center, Ulm, Germany
| | - Constance T R M Stumpel
- Department of Clinical Genetics, Maastricht University Medical Centre (MUMC+), PO Box 5800, 6202 AZ, Maastricht, The Netherlands.
- Department of Clinical Genetics and GROW-School for Oncology & Developmental Biology, Maastricht University Medical Center+, Maastricht, The Netherlands.
| |
Collapse
|
12
|
Ko JMY, Guo C, Liu C, Ning L, Dai W, Tao L, Lo AWI, Wong CWY, Wong IYH, Chan FSY, Wong CLY, Chan KK, Law TT, Lee NPY, Liu Z, Jiang H, Li Z, Law S, Lung ML. Clonal relationship and alcohol consumption-associated mutational signature in synchronous hypopharyngeal tumours and oesophageal squamous cell carcinoma. Br J Cancer 2022; 127:2166-2174. [PMID: 36261585 PMCID: PMC9726980 DOI: 10.1038/s41416-022-01995-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 09/09/2022] [Accepted: 09/21/2022] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND The patients with dual oesophageal squamous cell carcinoma (ESCC) and hypopharyngeal cancer (HPC) have poor prognosis; their underlying genetic pathogenesis is unclear. We hypothesise that development of synchronous ESCC/HPC depends on multicentricity or independent origin, rather than multifocality due to local or lateral spreading. METHOD Multiple region whole-exome sequencing (M-WES) and clonality analysis were used to assess clonal relationship and spatial inter- or intra-tumour heterogeneity (ITH) in 62 tumour regions from eight dual ESCC/HPC and ten ESCC patients. RESULTS All synchronous ESCC/HPC patients had COSMIC 16 mutation signatures, compared to only 40% ESCC in the current study (p = 0.013) and public data set (n = 165, p = 0.003). This alcohol consumption-related mutation signature 16, commonly involved in multiple alcohol-related cancers, was significantly associated with drinking and alcohol metabolism-related ADH1B rs1229984. The mutational landscape and copy number profiles were completely distinct between the two primary tumours; clonality analysis further suggested the two primary tumours shared no or only one clone accompanying independent subclone evolution. M-WES strategy demonstrated higher sensitivity and accuracy for detection of mutational prevalence and the late branch mutations among different regions in the ESCC tumours, compared to traditional sequencing analysis based on single biopsy strategy. Patients with high ITH assessed by cancer cell fraction analysis after M-WES were significantly associated with both relapse and survival. CONCLUSIONS Our hypothesis-generating M-WES ITH assessment data have implications for prognostication. Collectively, our findings support multicentric independent clonal evolution, the field cancerisation theory, and suggest novel insights implicating an aetiologic role of alcohol metabolism in dual ESCC/HPC carcinogenesis.
Collapse
Affiliation(s)
- Josephine Mun-Yee Ko
- grid.194645.b0000000121742757Department of Clinical Oncology, University of Hong Kong, Hong Kong (Special Administrative Region), People’s Republic of China
| | - Chen Guo
- grid.194645.b0000000121742757Department of Clinical Oncology, University of Hong Kong, Hong Kong (Special Administrative Region), People’s Republic of China
| | - Conghui Liu
- grid.194645.b0000000121742757Department of Clinical Oncology, University of Hong Kong, Hong Kong (Special Administrative Region), People’s Republic of China
| | - Lvwen Ning
- grid.194645.b0000000121742757Department of Clinical Oncology, University of Hong Kong, Hong Kong (Special Administrative Region), People’s Republic of China
| | - Wei Dai
- grid.194645.b0000000121742757Department of Clinical Oncology, University of Hong Kong, Hong Kong (Special Administrative Region), People’s Republic of China
| | - Lihua Tao
- grid.194645.b0000000121742757Department of Clinical Oncology, University of Hong Kong, Hong Kong (Special Administrative Region), People’s Republic of China
| | - Anthony Wing-Ip Lo
- grid.415550.00000 0004 1764 4144Division of Anatomical Pathology, Queen Mary Hospital, Hong Kong (Special Administrative Region), People’s Republic of China
| | - Carissa Wing-Yan Wong
- grid.194645.b0000000121742757Department of Clinical Oncology, University of Hong Kong, Hong Kong (Special Administrative Region), People’s Republic of China
| | - Ian Yu-Hong Wong
- grid.194645.b0000000121742757Department of Surgery, University of Hong Kong, Hong Kong (Special Administrative Region), People’s Republic of China
| | - Fion Siu-Yin Chan
- grid.194645.b0000000121742757Department of Surgery, University of Hong Kong, Hong Kong (Special Administrative Region), People’s Republic of China
| | - Claudia Lai-Yin Wong
- grid.194645.b0000000121742757Department of Surgery, University of Hong Kong, Hong Kong (Special Administrative Region), People’s Republic of China
| | - Kwan Kit Chan
- grid.194645.b0000000121742757Department of Surgery, University of Hong Kong, Hong Kong (Special Administrative Region), People’s Republic of China
| | - Tsz Ting Law
- grid.194645.b0000000121742757Department of Surgery, University of Hong Kong, Hong Kong (Special Administrative Region), People’s Republic of China
| | - Nikki Pui-Yue Lee
- grid.194645.b0000000121742757Department of Surgery, University of Hong Kong, Hong Kong (Special Administrative Region), People’s Republic of China
| | - Zhichao Liu
- grid.16821.3c0000 0004 0368 8293Department of Thoracic Surgery, Section of Esophageal Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Haoyao Jiang
- grid.16821.3c0000 0004 0368 8293Department of Thoracic Surgery, Section of Esophageal Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Zhigang Li
- grid.16821.3c0000 0004 0368 8293Department of Thoracic Surgery, Section of Esophageal Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Simon Law
- grid.194645.b0000000121742757Department of Surgery, University of Hong Kong, Hong Kong (Special Administrative Region), People’s Republic of China
| | - Maria Li Lung
- grid.194645.b0000000121742757Department of Clinical Oncology, University of Hong Kong, Hong Kong (Special Administrative Region), People’s Republic of China
| |
Collapse
|
13
|
Epigenomic landscape study reveals molecular subtypes and EBV-associated regulatory epigenome reprogramming in nasopharyngeal carcinoma. EBioMedicine 2022; 86:104357. [DOI: 10.1016/j.ebiom.2022.104357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 10/21/2022] [Accepted: 10/24/2022] [Indexed: 11/13/2022] Open
|
14
|
Li W, Cheng N, Zhao Z, Zheng B, Yang Z, Xu Y, Shao Y, Song Y, Lu N, Xue L. Molecular characteristics of multifocal esophageal squamous cell carcinomas to discriminate multicentric origin from intramural metastasis. J Pathol 2022; 258:395-407. [PMID: 36098222 DOI: 10.1002/path.6010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 08/14/2022] [Accepted: 09/09/2022] [Indexed: 01/19/2023]
Abstract
Multifocal esophageal squamous cell carcinomas (ESCCs) can be diagnosed as of multicentric origin (MO) or intramural metastasis (IMM). We aimed here to accurately discriminate MO from IMM and explore the tumor immune microenvironment of multifocal ESCCs. Multifocal ESCCs were identified in 333 ESCC patients, and in 145 patients discrimination between MO and IMM was not possible by histopathological examination. Of the 145 patients, tissues of 14 were analyzed by whole-exome sequencing (WES) of 71 different tumor regions, and MO, IMM, and MO/IMM mixed groups were identified in three, ten, and one cases, respectively, based on the similarity of genomic architecture between or among different tumors from one patient. Further phylogenetic analyses revealed complex clonal evolution patterns in IMM cases, and tumor cells disseminated from the primary tumors to IMM tumors were independent of lymph node metastasis. The NanoString-based assay showed that immune cell infiltrates were significantly enriched, and that the immune and proliferation pathways were more activated, in large tumors than in small ones in MO but not IMM cases. Similarly, PD-L1 expression and the density of paratumoral CD8+ T cells were higher in large tumors than in small tumors in MO. Taken together, through analysis of the genomic and immune landscapes, our study has comprehensively characterized the heterogeneity and clonal relationship of multifocal ESCCs, which may be helpful in distinguishing MO from IMM, and for interpreting the immunotherapy responses for multifocal ESCC patients. © 2022 The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Weihua Li
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Na Cheng
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Zitong Zhao
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Bo Zheng
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Zhaoyang Yang
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Yang Xu
- Geneseeq Research Institute, Nanjing Geneseeq Technology Inc, Nanjing, PR China
| | - Yang Shao
- Geneseeq Research Institute, Nanjing Geneseeq Technology Inc, Nanjing, PR China.,School of Public Health, Nanjing Medical University, Nanjing, PR China
| | - Yongmei Song
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Ning Lu
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Liyan Xue
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China.,Center for Cancer Precision Medicine, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| |
Collapse
|
15
|
Parallel functional annotation of cancer-associated missense mutations in histone methyltransferases. Sci Rep 2022; 12:18487. [PMID: 36323913 PMCID: PMC9630446 DOI: 10.1038/s41598-022-23229-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 10/27/2022] [Indexed: 12/03/2022] Open
Abstract
Using exome sequencing for biomarker discovery and precision medicine requires connecting nucleotide-level variation with functional changes in encoded proteins. However, for functionally annotating the thousands of cancer-associated missense mutations, or variants of uncertain significance (VUS), purifying variant proteins for biochemical and functional analysis is cost-prohibitive and inefficient. We describe parallel functional annotation (PFA) of large numbers of VUS using small cultures and crude extracts in 96-well plates. Using members of a histone methyltransferase family, we demonstrate high-throughput structural and functional annotation of cancer-associated mutations. By combining functional annotation of paralogs, we discovered two phylogenetic and clustering parameters that improve the accuracy of sequence-based functional predictions to over 90%. Our results demonstrate the value of PFA for defining oncogenic/tumor suppressor functions of histone methyltransferases as well as enhancing the accuracy of sequence-based algorithms in predicting the effects of cancer-associated mutations.
Collapse
|
16
|
Integrated cohort of esophageal squamous cell cancer reveals genomic features underlying clinical characteristics. Nat Commun 2022; 13:5268. [PMID: 36071046 PMCID: PMC9452532 DOI: 10.1038/s41467-022-32962-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 08/25/2022] [Indexed: 11/08/2022] Open
Abstract
Esophageal squamous cell cancer (ESCC) is the major pathologic type of esophageal cancer in Asian population. To systematically evaluate the mutational features underlying clinical characteristics, we establish the integrated dataset of ESCC-META that consists of 1930 ESCC genomes from 33 datasets. The data process pipelines lead to well homogeneity of this integrated cohort for further analysis. We identified 11 mutational signatures in ESCC, some of which are related to clinical features, and firstly detect the significant mutated hotspots in TGFBR2 and IRF2BPL. We screen the survival related mutational features and found some genes had different prognostic impacts between early and late stage, such as PIK3CA and NFE2L2. Based on the results, an applicable approach of mutational score is proposed and validated to predict prognosis in ESCC. As an open-sourced, quality-controlled and updating mutational landscape, the ESCC-META dataset could facilitate further genomic and translational study in this field.
Collapse
|
17
|
Mai Z, Yuan J, Yang H, Fang S, Xie X, Wang X, Xie J, Wen J, Fu J. Inactivation of Hippo pathway characterizes a poor-prognosis subtype of esophageal cancer. JCI Insight 2022; 7:155218. [PMID: 35993362 PMCID: PMC9462502 DOI: 10.1172/jci.insight.155218] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 07/18/2022] [Indexed: 11/29/2022] Open
Abstract
Identification of molecular subtypes that reflect different prognoses and treatment responses, especially immune checkpoint inhibitors (ICIs) in esophageal squamous cell carcinoma (ESCC), is essential for treatment decisions. We performed targeted sequencing in 201 patients with ESCC to discover genetic subtypes and validate our findings via multiple data sets. We identified 3 driver genes (FCGBP, GRIN2B, and FRY), and recurrent truncating mutations in FRY impaired its tumor-suppressive function and promoted tumor proliferation. A 3-gene mutation signature (FAT1, FAT3, and FRY) recognized a molecular subtype named “FAT/FRY” with frequent Hippo pathway–related mutations. In multiple ESCC cohorts, the patients with the FAT/FRY subtype had poorer prognosis than did patients in the WT group. Transcriptome analysis indicated that the FAT/FRY subtype was characterized by inactivation of the Hippo pathway, hypoxia, chemoresistance, higher infiltration of CD8+ T cells and activated DCs, and a transcriptome similar to that of cancer responders. Furthermore, the 3-gene signature predicted better survival for patients treated with ICIs, partially explained by its positive correlation with the tumor mutation burden and neoantigen burden. The 3-gene signature is a biomarker to recognize the FAT/FRY molecular subtype, evaluate prognosis, and select potential beneficiaries of ICIs in ESCC.
Collapse
Affiliation(s)
- Zihang Mai
- Department of Thoracic Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
- Guangdong Esophageal Cancer Institute, Guangzhou, China
| | - Jianye Yuan
- Department of Thoracic Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
- Guangdong Esophageal Cancer Institute, Guangzhou, China
| | - Hong Yang
- Department of Thoracic Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
- Guangdong Esophageal Cancer Institute, Guangzhou, China
| | - Shuogui Fang
- Department of Thoracic Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
- Guangdong Esophageal Cancer Institute, Guangzhou, China
| | - Xiuying Xie
- Department of Thoracic Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
- Guangdong Esophageal Cancer Institute, Guangzhou, China
| | - Xinye Wang
- Department of Thoracic Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
- Guangdong Esophageal Cancer Institute, Guangzhou, China
| | - Jiaxin Xie
- School of Statistics, Renmin University of China, Beijing, China
| | - Jing Wen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
- Guangdong Esophageal Cancer Institute, Guangzhou, China
| | - Jianhua Fu
- Department of Thoracic Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
- Guangdong Esophageal Cancer Institute, Guangzhou, China
| |
Collapse
|
18
|
Zhang X, Wang Y, Meng L. Comparative genomic analysis of esophageal squamous cell carcinoma and adenocarcinoma: New opportunities towards molecularly targeted therapy. Acta Pharm Sin B 2022; 12:1054-1067. [PMID: 35530133 PMCID: PMC9069403 DOI: 10.1016/j.apsb.2021.09.028] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 08/23/2021] [Accepted: 08/27/2021] [Indexed: 12/12/2022] Open
Abstract
Esophageal cancer is one of the most lethal cancers worldwide because of its rapid progression and poor prognosis. Esophageal squamous cell carcinoma (ESCC) and esophageal adenocarcinoma (EAC) are two major subtypes of esophageal cancer. ESCC predominantly affects African and Asian populations, which is closely related to chronic smoking and alcohol consumption. EAC typically arises in Barrett's esophagus with a predilection for Western countries. While surgical operation and chemoradiotherapy have been applied to combat this deadly cancer, molecularly targeted therapy is still at the early stages. With the development of large-scale next-generation sequencing, various genomic alterations in ESCC and EAC have been revealed and their potential roles in the initiation and progression of esophageal cancer have been studied. Potential therapeutic targets have been identified and novel approaches have been developed to combat esophageal cancer. In this review, we comprehensively analyze the genomic alterations in EAC and ESCC and summarize the potential role of the genetic alterations in the development of esophageal cancer. Progresses in the therapeutics based on the different tissue types and molecular signatures have also been reviewed and discussed.
Collapse
|
19
|
Zou B, Guo D, Kong P, Wang Y, Cheng X, Cui Y. Integrative Genomic Analyses of 1,145 Patient Samples Reveal New Biomarkers in Esophageal Squamous Cell Carcinoma. Front Mol Biosci 2022; 8:792779. [PMID: 35127817 PMCID: PMC8814608 DOI: 10.3389/fmolb.2021.792779] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 12/02/2021] [Indexed: 12/23/2022] Open
Abstract
Due to the lack of effective diagnostic markers and therapeutic targets, esophageal squamous cell carcinoma (ESCC) shows a poor 5 years survival rate of less than 30%. To explore the potential therapeutic targets of ESCC, we integrated and reanalyzed the mutation data of WGS (whole genome sequencing) or WES (whole exome sequencing) from a total of 1,145 samples in 7 large ESCC cohorts, including 270 ESCC gene expression data. Two new mutation signatures and 20 driver genes were identified in our study. Among them, AP3S1, MUC16, and RPS15 were reported for the first time. We also discovered that the KMT2D was associated with the multiple clinical characteristics of ESCC, and KMT2D knockdown cells showed enhanced cell migration and cell invasion. Furthermore, a few neoantigens were shared between ESCC patients. For ESCC, compared to TMB, neoantigen might be treated as a better immunotherapy biomarker. Our research expands the understanding of ESCC mutations and helps the identification of ESCC biomarkers, especially for immunotherapy biomarkers.
Collapse
Affiliation(s)
- Binbin Zou
- Key Laboratory of Cellular Physiology of the Ministry of Education, Shanxi Medical University, Taiyuan, China
- Department of Pathology, Shanxi Medical University, Taiyuan, China
| | - Dinghe Guo
- Key Laboratory of Cellular Physiology of the Ministry of Education, Shanxi Medical University, Taiyuan, China
- Department of Pathology, Shanxi Medical University, Taiyuan, China
| | - Pengzhou Kong
- Key Laboratory of Cellular Physiology of the Ministry of Education, Shanxi Medical University, Taiyuan, China
- Department of Pathology, Shanxi Medical University, Taiyuan, China
| | - Yanqiang Wang
- Key Laboratory of Cellular Physiology of the Ministry of Education, Shanxi Medical University, Taiyuan, China
- Department of Pathology, Shanxi Medical University, Taiyuan, China
| | - Xiaolong Cheng
- Key Laboratory of Cellular Physiology of the Ministry of Education, Shanxi Medical University, Taiyuan, China
- Department of Pathology, Shanxi Medical University, Taiyuan, China
- *Correspondence: Xiaolong Cheng, ; Yongping Cui,
| | - Yongping Cui
- Key Laboratory of Cellular Physiology of the Ministry of Education, Shanxi Medical University, Taiyuan, China
- Department of Pathology, Shanxi Medical University, Taiyuan, China
- Shenzhen Peking University-Hong Kong University of Science and Technology (PKU-HKUST) Medical Center, Peking University Shenzhen Hospital, Shenzhen, China
- *Correspondence: Xiaolong Cheng, ; Yongping Cui,
| |
Collapse
|
20
|
Fan B, Xu X, Wang X. Mutational landscape of paired primary and synchronous metastatic lymph node in chemotherapy naive gallbladder cancer. Mol Biol Rep 2022; 49:1295-1301. [PMID: 34988893 DOI: 10.1007/s11033-021-06957-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 11/11/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND Comprehensive genomic analysis of paired primary tumors and their metastatic lesions may provide new insights into the biology of metastatic processes and therefore guide the development of novel strategies for intervention. To date, our knowledge of the genetic divergence and phylogenetic relationships in gallbladder cancer (GBC) is limited. METHODS We performed whole exome sequencing for 5 patients with primary tumor, metastatic lymph node (LNM) and corresponding normal tissue. Mutations, mutation signatures and copy number variations were analyzed with state-of-art bioinformatics methods. Phylogenetic tree was also generated to infer metastatic pattern. RESULTS Five driver mutations were detected in these patients. Among which, TP53 was the only shared mutation between primary tumor and LNM. Although tumor mutational burden was comparable between primary tumor and LNM, higher mutation burden was observed in LNM of one patient. Copy number variations (CNVs) burden was higher in LNM than their primary tumor. Phylogenetic analysis indicated both linear and parallel progression of metastasis exist in these patients. TP53 mutation and CNVs were homogenously between primary tumor and LNM. CONCLUSIONS High consistence of genetic landscape were shown between primary tumor and LNM in GBC. However, heterogenicity still exist between primary tumor and LNM in particular patients in term of driver mutation, TMB and CNV burden. Phylogenetic analysis indicated both Linear and parallel progression of metastasis were exist among these patients.
Collapse
Affiliation(s)
- Boqiang Fan
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, No. 300, Guangzhou Road, Nanjing, Jiangsu Province, China
| | - Xianfeng Xu
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Xuehao Wang
- Key Laboratory of Liver Transplantation, NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Chinese Academy of Medical Sciences, Nanjing, Jiangsu Province, China.
| |
Collapse
|
21
|
Ana Choi SS, Ko JMY, Yu VZ, Ning L, Lung ML. Differentiation-related zinc finger protein 750 suppresses cell growth in esophageal squamous cell carcinoma. Oncol Lett 2021; 22:513. [PMID: 33986873 DOI: 10.3892/ol.2021.12774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 03/12/2021] [Indexed: 11/06/2022] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is a deadly squamous cell carcinoma (SCC) of the esophagus. Development of SCCs is associated with the deregulation of the squamous cell lineage program and/or keratinocyte terminal differentiation by genomic and genetic aberrations; thus, these processes must be tightly controlled to maintain normal squamous cell development. Zinc finger protein 750 (ZNF750) is a gene involved in keratinocyte terminal differentiation and is frequently mutated and putatively silenced in ESCC, which implicates its function as a potential differentiation-related suppressor of ESCC. The present study aimed to elucidate the relationship between ZNF750 function to induce keratinocyte differentiation and tumor suppression in ESCC. The results demonstrated that chemical manipulation of esophageal keratinocyte differentiation in mouse normal esophageal epithelial organoids (mNEEO) implicated the involvement of the mouse homologue of ZNF750, Zfp750, in keratinocyte differentiation in premalignant cells. Bioinformatics analyses of data from high ZNF750-expressing ESCC tumors obtained from public databases and ZNF750-overexpressing ESCC cells compared with low ZNF750-expressing ESCC tumors and GFP-expressing ESCC cells, respectively, revealed enrichment of keratinocyte differentiation-related gene sets in these samples. Finally, the induction through to terminal differentiation of the keratinocyte by all-trans retinoic acid on parental ESCC cell lines led to the upregulation of the terminal differentiation marker Involucrin and a decrease in cell viability similar to that observed in ZNF750-overexpressing ESCC cells. The results of the present study demonstrated a functional link between the ability of ZNF750 to induce cell differentiation through to terminal differentiation and its function as a growth suppressor in ESCC. This study provides improved understanding of the role of ZNF750, a frequently mutated differentiation-related gene in ESCC, and its effects in ESCC pathogenesis.
Collapse
Affiliation(s)
- Sheyne Sta Ana Choi
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong, SAR, P.R. China
| | - Josephine Mun-Yee Ko
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong, SAR, P.R. China
| | - Valen Zhuoyou Yu
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong, SAR, P.R. China
| | - Lvwen Ning
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong, SAR, P.R. China
| | - Maria Li Lung
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong, SAR, P.R. China
| |
Collapse
|
22
|
Yu VZ, So SS, Lung ML. Gain-of-function hot spot mutant p53 R248Q regulation of integrin/FAK/ERK signaling in esophageal squamous cell carcinoma. Transl Oncol 2020; 14:100982. [PMID: 33395748 PMCID: PMC7744772 DOI: 10.1016/j.tranon.2020.100982] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 11/06/2020] [Accepted: 12/01/2020] [Indexed: 12/26/2022] Open
Abstract
Majority of the missense p53 mutants are functionally dispensable in ESCC. P53 hot spot mutant p53R248Q exerts specific gain-of-function oncogenic effects in ESCC. Depletion of p53R248Q suppresses in vitro colony formation and cell cycle progression in a three-dimensional extracellular matrix-rich culture model and in vivo tumor growth. P53R248Q regulates the integrin/FAK/ERK signaling axis. P53R248Q enhances cell proliferation upon glutamine deprivation.
Purpose TP53, encoding the protein p53, is among the most frequently mutated genes in all cancers. A high frequency of 60 – 90% mutations is seen in esophageal squamous cell carcinoma (ESCC) patients. Certain p53 mutants show gain-of-function (GoF) oncogenic features unrelated to its wild type functions. Methods This study functionally characterized a panel of p53 mutants in individual ESCC cell lines and assayed for GoF oncogenic properties. Results The ESCC cell line with endogenous p53R248Q expression showed suppressed tumor growth in an immunocompromised mouse model and suppressed colony growth in in vitro three-dimensional culture, when depleted of the endogenous p53 protein expression. This suppression is accompanied by suppressed cell cycle progression, along with reduced integrin expression and decreased focal adhesion kinase and extracellular-regulated protein kinase signaling and can be compensated by expression of a constitutively active mitogen-activated protein. P53R248Q enhances cell proliferation upon glutamine deprivation, as compared to other non-GoF mutants. Conclusions In summary, study of the functional contributions of endogenous p53 mutants identified a novel GoF mechanism through which a specific p53 mutant exerts oncogenic features and contributes to ESCC tumorigenesis.
Collapse
Affiliation(s)
- Valen Zhuoyou Yu
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, University of Hong Kong, Pokfulam, Hong Kong
| | - Shan Shan So
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, University of Hong Kong, Pokfulam, Hong Kong
| | - Maria Li Lung
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, University of Hong Kong, Pokfulam, Hong Kong.
| |
Collapse
|
23
|
Liao L, Yao Z, Fang W, He Q, Xu WW, Li B. Epigenetics in Esophageal Cancer: From Mechanisms to Therapeutics. SMALL METHODS 2020; 4:2000391. [DOI: 10.1002/smtd.202000391] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Indexed: 02/05/2023]
Affiliation(s)
- Long Liao
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes Institute of Life and Health Engineering College of Life Science and Technology Jinan University Guangzhou 510632 China
| | - Zi‐Ting Yao
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes Institute of Life and Health Engineering College of Life Science and Technology Jinan University Guangzhou 510632 China
| | - Wang‐Kai Fang
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area Department of Biochemistry and Molecular Biology Shantou University Medical College Shantou 515041 China
| | - Qing‐Yu He
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes Institute of Life and Health Engineering College of Life Science and Technology Jinan University Guangzhou 510632 China
| | - Wen Wen Xu
- MOE Key Laboratory of Tumor Molecular Biology and Guangdong Provincial Key Laboratory of Bioengineering Medicine National Engineering Research Center of Genetic Medicine Institute of Biomedicine College of Life Science and Technology Jinan University Guangzhou 510632 China
| | - Bin Li
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes Institute of Life and Health Engineering College of Life Science and Technology Jinan University Guangzhou 510632 China
| |
Collapse
|
24
|
Dai W, Chung DLS, Chow LKY, Yu VZ, Lei LC, Leong MML, Chan CKC, Ko JMY, Lung ML. Clinical Outcome-Related Mutational Signatures Identified by Integrative Genomic Analysis in Nasopharyngeal Carcinoma. Clin Cancer Res 2020; 26:6494-6504. [PMID: 32988965 DOI: 10.1158/1078-0432.ccr-20-2854] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/04/2020] [Accepted: 09/23/2020] [Indexed: 11/16/2022]
Abstract
PURPOSE Investigation of biological mechanisms underlying genetic alterations in cancer can assist the understanding of etiology and identify the potential prognostic biomarkers. EXPERIMENTAL DESIGN We performed an integrative genomic analysis for a total of 731 nasopharyngeal carcinoma cases from five independent nasopharyngeal carcinoma cohorts to identify the genetic events associated with clinical outcomes. RESULTS In addition to the known mutational signatures associated with aging, APOBEC and mismatch repair (MMR), a new signature for homologous recombination deficiency (BRCAness) was discovered in 64 of 216 (29.6%) cases in the discovery set including three cohorts. This signature appeared more frequently in the recurrent and metastatic tumors and significantly correlated with shorter overall survival (OS) in the primary tumors. Independent prognostic value of MMR and BRCAness signatures was revealed by multivariable Cox analysis after adjustment for clinical parameters and stratification by studies. The cases with both signatures had much worse clinical outcome than those without these signatures [hazard ratio (HR), 12.4; P = 0.002]. This correlation was confirmed in the validation set (HR, 8.9; P = 0.003). The BRCAness signature is highly associated with BRCA2 pathogenic germline or somatic alterations (7.8% vs. 0%; P = 0.002). Targeted sequencing results from a prospective nasopharyngeal carcinoma cohort (N = 402) showed that the cases carrying BRCA2 germline rare variants are more likely to have poor OS and progression-free survival. CONCLUSIONS Our study highlights importance of defects of DNA repair machinery in nasopharyngeal carcinoma pathogenesis and their prognostic values for clinical implications. These signatures will be useful for patient stratification to evaluate conventional and new treatment for precision medicine in nasopharyngeal carcinoma.
Collapse
Affiliation(s)
- Wei Dai
- Department of Clinical Oncology, University of Hong Kong, Pokfulam, Hong Kong (SAR), P. R. China. .,University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong, P. R. China
| | - Dittman Lai-Shun Chung
- Department of Clinical Oncology, University of Hong Kong, Pokfulam, Hong Kong (SAR), P. R. China
| | - Larry Ka-Yue Chow
- Department of Clinical Oncology, University of Hong Kong, Pokfulam, Hong Kong (SAR), P. R. China
| | - Valen Zhuoyou Yu
- Department of Clinical Oncology, University of Hong Kong, Pokfulam, Hong Kong (SAR), P. R. China
| | - Lisa Chan Lei
- Department of Clinical Oncology, University of Hong Kong, Pokfulam, Hong Kong (SAR), P. R. China
| | - Merrin Man-Long Leong
- Department of Clinical Oncology, University of Hong Kong, Pokfulam, Hong Kong (SAR), P. R. China
| | - Candy King-Chi Chan
- Department of Clinical Oncology, University of Hong Kong, Pokfulam, Hong Kong (SAR), P. R. China
| | - Josephine Mun-Yee Ko
- Department of Clinical Oncology, University of Hong Kong, Pokfulam, Hong Kong (SAR), P. R. China
| | - Maria Li Lung
- Department of Clinical Oncology, University of Hong Kong, Pokfulam, Hong Kong (SAR), P. R. China.
| |
Collapse
|
25
|
Zhang L, Niu X, Bi Y, Cui H, Li H, Cheng X. Potential Role of Targeting KDR and Proteasome Inhibitors in the Therapy of Esophageal Squamous Cell Carcinoma. Technol Cancer Res Treat 2020; 19:1533033820948060. [PMID: 32924793 PMCID: PMC7493273 DOI: 10.1177/1533033820948060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is one of the most aggressive cancer types in China. In recent years, progress has been made in various types of cancer genomics including ESCC. However, the clinical significance of genomic variation of ESCC remains poorly defined. In the present study, genomic sequencing data from 469 ESCC cases were analyzed and potential therapeutic targets in the Druggable Genome Interaction Database (DGIdb) were screened. A series of potential therapeutic target genes and pathways were identified, of which treatment of ESCC with bortezomib (a specific inhibitor targeting proteasome) potently inhibited the proliferation of 5 ESCC cell lines and administration of bortezomib led to significant tumor xenograft regression in SCID mice. It was also identified that kinase insert domain receptor (KDR), which had drug recommendations from all 6 sources integrated by the DGldb and harbored significant amplification in ESCC, might be a downstream target of zinc finger protein 750 (ZNF750). ZNF750 acts as a transcription factor and has been demonstrated to harbor frequently inactivating mutations in ESCC by previous independent studies. In the present study, KDR was upregulated upon ZNF750 knockdown and the rescue of ZNF750 also led to marked restoration of KDR. KDR knockdown in stable ZNF750-knockdown KYSE150 and KYSE140 ESCC cells significantly attenuated the promotion of cell growth, colony formation, invasion and migration induced by ZNF750 knockdown. Further experiments found that apatinib treatment, a potent inhibitor of KDR, resulted in profound inhibition of cell proliferation and invasion. Collectively, the present study provided insight for genomic alterations as potential therapeutic targets in ESCC and supported the possibility of a therapeutic strategy targeting the proteasome in ESCC. The present results also suggested that targeting KDR may be an effective way to treat ESCC, not only in KDR variant cases, but also in individuals with ZNF750 mutations and deletions.
Collapse
Affiliation(s)
- Ling Zhang
- Department of Pathology, 74648Shanxi Medical University, Taiyuan, Shanxi, People's Republic of China.,Translational Medicine Research Center, 74648Shanxi Medical University, Taiyuan, Shanxi, People's Republic of China
| | - Xia Niu
- Department of Pathology, 74648Shanxi Medical University, Taiyuan, Shanxi, People's Republic of China.,Translational Medicine Research Center, 74648Shanxi Medical University, Taiyuan, Shanxi, People's Republic of China
| | - Yanghui Bi
- Translational Medicine Research Center, 74648Shanxi Medical University, Taiyuan, Shanxi, People's Republic of China
| | - Heyang Cui
- Translational Medicine Research Center, 74648Shanxi Medical University, Taiyuan, Shanxi, People's Republic of China
| | - Hongyi Li
- Translational Medicine Research Center, 74648Shanxi Medical University, Taiyuan, Shanxi, People's Republic of China
| | - Xiaolong Cheng
- Translational Medicine Research Center, 74648Shanxi Medical University, Taiyuan, Shanxi, People's Republic of China.,Department of Anatomy, 74648Shanxi Medical University, Taiyuan, Shanxi, People's Republic of China
| |
Collapse
|
26
|
Mangalaparthi KK, Patel K, Khan AA, Manoharan M, Karunakaran C, Murugan S, Gupta R, Gupta R, Khanna-Gupta A, Chaudhuri A, Kumar P, Nair B, Kumar RV, Prasad TSK, Chatterjee A, Pandey A, Gowda H. Mutational Landscape of Esophageal Squamous Cell Carcinoma in an Indian Cohort. Front Oncol 2020; 10:1457. [PMID: 32974170 PMCID: PMC7469928 DOI: 10.3389/fonc.2020.01457] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 07/09/2020] [Indexed: 12/18/2022] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is the most common histological subtype of esophageal cancer in India. Cigarette smoking and chewing tobacco are known risk factors associated with ESCC. However, genomic alterations associated with ESCC in India are not well-characterized. In this study, we carried out exome sequencing to characterize the mutational landscape of ESCC tumors from subjects with a varied history of tobacco usage. Whole exome sequence analysis of ESCC from an Indian cohort revealed several genes that were mutated or had copy number changes. ESCC from tobacco chewers had a higher frequency of C:G > A:T transversions and 2-fold enrichment for mutation signature 4 compared to smokers and non-users of tobacco. Genes, such as TP53, CSMD3, SYNE1, PIK3CA, and NOTCH1 were found to be frequently mutated in Indian cohort. Mutually exclusive mutation patterns were observed in PIK3CA-NOTCH1, DNAH5-ZFHX4, MUC16-FAT1, and ZFHX4-NOTCH1 gene pairs. Recurrent amplifications were observed in 3q22-3q29, 11q13.3-q13.4, 7q22.1-q31.1, and 8q24 regions. Approximately 53% of tumors had genomic alterations in PIK3CA making this pathway a promising candidate for targeted therapy. In conclusion, we observe enrichment of mutation signature 4 in ESCC tumors from patients with a history of tobacco chewing. This is likely due to direct exposure of esophagus to tobacco carcinogens when it is chewed and swallowed. Genomic alterations were frequently observed in PIK3CA-AKT pathway members independent of the history of tobacco usage. PIK3CA pathway can be potentially targeted in ESCC which currently has no effective targeted therapeutic options.
Collapse
Affiliation(s)
- Kiran K. Mangalaparthi
- Institute of Bioinformatics, International Technology Park, Bangalore, India
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam, India
| | - Krishna Patel
- Institute of Bioinformatics, International Technology Park, Bangalore, India
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam, India
| | - Aafaque A. Khan
- Institute of Bioinformatics, International Technology Park, Bangalore, India
| | | | | | | | - Ravi Gupta
- Medgenome Labs Pvt. Ltd., Bangalore, India
| | | | | | | | - Prashant Kumar
- Institute of Bioinformatics, International Technology Park, Bangalore, India
- Manipal Academy of Higher Education, Manipal, India
| | - Bipin Nair
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam, India
| | - Rekha V. Kumar
- Department of Pathology, Kidwai Memorial Institute of Oncology, Bangalore, India
| | - T. S. Keshava Prasad
- Institute of Bioinformatics, International Technology Park, Bangalore, India
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| | - Aditi Chatterjee
- Institute of Bioinformatics, International Technology Park, Bangalore, India
- Manipal Academy of Higher Education, Manipal, India
| | - Akhilesh Pandey
- Institute of Bioinformatics, International Technology Park, Bangalore, India
- Manipal Academy of Higher Education, Manipal, India
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN, United States
- Center for Molecular Medicine, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Harsha Gowda
- Institute of Bioinformatics, International Technology Park, Bangalore, India
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam, India
- Manipal Academy of Higher Education, Manipal, India
- Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| |
Collapse
|
27
|
Chen Z, Yao N, Zhang S, Song Y, Shao Q, Gu H, Ma J, Chen B, Zhao H, Tian Y. Identification of critical radioresistance genes in esophageal squamous cell carcinoma by whole-exome sequencing. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:998. [PMID: 32953798 PMCID: PMC7475461 DOI: 10.21037/atm-20-5196] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Background Esophageal squamous cell carcinoma (ESCC) is one of the most lethal cancer due to insufficient actionable molecules. Radiotherapy (RT) plays a vital role in the treatment of ESCC, while radioresistance is a significant challenge to RT and results in locoregional and distant failure. Methods Radioresistance is a complex involving confounding factors, and its genetic mechanism is challenging to study. Postoperative recurrence after RT is more likely to be due to genetic causes than recurrence in unoperated patients. Therefore, two independent cohorts of ESCC patients who had received postoperative radiotherapy (PORT) and had opposite prognoses were set up, and whole-exome sequencing (WES) technology was applied. We compared the differences in the mutant spectra between the two groups. Results The mutation rate was slightly higher in the relapsed group than in the stable group [average mutation rate, 1.15 vs. 0.73 mutations per megabyte (Mb)], while the mutation types and proportions in the two groups were not significantly different. In particular, three mutated genes (TTN, MUC19, and NPIPA5) and two copy number alterations (CNAs) (1q amplification and 14q deletion) were identified to be associated with poor RT prognosis, while MUC4 was a favorable factor. Conclusions These radioresistance biomarkers may supply insight into predicting the radioresponse. Further, these findings offer the first data on the mutational landscape of ESCC radioresistance.
Collapse
Affiliation(s)
- Zhiming Chen
- Department of Radiotherapy & Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, China.,Department of Radiotherapy & Oncology, Affiliated Hospital of Nantong University, Nantong, China
| | - Ninghua Yao
- Department of Radiotherapy & Oncology, Affiliated Hospital of Nantong University, Nantong, China
| | - Shu Zhang
- Department of Pathology, Affiliated Hospital of Nantong University, Nantong, China
| | - Yao Song
- Department of Radiation oncology, Tenth People's Hospital Affiliated to Tongji University, Shanghai, China
| | - Qi Shao
- Department of Chemotherapy, Affiliated Hospital of Nantong University, Nantong, China
| | - Hongmei Gu
- Department of Radiotherapy & Oncology, Affiliated Hospital of Nantong University, Nantong, China
| | - Jianbo Ma
- Department of Radiotherapy & Oncology, Affiliated Hospital of Nantong University, Nantong, China
| | - Buyou Chen
- Department of Radiotherapy & Oncology, Affiliated Hospital of Nantong University, Nantong, China
| | - Hongyu Zhao
- Department of Radiotherapy & Oncology, Affiliated Hospital of Nantong University, Nantong, China
| | - Ye Tian
- Department of Radiotherapy & Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
28
|
Deng M, Dai W, Yu VZ, Tao L, Lung ML. Cylindromatosis Lysine 63 Deubiquitinase (CYLD) Regulates NF-kB Signaling Pathway and Modulates Fibroblast and Endothelial Cells Recruitment in Nasopharyngeal Carcinoma. Cancers (Basel) 2020; 12:cancers12071924. [PMID: 32708712 PMCID: PMC7409113 DOI: 10.3390/cancers12071924] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/13/2020] [Accepted: 07/14/2020] [Indexed: 12/20/2022] Open
Abstract
Nasopharyngeal carcinoma (NPC) is a malignant epithelial carcinoma of the nasopharynx. Cylindromatosis lysine 63 deubiquitinase (CYLD), a NF-kB inhibitor, was reported as one of the top mutated candidate genes in NPC. NF-kB is an inducible transcription factor, contributing to cancer via regulating inflammation, angiogenesis, cell proliferation, and metastasis. In this study, the impact of CYLD on regulating the NF-kB signaling pathway and its contribution to NPC development was studied using in vitro and in vivo functional assays, together with single cell RNA sequencing to understand the NPC tumor microenvironment. CYLD was downregulated in NPC clinical specimens and multiple cell lines. Functional assays revealed CYLD inhibits NPC cell proliferation and migration in vitro and suppresses NPC tumorigenicity and metastasis in vivo by negatively regulating the NF-kB signaling pathway. Additionally, CYLD was able to inhibit fibroblast and endothelial stromal cell infiltration into the NPC tumor microenvironment. These findings suggest that CYLD inhibits NPC development and provides strong evidence supporting a role for CYLD inhibiting fibroblast and endothelial stromal cell infiltration into NPC via suppressing the NF-kB pathway.
Collapse
|
29
|
Park K, Kim JA, Kim J. Transcriptional regulation by the KMT2 histone H3K4 methyltransferases. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2020; 1863:194545. [DOI: 10.1016/j.bbagrm.2020.194545] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 01/21/2020] [Accepted: 03/13/2020] [Indexed: 01/09/2023]
|
30
|
Deng J, Chu X, Ren Z, Wang B. Relationship between T stage and survival in distantly metastatic esophageal cancer: A STROBE-compliant study. Medicine (Baltimore) 2020; 99:e20064. [PMID: 32384472 PMCID: PMC7220676 DOI: 10.1097/md.0000000000020064] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
To shed light on the interaction between the American Joint Committee on Cancer (AJCC) T stage and M stage in the determination of the overall survival (OS) and cancer-specific survival (CSS) of esophageal carcinoma patients. Moreover, to confirm our hypothesis that tumors that metastasize to distant sites in the early T stage may reflect a more biologically aggressive disease compared with those that metastasize in more advanced T stages.We performed a retrospective cohort study with patients who were pathologically diagnosed with esophageal cancer between 2004 and 2014 in the surveillance epidemiology and end results (SEER) database. The primary study variables were the T and M stage, as well as their interaction terms. We performed a survival analysis of the interaction terms using unadjusted Kaplan-Meier methods and adjusted Cox proportional hazards models. Furthermore, we performed an exploratory analysis with stratification by histological type, esophageal adenocarcinoma (EAC), and esophageal squamous cell carcinoma (ESCC).Data of 19,078 patients were retrieved from the SEER database. Unadjusted Kaplan-Meier curve indicated that patients with T2 and T3 stage had longer median OS and CSS (3 months and 4 months, respectively) than with T1 stage in distantly metastatic esophageal cancer (M1 stage). Multivariate analysis revealed a significant interaction between the T stage and M stage when determining the OS and CSS of esophageal cancer (P < .001). Using T1M0 as a reference, patients with T1M1 had significantly worse OS and CSS than those with T2M1 and T3M1 stage (P < .001). A similar pattern was also observed among patients with EAC and ESCC.Our analysis suggests that the T1 stage predicts worse survival compared with T2 and T3 stage in distantly metastatic esophageal cancer and might be a surrogate for biologically aggressive disease, indicating that those patients should receive more aggressive treatments. Our findings also encourage researchers to discover new genomic changes in this subset of tumors with the potential to uncover new prognostic markers or drug targets. Further researches on the association between T stage and survival in metastatic esophageal cancer are warranted to validate our findings.
Collapse
|
31
|
Decreased ZNF750 promotes angiogenesis in a paracrine manner via activating DANCR/miR-4707-3p/FOXC2 axis in esophageal squamous cell carcinoma. Cell Death Dis 2020; 11:296. [PMID: 32341351 PMCID: PMC7186230 DOI: 10.1038/s41419-020-2492-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 01/19/2020] [Accepted: 01/20/2020] [Indexed: 11/24/2022]
Abstract
ZNF750 is one novel significantly mutated gene identified in esophageal squamous cell carcinoma (ESCC) using next-generation sequencing. However, its clinically relevant and potential mechanisms have remained elusive. Using genomic sequencing of 612 ESCC patients, we analyzed the associations of ZNF750 mutations with clinicopathologic features and its prognostic value. We further investigated the function and underlying mechanism of ZNF750 in angiogenesis. The results showed ZNF750 mutations/deletions are significantly associated with malignant progression and poor prognosis of ESCC patients. Decreased ZNF750 in ESCC cells induces enhanced angiogenesis of human umbilical vein endothelial cells (HUVECs) and human arterial endothelial cells (HAECs), and the effect may be indirectly mediated by FOXC2. RNA-seq and ChIP shows lncRNA DANCR is a direct downstream target of ZNF750. Furtherly, knockdown ZNF750 evokes DANCR expression, which prevents miR-4707-3p to interact with FOXC2 as a microRNA sponge in a ceRNA manner, leading to enhanced FOXC2 signaling and angiogenesis. In contrast, ZNF750 expression reverses the effect. Our study reveals a novel mechanism of ZNF750, highlights a significance of ZNF750 as a metastatic and prognostic biomarker, and offers potential therapeutic targets for ESCC patients harboring ZNF750 mutations.
Collapse
|
32
|
Brown J, Stepien AJ, Willem P. Landscape of copy number aberrations in esophageal squamous cell carcinoma from a high endemic region of South Africa. BMC Cancer 2020; 20:281. [PMID: 32252688 PMCID: PMC7137242 DOI: 10.1186/s12885-020-06788-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 03/26/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Esophageal squamous cell carcinoma (ESCC) is an aggressive cancer with one of the highest world incidences in the Eastern Cape region of South Africa. Several genome wide studies have been performed on ESCC cohorts from Asian countries, North America, Malawi and other parts of the world but none have been conducted on ESCC tumors from South Africa to date, where the molecular pathology and etiology of this disease remains unclear. We report here tumor associated copy number changes observed in 51 ESCC patients' samples from the Eastern Cape province of South Africa. METHODS We extracted tumor DNA from 51 archived ESCC specimens and interrogated tumor associated DNA copy number changes using Affymetrix® 500 K SNP array technology. The Genomic Identification of Significant Targets in Cancer (GISTIC 2.0) algorithm was applied to identify significant focal regions of gains and losses. Gains of the top recurrent cancer genes were validated by fluorescence in situ hybridization and their protein expression assessed by immunohistochemistry. RESULTS Twenty-three significant focal gains were identified across samples. Gains involving the CCND1, MYC, EGFR and JAG1 loci recapitulated those described in studies on Asian and Malawian cohorts. The two most significant gains involved the chromosomal sub-bands 3q28, encompassing the TPRG1 gene and 11q13.3 including the CTTN, PPFIA1and SHANK2 genes. There was no significant homozygous loss and the most recurrent hemizygous deletion involved the B3GAT1 gene on chromosome 11q25. Focal gains on 11q13.3 in 37% of cases (19/51), consistently involved CTTN and SHANK2 genes. Twelve of these cases (23,5%), had a broader region of gain that also included the CCND1, FGF19, FGF4 and FGF3 genes. SHANK2 and CTTN are co-amplified in several cancers, these proteins interact functionally together and are involved in cell motility. Immunohistochemistry confirmed both Shank2 (79%) and cortactin (69%) protein overexpression in samples with gains of these genes. In contrast, cyclin D1 (65%) was moderately expressed in samples with CCND1 DNA gain. CONCLUSIONS This study reports copy number changes in a South African ESCC cohort and highlights similarities and differences with cohorts from Asia and Malawi. Our results strongly suggest a role for CTTN and SHANK2 in the pathogenesis of ESCC in South Africa.
Collapse
Affiliation(s)
- Jacqueline Brown
- School of Pathology, Department of Molecular Medicine and Haematology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg and the National Health Laboratory Services, Johannesburg, South Africa
| | - Andrzej J. Stepien
- Department of Anatomical Pathology, School of Medicine, Faculty of Health Science, Walter Sisulu University, National Health Laboratory Services/NMAH, Mthatha, South Africa
| | - Pascale Willem
- School of Pathology, Department of Molecular Medicine and Haematology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg and the National Health Laboratory Services, Johannesburg, South Africa
| |
Collapse
|
33
|
Wu L, Yang X, Cao W, Zhao K, Li W, Ye W, Chen X, Zhou Z, Liu Z, Liang C. Multiple Level CT Radiomics Features Preoperatively Predict Lymph Node Metastasis in Esophageal Cancer: A Multicentre Retrospective Study. Front Oncol 2020; 9:1548. [PMID: 32039021 PMCID: PMC6985546 DOI: 10.3389/fonc.2019.01548] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 12/20/2019] [Indexed: 12/24/2022] Open
Abstract
Background: Lymph node (LN) metastasis is the most important prognostic factor in esophageal squamous cell carcinoma (ESCC). Traditional clinical factor and existing methods based on CT images are insufficiently effective in diagnosing LN metastasis. A more efficient method to predict LN status based on CT image is needed. Methods: In this multicenter retrospective study, 411 patients with pathologically confirmed ESCC were registered from two hospitals. Quantitative image features including handcrafted-, computer vision-(CV-), and deep-features were extracted from preoperative arterial phase CT images for each patient. A handcrafted-, CV-, and deep-radiomics signature were built, respectively. Then, multiple radiomics models were constructed by merging independent clinical risk factor into radiomics signatures. The performance of models were evaluated with respect to the discrimination, calibration, and clinical usefulness. Finally, an independent external validation cohort was used to validate the model's predictive performance. Results: Five, seven, and nine features were selected for building handcrafted-, CV-, and deep-radiomics signatures from extracted features, respectively. Those signatures were statistically significant different between LN-positive and LN-negative patients in all cohorts (p < 0.001). The developed multiple level CT radiomics model that integrates multiple radiomics signatures with clinical risk factor, was superior to traditional clinical factors and the results reported by existing methods, and achieved satisfactory discrimination performance with C-statistic of 0.875 in development cohort, 0.874 in internal validation cohort and 0.840 in independent external validation cohort. Nomogram and decision curve analysis (DCA) further confirmed our method may serve as an effective tool for clinicians to evaluate the risk of LN metastasis in patients with ESCC and further choose treatment strategy. Conclusions: The proposed multiple level CT radiomics model which integrate multiple level radiomics features into clinical risk factor can be used for preoperative predicting LN metastasis of patients with ESCC.
Collapse
Affiliation(s)
- Lei Wu
- School of Medicine, South China University of Technology, Guangzhou, China.,Department of Radiology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Xiaojun Yang
- School of Medicine, South China University of Technology, Guangzhou, China.,Department of Radiology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Wuteng Cao
- School of Medicine, South China University of Technology, Guangzhou, China.,Department of Radiology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ke Zhao
- School of Medicine, South China University of Technology, Guangzhou, China.,Department of Radiology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Wenli Li
- Department of Radiology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Weitao Ye
- Department of Radiology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Xin Chen
- Department of Radiology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Zhiyang Zhou
- Department of Radiology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zaiyi Liu
- School of Medicine, South China University of Technology, Guangzhou, China.,Department of Radiology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Changhong Liang
- School of Medicine, South China University of Technology, Guangzhou, China.,Department of Radiology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| |
Collapse
|
34
|
Abstract
Macroscopic examination of the surgical specimen of esophageal squamous cell carcinoma by pathologist is important for quality clinical management, research, as well as education purposes. The process includes dissection of the specimen, identification of the lesion, measurements, and taking appropriate samples for histopathological examination. The basic principle of the examination is to study the characteristics and extent of the cancer. In addition, examination of proximal resection margin and circumferential resection margin are important in the cancer. A standardized approach for macroscopic examination by professionals is needed for accurate diagnosis and to optimize the use of the surgical specimen with esophageal squamous cell carcinoma.
Collapse
|
35
|
Ko JMY, Ning L, Zhao XK, Chai AWY, Lei LC, Choi SSA, Tao L, Law S, Kwong A, Lee NPY, Chan KT, Lo A, Song X, Chen PN, Chang YL, Wang LD, Lung ML. BRCA2 loss-of-function germline mutations are associated with esophageal squamous cell carcinoma risk in Chinese. Int J Cancer 2019; 146:1042-1051. [PMID: 31396961 DOI: 10.1002/ijc.32619] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 07/05/2019] [Accepted: 07/24/2019] [Indexed: 12/23/2022]
Abstract
Esophageal squamous cell carcinoma (ESCC) occurs with highest frequency in China with over 90% mortality, highlighting the need for early detection and improved treatment strategies. We aimed to identify ESCC cancer predisposition gene(s). Our study included 4,517 individuals. The discovery phase using whole-exome sequencing (WES) included 186 familial ESCC patients from high-risk China. Targeted gene sequencing validation of 598 genes included 3,289 Henan and 1,228 moderate-risk Hong Kong Chinese. A WES approach identified BRCA2 loss-of-function (LOF) mutations in 3.23% (6/186) familial ESCC patients compared to 0.21% (9/4300) in the ExAC East Asians (odds ratio [OR] = 15.89, p = 2.48 × 10-10 ). BRCA2 LOF mutation frequency in the combined Henan cohort has significantly higher prevalence (OR = 10.55, p = 0.0035). Results were independently validated in an ESCC Hong Kong cohort (OR = 10.64, p = 0.022). One Hong Kong pedigree was identified to carry a BRCA2 LOF mutation. BRCA2 inactivation in ESCC was via germline LOF mutations and wild-type somatic allelic loss via loss of heterozygosity. Gene-based association analysis, including LOF mutations and rare deleterious missense variants defined with combined annotation dependent depletion score ≥30, confirmed the genetic predisposition role of BRCA2 (OR = 9.50, p = 3.44 × 10-5 ), and provided new evidence for potential association of ESCC risk with DNA repair genes (POLQ and MSH2), inflammation (TTC39B) and angiogenesis (KDR). Our findings are the first to provide compelling evidence of the role of BRCA2 in ESCC genetic susceptibility in Chinese, suggesting defective homologous recombination is an underlying cause in ESCC pathogenesis, which is amenable to therapeutic options based on synthetic lethality approaches such as targeting BRCA2 with PARP1 inhibitors in ESCC.
Collapse
Affiliation(s)
- Josephine Mun-Yee Ko
- Department of Clinical Oncology, University of Hong Kong, Hong Kong, People's Republic of China
| | - Lvwen Ning
- Department of Clinical Oncology, University of Hong Kong, Hong Kong, People's Republic of China
| | - Xue-Ke Zhao
- Henan Key Laboratory for Esophageal Cancer Research of the First Affiliated Hospital, State Key Laboratory for Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Annie Wai Yeeng Chai
- Department of Clinical Oncology, University of Hong Kong, Hong Kong, People's Republic of China
| | - Lisa Chan Lei
- Department of Clinical Oncology, University of Hong Kong, Hong Kong, People's Republic of China
| | - Sheyne Sta Ana Choi
- Department of Clinical Oncology, University of Hong Kong, Hong Kong, People's Republic of China
| | - Lihua Tao
- Department of Clinical Oncology, University of Hong Kong, Hong Kong, People's Republic of China
| | - Simon Law
- Department of Surgery, University of Hong Kong, Hong Kong, People's Republic of China
| | - Ava Kwong
- Department of Surgery, University of Hong Kong, Hong Kong, People's Republic of China.,Hereditary Breast Cancer Family Registry Cancer Genetics Center, Hong Kong Sanatorium and Hospital, Hong Kong, People's Republic of China
| | - Nikki Pui-Yue Lee
- Department of Surgery, University of Hong Kong, Hong Kong, People's Republic of China
| | - Kin-Tak Chan
- Department of Surgery, University of Hong Kong, Hong Kong, People's Republic of China
| | - Anthony Lo
- Division of Anatomical Pathology, Queen Mary Hospital, Hong Kong, People's Republic of China
| | - Xin Song
- Henan Key Laboratory for Esophageal Cancer Research of the First Affiliated Hospital, State Key Laboratory for Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Pei-Nan Chen
- Henan Key Laboratory for Esophageal Cancer Research of the First Affiliated Hospital, State Key Laboratory for Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Yun-Li Chang
- Department of Gastroenterology, Shanghai University of Medicine and Health Sciences, Affiliated Zhoupu Hospital, Shanghai, People's Republic of China
| | - Li Dong Wang
- Henan Key Laboratory for Esophageal Cancer Research of the First Affiliated Hospital, State Key Laboratory for Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Maria Li Lung
- Department of Clinical Oncology, University of Hong Kong, Hong Kong, People's Republic of China
| |
Collapse
|
36
|
Genomic characterization of early-stage esophageal squamous cell carcinoma in a Japanese population. Oncotarget 2019; 10:4139-4148. [PMID: 31289612 PMCID: PMC6609253 DOI: 10.18632/oncotarget.27014] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Accepted: 05/26/2019] [Indexed: 01/08/2023] Open
Abstract
Major risk factors for esophageal squamous cell carcinoma (ESCC) are smoking, alcohol consumption, and single nucleotide polymorphisms in ADH1B and ALDH2. Several groups have reported large-scale genomic analyses of ESCCs. However, the specific genetic changes that promote the development of ESCC have not been characterized. We performed exome sequencing of 16 fresh esophageal squamous cell neoplasms and targeted sequencing of 128 genes in 52 archival specimens, of which 26 were cancerous, and 26 were adjacent normal tissue, from Japanese ESCC patients. We found significantly more somatic mutations in TP53 and NOTCH1, CDKN2A deletions, and CCND1 amplifications in cancerous areas than in non-cancerous areas, consistent with previous studies that have characterized them as tumor suppressors and oncogenes. These data suggest that mutations, deletions, and amplifications, which alter the function of TP53, NOTCH1, CDKN2A, and CCND1, are the key changes that promote the transformation of esophageal mucosa to ESCC.
Collapse
|
37
|
Bao Y, Selfridge JE, Wang J, Zhao Y, Cui J, Guda K, Wang Z, Zhu Y. Mutations in TP53, ZNF750, and RB1 typify ocular sebaceous carcinoma. J Genet Genomics 2019; 46:315-318. [PMID: 31278009 DOI: 10.1016/j.jgg.2019.06.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 05/23/2019] [Accepted: 06/14/2019] [Indexed: 11/17/2022]
Affiliation(s)
- Yongyang Bao
- Department of Pathology, The Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - J Eva Selfridge
- Seidman Cancer Center, University Hospitals Cleveland Medical Center, Cleveland, OH, 44106, USA; Case Comprehensive Cancer Center, Cleveland, OH, 44106, USA; Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Janet Wang
- Case Comprehensive Cancer Center, Cleveland, OH, 44106, USA; Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Yiqing Zhao
- Case Comprehensive Cancer Center, Cleveland, OH, 44106, USA; Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Junqi Cui
- Department of Pathology, The Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Kishore Guda
- Case Comprehensive Cancer Center, Cleveland, OH, 44106, USA.
| | - Zhenghe Wang
- Case Comprehensive Cancer Center, Cleveland, OH, 44106, USA; Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, 44106, USA.
| | - Yanbo Zhu
- Department of Pathology, The Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| |
Collapse
|
38
|
Islam F, Gopalan V, Law S, Tang JCO, Lam AKY. FAM134B promotes esophageal squamous cell carcinoma in vitro and its correlations with clinicopathologic features. Hum Pathol 2019; 87:1-10. [PMID: 30794892 DOI: 10.1016/j.humpath.2018.11.033] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 11/07/2018] [Accepted: 11/12/2018] [Indexed: 01/06/2023]
Abstract
Family with sequence similarity 134, member B (FAM134B) is an autophagy regulator of endoplasmic reticulum first discovered to be involved in the pathogenesis of esophageal squamous cell carcinoma (ESCC). The present study examined the functional behavior of FAM134B in cancer cells and the association of FAM134B expression with clinicopathologic factors in patients with ESCC. Expression at both the mRNA and protein levels was investigated using real-time polymerase chain reaction and immunohistochemistry. The results were correlated with the clinical and pathological features of the patients. In addition, in vitro functional assays were used to investigate the roles of FAM134B in ESCC cells in response to gene silencing with shRNA lentiviral particles. Overexpression of FAM134B mRNA and protein was present in 31.2% (n = 29/93) and 36.6% (n = 41/112), respectively, in tumors, whereas downregulation occurred in 39.8% (n = 37/93) and 63.4% (n = 71/112), respectively. Expression of FAM134B protein in ESCC correlated with histologic grade (P = .002) and pathologic stage (P = .012). In vitro suppression of FAM134B in ESCC induced significant reductions of cell proliferation and colony formation (P < .05). In addition, suppression of FAM134B caused reduction of wound healing, migration, and invasion capacities of ESCC. To conclude, FAM134B could play crucial roles in the initiation and progression of ESCC, and FAM134B protein expression has potential predictive value. Therefore, development of strategies targeting FAM134B could have therapeutic value in the management of patients with ESCC.
Collapse
Affiliation(s)
- Farhadul Islam
- Department of Cancer Molecular Pathology, School of Medicine, Griffith University, Gold Coast, Queensland, Australia; Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi-6205, Bangladesh
| | - Vinod Gopalan
- Department of Cancer Molecular Pathology, School of Medicine, Griffith University, Gold Coast, Queensland, Australia
| | - Simon Law
- Department of Surgery, The University of Hong Kong, Hong Kong (SAR), People's Republic of China
| | - Johnny Cheuk-On Tang
- State Key Laboratory of Chirosciences, Lo Ka Chung Centre for Natural Anti-cancer Drug Development, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong.
| | - Alfred King-Yin Lam
- Department of Cancer Molecular Pathology, School of Medicine, Griffith University, Gold Coast, Queensland, Australia.
| |
Collapse
|
39
|
Yan T, Cui H, Zhou Y, Yang B, Kong P, Zhang Y, Liu Y, Wang B, Cheng Y, Li J, Guo S, Xu E, Liu H, Cheng C, Zhang L, Chen L, Zhuang X, Qian Y, Yang J, Ma Y, Li H, Wang F, Liu J, Liu X, Su D, Wang Y, Sun R, Guo S, Li Y, Cheng X, Liu Z, Zhan Q, Cui Y. Multi-region sequencing unveils novel actionable targets and spatial heterogeneity in esophageal squamous cell carcinoma. Nat Commun 2019; 10:1670. [PMID: 30975989 PMCID: PMC6459928 DOI: 10.1038/s41467-019-09255-1] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 02/28/2019] [Indexed: 02/06/2023] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) ranks fourth among cancer-related deaths in China due to the lack of actionable molecules. We performed whole-exome and T-cell receptor (TCR) repertoire sequencing on multi-regional tumors, normal tissues and blood samples from 39 ESCC patients. The data revealed 12.8% of ERBB4 mutations at patient level and functional study supported its oncogenic role. 18% of patients with early BRCA1/2 variants were associated with high-level contribution of signature 3, which was validated in an independent large cohort (n = 508). Furthermore, knockdown of BRCA1/2 dramatically increased sensitivity to cisplatin in ESCC cells. 5% of patients harbored focal high-level amplification of CD274 that led to massive expression of PD-L1, and might be more sensitive to immune checkpoint blockade. Finally, we found a tight correlation between genomic and TCR repertoire intra-tumor heterogeneity (ITH). Collectively, we reveal high-level ITH in ESCC, identify several potential actionable targets and may provide novel insight into ESCC treatment. Esophageal squamous cell carcinoma (ESCC) is highly prevalent in China. Here, the authors carry out multi-region sampling of Chinese ESCC samples, and find recurrent ERBB4 mutations, BRCA1/2 variants, and amplification of CD274; together with high levels of genomic and T-cell receptor heterogeneity.
Collapse
Affiliation(s)
- Ting Yan
- Shenzhen Peking University-The Hong Kong University of Science and Technology (PKU-HKUST) Medical Center, Peking University Shenzhen Hospital, 518035, Shenzhen, PR China.,Department of Pathology & Shanxi Key Laboratory of Carcinogenesis and Translational Research on Esophageal Cancer, Shanxi Medical University, 030001, Taiyuan, PR China
| | - Heyang Cui
- Shenzhen Peking University-The Hong Kong University of Science and Technology (PKU-HKUST) Medical Center, Peking University Shenzhen Hospital, 518035, Shenzhen, PR China.,Department of Pathology & Shanxi Key Laboratory of Carcinogenesis and Translational Research on Esophageal Cancer, Shanxi Medical University, 030001, Taiyuan, PR China
| | - Yong Zhou
- Shenzhen Peking University-The Hong Kong University of Science and Technology (PKU-HKUST) Medical Center, Peking University Shenzhen Hospital, 518035, Shenzhen, PR China.,Department of Pathology & Shanxi Key Laboratory of Carcinogenesis and Translational Research on Esophageal Cancer, Shanxi Medical University, 030001, Taiyuan, PR China
| | - Bin Yang
- Department of Pathology & Shanxi Key Laboratory of Carcinogenesis and Translational Research on Esophageal Cancer, Shanxi Medical University, 030001, Taiyuan, PR China.,Department of Tumor Surgery, Shanxi Cancer Hospital, 030013, Taiyuan, PR China
| | - Pengzhou Kong
- Department of Pathology & Shanxi Key Laboratory of Carcinogenesis and Translational Research on Esophageal Cancer, Shanxi Medical University, 030001, Taiyuan, PR China
| | - Yingchun Zhang
- Department of Pathology & Shanxi Key Laboratory of Carcinogenesis and Translational Research on Esophageal Cancer, Shanxi Medical University, 030001, Taiyuan, PR China
| | - Yiqian Liu
- Department of Pathology & Shanxi Key Laboratory of Carcinogenesis and Translational Research on Esophageal Cancer, Shanxi Medical University, 030001, Taiyuan, PR China
| | - Bin Wang
- Shenzhen Peking University-The Hong Kong University of Science and Technology (PKU-HKUST) Medical Center, Peking University Shenzhen Hospital, 518035, Shenzhen, PR China.,College of Information and Computer, Taiyuan University of Technology, 030001, Taiyuan, PR China
| | - Yikun Cheng
- College of Letter & Science, University of California Berkeley, Berkeley, CA, 94704, USA
| | - Jiayi Li
- Anglo-Chinese School (Independent), Singapore, 139650, Singapore
| | - Shixing Guo
- Department of Pathology & Shanxi Key Laboratory of Carcinogenesis and Translational Research on Esophageal Cancer, Shanxi Medical University, 030001, Taiyuan, PR China
| | - Enwei Xu
- Department of Pathology & Shanxi Key Laboratory of Carcinogenesis and Translational Research on Esophageal Cancer, Shanxi Medical University, 030001, Taiyuan, PR China.,Department of Pathology, Shanxi Cancer Hospital, 030013, Taiyuan, PR China
| | - Huijuan Liu
- Department of Pathology & Shanxi Key Laboratory of Carcinogenesis and Translational Research on Esophageal Cancer, Shanxi Medical University, 030001, Taiyuan, PR China
| | - Caixia Cheng
- Department of Pathology & Shanxi Key Laboratory of Carcinogenesis and Translational Research on Esophageal Cancer, Shanxi Medical University, 030001, Taiyuan, PR China.,Department of Pathology, the First Hospital, Shanxi Medical University, 030001, Taiyuan, PR China
| | - Ling Zhang
- Department of Pathology & Shanxi Key Laboratory of Carcinogenesis and Translational Research on Esophageal Cancer, Shanxi Medical University, 030001, Taiyuan, PR China
| | - Ling Chen
- Department of Pathology, Tianjin Central Hospital of Gynecology Obstetrics, Nankai University Gynecology Obstetrics Hospital, 300052, Tianjin, PR China
| | - Xiaofei Zhuang
- Department of Tumor Surgery, Shanxi Cancer Hospital, 030013, Taiyuan, PR China
| | - Yu Qian
- Department of Pathology & Shanxi Key Laboratory of Carcinogenesis and Translational Research on Esophageal Cancer, Shanxi Medical University, 030001, Taiyuan, PR China
| | - Jian Yang
- Department of Pathology & Shanxi Key Laboratory of Carcinogenesis and Translational Research on Esophageal Cancer, Shanxi Medical University, 030001, Taiyuan, PR China
| | - Yanchun Ma
- Department of Pathology & Shanxi Key Laboratory of Carcinogenesis and Translational Research on Esophageal Cancer, Shanxi Medical University, 030001, Taiyuan, PR China
| | - Hongyi Li
- Department of Pathology & Shanxi Key Laboratory of Carcinogenesis and Translational Research on Esophageal Cancer, Shanxi Medical University, 030001, Taiyuan, PR China
| | - Fang Wang
- Department of Pathology & Shanxi Key Laboratory of Carcinogenesis and Translational Research on Esophageal Cancer, Shanxi Medical University, 030001, Taiyuan, PR China
| | - Jing Liu
- Department of Pathology & Shanxi Key Laboratory of Carcinogenesis and Translational Research on Esophageal Cancer, Shanxi Medical University, 030001, Taiyuan, PR China.,Department of General Surgery, the First Hospital, Shanxi Medical University, 030001, Taiyuan, PR China
| | - Xuefeng Liu
- Shenzhen Peking University-The Hong Kong University of Science and Technology (PKU-HKUST) Medical Center, Peking University Shenzhen Hospital, 518035, Shenzhen, PR China
| | - Dan Su
- Department of Pathology, Zhejiang Cancer Hospital, 310022, Hangzhou, PR China
| | - Yan Wang
- Shenzhen Peking University-The Hong Kong University of Science and Technology (PKU-HKUST) Medical Center, Peking University Shenzhen Hospital, 518035, Shenzhen, PR China.,Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, 100191, Beijing, PR China
| | - Ruifang Sun
- Tumor Biobank, Shanxi Cancer Hospital, 030013, Taiyuan, PR China
| | - Shiping Guo
- Department of Tumor Surgery, Shanxi Cancer Hospital, 030013, Taiyuan, PR China
| | - Yaoping Li
- Department of Colorectal & Anal Surgery, Affiliated Provincial Hospital of Shanxi Medical University, 030001, Taiyuan, PR China
| | - Xiaolong Cheng
- Department of Pathology & Shanxi Key Laboratory of Carcinogenesis and Translational Research on Esophageal Cancer, Shanxi Medical University, 030001, Taiyuan, PR China
| | - Zhihua Liu
- State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, PR China
| | - Qimin Zhan
- Shenzhen Peking University-The Hong Kong University of Science and Technology (PKU-HKUST) Medical Center, Peking University Shenzhen Hospital, 518035, Shenzhen, PR China. .,Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, 100191, Beijing, PR China.
| | - Yongping Cui
- Shenzhen Peking University-The Hong Kong University of Science and Technology (PKU-HKUST) Medical Center, Peking University Shenzhen Hospital, 518035, Shenzhen, PR China. .,Department of Pathology & Shanxi Key Laboratory of Carcinogenesis and Translational Research on Esophageal Cancer, Shanxi Medical University, 030001, Taiyuan, PR China.
| |
Collapse
|
40
|
Haft S, Ren S, Xu G, Mark A, Fisch K, Guo TW, Khan Z, Pang J, Ando M, Liu C, Sakai A, Fukusumi T, Califano JA. Mutation of chromatin regulators and focal hotspot alterations characterize human papillomavirus-positive oropharyngeal squamous cell carcinoma. Cancer 2019; 125:2423-2434. [PMID: 30933315 DOI: 10.1002/cncr.32068] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 11/29/2018] [Accepted: 01/07/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND Human papillomavirus (HPV)-associated oropharyngeal cancer is a disease clinically and biologically distinct from smoking-related head and neck squamous cell carcinoma (HNSCC). Despite its rapidly increasing incidence, the mutational landscape of HPV+ oropharyngeal squamous cell carcinoma (OPSCC) remains understudied. METHODS This article presents the first mutational analysis of the 46 HPV+ OPSCC tumors within the newly expanded cohort of 530 HNSCC tumors from The Cancer Genome Atlas. A separate exome sequencing analysis was also performed for 46 HPV+ OPSCCs matched to their normal lymphocyte controls from the Johns Hopkins University cohort. RESULTS There was a strikingly high 33% frequency of mutations within genes associated with chromatin regulation, including mutations in lysine methyltransferase 2C (KMT2C), lysine methyltransferase 2D (KMT2D), nuclear receptor binding SET domain protein 1 (NSD1), CREB binding protein (CREBBP), E1A-associated protein p300 (EP300), and CCCTC-binding factor (CTCF). In addition, the commonly altered genes phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit α (PIK3CA) and fibroblast growth factor receptor 3 (FGFR3) showed distinct domain-specific hotspot mutations in comparison with their HPV- counterparts. PIK3CA showed a uniquely high rate of mutations within the helicase domain, and FGFR3 contained a predominance of hotspot S249C alterations that were not found in HPV- HNSCC. CONCLUSIONS This analysis represents one of the largest studies to date of HPV+ OPSCC and lends novel insight into the genetic landscape of this biologically distinct disease, including a high rate of mutations in histone- and chromatin-modifying genes, which may offer novel therapeutic targets.
Collapse
Affiliation(s)
- Sunny Haft
- Moores Cancer Center, University of California San Diego, La Jolla, California.,Division of Otolaryngology-Head and Neck Surgery, Department of Surgery, University of California San Diego, La Jolla, California
| | - Shuling Ren
- Moores Cancer Center, University of California San Diego, La Jolla, California.,Division of Otolaryngology-Head and Neck Surgery, Department of Surgery, University of California San Diego, La Jolla, California
| | - Guorong Xu
- Moores Cancer Center, University of California San Diego, La Jolla, California.,Center for Computational Biology and Bioinformatics, Department of Medicine, University of California San Diego, La Jolla, California
| | - Adam Mark
- Moores Cancer Center, University of California San Diego, La Jolla, California.,Center for Computational Biology and Bioinformatics, Department of Medicine, University of California San Diego, La Jolla, California
| | - Kathleen Fisch
- Moores Cancer Center, University of California San Diego, La Jolla, California.,Center for Computational Biology and Bioinformatics, Department of Medicine, University of California San Diego, La Jolla, California
| | - Theresa W Guo
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Zubair Khan
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - John Pang
- Moores Cancer Center, University of California San Diego, La Jolla, California.,Division of Otolaryngology-Head and Neck Surgery, Department of Surgery, University of California San Diego, La Jolla, California
| | - Mizuo Ando
- Moores Cancer Center, University of California San Diego, La Jolla, California.,Department of Otolaryngology-Head and Neck Surgery, Tokyo University, Tokyo, Japan
| | - Chao Liu
- Moores Cancer Center, University of California San Diego, La Jolla, California.,Division of Otolaryngology-Head and Neck Surgery, Department of Surgery, University of California San Diego, La Jolla, California
| | - Akihiro Sakai
- Moores Cancer Center, University of California San Diego, La Jolla, California.,Department of Otolaryngology, Center of Head and Neck Surgery, Tokai University, Isehara, Japan
| | - Takahito Fukusumi
- Moores Cancer Center, University of California San Diego, La Jolla, California
| | - Joseph A Califano
- Moores Cancer Center, University of California San Diego, La Jolla, California.,Division of Otolaryngology-Head and Neck Surgery, Department of Surgery, University of California San Diego, La Jolla, California
| |
Collapse
|
41
|
Hajjari M, Rahnama S. Association Between SNPs of Long Non-coding RNA HOTAIR and Risk of Different Cancers. Front Genet 2019; 10:113. [PMID: 30873206 PMCID: PMC6403183 DOI: 10.3389/fgene.2019.00113] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 01/30/2019] [Indexed: 12/23/2022] Open
Affiliation(s)
- Mohammadreza Hajjari
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Saghar Rahnama
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| |
Collapse
|
42
|
Activation of PAR4 Upregulates p16 through Inhibition of DNMT1 and HDAC2 Expression via MAPK Signals in Esophageal Squamous Cell Carcinoma Cells. J Immunol Res 2018; 2018:4735752. [PMID: 30363984 PMCID: PMC6186345 DOI: 10.1155/2018/4735752] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 07/30/2018] [Accepted: 08/14/2018] [Indexed: 12/13/2022] Open
Abstract
A previous study showed that a downexpression of protease-activated receptor 4 (PAR4) is associated with the development of esophageal squamous cell carcinoma (ESCC). In this study, we explored the relationship between PAR4 activation and the expression of p16, and elucidated the underlying mechanisms in PAR4 inducing the tumor suppressor role in ESCC. ESCC cell lines (EC109 and TE-1) were treated with PAR4-activating peptide (PAR4-AP). Immunohistochemistry for DNA methyltransferase 1 (DNMT1) and histone deacetylase 2 (HDAC2) was performed in 26 cases of ESCC tissues. We found that DNMT1 and HDAC2 immunoreactivities in ESCC were significantly higher than those in adjacent noncancerous tissues. PAR4 activation could suppress DNMT1 and HDAC2, as well as increase p16 expressions, whereas silencing PAR4 dramatically increased HDAC2 and DNMT1, as well as reduced p16 expressions. Importantly, the chromatin immunoprecipitation-PCR (ChIP-PCR) data indicated that treatment of ESCC cells with PAR4-AP remarkably suppressed DNMT1 and HDAC2 enrichments on the p16 promoter. Furthermore, we demonstrated that activation of PAR4 resulted in an increase of p38/ERK phosphorylation and activators for p38/ERK enhanced the effect of PAR4 activation on HDAC2, DNMT1, and p16 expressions, whereas p38/ERK inhibitors reversed these effects. Moreover, we found that activation of PAR4 in ESCC cells significantly inhibited cell proliferation and induced apoptosis. These findings suggest that PAR4 plays a potential tumor suppressor role in ESCC cells and represents a potential therapeutic target of this disease.
Collapse
|
43
|
Zhou J, Zheng S, Liu T, Liu Q, Chen Y, Tan D, Ma R, Lu X. IL-1β from M2 macrophages promotes migration and invasion of ESCC cells enhancing epithelial-mesenchymal transition and activating NF-κB signaling pathway. J Cell Biochem 2018; 119:7040-7052. [PMID: 29737564 DOI: 10.1002/jcb.26918] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 04/04/2018] [Indexed: 12/20/2022]
Abstract
Despite the phenotype has been established that M2 macrophages promotes the metastasis of ESCC, question still remains as to how the M2 macrophages facilitated metastasis of ESCC cells. To begin with, immunohistochemistry was performed to detect the expression of CD163, one typical surface marker of M2 macrophages in 90 paired ESCC and its normal controls after meta-analyzing the relevant studies regarding M2 macrophages in ESCC, confirming that infiltration of M2 macrophages was significantly linked with lymph node metastasis, T classification, and inferior overall survival of ESCC. To explore the mechanism behind, protein factors secreted by M2 macrophages were identified using antibody microarray. Six different significantly differential protein factors were screened out, including IL-1β, TIMP1, IL-1α, MDC, TGF-β1, and TGF-β2. Among which, IL-1β was picked up as cytokine as interest based on previous reports and its absolute fold. Functional analysis of IL-1β showed that IL-1β was able to promote migration and invasion of ESCC cells, enhancing epithelial-mesenchymal transition, and activating NF-κB pathway. Our study supports the promoting role of M2 macrophages in metastasis of ESCC cells, enriching the profile of protein factors released from M2 macrophages.
Collapse
Affiliation(s)
- Jian Zhou
- Tumor Hospital Affiliated to Xinjiang Medical University, Xinjiang Uygur Autonomous Region, Urumqi, P.R. China
- State Key Laboratory of Pathogenesis, Prevention, Treatment of Central Asian High Incidence Diseases, Xinjiang Uygur Autonomous Region, Urumqi, P.R. China
| | - Shutao Zheng
- State Key Laboratory of Pathogenesis, Prevention, Treatment of Central Asian High Incidence Diseases, Xinjiang Uygur Autonomous Region, Urumqi, P.R. China
- Clinical Medical Research Institute, First Affiliated Hospital of Xinjiang Medical University, Xinjiang Uygur Autonomous Region, Urumqi, P.R. China
| | - Tao Liu
- State Key Laboratory of Pathogenesis, Prevention, Treatment of Central Asian High Incidence Diseases, Xinjiang Uygur Autonomous Region, Urumqi, P.R. China
- Clinical Medical Research Institute, First Affiliated Hospital of Xinjiang Medical University, Xinjiang Uygur Autonomous Region, Urumqi, P.R. China
| | - Qing Liu
- State Key Laboratory of Pathogenesis, Prevention, Treatment of Central Asian High Incidence Diseases, Xinjiang Uygur Autonomous Region, Urumqi, P.R. China
- Clinical Medical Research Institute, First Affiliated Hospital of Xinjiang Medical University, Xinjiang Uygur Autonomous Region, Urumqi, P.R. China
| | - Yumei Chen
- Tumor Hospital Affiliated to Xinjiang Medical University, Xinjiang Uygur Autonomous Region, Urumqi, P.R. China
- State Key Laboratory of Pathogenesis, Prevention, Treatment of Central Asian High Incidence Diseases, Xinjiang Uygur Autonomous Region, Urumqi, P.R. China
| | - Doudou Tan
- Tumor Hospital Affiliated to Xinjiang Medical University, Xinjiang Uygur Autonomous Region, Urumqi, P.R. China
- State Key Laboratory of Pathogenesis, Prevention, Treatment of Central Asian High Incidence Diseases, Xinjiang Uygur Autonomous Region, Urumqi, P.R. China
| | - Rong Ma
- Tumor Hospital Affiliated to Xinjiang Medical University, Xinjiang Uygur Autonomous Region, Urumqi, P.R. China
- State Key Laboratory of Pathogenesis, Prevention, Treatment of Central Asian High Incidence Diseases, Xinjiang Uygur Autonomous Region, Urumqi, P.R. China
| | - Xiaomei Lu
- Tumor Hospital Affiliated to Xinjiang Medical University, Xinjiang Uygur Autonomous Region, Urumqi, P.R. China
- State Key Laboratory of Pathogenesis, Prevention, Treatment of Central Asian High Incidence Diseases, Xinjiang Uygur Autonomous Region, Urumqi, P.R. China
| |
Collapse
|
44
|
Guo J, Huang J, Zhou Y, Zhou Y, Yu L, Li H, Hou L, Zhu L, Ge D, Zeng Y, Guleng B, Li Q. Germline and somatic variations influence the somatic mutational signatures of esophageal squamous cell carcinomas in a Chinese population. BMC Genomics 2018; 19:538. [PMID: 30012096 PMCID: PMC6048762 DOI: 10.1186/s12864-018-4906-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 06/29/2018] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Esophageal squamous cell carcinomas (ESCC) is the fourth most lethal cancer in China. Previous studies reveal several highly conserved mutational processes in ESCC. However, it remains unclear what are the true regulators of the mutational processes. RESULTS We analyzed the somatic mutational signatures in 302 paired whole-exome sequencing data of ESCC in a Chinese population for potential regulators of the mutational processes. We identified three conserved subtypes based on the mutational signatures with significantly different clinical outcomes. Our results show that patients of different subpopulations of Chinese differ significantly in the activity of the "NpCpG" signature (FDR = 0.00188). In addition, we report ZNF750 and CDC27, of which the somatic statuses and the genetic burdens consistently influence the activities of specific mutational signatures in ESCC: the somatic ZNF750 status is associated with the AID/APOBEC-related mutational process (FDR = 0.0637); the somatic CDC27 copy-number is associated with the "NpCpG" (FDR = 0.00615) and the AID/APOBEC-related mutational processes (FDR = 8.69 × 10- 4). The burdens of germline variants in the two genes also significantly influence the activities of the same somatic mutational signatures (FDR < 0.1). CONCLUSIONS We report multiple factors that influence the mutational processes in ESCC including: the subpopulations of Chinese; the germline and somatic statuses of ZNF750 and CDC27 and exposure to alcohol and tobacco. Our findings based on the evidences from both germline and somatic levels reveal potential genetic regulators of the somatic mutational processes and provide insights into the biology of esophageal carcinogenesis.
Collapse
Affiliation(s)
- Jintao Guo
- Department of Translational Medicine, Medical College of Xiamen University, Xiamen, 361102 China
- Center for BioMedical Big Data Research, Medical College of Xiamen University, Xiamen, 361102 China
| | - Jiankun Huang
- Central Laboratory, Zhongshan Hospital affiliated to Xiamen University, Xiamen, 361004 China
| | - Ying Zhou
- Department of Translational Medicine, Medical College of Xiamen University, Xiamen, 361102 China
- Center for BioMedical Big Data Research, Medical College of Xiamen University, Xiamen, 361102 China
| | - Yulin Zhou
- Maternity and Child Health Care Hospital, Xiamen, 361003 China
| | - Liying Yu
- Department of Translational Medicine, Medical College of Xiamen University, Xiamen, 361102 China
- Center for BioMedical Big Data Research, Medical College of Xiamen University, Xiamen, 361102 China
| | - Huili Li
- Department of Translational Medicine, Medical College of Xiamen University, Xiamen, 361102 China
| | - Lingyun Hou
- Department of Pediatrics, The First Affiliated Hospital of Xiamen University, Xiamen, 361003 China
| | - Liuwei Zhu
- Department of Translational Medicine, Medical College of Xiamen University, Xiamen, 361102 China
| | - Dandan Ge
- Department of Pediatrics, The First Affiliated Hospital of Xiamen University, Xiamen, 361003 China
| | - Yuanyuan Zeng
- Department of Translational Medicine, Medical College of Xiamen University, Xiamen, 361102 China
| | - Bayasi Guleng
- Department of Gastroenterology, Zhongshan Hospital affiliated to Xiamen University, 201 Hu’bin South Road, Xiamen, Fujian Province China
| | - Qiyuan Li
- Department of Translational Medicine, Medical College of Xiamen University, Xiamen, 361102 China
- Center for BioMedical Big Data Research, Medical College of Xiamen University, Xiamen, 361102 China
- Medical College of Xiamen University, 4221-120 South Xiang’an Road, Xiang’an District, Xiamen, Fujian Province China
| |
Collapse
|
45
|
Tan X, Ma Z, Yan L, Ye W, Liu Z, Liang C. Radiomics nomogram outperforms size criteria in discriminating lymph node metastasis in resectable esophageal squamous cell carcinoma. Eur Radiol 2018; 29:392-400. [PMID: 29922924 DOI: 10.1007/s00330-018-5581-1] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 05/23/2018] [Accepted: 06/01/2018] [Indexed: 12/18/2022]
Abstract
OBJECTIVES To determine the value of radiomics in predicting lymph node (LN) metastasis in resectable esophageal squamous cell carcinoma (ESCC) patients. METHODS Data of 230 consecutive patients were retrospectively analyzed (154 in the training set and 76 in the test set). A total of 1576 radiomics features were extracted from arterial-phase CT images of the whole primary tumor. LASSO logistic regression was performed to choose the key features and construct a radiomics signature. A radiomics nomogram incorporating this signature was developed on the basis of multivariable analysis in the training set. Nomogram performance was determined and validated with respect to its discrimination, calibration and reclassification. Clinical usefulness was estimated by decision curve analysis. RESULTS The radiomics signature including five features was significantly associated with LN metastasis. The radiomics nomogram, which incorporated the signature and CT-reported LN status (i.e. size criteria), distinguished LN metastasis with an area under curve (AUC) of 0.758 in the training set, and performance was similar in the test set (AUC 0.773). Discrimination of the radiomics nomogram exceeded that of size criteria alone in both the training set (p <0.001) and the test set (p=0.005). Integrated discrimination improvement (IDI) and categorical net reclassification improvement (NRI) showed significant improvement in prognostic value when the radiomics signature was added to size criteria in the test set (IDI 17.3%; p<0.001; categorical NRI 52.3%; p<0.001). Decision curve analysis supported that the radiomics nomogram is superior to size criteria. CONCLUSIONS The radiomics nomogram provides individualized risk estimation of LN metastasis in ESCC patients and outperforms size criteria. KEY POINTS • A radiomics nomogram was built and validated to predict LN metastasis in resectable ESCC. • The radiomics nomogram outperformed size criteria. • Radiomics helps to unravel intratumor heterogeneity and can serve as a novel biomarker for determination of LN status in resectable ESCC.
Collapse
Affiliation(s)
- Xianzheng Tan
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, People's Republic of China.,Department of Radiology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan Er Road, Guangzhou, 510080, Guangdong, People's Republic of China.,Department of Radiology, Hunan Provincial People's Hospital, Changsha, 410005, Hunan Province, People's Republic of China
| | - Zelan Ma
- Guangdong Provincial Traditional Chinese Medicine Hospital, Guangzhou, Guangdong Province, 510120, People's Republic of China
| | - Lifen Yan
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, People's Republic of China.,Department of Radiology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan Er Road, Guangzhou, 510080, Guangdong, People's Republic of China
| | - Weitao Ye
- Department of Radiology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan Er Road, Guangzhou, 510080, Guangdong, People's Republic of China
| | - Zaiyi Liu
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, People's Republic of China. .,Department of Radiology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan Er Road, Guangzhou, 510080, Guangdong, People's Republic of China.
| | - Changhong Liang
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, People's Republic of China. .,Department of Radiology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan Er Road, Guangzhou, 510080, Guangdong, People's Republic of China.
| |
Collapse
|
46
|
Lin DC, Koeffler HP. Genomic lesions drive the metastasis of esophageal squamous cell carcinoma. J Thorac Dis 2017; 9:3523-3524. [PMID: 29268331 DOI: 10.21037/jtd.2017.09.58] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- De-Chen Lin
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, USA.,Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - H Phillip Koeffler
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, USA.,Cancer Science Institute of Singapore, National University of Singapore, Singapore.,National University Cancer Institute, National University Hospital Singapore, Singapore
| |
Collapse
|
47
|
Testa U, Castelli G, Pelosi E. Esophageal Cancer: Genomic and Molecular Characterization, Stem Cell Compartment and Clonal Evolution. MEDICINES (BASEL, SWITZERLAND) 2017; 4:E67. [PMID: 28930282 PMCID: PMC5622402 DOI: 10.3390/medicines4030067] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 09/05/2017] [Accepted: 09/07/2017] [Indexed: 12/20/2022]
Abstract
Esophageal cancer (EC) is the eighth most common cancer and is the sixth leading cause of death worldwide. The incidence of histologic subtypes of EC, esophageal adenocarcinoma (EAC) and esophageal squamous carcinoma (ESCC), display considerable geographic variation. EAC arises from metaplastic Barrett's esophagus (BE) in the context of chronic inflammation secondary to exposure to acid and bile. The main risk factors for developing ESCC are cigarette smoking and alcohol consumption. The main somatic genetic abnormalities showed a different genetic landscape in EAC compared to ESCC. EAC is a heterogeneous cancer dominated by copy number alterations, a high mutational burden, co-amplification of receptor tyrosine kinase, frequent TP53 mutations. The cellular origins of BE and EAC are still not understood: animal models supported a cellular origin either from stem cells located in the basal layer of esophageal epithelium or from progenitors present in the cardia region. Many studies support the existence of cancer stem cells (CSCs) able to initiate and maintain EAC or ESCC. The exact identification of these CSCs, as well as their role in the pathogenesis of EAC and ESCC remain still to be demonstrated. The reviewed studies suggest that current molecular and cellular characterization of EAC and ESCC should serve as background for development of new treatment strategies.
Collapse
Affiliation(s)
- Ugo Testa
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00141 Rome, Italy.
| | - Germana Castelli
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00141 Rome, Italy.
| | - Elvira Pelosi
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00141 Rome, Italy.
| |
Collapse
|