1
|
Arai J, Hayakawa Y, Tateno H, Murakami K, Hayashi T, Hata M, Matsushita Y, Kinoshita H, Abe S, Kurokawa K, Oya Y, Tsuboi M, Ihara S, Niikura R, Suzuki N, Iwata Y, Shiokawa T, Shiomi C, Uekura C, Yamamoto K, Fujiwara H, Kawamura S, Nakagawa H, Mizuno S, Kudo T, Takahashi S, Ushiku T, Hirata Y, Fujii C, Nakayama J, Shibata S, Woods S, Worthley DL, Hatakeyama M, Wang TC, Fujishiro M. Impaired Glycosylation of Gastric Mucins Drives Gastric Tumorigenesis and Serves as a Novel Therapeutic Target. Gastroenterology 2024; 167:505-521.e19. [PMID: 38583723 DOI: 10.1053/j.gastro.2024.03.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 03/10/2024] [Accepted: 03/24/2024] [Indexed: 04/09/2024]
Abstract
BACKGROUND & AIMS Gastric cancer is often accompanied by a loss of mucin 6 (MUC6), but its pathogenic role in gastric carcinogenesis remains unclear. METHODS Muc6 knockout (Muc6-/-) mice and Muc6-dsRED mice were newly generated. Tff1Cre, Golph3-/-, R26-Golgi-mCherry, Hes1flox/flox, Cosmcflox/flox, and A4gnt-/- mice were also used. Histology, DNA and RNA, proteins, and sugar chains were analyzed by whole-exon DNA sequence, RNA sequence, immunohistochemistry, lectin-binding assays, and liquid chromatography-mass spectrometry analysis. Gastric organoids and cell lines were used for in vitro assays and xenograft experiments. RESULTS Deletion of Muc6 in mice spontaneously causes pan-gastritis and invasive gastric cancers. Muc6-deficient tumor growth was dependent on mitogen-activated protein kinase activation, mediated by Golgi stress-induced up-regulation of Golgi phosphoprotein 3. Glycomic profiling revealed aberrant expression of mannose-rich N-linked glycans in gastric tumors, detected with banana lectin in association with lack of MUC6 expression. We identified a precursor of clusterin as a binding partner of mannose glycans. Mitogen-activated protein kinase activation, Golgi stress responses, and aberrant mannose expression are found in separate Cosmc- and A4gnt-deficient mouse models that lack normal O-glycosylation. Banana lectin-drug conjugates proved an effective treatment for mannose-rich murine and human gastric cancer. CONCLUSIONS We propose that Golgi stress responses and aberrant glycans are important drivers of and promising new therapeutic targets for gastric cancer.
Collapse
Affiliation(s)
- Junya Arai
- Department of Gastroenterology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan; Division of Gastroenterology, The Institute of Medical Science, Asahi Life Foundation, Tokyo, Japan
| | - Yoku Hayakawa
- Department of Gastroenterology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan.
| | - Hiroaki Tateno
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan.
| | - Keita Murakami
- Department of Gastroenterology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Takeru Hayashi
- Division of Microbiology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan; Laboratory of Microbial Carcinogenesis, Institute of Microbial Chemistry, Microbial Chemistry Research Foundation, Tokyo, Japan
| | - Masahiro Hata
- Department of Gastroenterology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Yuki Matsushita
- Department of Gastroenterology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Hiroto Kinoshita
- Department of Gastroenterology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Sohei Abe
- Department of Gastroenterology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Ken Kurokawa
- Department of Gastroenterology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Yukiko Oya
- Department of Gastroenterology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Mayo Tsuboi
- Department of Gastroenterology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Sozaburo Ihara
- Department of Gastroenterology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Ryota Niikura
- Department of Gastroenterology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Nobumi Suzuki
- Department of Gastroenterology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Yusuke Iwata
- Department of Gastroenterology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Toshiro Shiokawa
- Department of Gastroenterology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Chihiro Shiomi
- Department of Gastroenterology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Chie Uekura
- Department of Gastroenterology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Keisuke Yamamoto
- Department of Gastroenterology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Hiroaki Fujiwara
- Department of Gastroenterology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan; Division of Gastroenterology, The Institute of Medical Science, Asahi Life Foundation, Tokyo, Japan
| | - Satoshi Kawamura
- Department of Gastroenterology, Graduate School of Medicine, Mie University, Mie, Japan
| | - Hayato Nakagawa
- Department of Gastroenterology, Graduate School of Medicine, Mie University, Mie, Japan
| | - Seiya Mizuno
- Laboratory Animal Resource Center in Transborder Medical Research Center, and Department of Laboratory Animal Science, Institute of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Takashi Kudo
- Laboratory Animal Resource Center in Transborder Medical Research Center, and Department of Anatomy and Embryology, Institute of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Satoru Takahashi
- Laboratory Animal Resource Center in Transborder Medical Research Center, and Department of Anatomy and Embryology, Institute of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Tetsuo Ushiku
- Department of Pathology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Yoshihiro Hirata
- Department of Gastroenterology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Chifumi Fujii
- Department of Molecular Pathology, Shinshu University School of Medicine, Matsumoto, Japan; Department of Biotechnology, Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Matsumoto, Japan
| | - Jun Nakayama
- Department of Molecular Pathology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Shinsuke Shibata
- Division of Microscopic Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Susan Woods
- Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia; Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
| | | | - Masanori Hatakeyama
- Division of Microbiology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan; Laboratory of Microbial Carcinogenesis, Institute of Microbial Chemistry, Microbial Chemistry Research Foundation, Tokyo, Japan; Center of Infection-Associated Cancer, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Timothy C Wang
- Division of Digestive and Liver Disease, Department of Medicine, Columbia University, New York, New York
| | - Mitsuhiro Fujishiro
- Department of Gastroenterology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| |
Collapse
|
2
|
Jang B, Kim H, Lee S, Won Y, Kaji I, Coffey RJ, Choi E, Goldenring JR. Dynamic tuft cell expansion during gastric metaplasia and dysplasia. J Pathol Clin Res 2024; 10:e352. [PMID: 38117182 PMCID: PMC10766036 DOI: 10.1002/cjp2.352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 11/14/2023] [Accepted: 11/17/2023] [Indexed: 12/21/2023]
Abstract
Tuft cells are chemosensory cells associated with luminal homeostasis, immune response, and tumorigenesis in the gastrointestinal tract. We aimed to elucidate alterations in tuft cell populations during gastric atrophy and tumorigenesis in humans with correlative comparison to relevant mouse models. Tuft cell distribution was determined in human stomachs from organ donors and in gastric pathologies including Ménétrier's disease, Helicobacter pylori gastritis, intestinal metaplasia (IM), and gastric tumors. Tuft cell populations were examined in Lrig1-KrasG12D , Mist1-KrasG12D , and MT-TGFα mice. Tuft cells were evenly distributed throughout the entire normal human stomach, primarily concentrated in the isthmal region in the fundus. Ménétrier's disease stomach showed increased tuft cells. Similarly, Lrig1-Kras mice and mice overexpressing TGFα showed marked foveolar hyperplasia and expanded tuft cell populations. Human stomach with IM or dysplasia also showed increased tuft cell numbers. Similarly, Mist1-Kras mice had increased numbers of tuft cells during metaplasia and dysplasia development. In human gastric cancers, tuft cells were rarely observed, but showed positive associations with well-differentiated lesions. In mouse gastric cancer xenografts, tuft cells were restricted to dysplastic well-differentiated mucinous cysts and were lost in less differentiated cancers. Taken together, tuft cell populations increased in atrophic human gastric pathologies, metaplasia, and dysplasia, but were decreased in gastric cancers. Similar findings were observed in mouse models, suggesting that, while tuft cells are associated with precancerous pathologies, their loss is most associated with the progression to invasive cancer.
Collapse
Affiliation(s)
- Bogun Jang
- Section of Surgical SciencesVanderbilt University Medical CenterNashvilleTNUSA
- Jeju National University College of MedicineJejuRepublic of Korea
- Department of PathologyJeju National University HospitalJejuRepublic of Korea
| | - Hyesung Kim
- Section of Surgical SciencesVanderbilt University Medical CenterNashvilleTNUSA
- Jeju National University College of MedicineJejuRepublic of Korea
- Department of Cell and Developmental BiologyVanderbilt UniversityNashvilleTNUSA
| | - Su‐Hyung Lee
- Section of Surgical SciencesVanderbilt University Medical CenterNashvilleTNUSA
- Epithelial Biology CenterVanderbilt University Medical CenterNashvilleTNUSA
| | - Yoonkyung Won
- Section of Surgical SciencesVanderbilt University Medical CenterNashvilleTNUSA
- Epithelial Biology CenterVanderbilt University Medical CenterNashvilleTNUSA
| | - Izumi Kaji
- Section of Surgical SciencesVanderbilt University Medical CenterNashvilleTNUSA
- Department of Cell and Developmental BiologyVanderbilt UniversityNashvilleTNUSA
- Epithelial Biology CenterVanderbilt University Medical CenterNashvilleTNUSA
| | - Robert J Coffey
- Epithelial Biology CenterVanderbilt University Medical CenterNashvilleTNUSA
- Department of Internal MedicineVanderbilt University Medical CenterNashvilleTNUSA
| | - Eunyoung Choi
- Section of Surgical SciencesVanderbilt University Medical CenterNashvilleTNUSA
- Department of Cell and Developmental BiologyVanderbilt UniversityNashvilleTNUSA
- Epithelial Biology CenterVanderbilt University Medical CenterNashvilleTNUSA
| | - James R Goldenring
- Section of Surgical SciencesVanderbilt University Medical CenterNashvilleTNUSA
- Department of Cell and Developmental BiologyVanderbilt UniversityNashvilleTNUSA
- Epithelial Biology CenterVanderbilt University Medical CenterNashvilleTNUSA
- Nashville VA Medical CenterNashvilleTNUSA
| |
Collapse
|
3
|
Zhong Q, Wang H, Yang J, Tu R, Li A, Zeng G, Zheng Q, Yu Liu Z, Shang‐Guan Z, Bo Huang X, Huang Q, Li Y, Zheng H, Lin G, Huang Z, Xu K, Qiu W, Jiang M, Zhao Y, Lin J, Huang Z, Huang J, Li P, Xie J, Zheng C, Chen Q, Huang C. Loss of ATOH1 in Pit Cell Drives Stemness and Progression of Gastric Adenocarcinoma by Activating AKT/mTOR Signaling through GAS1. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301977. [PMID: 37824217 PMCID: PMC10646280 DOI: 10.1002/advs.202301977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 08/19/2023] [Indexed: 10/14/2023]
Abstract
Gastric cancer stem cells (GCSCs) are self-renewing tumor cells that govern chemoresistance in gastric adenocarcinoma (GAC), whereas their regulatory mechanisms remain elusive. Here, the study aims to elucidate the role of ATOH1 in the maintenance of GCSCs. The preclinical model and GAC sample analysis indicate that ATOH1 deficiency is correlated with poor GAC prognosis and chemoresistance. ScRNA-seq reveals that ATOH1 is downregulated in the pit cells of GAC compared with those in paracarcinoma samples. Lineage tracing reveals that Atoh1 deletion strongly confers pit cell stemness. ATOH1 depletion significantly accelerates cancer stemness and chemoresistance in Tff1-CreERT2; Rosa26Tdtomato and Tff1-CreERT2; Apcfl/fl ; p53fl/fl (TcPP) mouse models and organoids. ATOH1 deficiency downregulates growth arrest-specific protein 1 (GAS1) by suppressing GAS1 promoter transcription. GAS1 forms a complex with RET, which inhibits Tyr1062 phosphorylation, and consequently activates the RET/AKT/mTOR signaling pathway by ATOH1 deficiency. Combining chemotherapy with drugs targeting AKT/mTOR signaling can overcome ATOH1 deficiency-induced chemoresistance. Moreover, it is confirmed that abnormal DNA hypermethylation induces ATOH1 deficiency. Taken together, the results demonstrate that ATOH1 loss promotes cancer stemness through the ATOH1/GAS1/RET/AKT/mTOR signaling pathway in GAC, thus providing a potential therapeutic strategy for AKT/mTOR inhibitors in GAC patients with ATOH1 deficiency.
Collapse
|
4
|
O'Brien VP, Kang Y, Shenoy MK, Finak G, Young WC, Dubrulle J, Koch L, Rodriguez Martinez AE, Williams J, Donato E, Batra SK, Yeung CC, Grady WM, Koch MA, Gottardo R, Salama NR. Single-cell Profiling Uncovers a Muc4-Expressing Metaplastic Gastric Cell Type Sustained by Helicobacter pylori-driven Inflammation. CANCER RESEARCH COMMUNICATIONS 2023; 3:1756-1769. [PMID: 37674528 PMCID: PMC10478791 DOI: 10.1158/2767-9764.crc-23-0142] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/28/2023] [Accepted: 08/09/2023] [Indexed: 09/08/2023]
Abstract
Mechanisms for Helicobacter pylori (Hp)-driven stomach cancer are not fully understood. In a transgenic mouse model of gastric preneoplasia, concomitant Hp infection and induction of constitutively active KRAS (Hp+KRAS+) alters metaplasia phenotypes and elicits greater inflammation than either perturbation alone. Gastric single-cell RNA sequencing showed that Hp+KRAS+ mice had a large population of metaplastic pit cells that expressed the intestinal mucin Muc4 and the growth factor amphiregulin. Flow cytometry and IHC-based immune profiling revealed that metaplastic pit cells were associated with macrophage and T-cell inflammation. Accordingly, expansion of metaplastic pit cells was prevented by gastric immunosuppression and reversed by antibiotic eradication of Hp. Finally, MUC4 expression was significantly associated with proliferation in human gastric cancer samples. These studies identify an Hp-associated metaplastic pit cell lineage, also found in human gastric cancer tissues, whose expansion is driven by Hp-dependent inflammation. Significance Using a mouse model, we have delineated metaplastic pit cells as a precancerous cell type whose expansion requires Hp-driven inflammation. In humans, metaplastic pit cells show enhanced proliferation as well as enrichment in precancer and early cancer tissues, highlighting an early step in the gastric metaplasia to cancer cascade.
Collapse
Affiliation(s)
- Valerie P. O'Brien
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Yuqi Kang
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Meera K. Shenoy
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Greg Finak
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington
| | - William C. Young
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Julien Dubrulle
- Shared Resources, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Lisa Koch
- Division of Gastrointestinal and Hepatic Pathology, University of Washington Medical Center, Seattle, Washington
| | | | - Jeffery Williams
- Shared Resources, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Elizabeth Donato
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Surinder K. Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Cecilia C.S. Yeung
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington
- Department of Laboratory Medicine and Pathology, University of Washington Medical Center, Seattle, Washington
| | - William M. Grady
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington
- Department of Medicine, University of Washington School of Medicine, Seattle, Washington
| | - Meghan A. Koch
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington
- Department of Immunology, University of Washington, Seattle, Washington
| | - Raphael Gottardo
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Nina R. Salama
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, Washington
- Department of Microbiology, University of Washington, Seattle, Washington
| |
Collapse
|
5
|
Zheng Y, Wu S, Huang X, Luo L. Ferroptosis-Related lncRNAs Act as Novel Prognostic Biomarkers in the Gastric Adenocarcinoma Microenvironment, Immunotherapy, and Chemotherapy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:9598783. [PMID: 37251440 PMCID: PMC10219779 DOI: 10.1155/2023/9598783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 03/01/2023] [Accepted: 04/21/2023] [Indexed: 05/31/2023]
Abstract
Ferroptosis, a form of programmed cell death akin to necrosis, is managed by iron and is distinguished by lipid peroxidation. Gastric cancer is a highly aggressive form of cancer, responsible for the third highest number of cancer-related deaths globally. Despite this, the potential of ferroptosis to predict the occurrence of this cancer is yet to be determined. In this research, a comprehensive examination was conducted to explore the link between long noncoding RNAs (lncRNAs) and ferroptosis, in order to uncover an lncRNA signature that can predict drug susceptibility and tumor mutational burden (TMB) in gastric adenocarcinoma. We conducted an in-depth analysis of the GC immune microenvironment and immunotherapy, with a particular focus on ferroptosis-related lncRNA prognostic biomarkers, and further explored the correlation between these factors and prognosis, immune infiltration, single nucleotide variation (SNV), and drug sensitivity for gastric adenocarcinoma patients. Through our investigations, we have discovered five lncRNA signatures related to ferroptosis that can accurately forecast the prognosis of gastric adenocarcinoma patients and also regulate the proliferation, migration, and occurrence of ferroptosis in gastric adenocarcinoma cells. In conclusion, this lncRNA signature associated with ferroptosis may be employed as a prognostic indicator for gastric adenocarcinoma, thus presenting a potential solution.
Collapse
Affiliation(s)
- Yushi Zheng
- The First Clinical College, Guangdong Medical University, Zhanjiang, Guangdong 524023, China
| | - Shanshan Wu
- Department of Biology, School of Basic Medical Science, Guangdong Medical University, Zhanjiang, Guangdong 524023, China
| | - Xueshan Huang
- Department of Biology, School of Basic Medical Science, Guangdong Medical University, Zhanjiang, Guangdong 524023, China
| | - Lianxiang Luo
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, Guangdong 524023, China
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, Guangdong 524023, China
| |
Collapse
|
6
|
Kiparissi F, Dastamani A, Palm L, Azabdaftari A, Campos L, Gaynor E, Grünewald S, Uhlig HH, Kleta R, Böckenhauer D, Jones KDJ. Phosphomannomutase 2 (PMM2) variants leading to hyperinsulinism-polycystic kidney disease are associated with early-onset inflammatory bowel disease and gastric antral foveolar hyperplasia. Hum Genet 2023; 142:697-704. [PMID: 36773065 PMCID: PMC10181953 DOI: 10.1007/s00439-023-02523-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 01/19/2023] [Indexed: 02/12/2023]
Abstract
Phosphomannomutase 2 (PMM2) deficiency causes Congenital Disorder of Glycosylation (PMM2-CDG), but does not have a recognised association with Inflammatory Bowel Disease (IBD). A distinct clinical syndrome of hyperinsulinism and autosomal recessive polycystic kidney disease (HIPKD) arises in the context of a specific variant in the PMM2 promotor, either in homozygosity, or compound heterozygous with a deleterious PMM2 variant. Here, we describe the development of IBD in three patients with PMM2-HIPKD, with onset of IBD at 0, 6, and 10 years of age. In each case, intestinal inflammation coincided with the unusual finding of gastric antral foveolar hyperplasia. IBD disease was of variable severity at onset but well controlled with conventional and first-line biologic treatment approaches. The organ-level pattern of disease manifestations in PMM2-HIPKD-IBD may reflect a loss of cis-acting regulatory control by hepatocyte nuclear factor 4 alpha (HNF4A). Analysis of published transcriptomic data suggests that IBD most likely arises due to an impact on epithelial cellular function. We identify a specific pattern of variation in PMM2 as a novel association of early-onset IBD with distinctive gastric pathology.
Collapse
Affiliation(s)
- Fevronia Kiparissi
- Department of Paediatric Gastroenterology & Nutrition, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Antonia Dastamani
- Department of Paediatric Endocrinology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Liina Palm
- Department of Histopathology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Aline Azabdaftari
- Translational Gastroenterology Unit, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Luis Campos
- Department of Histopathology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Edward Gaynor
- Department of Paediatric Gastroenterology & Nutrition, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Stephanie Grünewald
- Department of Metabolic Medicine, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Holm H Uhlig
- Translational Gastroenterology Unit, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK.,Department of Paediatrics and Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Robert Kleta
- Department of Renal Medicine, University College London, London, UK.,Department of Paediatric Nephrology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Detlef Böckenhauer
- Department of Renal Medicine, University College London, London, UK.,Department of Paediatric Nephrology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Kelsey D J Jones
- Department of Paediatric Gastroenterology & Nutrition, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK. .,The Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, University of Oxford, Oxford, UK.
| |
Collapse
|
7
|
Won Y, Choi E. Mouse models of Kras activation in gastric cancer. Exp Mol Med 2022; 54:1793-1798. [PMID: 36369466 PMCID: PMC9723172 DOI: 10.1038/s12276-022-00882-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/06/2022] [Accepted: 09/08/2022] [Indexed: 11/13/2022] Open
Abstract
Gastric cancer has one of the highest incidence rates and is one of the leading causes of cancer-related mortality worldwide. Sequential steps within the carcinogenic process are observed in gastric cancer as well as in pancreatic cancer and colorectal cancer. Kirsten rat sarcoma viral oncogene homolog (KRAS) is the most well-known oncogene and can be constitutively activated by somatic mutations in the gene locus. For over 2 decades, the functions of Kras activation in gastrointestinal (GI) cancers have been studied to elucidate its oncogenic roles during the carcinogenic process. Different approaches have been utilized to generate distinct in vivo models of GI cancer, and a number of mouse models have been established using Kras-inducible systems. In this review, we summarize the genetically engineered mouse models in which Kras is activated with cell-type and/or tissue-type specificity that are utilized for studying carcinogenic processes in gastric cancer as well as pancreatic cancer and colorectal cancer. We also provide a brief description of histological phenotypes and characteristics of those mouse models and the current limitations in the gastric cancer field to be investigated further.
Collapse
Affiliation(s)
- Yoonkyung Won
- Department of Surgery, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Eunyoung Choi
- Department of Surgery, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, 37232, USA.
| |
Collapse
|
8
|
Zeng Y, Jin RU. Molecular pathogenesis, targeted therapies, and future perspectives for gastric cancer. Semin Cancer Biol 2022; 86:566-582. [PMID: 34933124 DOI: 10.1016/j.semcancer.2021.12.004] [Citation(s) in RCA: 90] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 11/29/2021] [Accepted: 12/11/2021] [Indexed: 01/27/2023]
Abstract
Gastric cancer is a major source of global cancer mortality with limited treatment options and poor patient survival. As our molecular understanding of gastric cancer improves, we are now beginning to recognize that these cancers are a heterogeneous group of diseases with incredibly unique pathogeneses and active oncogenic pathways. It is this molecular diversity and oftentimes lack of common oncogenic driver mutations that bestow the poor treatment responses that oncologists often face when treating gastric cancer. In this review, we will examine the treatments for gastric cancer including up-to-date molecularly targeted therapies and immunotherapies. We will then review the molecular subtypes of gastric cancer to highlight the diversity seen in this disease. We will then shift our discussion to basic science and gastric cancer mouse models as tools to study gastric cancer molecular heterogeneity. Furthermore, we will elaborate on a molecular process termed paligenosis and the cyclical hit model as key events during gastric cancer initiation that impart nondividing mature differentiated cells the ability to re-enter the cell cycle and accumulate disparate genomic mutations during years of chronic inflammation and injury. As our basic science understanding of gastric cancer advances, so too must our translational and clinical efforts. We will end with a discussion regarding single-cell molecular analyses and cancer organoid technologies as future translational avenues to advance our understanding of gastric cancer heterogeneity and to design precision-based gastric cancer treatments. Elucidation of interpatient and intratumor heterogeneity is the only way to advance future cancer prevention, diagnoses and treatment.
Collapse
Affiliation(s)
- Yongji Zeng
- Section of Gastroenterology, Department of Medicine, Baylor College of Medicine, Houston, USA
| | - Ramon U Jin
- Section of Hematology/Oncology, Department of Medicine, Baylor College of Medicine, Houston, USA.
| |
Collapse
|
9
|
Wuputra K, Ku CC, Pan JB, Liu CJ, Liu YC, Saito S, Kato K, Lin YC, Kuo KK, Chan TF, Chong IW, Lin CS, Wu DC, Yokoyama KK. Stem Cell Biomarkers and Tumorigenesis in Gastric Cancer. J Pers Med 2022; 12:jpm12060929. [PMID: 35743714 PMCID: PMC9224738 DOI: 10.3390/jpm12060929] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 05/25/2022] [Accepted: 05/31/2022] [Indexed: 02/01/2023] Open
Abstract
Stomach cancer has a high mortality, which is partially caused by an absence of suitable biomarkers to allow detection of the initiation stages of cancer progression. Thus, identification of critical biomarkers associated with gastric cancer (GC) is required to advance its clinical diagnoses and treatment. Recent studies using tracing models for lineage analysis of GC stem cells indicate that the cell fate decision of the gastric stem cells might be an important issue for stem cell plasticity. They include leucine-rich repeat-containing G-protein-coupled receptor 5 (Lgr5+), Cholecystokinin receptor 2 (Cckr2+), and axis inhibition protein 2 (Axin2+) as the stem cell markers in the antrum, Trefoil Factor 2 (TFF2+), Mist1+ stem cells, and Troy+ chief cells in the corpus. By contrast, Estrogen receptor 1 (eR1), Leucine-rich repeats and immunoglobulin-like domains 1 (Lrig1), SRY (sex determining region Y)-box 2 (Sox2), and B lymphoma Mo-MLV insertion region 1 homolog (Bmi1) are rich in both the antrum and corpus regions. These markers might help to identify the cell-lineage identity and analyze the plasticity of each stem cell population. Thus, identification of marker genes for the development of GC and its environment is critical for the clinical application of cancer stem cells in the prevention of stomach cancers.
Collapse
Affiliation(s)
- Kenly Wuputra
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (K.W.); (C.-C.K.); (J.-B.P.); (C.-S.L.)
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (C.-J.L.); (K.-K.K.); (D.-C.W.)
- Cell Therapy and Research Center, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan;
| | - Chia-Chen Ku
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (K.W.); (C.-C.K.); (J.-B.P.); (C.-S.L.)
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (C.-J.L.); (K.-K.K.); (D.-C.W.)
- Cell Therapy and Research Center, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan;
| | - Jia-Bin Pan
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (K.W.); (C.-C.K.); (J.-B.P.); (C.-S.L.)
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (C.-J.L.); (K.-K.K.); (D.-C.W.)
- Cell Therapy and Research Center, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan;
| | - Chung-Jung Liu
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (C.-J.L.); (K.-K.K.); (D.-C.W.)
- Cell Therapy and Research Center, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan;
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan
- Department of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Yi-Chang Liu
- Cell Therapy and Research Center, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan;
| | - Shigeo Saito
- Saito Laboratory of Cell Technology, Yaita 329-2192, Japan;
- Horus Co., Ltd., Nakano, Tokyo 164-0001, Japan
| | - Kohsuke Kato
- Department of Infection Biology, Graduate School of Comprehensive Human Sciences, The University of Tsukuba, Tsukuba 305-8577, Japan;
| | - Ying-Chu Lin
- School of Dentistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
| | - Kung-Kai Kuo
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (C.-J.L.); (K.-K.K.); (D.-C.W.)
- Cell Therapy and Research Center, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan;
- Division of General & Digestive Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan
| | - Te-Fu Chan
- Department of Obstetrics and Genecology, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan;
| | - Inn-Wen Chong
- Division of Pulmonary and Critical Care Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan;
| | - Chang-Shen Lin
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (K.W.); (C.-C.K.); (J.-B.P.); (C.-S.L.)
| | - Deng-Chyang Wu
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (C.-J.L.); (K.-K.K.); (D.-C.W.)
- Cell Therapy and Research Center, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan;
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan
- Department of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Obstetrics and Genecology, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan;
| | - Kazunari K. Yokoyama
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (K.W.); (C.-C.K.); (J.-B.P.); (C.-S.L.)
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (C.-J.L.); (K.-K.K.); (D.-C.W.)
- Cell Therapy and Research Center, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan;
- Correspondence: ; Tel.: +886-7312-1101 (ext. 2729); Fax: +886-7313-3849
| |
Collapse
|
10
|
Hoffmann W. Self-Renewal and Cancers of the Gastric Epithelium: An Update and the Role of the Lectin TFF1 as an Antral Tumor Suppressor. Int J Mol Sci 2022; 23:ijms23105377. [PMID: 35628183 PMCID: PMC9141172 DOI: 10.3390/ijms23105377] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/09/2022] [Accepted: 05/10/2022] [Indexed: 11/16/2022] Open
Abstract
In 2020, gastric cancer was the fourth leading cause of cancer deaths globally. About 90% of gastric cancers are sporadic and the vast majority are correlated with Helicobacter pylori infection; whereas familial clustering is observed in about 10% of cases. Gastric cancer is now considered to be a disease originating from dysregulated self-renewal of the gastric glands in the setting of an inflammatory environment. The human stomach contains two types of gastric units, which show bi-directional self-renewal from a complex variety of stem cells. This review focuses on recent progress concerning the characterization of the different stem cell populations and the mainly mesenchymal signals triggering their stepwise differentiation as well as the genesis of pre-cancerous lesions and carcinogenesis. Furthermore, a model is presented (Lectin-triggered Receptor Blocking Hypothesis) explaining the role of the lectin TFF1 as an antral tumor suppressor possibly regulating Lgr5+ antral stem cells in a paracrine or maybe autocrine fashion, with neighboring antral gland cells having a role as niche cells.
Collapse
Affiliation(s)
- Werner Hoffmann
- Institute of Molecular Biology and Medicinal Chemistry, Otto-von-Guericke University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany
| |
Collapse
|
11
|
Liabeuf D, Oshima M, Stange DE, Sigal M. Stem Cells, Helicobacter pylori, and Mutational Landscape: Utility of Preclinical Models to Understand Carcinogenesis and to Direct Management of Gastric Cancer. Gastroenterology 2022; 162:1067-1087. [PMID: 34942172 DOI: 10.1053/j.gastro.2021.12.252] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 12/14/2021] [Accepted: 12/15/2021] [Indexed: 12/20/2022]
Abstract
Several genetic and environmental factors increase gastric cancer (GC) risk, with Helicobacter pylori being the main environmental agent. GC is thought to emerge through a sequence of morphological changes that have been elucidated on the molecular level. New technologies have shed light onto pathways that are altered in GC, involving mutational and epigenetic changes and altered signaling pathways. Using various new model systems and innovative approaches, the relevance of such alterations for the emergence and progression of GC has been validated. Here, we highlight the key strategies and the resulting achievements. A major step is the characterization of epithelial stem cell behavior in the healthy stomach. These data, obtained through new reporter mouse lines and lineage tracing, enabled insights into the processes that control cellular proliferation, self-renewal, and differentiation of gastric stem cells. It has become evident that these cells and pathways are often deregulated in carcinogenesis. Second, insights into how H pylori colonizes gastric glands, directly interacts with stem cells, and alters cellular and genomic integrity, as well as the characterization of tissue responses to infection, provide a comprehensive picture of how this bacterium contributes to gastric carcinogenesis. Third, the development of stem cell- and tissue-specific reporter mice have driven our understanding of the signals and mutations that promote different types of GC and now also enable the study of more advanced, metastasized stages. Finally, organoids from human tissue have allowed insights into gastric carcinogenesis by validating mutational and signaling alterations in human primary cells and opening a route to predicting responses to personalized treatment.
Collapse
Affiliation(s)
- Dylan Liabeuf
- Department of Visceral, Thoracic and Vascular Surgery, University Hospital Carl Gustav Carus, Medical Faculty, Technische Universität Dresden, Dresden, Germany
| | - Masanobu Oshima
- Division of Genetics, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Daniel E Stange
- Department of Visceral, Thoracic and Vascular Surgery, University Hospital Carl Gustav Carus, Medical Faculty, Technische Universität Dresden, Dresden, Germany; National Center for Tumor Diseases (NCT/UCC), Dresden, Germany, German Cancer Research Center (DKFZ), Heidelberg, Germany, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany, Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany
| | - Michael Sigal
- Department of Internal Medicine, Division of Hepatology and Gastroenterology, Charité Universitätsmedizin Berlin, Germany; Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Berlin, Germany.
| |
Collapse
|
12
|
Diffuse gastric cancer: Emerging mechanisms of tumor initiation and progression. Biochim Biophys Acta Rev Cancer 2022; 1877:188719. [PMID: 35307354 DOI: 10.1016/j.bbcan.2022.188719] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 03/10/2022] [Accepted: 03/11/2022] [Indexed: 02/07/2023]
Abstract
Gastric cancer is globally the fourth leading cause of cancer-related deaths. Patients with diffuse-type gastric cancer (DGC) particularly have a poor prognosis that only marginally improved over the last decades, as conventional chemotherapies are frequently ineffective and specific therapies are unavailable. Early-stage DGC is characterized by intramucosal lesions of discohesive cells, which can be present for many years before the emergence of advanced DGC consisting of highly proliferative and invasive cells. The mechanisms underlying the key steps of DGC development and transition to aggressive tumors are starting to emerge. Novel mouse- and organoid models for DGC, together with multi-omic analyses of DGC tumors, revealed contributions of both tumor cell-intrinsic alterations and gradual changes in the tumor microenvironment to DGC progression. In this review, we will discuss how these recent findings are leading towards an understanding of the cellular and molecular mechanisms responsible for DGC initiation and malignancy, which may provide opportunities for targeted therapies.
Collapse
|
13
|
Douchi D, Yamamura A, Matsuo J, Melissa Lim YH, Nuttonmanit N, Shimura M, Suda K, Chen S, Pang S, Kohu K, Abe T, Shioi G, Kim G, Shabbir A, Srivastava S, Unno M, Bok-Yan So J, Teh M, Yeoh KG, Chuang LSH, Ito Y. Induction of Gastric Cancer by Successive Oncogenic Activation in the Corpus. Gastroenterology 2021; 161:1907-1923.e26. [PMID: 34391772 DOI: 10.1053/j.gastro.2021.08.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 07/17/2021] [Accepted: 08/09/2021] [Indexed: 01/03/2023]
Abstract
BACKGROUND & AIMS Metaplasia and dysplasia in the corpus are reportedly derived from de-differentiation of chief cells. However, the cellular origin of metaplasia and cancer remained uncertain. Therefore, we investigated whether pepsinogen C (PGC) transcript-expressing cells represent the cellular origin of metaplasia and cancer using a novel Pgc-specific CreERT2 recombinase mouse model. METHODS We generated a Pgc-mCherry-IRES-CreERT2 (Pgc-CreERT2) knock-in mouse model. Pgc-CreERT2/+ and Rosa-EYFP mice were crossed to generate Pgc-CreERT2/Rosa-EYFP (Pgc-CreERT2/YFP) mice. Gastric tissues were collected, followed by lineage-tracing experiments and histologic and immunofluorescence staining. We further established Pgc-CreERT2;KrasG12D/+ mice and investigated whether PGC transcript-expressing cells are responsible for the precancerous state in gastric glands. To investigate cancer development from PGC transcript-expressing cells with activated Kras, inactivated Apc, and Trp53 signaling pathways, we crossed Pgc-CreERT2/+ mice with conditional KrasG12D, Apcflox, Trp53flox mice. RESULTS Expectedly, mCherry mainly labeled chief cells in the Pgc-CreERT2 mice. However, mCherry was also detected throughout the neck cell and isthmal stem/progenitor regions, albeit at lower levels. In the Pgc-CreERT2;KrasG12D/+ mice, PGC transcript-expressing cells with KrasG12D/+ mutation presented pseudopyloric metaplasia. The early induction of proliferation at the isthmus may reflect the ability of isthmal progenitors to react rapidly to Pgc-driven KrasG12D/+ oncogenic mutation. Furthermore, Pgc-CreERT2;KrasG12D/+;Apcflox/flox mice presented intramucosal dysplasia/carcinoma and Pgc-CreERT2;KrasG12D/+;Apcflox/flox;Trp53flox/flox mice presented invasive and metastatic gastric carcinoma. CONCLUSIONS The Pgc-CreERT2 knock-in mouse is an invaluable tool to study the effects of successive oncogenic activation in the mouse corpus. Time-course observations can be made regarding the responses of isthmal and chief cells to oncogenic insults. We can observe stomach-specific tumorigenesis from the beginning to metastatic development.
Collapse
Affiliation(s)
- Daisuke Douchi
- Cancer Science Institute of Singapore, National University of Singapore, Singapore; Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Akihiro Yamamura
- Cancer Science Institute of Singapore, National University of Singapore, Singapore; Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Junichi Matsuo
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Yi Hui Melissa Lim
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Napat Nuttonmanit
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Mitsuhiro Shimura
- Cancer Science Institute of Singapore, National University of Singapore, Singapore; Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kazuto Suda
- Cancer Science Institute of Singapore, National University of Singapore, Singapore; Department of Pediatric General and Urogenital Surgery, Juntendo University School of Medicine, Tokyo, Japan
| | - Sabirah Chen
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - ShuChin Pang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Kazuyoshi Kohu
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Takaya Abe
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Go Shioi
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Guowei Kim
- Department of Surgery, National University Health System, National University of Singapore, Singapore
| | - Asim Shabbir
- Department of Surgery, National University Health System, National University of Singapore, Singapore
| | | | - Michiaki Unno
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Jimmy Bok-Yan So
- Department of Surgery, National University Health System, National University of Singapore, Singapore
| | - Ming Teh
- Department of Pathology, National University of Singapore, Singapore
| | - Khay Guan Yeoh
- Department of Medicine, National University of Singapore, Singapore
| | | | - Yoshiaki Ito
- Cancer Science Institute of Singapore, National University of Singapore, Singapore.
| |
Collapse
|
14
|
Hayakawa Y, Nakagawa H, Rustgi AK, Que J, Wang TC. Stem cells and origins of cancer in the upper gastrointestinal tract. Cell Stem Cell 2021; 28:1343-1361. [PMID: 34129814 DOI: 10.1016/j.stem.2021.05.012] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The esophagus and stomach, joined by a unique transitional zone, contain actively dividing epithelial stem cells required for organ homeostasis. Upon prolonged inflammation, epithelial cells in both organs can undergo a cell fate switch leading to intestinal metaplasia, predisposing to malignancy. Here we discuss the biology of gastroesophageal stem cells and their role as cells of origin in cancer. We summarize the interactions between the stromal niche and gastroesophageal stem cells in metaplasia and early expansion of mutated stem-cell-derived clones during carcinogenesis. Finally, we review new approaches under development to better study gastroesophageal stem cells and advance the field.
Collapse
Affiliation(s)
- Yoku Hayakawa
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyoku, Tokyo 113-8655, Japan
| | - Hiroshi Nakagawa
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University, College of Physicians and Surgeons, 1130 St. Nicholas Avenue, New York, NY 10032, USA; Herbert Irving Comprehensive Cancer Center, 1130 St. Nicholas Avenue, New York, NY 10032, USA
| | - Anil K Rustgi
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University, College of Physicians and Surgeons, 1130 St. Nicholas Avenue, New York, NY 10032, USA; Herbert Irving Comprehensive Cancer Center, 1130 St. Nicholas Avenue, New York, NY 10032, USA
| | - Jianwen Que
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University, College of Physicians and Surgeons, 1130 St. Nicholas Avenue, New York, NY 10032, USA; Herbert Irving Comprehensive Cancer Center, 1130 St. Nicholas Avenue, New York, NY 10032, USA; Columbia Center for Human Development, Department of Medicine, Columbia University, College of Physicians and Surgeons, 1130 St. Nicholas Avenue, New York, NY 10032, USA.
| | - Timothy C Wang
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University, College of Physicians and Surgeons, 1130 St. Nicholas Avenue, New York, NY 10032, USA; Herbert Irving Comprehensive Cancer Center, 1130 St. Nicholas Avenue, New York, NY 10032, USA.
| |
Collapse
|
15
|
Wang YK, Shen L, Yun T, Yang BF, Zhu CY, Wang SN. Histopathological classification and follow-up analysis of chronic atrophic gastritis. World J Clin Cases 2021; 9:3838-3847. [PMID: 34141740 PMCID: PMC8180222 DOI: 10.12998/wjcc.v9.i16.3838] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 11/12/2020] [Accepted: 03/17/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The pathological diagnosis and follow-up analysis of gastric mucosal biopsy have been paid much attention, and some scholars have proposed the pathological diagnosis of 12 kinds of lesions and accompanying pathological diagnosis, which is of great significance for the treatment of precision gastric diseases, the improvement of the early diagnosis rate of gastric cancer, and the reduction of missed diagnosis rate and misdiagnosis rate.
AIM To perform a histopathological classification and follow-up analysis of chronic atrophic gastritis (CAG).
METHODS A total of 2248 CAG tissue samples were collected, and data of their clinical characteristics were also gathered. Based on these samples, the expression levels of Mucin 1 (MUC1), MUC2, MUC5AC, and MUC6 in CAG tissue were tested by immunohistochemical assay. Moreover, we followed these patients for up to four years. The difference between different stages of gastroscopic biopsy was observed.
RESULTS Through observation, it is believed that CAG should be divided into four types, simple type, hyperplasia type, intestinal metaplasia (IM) type, and intraepithelial neoplasia (IEN) type. Simple CAG accounted for 9.1% (205/2248), which was more common in elderly people over 60 years old. The main change was that the lamina propria glands were reduced in size and number. Hyperplastic CAG accounted for 29.1% (654/2248), mostly occurring between 40 and 60 years old. The main change was that the lamina propria glands were atrophy accompanied by glandular hyperplasia and slight expansion of the glands. IM CAG accounted for 50.4% (1132/2248), most of which increased with age, and were more common in those over 50 years. The atrophy of the lamina propria glands was accompanied by significant IM, and the mucus containing sialic acid or sulfate was distinguished according to the nature of the mucus. The IEN type CAG accounted for 11.4% (257/2248), which developed from the previous types, with severe gland atrophy and reduced mucus secretion, and is an important precancerous lesion.
CONCLUSION The histological typing of CAG is convenient to understand the property of lesion, determine the follow-up time, and guide the clinical treatment.
Collapse
Affiliation(s)
- Yang-Kun Wang
- Department of Pathology, Shenzhen Hospital of Southern Medical University, Shenzhen 518100, Guangdong Province, China
| | - Lan Shen
- Department of Pathology, Shenzhen Hospital of Southern Medical University, Shenzhen 518055, Guangdong Province, China
| | - Tian Yun
- Department of Pathology, 989th Hospital of PLA, Luoyang 471000, Henan Province, China
| | - Bin-Feng Yang
- Department of Pathology, Xinxiang Central Hospital, Xinxiang 453000, Henan Province, China
| | - Chao-Ya Zhu
- Department of Pathology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Su-Nan Wang
- Shenzhen Vocational and Technical College, Shenzhen 518055, Guangdong Province, China
| |
Collapse
|
16
|
Hoffmann W. Trefoil Factor Family (TFF) Peptides and Their Links to Inflammation: A Re-evaluation and New Medical Perspectives. Int J Mol Sci 2021; 22:ijms22094909. [PMID: 34066339 PMCID: PMC8125380 DOI: 10.3390/ijms22094909] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 04/21/2021] [Accepted: 04/21/2021] [Indexed: 12/16/2022] Open
Abstract
Trefoil factor family peptides (TFF1, TFF2, TFF3), together with mucins, are typical exocrine products of mucous epithelia. Here, they act as a gastric tumor suppressor (TFF1) or they play different roles in mucosal innate immune defense (TFF2, TFF3). Minute amounts are also secreted as endocrine, e.g., by the immune and central nervous systems. As a hallmark, TFF peptides have different lectin activities, best characterized for TFF2, but also TFF1. Pathologically, ectopic expression occurs during inflammation and in various tumors. In this review, the role of TFF peptides during inflammation is discussed on two levels. On the one hand, the expression of TFF1-3 is regulated by inflammatory signals in different ways (upstream links). On the other hand, TFF peptides influence inflammatory processes (downstream links). The latter are recognized best in various Tff-deficient mice, which have completely different phenotypes. In particular, TFF2 is secreted by myeloid cells (e.g., macrophages) and lymphocytes (e.g., memory T cells), where it modulates immune reactions triggering inflammation. As a new concept, in addition to lectin-triggered activation, a hypothetical lectin-triggered inhibition of glycosylated transmembrane receptors by TFF peptides is discussed. Thus, TFFs are promising players in the field of glycoimmunology, such as galectins and C-type lectins.
Collapse
Affiliation(s)
- Werner Hoffmann
- Institute of Molecular Biology and Medicinal Chemistry, Otto-von-Guericke University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany
| |
Collapse
|
17
|
Pulmonary Inflammation and KRAS Mutation in Lung Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021. [PMID: 33788188 DOI: 10.1007/978-3-030-63046-1_5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2023]
Abstract
Chronic lung infection and lung cancer are two of the most important pulmonary diseases. Respiratory infection and its associated inflammation have been increasingly investigated for their role in increasing the risk of respiratory diseases including chronic obstructive pulmonary disease (COPD) and lung cancer. Kirsten rat sarcoma viral oncogene (KRAS) is one of the most important regulators of cell proliferation, differentiation, and survival. KRAS mutations are among the most common drivers of cancer. Lung cancer harboring KRAS mutations accounted for ~25% of the incidence but the relationship between KRAS mutation and inflammation remains unclear. In this chapter, we will describe the roles of KRAS mutation in lung cancer and how elevated inflammatory responses may increase KRAS mutation rate and create a vicious cycle of chronic inflammation and KRAS mutation that likely results in persistent potentiation for KRAS-associated lung tumorigenesis. We will discuss in this chapter regarding the studies of KRAS gene mutations in specimens from lung cancer patients and in animal models for investigating the role of inflammation in increasing the risk of lung tumorigenesis driven primarily by oncogenic KRAS.
Collapse
|
18
|
Abstract
Cigarette smoking is the major culprit of chronic lung diseases and the most dominant risk factor for the development of both lung cancer and chronic obstructive pulmonary disease (COPD). In addition, chronic inflammation has been shown to increase the risk of lung cancer and COPD in clinical and epidemiological studies. For pulmonary disease-related research, mice are the most commonly used model system. Multiple lung cancer mouse models driven by targeted genetic alterations are used to evaluate the critical roles of oncogenes and tumor suppressor genes. These models are useful in addressing lung tumorigenesis associated with specific genetic changes, but they are not able to provide a global insight into cigarette smoke-induced carcinogenesis. To fill this knowledge gap, we developed a lung cancer model by treating mice with cigarette smoke carcinogen nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) with/without repeated lipopolysaccharides (LPS) exposure in order to determine the role of chronic inflammation in lung tumorigenesis. Notably, combined LPS/NNK treatment increased tumor number, tumor incidence, and tumor area compared to NNK treatment alone. Therefore, this model offers a feasible approach to investigate lung cancer development on a more global level, determine the role of inflammation in carcinogenesis, and provide a tool for evaluating chemoprevention and immunotherapy.
Collapse
Affiliation(s)
- Marissa E Di
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, United States
| | - Beth Kahkonen
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, United States
| | - Chia-Hsin Liu
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, United States
| | - Yuanpu Peter Di
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, United States.
| |
Collapse
|
19
|
Oya Y, Hayakawa Y, Koike K. Tumor microenvironment in gastric cancers. Cancer Sci 2020; 111:2696-2707. [PMID: 32519436 PMCID: PMC7419059 DOI: 10.1111/cas.14521] [Citation(s) in RCA: 196] [Impact Index Per Article: 39.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 05/25/2020] [Accepted: 06/01/2020] [Indexed: 02/06/2023] Open
Abstract
The tumor microenvironment favors the growth and expansion of cancer cells. Many cell types are involved in the tumor microenvironment such as inflammatory cells, fibroblasts, nerves, and vascular endothelial cells. These stromal cells contribute to tumor growth by releasing various molecules to either directly activate the growth signaling in cancer cells or remodel surrounding areas. This review introduces recent advances in findings on the interactions within the tumor microenvironment such as in cancer-associated fibroblasts (CAFs), immune cells, and endothelial cells, in particular those established in mouse gastric cancer models. In mice, myofibroblasts in the gastric stroma secrete R-spondin and support normal gastric stem cells. Most CAFs promote tumor growth in a paracrine manner, but CAF population appears to be heterogeneous in terms of their function and origin, and include both tumor-promoting and tumor-restraining populations. Among immune cell populations, tumor-associated macrophages, including M1 and M2 macrophages, and myeloid-derived suppressor cells (MDSCs), are reported to directly or indirectly promote gastric tumorigenesis by secreting soluble factors or modulating immune responses. Endothelial cells or blood vessels not only fuel tumors with nutrients, but also interact with cancer stem cells and immune cells by secreting chemokines or cytokines, and act as a cancer niche. Understanding these interactions within the tumor microenvironment would contribute to unraveling new therapeutic targets.
Collapse
Affiliation(s)
- Yukiko Oya
- Department of GastroenterologyGraduate school of Medicinethe University of TokyoTokyoJapan
| | - Yoku Hayakawa
- Department of GastroenterologyGraduate school of Medicinethe University of TokyoTokyoJapan
| | - Kazuhiko Koike
- Department of GastroenterologyGraduate school of Medicinethe University of TokyoTokyoJapan
| |
Collapse
|
20
|
Hata M, Kinoshita H, Hayakawa Y, Konishi M, Tsuboi M, Oya Y, Kurokawa K, Hayata Y, Nakagawa H, Tateishi K, Fujiwara H, Hirata Y, Worthley DL, Muranishi Y, Furukawa T, Kon S, Tomita H, Wang TC, Koike K. GPR30-Expressing Gastric Chief Cells Do Not Dedifferentiate But Are Eliminated via PDK-Dependent Cell Competition During Development of Metaplasia. Gastroenterology 2020; 158:1650-1666.e15. [PMID: 32032583 PMCID: PMC8796250 DOI: 10.1053/j.gastro.2020.01.046] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 01/15/2020] [Accepted: 01/20/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Gastric chief cells, a mature cell type that secretes digestive enzymes, have been proposed to be the origin of metaplasia and cancer through dedifferentiation or transdifferentiation. However, studies supporting this claim have had technical limitations, including issues with the specificity of chief cell markers and the toxicity of drugs used. We therefore sought to identify genes expressed specifically in chief cells and establish a model to trace these cells. METHODS We performed transcriptome analysis of Mist1-CreERT-traced cells, with or without chief cell depletion. Gpr30-rtTA mice were generated and crossed to TetO-Cre mice, and lineage tracing was performed after crosses to R26-TdTomato mice. Additional lineage tracing experiments were performed using Mist1-CreERT, Kitl-CreERT, Tff1-Cre, and Tff2-Cre mice crossed to reporter mice. Mice were given high-dose tamoxifen or DMP-777 or were infected with Helicobacter pylori to induce gastric metaplasia. We studied mice that expressed mutant forms of Ras in gastric cells, using TetO-KrasG12D, LSL-KrasG12D, and LSL-HrasG12V mice. We analyzed stomach tissues from GPR30-knockout mice. Mice were given dichloroacetate to inhibit pyruvate dehydrogenase kinase (PDK)-dependent cell competition. RESULTS We identified GPR30, the G-protein-coupled form of the estrogen receptor, as a cell-specific marker of chief cells in gastric epithelium of mice. Gpr30-rtTA mice crossed to TetO-Cre;R26-TdTomato mice had specific expression of GPR30 in chief cells, with no expression noted in isthmus stem cells or lineage tracing of glands. Expression of mutant Kras in GPR30+ chief cells did not lead to the development of metaplasia or dysplasia but, instead, led to a reduction in labeled numbers of chief cells and a compensatory expansion of neck lineage, which was derived from upper Kitl+ clones. Administration of high-dose tamoxifen, DMP-777, or H pylori decreased the number of labeled chief cells. Chief cells were eliminated from epithelia via GPR30- and PDK-dependent cell competition after metaplastic stimuli, whereas loss of GRP30 or inhibition of PDK activity preserved chief cell numbers and attenuated neck lineage cell expansion. CONCLUSIONS In tracing studies of mice, we found that most chief cells are lost during metaplasia and therefore are unlikely to contribute to gastric carcinogenesis. Expansion of cells that coexpress neck and chief lineage markers, known as spasmolytic polypeptide-expressing metaplasia, does not occur via dedifferentiation from chief cells but, rather, through a compensatory response from neck progenitors to replace the eliminated chief cells.
Collapse
Affiliation(s)
- Masahiro Hata
- Department of Gastroenterology, Graduate school of Medicine, the University of Tokyo, Tokyo, 1138655, Japan,Co-first authors
| | - Hiroto Kinoshita
- Department of Gastroenterology, Graduate school of Medicine, the University of Tokyo, Tokyo, 1138655, Japan,Department of Gastroenterology, The Institute for Adult Diseases, Asahi-life Foundation, Tokyo, 103-0002, Japan,Co-first authors
| | - Yoku Hayakawa
- Department of Gastroenterology, Graduate school of Medicine, the University of Tokyo, Tokyo, Japan.
| | - Mitsuru Konishi
- Department of Gastroenterology, Graduate school of Medicine, the University of Tokyo, Tokyo, 1138655, Japan
| | - Mayo Tsuboi
- Department of Gastroenterology, Graduate school of Medicine, the University of Tokyo, Tokyo, 1138655, Japan
| | - Yukiko Oya
- Department of Gastroenterology, Graduate school of Medicine, the University of Tokyo, Tokyo, 1138655, Japan
| | - Ken Kurokawa
- Department of Gastroenterology, Graduate school of Medicine, the University of Tokyo, Tokyo, 1138655, Japan
| | - Yuki Hayata
- Department of Gastroenterology, Graduate school of Medicine, the University of Tokyo, Tokyo, 1138655, Japan
| | - Hayato Nakagawa
- Department of Gastroenterology, Graduate school of Medicine, the University of Tokyo, Tokyo, 1138655, Japan
| | - Keisuke Tateishi
- Department of Gastroenterology, Graduate school of Medicine, the University of Tokyo, Tokyo, 1138655, Japan
| | - Hiroaki Fujiwara
- Department of Gastroenterology, The Institute for Adult Diseases, Asahi-life Foundation, Tokyo, 103-0002, Japan
| | - Yoshihiro Hirata
- Division of Advanced Genome Medicine, The Institute of Medical Science, the University of Tokyo, Tokyo, 108-8639, Japan
| | | | - Yuki Muranishi
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, Osaka, 565-0871, Japan
| | - Takahisa Furukawa
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, Osaka, 565-0871, Japan
| | - Shunsuke Kon
- Tokyo University of Science, Division of Development and Aging, Research Institute for Biomedical Sciences, Chiba, 278-0022, Japan
| | - Hiroyuki Tomita
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu, 501-1194, JAPAN
| | - Timothy C. Wang
- Division of Digestive and Liver Disease, Department of Medicine, Columbia University, New York, NY, 10032, USA
| | - Kazuhiko Koike
- Department of Gastroenterology, Graduate school of Medicine, the University of Tokyo, Tokyo, 1138655, Japan
| |
Collapse
|
21
|
Sheng W, Malagola E, Nienhüser H, Zhang Z, Kim W, Zamechek L, Sepulveda A, Hata M, Hayakawa Y, Zhao CM, Chen D, Wang TC. Hypergastrinemia Expands Gastric ECL Cells Through CCK2R + Progenitor Cells via ERK Activation. Cell Mol Gastroenterol Hepatol 2020; 10:434-449.e1. [PMID: 32330731 PMCID: PMC7371950 DOI: 10.1016/j.jcmgh.2020.04.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 04/11/2020] [Accepted: 04/13/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND & AIMS Enterochromaffin-like (ECL) cells in the stomach express gastrin/cholecystokinin 2 receptor CCK2R and are known to expand under hypergastrinemia, but whether this results from expansion of existing ECL cells or increased production from progenitors has not been clarified. METHODS We used mice with green fluorescent protein fluorescent reporter expression in ECL cells (histidine decarboxylase [Hdc]-green fluorescent protein), as well as Cck2r- and Hdc-driven Tamoxifen inducible recombinase Cre (Cck2r-CreERT2, Hdc-CreERT2) mice combined with Rosa26Sor-tdTomato (R26-tdTomato) mice, and studied their expression and cell fate in the gastric corpus by using models of hypergastrinemia (gastrin infusion, omeprazole treatment). RESULTS Hdc-GFP marked the majority of ECL cells, located in the lower third of the gastric glands. Hypergastrinemia led to expansion of ECL cells that was not restricted to the gland base, and promoted cellular proliferation (Ki67) in the gastric isthmus but not in basal ECL cells. Cck2r-CreERT2 mice marked most ECL cells, as well as scattered cell types located higher up in the glands, whose number was increased during hypergastrinemia. Cck2r-CreERT2+ isthmus progenitors, but not Hdc+ mature ECL cells, were the source of ECL cell hyperplasia during hypergastrinemia and could grow as 3-dimensional spheroids in vitro. Moreover, gastrin treatment in vitro promoted sphere formation from sorted Cck2r+Hdc- cells, and increased chromogranin A and phosphorylated- extracellular signal-regulated kinase expression in CCK2R-derived organoids. Gastrin activates extracellular signal-regulated kinase pathways in vivo and in vitro, and treatment with the Mitogen-activated protein kinase kinase 1 inhibitor U0126 blocked hypergastrinemia-mediated changes, including CCK2R-derived ECL cell hyperplasia in vivo as well as sphere formation and chromogranin A expression in vitro. CONCLUSIONS We show here that hypergastrinemia induces ECL cell hyperplasia that is derived primarily from CCK2R+ progenitors in the corpus. Gastrin-dependent function of CCK2R+ progenitors is regulated by the extracellular signal-regulated kinase pathway.
Collapse
Affiliation(s)
- Weiwei Sheng
- Division of Digestive and Liver Diseases, Department of Medicine,Department of Gastrointestinal Surgery, the First Hospital, China Medical University, Shenyang, China
| | - Ermanno Malagola
- Division of Digestive and Liver Diseases, Department of Medicine
| | - Henrik Nienhüser
- Division of Digestive and Liver Diseases, Department of Medicine
| | - Zhengyu Zhang
- Division of Digestive and Liver Diseases, Department of Medicine
| | - Woosook Kim
- Division of Digestive and Liver Diseases, Department of Medicine
| | - Leah Zamechek
- Division of Digestive and Liver Diseases, Department of Medicine
| | - Antonia Sepulveda
- Department of Pathology, Columbia University, College of Physicians and Surgeons, New York, New York
| | - Masahiro Hata
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yoku Hayakawa
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Chun-Mei Zhao
- Department of Clinical and Molecular Medicine (Institutt for klinisk og molekylær medisin), Norwegian University of Science and Technology (Norges teknisk-naturvitenskaplige universitet), Trondheim, Norway
| | - Duan Chen
- Department of Clinical and Molecular Medicine (Institutt for klinisk og molekylær medisin), Norwegian University of Science and Technology (Norges teknisk-naturvitenskaplige universitet), Trondheim, Norway
| | - Timothy C. Wang
- Division of Digestive and Liver Diseases, Department of Medicine,Correspondence Address correspondence to: Timothy C. Wang, MD, Division of Digestive and Liver Disease, Department of Medicine, Columbia University Medical Center, New York, New York; fax: (212) 851-4590.
| |
Collapse
|
22
|
Seidlitz T, Chen YT, Uhlemann H, Schölch S, Kochall S, Merker SR, Klimova A, Hennig A, Schweitzer C, Pape K, Baretton GB, Welsch T, Aust DE, Weitz J, Koo BK, Stange DE. Mouse Models of Human Gastric Cancer Subtypes With Stomach-Specific CreERT2-Mediated Pathway Alterations. Gastroenterology 2019; 157:1599-1614.e2. [PMID: 31585123 PMCID: PMC6902245 DOI: 10.1053/j.gastro.2019.09.026] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 09/02/2019] [Accepted: 09/09/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Patterns of genetic alterations characterize different molecular subtypes of human gastric cancer. We aimed to establish mouse models of these subtypes. METHODS We searched databases to identify genes with unique expression in the stomach epithelium, resulting in the identification of Anxa10. We generated mice with tamoxifen-inducible Cre recombinase (CreERT2) in the Anxa10 gene locus. We created 3 mouse models with alterations in pathways that characterize the chromosomal instability (CIN) and the genomically stable (GS) subtypes of human gastric cancer: Anxa10-CreERT2;KrasG12D/+;Tp53R172H/+;Smad4fl/f (CIN mice), Anxa10-CreERT2;Cdh1fl/fl;KrasG12D/+;Smad4fl/fl (GS-TGBF mice), and Anxa10-CreERT2;Cdh1fl/fl;KrasG12D/+;Apcfl/fl (GS-Wnt mice). We analyzed tumors that developed in these mice by histology for cell types and metastatic potential. We derived organoids from the tumors and tested their response to chemotherapeutic agents and the epithelial growth factor receptor signaling pathway inhibitor trametinib. RESULTS The gastric tumors from the CIN mice had an invasive phenotype and formed liver and lung metastases. The tumor cells had a glandular morphology, similar to human intestinal-type gastric cancer. The gastric tumors from the GS-TGFB mice were poorly differentiated with diffuse morphology and signet ring cells, resembling human diffuse-type gastric cancer. Cells from these tumors were invasive, and mice developed peritoneal carcinomatosis and lung metastases. GS-Wnt mice developed adenomatous tooth-like gastric cancer. Organoids derived from tumors of GS-TGBF and GS-Wnt mice were more resistant to docetaxel, whereas organoids from the CIN tumors were more resistant to trametinib. CONCLUSIONS Using a stomach-specific CreERT2 system, we created mice that develop tumors with morphologic similarities to subtypes of human gastric cancer. These tumors have different patterns of local growth, metastasis, and response to therapeutic agents. They can be used to study different subtypes of human gastric cancer.
Collapse
Affiliation(s)
- Therese Seidlitz
- Department of Visceral, Thoracic and Vascular Surgery, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Yi-Ting Chen
- Department of Pathology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan,Department of Pathology, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Heike Uhlemann
- Department of Visceral, Thoracic and Vascular Surgery, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Sebastian Schölch
- Department of Visceral, Thoracic and Vascular Surgery, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany,Department of Surgery, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany,German Cancer Consortium (DKTK), Dresden, Germany, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Susan Kochall
- Department of Visceral, Thoracic and Vascular Surgery, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Sebastian R. Merker
- Department of Visceral, Thoracic and Vascular Surgery, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Anna Klimova
- Institute for Medical Informatics and Biometry, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany,Core Unit for Data Management and Analytics (CDMA), National Center for Tumor Diseases (NCT), Dresden, Germany
| | - Alexander Hennig
- Department of Visceral, Thoracic and Vascular Surgery, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany,National Center for Tumor Diseases, Dresden, Germany
| | - Christine Schweitzer
- Department of Visceral, Thoracic and Vascular Surgery, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Kristin Pape
- Department of Visceral, Thoracic and Vascular Surgery, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Gustavo B. Baretton
- German Cancer Consortium (DKTK), Dresden, Germany, and German Cancer Research Center (DKFZ), Heidelberg, Germany,Core Unit for Molecular Tumour Diagnostics, National Center for Tumor Diseases (NCT), Dresden, Germany,Institute of Pathology and Tumour and Normal Tissue Bank of the University Cancer Center, University Hospital Carl Gustav Carus, Medical Faculty, Technische Universität Dresden, Dresden, Germany,National Center for Tumor Diseases, Dresden, Germany
| | - Thilo Welsch
- Department of Visceral, Thoracic and Vascular Surgery, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Daniela E. Aust
- German Cancer Consortium (DKTK), Dresden, Germany, and German Cancer Research Center (DKFZ), Heidelberg, Germany,Core Unit for Molecular Tumour Diagnostics, National Center for Tumor Diseases (NCT), Dresden, Germany,Institute of Pathology and Tumour and Normal Tissue Bank of the University Cancer Center, University Hospital Carl Gustav Carus, Medical Faculty, Technische Universität Dresden, Dresden, Germany,National Center for Tumor Diseases, Dresden, Germany
| | - Jürgen Weitz
- Department of Visceral, Thoracic and Vascular Surgery, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany,German Cancer Consortium (DKTK), Dresden, Germany, and German Cancer Research Center (DKFZ), Heidelberg, Germany,National Center for Tumor Diseases, Dresden, Germany
| | - Bon-Kyoung Koo
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna Biocenter, Vienna, Austria
| | - Daniel E. Stange
- Department of Visceral, Thoracic and Vascular Surgery, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany,German Cancer Consortium (DKTK), Dresden, Germany, and German Cancer Research Center (DKFZ), Heidelberg, Germany,National Center for Tumor Diseases, Dresden, Germany,Reprint requests Address requests for reprints to: Daniel E. Strange, MD, PhD, Department of Visceral, Thoracic and Vascular Surgery, University Hospital Carl Gustav Carus, Medical Faculty, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany.
| |
Collapse
|
23
|
Kaneta Y, Sato T, Hikiba Y, Sugimori M, Sue S, Kaneko H, Irie K, Sasaki T, Kondo M, Chuma M, Shibata W, Maeda S. Loss of Pancreatic E-Cadherin Causes Pancreatitis-Like Changes and Contributes to Carcinogenesis. Cell Mol Gastroenterol Hepatol 2019; 9:105-119. [PMID: 31526907 PMCID: PMC6889596 DOI: 10.1016/j.jcmgh.2019.09.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 09/06/2019] [Accepted: 09/09/2019] [Indexed: 12/25/2022]
Abstract
BACKGROUND & AIMS E-cadherin (Cdh1) is a key molecule for adherence required for maintenance of structural homeostasis. Loss of E-cadherin leads to poor prognosis and the development of resistance to chemotherapy in pancreatic cancer. Here, we evaluated the physiological and pathologic roles of E-cadherin in the pancreas. METHODS We crossbred Ptf1a-Cre mice with Cdh1f/f mice to examine the physiological roles of E-cadherin in the pancreas. In addition, we crossbred these mice with LSL-KrasG12D/+ mice (PKC) to investigate the pathologic roles of E-cadherin. We also generated a tamoxifen-inducible system (Ptf1a-CreERT model). Organoids derived from these models using lentiviral transduction were analyzed for immunohistochemical features. Established cell lines from these organoids were analyzed for migratory and invasive activities as well as gene expression by complementary DNA microarray analyses. RESULTS None of the Ptf1a-Cre mice crossbred with Cdh1f/f mice survived for more than 28 days. We observed aberrant epithelial tubules that resembled the structure of acinar-to-ductal metaplasia after postnatal day 6, showing features of pancreatitis. All of the PKC mice died within 10 days. We observed tumorigenicity with increasing stroma-like aggressive tumors. Ptf1a-CreERT models showed that deletion of E-cadherin led to earlier pancreatic intraepithelial neoplasm formation. Cells established from PKC organoids had greater migratory and invasive activities, and these allograft tumors showed a poorly differentiated phenotype. Gene expression analysis indicated that Hdac1 was up-regulated in PKC cell lines and a histone deacetylase 1 inhibitor suppressed PKC cell proliferation. CONCLUSIONS Under physiological conditions, E-cadherin is important for maintaining the tissue homeostasis of the pancreas. Under pathologic conditions with mutational Kras activation, E-cadherin plays an important role in tumor formation via the acquisition of tumorigenic activity.
Collapse
Affiliation(s)
- Yoshihiro Kaneta
- Department of Gastroenterology, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Takeshi Sato
- Department of Gastroenterology, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Yohko Hikiba
- Department of Gastroenterology, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Makoto Sugimori
- Department of Gastroenterology, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Soichiro Sue
- Department of Gastroenterology, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Hiroaki Kaneko
- Department of Gastroenterology, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Kuniyasu Irie
- Department of Gastroenterology, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Tomohiko Sasaki
- Department of Gastroenterology, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Masaaki Kondo
- Department of Gastroenterology, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Makoto Chuma
- Gastroenterological Centre, Yokohama City University Medical Centre, Yokohama, Japan
| | - Wataru Shibata
- Department of Gastroenterology, Graduate School of Medicine, Yokohama City University, Yokohama, Japan,Advanced Medical Research Center, Yokohama City University, Yokohama, Japan
| | - Shin Maeda
- Department of Gastroenterology, Graduate School of Medicine, Yokohama City University, Yokohama, Japan,Correspondence Address correspondence to: Shin Maeda, MD, PhD Department of Gastroenterology, Graduate School of Medicine Yokohama City University, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan. fax: (81) 45-787-2327.
| |
Collapse
|
24
|
Downregulation of Notch Signaling in Kras-Induced Gastric Metaplasia. Neoplasia 2019; 21:810-821. [PMID: 31276933 PMCID: PMC6611983 DOI: 10.1016/j.neo.2019.06.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/28/2019] [Accepted: 06/04/2019] [Indexed: 11/21/2022] Open
Abstract
Activating mutations and amplification of Kras and, more frequently, signatures for Kras activation are noted in stomach cancer. Expression of mutant KrasG12D in the mouse gastric mucosa has been shown to induce hyperplasia and metaplasia. However, the mechanisms by which Kras activation leads to gastric metaplasia are not fully understood. Here we report that KrasLSL-G12D/+;Pdx1-cre, a mouse model known for pancreatic cancer, also mediates KrasG12D expression in the stomach, causing gastric hyperplasia and metaplasia prior to the pathologic changes in the pancreas. These mice exhibit ectopic cell proliferation at the base of gastric glands, whereas wild-type mice contain proliferating cells primarily at the isthmus/neck of the gastric glands. Notch signaling is decreased in the KrasLSL-G12D/+;Pdx1-cre gastric mucosa, as shown by lower levels of cleaved Notch intracellular domains and downregulation of Notch downstream target genes. Expression of a Notch ligand Jagged1 is downregulated at the base of the mutant gland, accompanied by loss of chief cell marker Mist1. We demonstrate that exogenous Jagged1 or overexpression of Notch intracellular domain stimulates Mist1 expression in gastric cancer cell lines, suggesting positive regulation of Mist1 by Notch signaling. Finally, deletion of Jagged1 or Notch3 in KrasLSL-G12D/+;Pdx1-cre mice promoted development of squamous cell carcinoma in the forestomach, albeit short of invasive adenocarcinoma in the glandular stomach. Taken together, these results reveal downregulation of Notch signaling and Mist1 expression during the initiation of Kras-driven gastric tumorigenesis and suggest a tumor-suppressive role for Notch in this context.
Collapse
|
25
|
Hewitt LC, Saito Y, Wang T, Matsuda Y, Oosting J, Silva ANS, Slaney HL, Melotte V, Hutchins G, Tan P, Yoshikawa T, Arai T, Grabsch HI. KRAS status is related to histological phenotype in gastric cancer: results from a large multicentre study. Gastric Cancer 2019; 22:1193-1203. [PMID: 31111275 PMCID: PMC6811379 DOI: 10.1007/s10120-019-00972-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 05/06/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Gastric cancer (GC) is histologically a very heterogeneous disease, and the temporal development of different histological phenotypes remains unclear. Recent studies in lung and ovarian cancer suggest that KRAS activation (KRASact) can influence histological phenotype. KRASact likely results from KRAS mutation (KRASmut) or KRAS amplification (KRASamp). The aim of the study was to investigate whether KRASmut and/or KRASamp are related to the histological phenotype in GC. METHODS Digitized haematoxylin/eosin-stained slides from 1282 GC resection specimens were classified according to Japanese Gastric Cancer Association (JGCA) and the Lauren classification by at least two observers. The relationship between KRAS status, predominant histological phenotype and clinicopathological variables was assessed. RESULTS KRASmut and KRASamp were found in 68 (5%) and 47 (7%) GCs, respectively. Within the KRASmut and KRASamp cases, the most frequent GC histological phenotype was moderately differentiated tubular 2 (tub2) type (KRASmut: n = 27, 40%; KRASamp: n = 21, 46%) or intestinal type (KRASmut: n = 41, 61%; KRASamp: n = 23, 50%). Comparing individual histological subtypes, mucinous carcinoma displayed the highest frequency of KRASmut (JGCA: n = 6, 12%, p = 0.012; Lauren: n = 6, 12%, p = 0.013), and KRASamp was more frequently found in poorly differentiated solid type (n = 12, 10%, p = 0.267) or indeterminate type (n = 12, 10%, p = 0.480) GC. 724 GCs (57%) had intratumour morphological heterogeneity. CONCLUSIONS This is the largest GC study investigating KRAS status and histological phenotype. We identified a relationship between KRASmut and mucinous phenotype. The high level of intratumour morphological heterogeneity could reflect KRASmut heterogeneity, which may explain the failure of anti-EGFR therapy in GC.
Collapse
Affiliation(s)
- Lindsay C. Hewitt
- Department of Pathology, GROW School for Oncology and Developmental Biology, Maastricht University Medical Center+, P. Debyelaan 25, 6229 HX Maastricht, The Netherlands ,Division of Pathology and Data Analytics, Leeds Institute of Medical Research at St. James’s, University of Leeds, Leeds, UK
| | - Yuichi Saito
- Department of Pathology, GROW School for Oncology and Developmental Biology, Maastricht University Medical Center+, P. Debyelaan 25, 6229 HX Maastricht, The Netherlands
| | - Tan Wang
- Department of Pathology, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Tokyo, Japan ,Department of Comprehensive Pathology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yoko Matsuda
- Department of Pathology, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Tokyo, Japan
| | - Jan Oosting
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - Arnaldo N. S. Silva
- Division of Pathology and Data Analytics, Leeds Institute of Medical Research at St. James’s, University of Leeds, Leeds, UK
| | - Hayley L. Slaney
- Division of Pathology and Data Analytics, Leeds Institute of Medical Research at St. James’s, University of Leeds, Leeds, UK
| | - Veerle Melotte
- Department of Pathology, GROW School for Oncology and Developmental Biology, Maastricht University Medical Center+, P. Debyelaan 25, 6229 HX Maastricht, The Netherlands ,Department of Clinical Genetics, Erasmus University Medical Center, University of Rotterdam, Rotterdam, The Netherlands
| | - Gordon Hutchins
- Division of Pathology and Data Analytics, Leeds Institute of Medical Research at St. James’s, University of Leeds, Leeds, UK
| | - Patrick Tan
- Duke-NUS Medical School, Singapore, Singapore
| | - Takaki Yoshikawa
- Department of Gastric Surgery, National Cancer Center Hospital, Tokyo, Japan ,Department of Gastrointestinal Surgery, Kanagawa Cancer Center Hospital, Yokohama, Japan
| | - Tomio Arai
- Department of Pathology, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Tokyo, Japan
| | - Heike I. Grabsch
- Department of Pathology, GROW School for Oncology and Developmental Biology, Maastricht University Medical Center+, P. Debyelaan 25, 6229 HX Maastricht, The Netherlands ,Division of Pathology and Data Analytics, Leeds Institute of Medical Research at St. James’s, University of Leeds, Leeds, UK
| |
Collapse
|
26
|
Hata M, Hayakawa Y, Koike K. Gastric Stem Cell and Cellular Origin of Cancer. Biomedicines 2018; 6:biomedicines6040100. [PMID: 30384487 PMCID: PMC6315982 DOI: 10.3390/biomedicines6040100] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 10/28/2018] [Accepted: 10/28/2018] [Indexed: 12/16/2022] Open
Abstract
Several stem cell markers within the gastrointestinal epithelium have been identified in mice. One of the best characterized is Lgr5 (leucine-rich repeat-containing G-protein coupled receptor 5) and evidence suggests that Lgr5+ cells in the gut are the origin of gastrointestinal cancers. Reserve or facultative stem or progenitor cells with the ability to convert to Lgr5+ cells following injury have also been identified. Unlike the intestine, where Lgr5+ cells at the crypt base act as active stem cells, the stomach may contain unique stem cell populations, since gastric Lgr5+ cells seem to behave as a reserve rather than active stem cells, both in the corpus and in the antral glands. Gastrointestinal stem cells are supported by a specific microenvironment, the stem cell niche, which also promotes tumorigenesis. This review focuses on stem cell markers in the gut and their supporting niche factors. It also discusses the molecular mechanisms that regulate stem cell function and tumorigenesis.
Collapse
Affiliation(s)
- Masahiro Hata
- Department of Gastroenterology, Graduate School of Medicine, the University of Tokyo, Tokyo 1138655, Japan.
| | - Yoku Hayakawa
- Department of Gastroenterology, Graduate School of Medicine, the University of Tokyo, Tokyo 1138655, Japan.
| | - Kazuhiko Koike
- Department of Gastroenterology, Graduate School of Medicine, the University of Tokyo, Tokyo 1138655, Japan.
| |
Collapse
|
27
|
Liu W, Pan HF, Wang Q, Zhao ZM. The application of transgenic and gene knockout mice in the study of gastric precancerous lesions. Pathol Res Pract 2018; 214:1929-1939. [PMID: 30477641 DOI: 10.1016/j.prp.2018.10.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 10/19/2018] [Accepted: 10/20/2018] [Indexed: 12/13/2022]
Abstract
Gastric intestinal metaplasia is a precursor for gastric dysplasia, which is in turn, a risk factor for gastric adenocarcinoma. Gastric metaplasia and dysplasia are known as gastric precancerous lesions (GPLs), which are essential stages in the progression from normal gastric mucosa to gastric cancer (GC) or gastric adenocarcinoma. Genetically-engineered mice have become essential tools in various aspects of GC research, including mechanistic studies and drug discovery. Studies in mouse models have contributed significantly to our understanding of the pathogenesis and molecular mechanisms underlying GPLs and GC. With the development and improvement of gene transfer technology, investigators have created a variety of transgenic and gene knockout mouse models for GPLs, such as H/K-ATPase transgenic and knockout mutant mice and gastrin gene knockout mice. Combined with Helicobacter infection, and treatment with chemical carcinogens, these mice develop GPLs or GC and thus provide models for studying the molecular biology of GC, which may lead to the discovery and development of novel drugs. In this review, we discuss recent progress in the use of genetically-engineered mouse models for GPL research, with particular emphasis on the importance of examining the gastric mucosa at the histological level to investigate morphological changes of GPL and GC and associated protein and gene expression.
Collapse
Affiliation(s)
- Wei Liu
- Institute of Gastroenterology, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China.
| | - Hua-Feng Pan
- Institute of Gastroenterology, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Qi Wang
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Zi-Ming Zhao
- Guangdong Province Engineering Technology Research Institute of T.C.M., Guangzhou 510095, China
| |
Collapse
|