1
|
Zhao T, Hock DH, Pitt J, Thorburn DR, Stroud DA, Christodoulou J. Review: Utility of mass spectrometry in rare disease research and diagnosis. NPJ Genom Med 2025; 10:29. [PMID: 40164634 PMCID: PMC11958806 DOI: 10.1038/s41525-025-00487-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 03/19/2025] [Indexed: 04/02/2025] Open
Abstract
Individuals affected by a rare disease often experience a long and arduous diagnostic odyssey. Delivery of genetic answers in a timely manner is critical to affected individuals and their families. Multi-omics, a term which usually encompasses genomics, transcriptomics, proteomics, metabolomics and lipidomics, has gained increasing popularity in rare disease research and diagnosis over the past decade. Mass spectrometry (MS) is a technique allowing the study of proteins, metabolites and lipids and their fragments at scale, enabling researchers to effectively determine the presence and abundance of thousands of molecules in a single test, accurately quantify their specific levels, identify potential therapeutic biomarkers, detect differentially expressed proteins in patients with rare diseases, and monitor disease progression and treatment response. In this review, we focus on mass spectrometry (MS)-based omics and survey the literature describing the utility of different MS-based omics and how they have transformed rare disease research and diagnosis.
Collapse
Affiliation(s)
- Teresa Zhao
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia
- Victorian Clinical Genetics Services, Royal Children's Hospital, Melbourne, VIC, Australia
| | - Daniella H Hock
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC, Australia
- Victorian Clinical Genetics Services, Royal Children's Hospital, Melbourne, VIC, Australia
- Department of Biochemistry & Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, VIC, Australia
| | - James Pitt
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC, Australia
- Victorian Clinical Genetics Services, Royal Children's Hospital, Melbourne, VIC, Australia
| | - David R Thorburn
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia
- Victorian Clinical Genetics Services, Royal Children's Hospital, Melbourne, VIC, Australia
| | - David A Stroud
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC, Australia.
- Victorian Clinical Genetics Services, Royal Children's Hospital, Melbourne, VIC, Australia.
- Department of Biochemistry & Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, VIC, Australia.
| | - John Christodoulou
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC, Australia.
- Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia.
- Victorian Clinical Genetics Services, Royal Children's Hospital, Melbourne, VIC, Australia.
| |
Collapse
|
2
|
Liu Z, Pan K, Wang M, Jin Y, Yang W, Chen K, Xu C, Duan X, Zou Y, Ren C, Dai L, Zhao S, Wang Y, Shen L, Fang F, Fang H. Novel pathogenic mtDNA variants in Chinese children with neurological mitochondrial disorders. Ann Clin Transl Neurol 2025; 12:586-601. [PMID: 39913609 PMCID: PMC11920736 DOI: 10.1002/acn3.52315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 01/08/2025] [Accepted: 01/09/2025] [Indexed: 03/20/2025] Open
Abstract
OBJECTIVE Pathogenic variations in the mitochondrial genome are tightly linked to neurological mitochondrial disorders in children. However, the mutation spectrum of mitochondrial DNA (mtDNA) in the Chinese population remains incomplete. Therefore, the primary objective of our study was to comprehensively characterize pathogenic mtDNA variants in Chinese children with mitochondrial disorders at clinical, molecular, and functional levels. METHODS Between February 2019 and September 2023, we analyzed pathogenic mtDNA variants in a cohort of over 600 Chinese children suspected of having mitochondrial disorders. Whole-exome sequencing (WES) and whole-mtDNA sequencing were performed on the cohort. RESULTS We identified 54 pathogenic or likely pathogenic mtDNA variants in 227 Chinese children with neurological mitochondrial disorders. Among the eight novel heteroplasmic variants detected in seven patients, in silico analyses suggested likely pathogenic features. Functional analyses using either primary fibroblasts or cybrid cells carrying different mutant loads of mtDNA variants showed impaired mitochondrial respiration, ATP generation, and mitochondrial membrane potential in five of the eight novel variants, including m.4275G>A, m.10407G>A, m.5828G>A, m.3457G>A, and m.13112T>C. The m.8427T>C variant was identified as a rare polymorphism because, despite being located at MT-ATP8, it does not affect both the assembly and activity of mitochondrial complex V in cells carrying homoplasmic m.8427T>C variation. Transcriptome profiling further confirmed the pathogenic contributions of these five variants by altering mitochondrial pathways. CONCLUSION In summary, we revisited the mtDNA mutation spectrum in Chinese children with mitochondrial disorders, and identified five novel pathogenic mtDNA variants with functional verification that are related to neurological mitochondrial disorders in children.
Collapse
Affiliation(s)
- Zhimei Liu
- Department of Neurology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Kexin Pan
- Department of Blood Transfusion, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Mingzhao Wang
- Department of Neurology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Yijun Jin
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Wenxin Yang
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Keer Chen
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Chaolong Xu
- Department of Neurology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Xin Duan
- Department of Neurology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Ying Zou
- Department of Neurology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Changhong Ren
- Department of Neurology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Lifang Dai
- Department of Neurology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Suzhou Zhao
- Fujungenetics Technologies Co., Ltd, Beijing, China
| | - Ya Wang
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Lijun Shen
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Fang Fang
- Department of Neurology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Hezhi Fang
- Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Department of Anesthesia and Critical Care, Clinical Laboratory Center, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Department of Clinical Laboratory, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
3
|
Korandová Z, Pecina P, Pecinová A, Koňaříková E, Tesařová M, Houštěk J, Hansíková H, Ptáčková H, Zeman J, Honzík T, Mráček T. Cryopreserved PBMCs can be used for the analysis of mitochondrial respiration and serve as a diagnostic tool for mitochondrial diseases. Anal Biochem 2025; 698:115745. [PMID: 39645068 DOI: 10.1016/j.ab.2024.115745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 12/03/2024] [Accepted: 12/04/2024] [Indexed: 12/09/2024]
Abstract
Mitochondrial diseases are severe, inherited metabolic disorders that affect the paediatric population. They affect the functioning of mitochondrial oxidative phosphorylation (OXPHOS) apparatus either directly or indirectly. Since mutations in mtDNA are responsible for only 25 % of paediatric cases and next-generation sequencing does not always provide a conclusive diagnosis, the biochemical approach still represents a valuable tool in diagnostics. Mitochondrial defects can be identified in tissue biopsies (muscle or skin). However, they also often manifest in peripheral blood cells. We developed a protocol for isolation and cryopreservation of peripheral blood mononuclear cells (PBMCs) from 5 ml of children's blood using Ficoll centrifugation which can be utilised for subsequent functional measurements on thawed samples. Furthermore, we evaluated the diagnostic utility of the optimised high-resolution oxygraphy protocol using digitonin-permeabilized cryopreserved PBMCs on 47 samples from patients with confirmed or suspected mitochondrial disease. Overall, the diagnosis was confirmed in 72 % of cases, while the analysis of cryopreserved PBMCs provided a false negative outcome in 13 % of cases. Our study demonstrates a sensitive, fast, and non-invasive approach for the diagnostics of various types of mitochondrial disorders, especially those of nuclear genetic origin manifesting in paediatric patients.
Collapse
Affiliation(s)
- Zuzana Korandová
- Laboratory of Bioenergetics, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic; First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Petr Pecina
- Laboratory of Bioenergetics, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Alena Pecinová
- Laboratory of Bioenergetics, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Eliška Koňaříková
- Laboratory of Bioenergetics, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Markéta Tesařová
- Laboratory for Study of Mitochondrial Disorders, Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Josef Houštěk
- Laboratory of Bioenergetics, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Hana Hansíková
- Laboratory for Study of Mitochondrial Disorders, Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Hana Ptáčková
- Department of Paediatrics and Inherited Metabolic Disorders, Charles University-First Faculty of Medicine and General University Hospital in Prague, Prague, Czech Republic
| | - Jiří Zeman
- Department of Paediatrics and Inherited Metabolic Disorders, Charles University-First Faculty of Medicine and General University Hospital in Prague, Prague, Czech Republic
| | - Tomáš Honzík
- Department of Paediatrics and Inherited Metabolic Disorders, Charles University-First Faculty of Medicine and General University Hospital in Prague, Prague, Czech Republic
| | - Tomáš Mráček
- Laboratory of Bioenergetics, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic.
| |
Collapse
|
4
|
Palmfeldt J. Interaction and regulation of the mitochondrial proteome - in health and disease. Expert Rev Proteomics 2025; 22:19-33. [PMID: 39806765 DOI: 10.1080/14789450.2025.2451704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 12/06/2024] [Accepted: 12/31/2024] [Indexed: 01/16/2025]
Abstract
INTRODUCTION Mitochondria contain multiple pathways including energy metabolism and several signaling and synthetic pathways. Mitochondrial proteomics is highly valuable for studying diseases including inherited metabolic disorders, complex and common disorders like neurodegeneration, diabetes, and cancer, since they all to some degree have mitochondrial underpinnings. AREAS COVERED The main mitochondrial functions and pathways are outlined, and systematic protein lists are presented. The main energy metabolic pathways are as follows: iron-sulfur cluster synthesis, one carbon metabolism, catabolism of hydrogen sulfide, kynurenines and reactive oxygen species (ROS), and others, described with the aim of laying a foundation for systematic mitochondrial pathway analysis based on proteomics data. The links of the proteins and pathways to functional effects and diseases are discussed. The disease examples are focussed on inherited metabolic disorders, cancer, neurological, and cardiovascular disorders. EXPERT OPINION To elucidate the role of mitochondria in health and disease, there is a need for comprehensive proteomics analyses with stringent, systematic data treatment for proper interpretation of mitochondrial pathway data. In that way, comprehensive hypothesis-based research can be performed based on proteomics data.
Collapse
Affiliation(s)
- Johan Palmfeldt
- Research Unit for Molecular Medicine, Department of Clinical Medicine, Faculty of Health, Aarhus University, Aarhus, Denmark
| |
Collapse
|
5
|
Ball M, Bouffler SE, Barnett CB, Freckmann ML, Hunter MF, Kamien B, Kassahn KS, Lunke S, Patel CV, Pinner J, Roscioli T, Sandaradura SA, Scott HS, Tan TY, Wallis M, Compton AG, Thorburn DR, Stark Z, Christodoulou J. Critically unwell infants and children with mitochondrial disorders diagnosed by ultrarapid genomic sequencing. Genet Med 2025; 27:101293. [PMID: 39417332 DOI: 10.1016/j.gim.2024.101293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 10/07/2024] [Accepted: 10/08/2024] [Indexed: 10/19/2024] Open
Abstract
PURPOSE To characterize the diagnostic and clinical outcomes of a cohort of critically ill infants and children with suspected mitochondrial disorders (MD) undergoing ultrarapid genomic testing as part of a national program. METHODS Ultrarapid genomic sequencing was performed in 454 families (genome sequencing: n = 290, exome sequencing +/- mitochondrial DNA sequencing: n = 164). In 91 individuals, MD was considered, prompting analysis using an MD virtual gene panel. These individuals were reviewed retrospectively and scored according to modified Nijmegen Mitochondrial Disease Criteria. RESULTS A diagnosis was achieved in 47% (43/91) of individuals, 40% (17/43) of whom had an MD. Seven additional individuals in whom an MD was not suspected were diagnosed with an MD after broader analysis. Gene-agnostic analysis led to the discovery of 2 novel disease genes, with pathogenicity validated through targeted functional studies (CRLS1 and MRPL39). Functional studies enabled diagnosis in another 4 individuals. Of the 24 individuals ultimately diagnosed with an MD, 79% had a change in management, which included 53% whose care was redirected to palliation. CONCLUSION Ultrarapid genetic diagnosis of MD in acutely unwell infants and children is critical for guiding decisions about the need for additional investigations and clinical management.
Collapse
Affiliation(s)
- Megan Ball
- Murdoch Children's Research Institute, Melbourne, Australia; Department of Paediatrics, University of Melbourne, Melbourne, Australia; Royal Children's Hospital, Melbourne, Australia; Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Australia.
| | | | - Christopher B Barnett
- Paediatric and Reproductive Genetics Unit, Women's and Children's Hospital, North Adelaide, Australia; Adelaide Medical School, The University of Adelaide, Adelaide, Australia
| | | | - Matthew F Hunter
- Monash Genetics, Monash Health, Melbourne, Australia; Department of Paediatrics, Monash University, Melbourne, Australia
| | | | - Karin S Kassahn
- Adelaide Medical School, The University of Adelaide, Adelaide, Australia; Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, Australia
| | - Sebastian Lunke
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Australia; Australian Genomics, Melbourne, Australia
| | - Chirag V Patel
- Genetic Health Queensland, Royal Brisbane and Women's Hospital, Brisbane, Australia
| | - Jason Pinner
- Sydney Children's Hospitals Network - Randwick, Sydney, Australia; University of New South Wales, Sydney, New South Wales, Australia
| | - Tony Roscioli
- NSW Health Pathology Randwick Genomics Laboratory, Sydney, Australia; Euroscience Research Australia, University of New South Wales, Sydney, Australia
| | - Sarah A Sandaradura
- Sydney Children's Hospitals Network-Westmead, Sydney, Australia; University of Sydney, Sydney, Australia
| | - Hamish S Scott
- Australian Genomics, Melbourne, Australia; Adelaide Medical School, The University of Adelaide, Adelaide, Australia; Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, Australia; Centre for Cancer Biology, An alliance between SA Pathology and the University of South Australia, Adelaide, Australia; UniSA Clinical and Health Sciences, University of South Australia, Adelaide, Australia
| | - Tiong Y Tan
- Department of Paediatrics, University of Melbourne, Melbourne, Australia; Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Australia
| | - Mathew Wallis
- Tasmanian Clinical Genetics Service, Tasmanian Health Service, Hobart, Australia; School of Medicine and Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia
| | - Alison G Compton
- Murdoch Children's Research Institute, Melbourne, Australia; Department of Paediatrics, University of Melbourne, Melbourne, Australia; Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Australia
| | - David R Thorburn
- Murdoch Children's Research Institute, Melbourne, Australia; Department of Paediatrics, University of Melbourne, Melbourne, Australia; Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Australia
| | - Zornitza Stark
- Department of Paediatrics, University of Melbourne, Melbourne, Australia; Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Australia; Australian Genomics, Melbourne, Australia
| | - John Christodoulou
- Murdoch Children's Research Institute, Melbourne, Australia; Department of Paediatrics, University of Melbourne, Melbourne, Australia; Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Australia; Australian Genomics, Melbourne, Australia.
| |
Collapse
|
6
|
Ellard S, Morgan S, Wynn SL, Walker S, Parrish A, Mein R, Juett A, Ahn JW, Berry I, Cassidy EJ, Durkie M, Fish L, Hall R, Howard E, Rankin J, Wright CF, Deans ZC, Scott RH, Hill SL, Baple EL, Taylor RW. Rare disease genomic testing in the UK and Ireland: promoting timely and equitable access. J Med Genet 2024; 61:1103-1112. [PMID: 39327040 PMCID: PMC11671936 DOI: 10.1136/jmg-2024-110228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 09/09/2024] [Indexed: 09/28/2024]
Abstract
PURPOSE AND SCOPE The aim of this position statement is to provide recommendations regarding the delivery of genomic testing to patients with rare disease in the UK and Ireland. The statement has been developed to facilitate timely and equitable access to genomic testing with reporting of results within commissioned turnaround times. METHODS OF STATEMENT DEVELOPMENT A 1-day workshop was convened by the UK Association for Clinical Genomic Science and attended by key stakeholders within the NHS Genomic Medicine Service, including clinical scientists, clinical geneticists and patient support group representatives. The aim was to identify best practice and innovations for streamlined, geographically consistent services delivering timely results. Attendees and senior responsible officers for genomic testing services in the UK nations and Ireland were invited to contribute. RESULTS AND CONCLUSIONS We identified eight fundamental requirements and describe these together with key enablers in the form of specific recommendations. These relate to laboratory practice (proportionate variant analysis, bioinformatics pipelines, multidisciplinary team working model and test request monitoring), compliance with national guidance (variant classification, incidental findings, reporting and reanalysis), service development and improvement (multimodal testing and innovation through research, informed by patient experience), service demand, capacity management, workforce (recruitment, retention and development), and education and training for service users. This position statement was developed to provide best practice guidance for the specialist genomics workforce within the UK and Ireland but is relevant to any publicly funded healthcare system seeking to deliver timely rare disease genomic testing in the context of high demand and limited resources.
Collapse
Affiliation(s)
- Sian Ellard
- Genomics Laboratory, Royal Devon and Exeter NHS Foundation Trust, Exeter, UK
- Department of Clinical and Biomedical Sciences, University of Exeter Medical School, Exeter, UK
| | - Sian Morgan
- All Wales Genetics Laboratory, University Hospital of Wales, Cardiff, UK
| | - Sarah L Wynn
- Rare Chromosome Disorder Support Group, Unique, Surrey, UK
| | | | - Andrew Parrish
- Genomics Laboratory, Royal Devon and Exeter NHS Foundation Trust, Exeter, UK
- South West Genomic Medicine Service, England, UK
| | | | - Ana Juett
- South West Genomic Medicine Service, England, UK
| | - Joo Wook Ahn
- Cambridge Genomics Laboratory, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Ian Berry
- South West Genomic Medicine Service, England, UK
- Bristol Genetics Laboratory, North Bristol NHS Trust, Bristol, UK
| | - Emma-Jane Cassidy
- Wessex Genomics Laboratory Service, University Hospital Southampton NHS Foundation Trust, Salisbury, UK
| | - Miranda Durkie
- Sheffield Diagnostic Genetics Service, Sheffield Children's NHS Foundation Trust, Sheffield, UK
| | | | | | - Emma Howard
- Manchester University NHS Foundation Trust, Manchester, UK
| | - Julia Rankin
- South West Genomic Medicine Service, England, UK
- Peninsula Clinical Genetics Service, Exeter, UK
| | - Caroline F Wright
- Department of Clinical and Biomedical Sciences, University of Exeter Medical School, Exeter, UK
| | - Zandra C Deans
- GenQA, Department of Laboratory Medicine, Royal Infirmary of Edinburgh, Edinburgh, UK
| | - Richard H Scott
- Genomics England Limited, London, UK
- Department of Clinical Genetics, Great Ormond Street Hospital for Children, London, UK
| | | | - Emma L Baple
- Department of Clinical and Biomedical Sciences, University of Exeter Medical School, Exeter, UK
- South West Genomic Medicine Service, England, UK
- Peninsula Clinical Genetics Service, Exeter, UK
| | - Robert W Taylor
- Mitochondrial Research Group, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
- NHS Highly Specialised Service for Rare Mitochondrial Disorders, North East and Yorkshire Genomic Laboratory Hub, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Association for Clinical Genomic Science Rare Disease Position Statement Working Group
- Genomics Laboratory, Royal Devon and Exeter NHS Foundation Trust, Exeter, UK
- Department of Clinical and Biomedical Sciences, University of Exeter Medical School, Exeter, UK
- All Wales Genetics Laboratory, University Hospital of Wales, Cardiff, UK
- Rare Chromosome Disorder Support Group, Unique, Surrey, UK
- Genomics England Limited, London, UK
- South West Genomic Medicine Service, England, UK
- NHS England, London, UK
- Cambridge Genomics Laboratory, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
- Bristol Genetics Laboratory, North Bristol NHS Trust, Bristol, UK
- Wessex Genomics Laboratory Service, University Hospital Southampton NHS Foundation Trust, Salisbury, UK
- Sheffield Diagnostic Genetics Service, Sheffield Children's NHS Foundation Trust, Sheffield, UK
- Genetic Alliance UK, London, UK
- South East Genomic Laboratory Hub, London, UK
- Manchester University NHS Foundation Trust, Manchester, UK
- Peninsula Clinical Genetics Service, Exeter, UK
- GenQA, Department of Laboratory Medicine, Royal Infirmary of Edinburgh, Edinburgh, UK
- Department of Clinical Genetics, Great Ormond Street Hospital for Children, London, UK
- Mitochondrial Research Group, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
- NHS Highly Specialised Service for Rare Mitochondrial Disorders, North East and Yorkshire Genomic Laboratory Hub, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| |
Collapse
|
7
|
Liu Z, Xie Y, Lou X, Zeng X, Zhang L, Yu M, Wang J, Li J, Shen D, Li H, Zhao S, Zhou Y, Fang H, Lyu J, Yuan Y, Wang Z, Jin L, Fang F. A novel m.5906G > a variant in MT-CO1 causes MELAS/Leigh overlap syndrome. Mol Genet Genomics 2024; 299:102. [PMID: 39460813 DOI: 10.1007/s00438-024-02181-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 09/02/2024] [Indexed: 10/28/2024]
Abstract
The MELAS/Leigh overlap syndrome manifests with a blend of clinical and radiographic traits from both MELAS and LS. However, the association of MELAS/Leigh overlap syndrome with MT-CO1 gene variants has not been previously reported. In this study, we report a patient diagnosed with MELAS/Leigh overlap syndrome harboring the m.5906G > A variant in MT-CO1, with biochemical evidence supporting the pathogenicity of the variant. The variant m.5906G > A that led to a synonymous variant in the start codon of MT-CO1 was filtered as the candidate disease-causing variant of the patient. Patient-derived fibroblasts were used to generate a series of monoclonal cells carrying different m.5906G > A variant loads for further functional assays. The oxygen consumption rate, ATP production, mitochondrial membrane potential and lactate assay indicated an impairment of cellular bioenergetics due to the m.5906G > A variant. Blue native PAGE analysis revealed that the m.5906G > A variant caused a deficiency in the content of mitochondrial oxidative phosphorylation complexes. Furthermore, molecular biology assays performed for the pathogenesis, mtDNA copy number, mtDNA-encoded subunits, and recovery capacity of mtDNA were all deficient due to the m.5906G > A variant, which might be caused by mtDNA replication deficiency. Overall, our findings demonstrated the pathogenicity of m.5906G > A variant and proposed a potential pathogenic mechanism, thereby expanding the genetic spectrum of MELAS/Leigh overlap syndrome.
Collapse
Affiliation(s)
- Zhimei Liu
- Department of Neurology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Yaojun Xie
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Xiaoting Lou
- Laboratory Medicine Center, Department of Genetic and Genomic Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
| | - Xiaofei Zeng
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Luyi Zhang
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Meng Yu
- Department of Neurology, Peking University First Hospital, Beijing, 100034, China
| | - Junling Wang
- Department of Pediatrics, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Jiuwei Li
- Department of Neurology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Danmin Shen
- Department of Neurology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Hua Li
- Department of Neurology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Suzhou Zhao
- Fujungenetics Technologies Co, Ltd, Beijing, 100176, China
| | - Yuwei Zhou
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Hezhi Fang
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Jianxin Lyu
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
| | - Yun Yuan
- Department of Neurology, Peking University First Hospital, Beijing, 100034, China
| | - Zhaoxia Wang
- Department of Neurology, Peking University First Hospital, Beijing, 100034, China.
| | - Liqin Jin
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.
- Department of Scientific Research, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China.
| | - Fang Fang
- Department of Neurology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China.
| |
Collapse
|
8
|
Correia SP, Moedas MF, Taylor LS, Naess K, Lim AZ, McFarland R, Kazior Z, Rumyantseva A, Wibom R, Engvall M, Bruhn H, Lesko N, Végvári Á, Käll L, Trost M, Alston CL, Freyer C, Taylor RW, Wedell A, Wredenberg A. Quantitative proteomics of patient fibroblasts reveal biomarkers and diagnostic signatures of mitochondrial disease. JCI Insight 2024; 9:e178645. [PMID: 39288270 PMCID: PMC11530135 DOI: 10.1172/jci.insight.178645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 09/10/2024] [Indexed: 09/19/2024] Open
Abstract
BACKGROUNDMitochondrial diseases belong to the group of inborn errors of metabolism (IEM), with a prevalence of 1 in 2,000-5,000 individuals. They are the most common form of IEM, but, despite advances in next-generation sequencing technologies, almost half of the patients are left genetically undiagnosed.METHODSWe investigated a cohort of 61 patients with defined mitochondrial disease to improve diagnostics, identify biomarkers, and correlate metabolic pathways to specific disease groups. Clinical presentations were structured using human phenotype ontology terms, and mass spectrometry-based proteomics was performed on primary fibroblasts. Additionally, we integrated 6 patients carrying variants of uncertain significance (VUS) to test proteomics as a diagnostic expansion.RESULTSProteomic profiles from patient samples could be classified according to their biochemical and genetic characteristics, with the expression of 5 proteins (GPX4, MORF4L1, MOXD1, MSRA, and TMED9) correlating with the disease cohort, thus acting as putative biomarkers. Pathway analysis showed a deregulation of inflammatory and mitochondrial stress responses. This included the upregulation of glycosphingolipid metabolism and mitochondrial protein import, as well as the downregulation of arachidonic acid metabolism. Furthermore, we could assign pathogenicity to a VUS in MRPS23 by demonstrating the loss of associated mitochondrial ribosome subunits.CONCLUSIONWe established mass spectrometry-based proteomics on patient fibroblasts as a viable and versatile tool for diagnosing patients with mitochondrial disease.FUNDINGThe NovoNordisk Foundation, Knut and Alice Wallenberg Foundation, Wellcome Centre for Mitochondrial Research, UK Medical Research Council, and the UK NHS Highly Specialised Service for Rare Mitochondrial Disorders of Adults and Children.
Collapse
Affiliation(s)
- Sandrina P. Correia
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Marco F. Moedas
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital, Stockholm, Sweden
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Lucie S. Taylor
- Mitochondrial Research Group, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
- NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Karin Naess
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital, Stockholm, Sweden
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Albert Z. Lim
- Mitochondrial Research Group, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
- NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Robert McFarland
- Mitochondrial Research Group, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
- NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Zuzanna Kazior
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Anastasia Rumyantseva
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Rolf Wibom
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital, Stockholm, Sweden
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Martin Engvall
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Helene Bruhn
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital, Stockholm, Sweden
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Nicole Lesko
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital, Stockholm, Sweden
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Ákos Végvári
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Lukas Käll
- Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH-Royal Institute of Technology, Solna, Sweden
| | - Matthias Trost
- Mitochondrial Research Group, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
- Laboratory for Biomedical Mass Spectrometry, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Charlotte L. Alston
- Mitochondrial Research Group, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
- NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Christoph Freyer
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital, Stockholm, Sweden
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Robert W. Taylor
- Mitochondrial Research Group, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
- NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Anna Wedell
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Anna Wredenberg
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital, Stockholm, Sweden
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
9
|
Khaghani F, Hemmati M, Ebrahimi M, Salmaninejad A. Emerging Multi-omic Approaches to the Molecular Diagnosis of Mitochondrial Disease and Available Strategies for Treatment and Prevention. Curr Genomics 2024; 25:358-379. [PMID: 39323625 PMCID: PMC11420563 DOI: 10.2174/0113892029308327240612110334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/03/2024] [Accepted: 05/21/2024] [Indexed: 09/27/2024] Open
Abstract
Mitochondria are semi-autonomous organelles present in several copies within most cells in the human body that are controlled by the precise collaboration of mitochondrial DNA (mtDNA) and nuclear DNA (nDNA) encoding mitochondrial proteins. They play important roles in numerous metabolic pathways, such as the synthesis of adenosine triphosphate (ATP), the predominant energy substrate of the cell generated through oxidative phosphorylation (OXPHOS), intracellular calcium homeostasis, metabolite biosynthesis, aging, cell cycles, and so forth. Previous studies revealed that dysfunction of these multi-functional organelles, which may arise due to mutations in either the nuclear or mitochondrial genome, leads to a diverse group of clinically and genetically heterogeneous disorders. These diseases include neurodegenerative and metabolic disorders as well as cardiac and skeletal myopathies in both adults and newborns. The plethora of phenotypes and defects displayed leads to challenges in the diagnosis and treatment of mitochondrial diseases. In this regard, the related literature proposed several diagnostic options, such as high throughput mitochondrial genomics and omics technologies, as well as numerous therapeutic options, such as pharmacological approaches, manipulating the mitochondrial genome, increasing the mitochondria content of the affected cells, and recently mitochondrial diseases transmission prevention. Therefore, the present article attempted to review the latest advances and challenges in diagnostic and therapeutic options for mitochondrial diseases.
Collapse
Affiliation(s)
- Faeze Khaghani
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Guilan University of Medical Sciences, Rasht, Iran
- Medical Genetic Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahboobeh Hemmati
- Medical Genetic Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Masoumeh Ebrahimi
- Department of Animal Biology, School of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Arash Salmaninejad
- Medical Genetic Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Regenerative Medicine, Organ Procurement and Transplantation Multi-Disciplinary Center, Razi Hospital, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| |
Collapse
|
10
|
Rouzier C, Pion E, Chaussenot A, Bris C, Ait‐El‐Mkadem Saadi S, Desquiret‐Dumas V, Gueguen N, Fragaki K, Amati‐Bonneau P, Barcia G, Gaignard P, Steffann J, Pennisi A, Bonnefont J, Lebigot E, Bannwarth S, Francou B, Rucheton B, Sternberg D, Martin‐Negrier M, Trimouille A, Hardy G, Allouche S, Acquaviva‐Bourdain C, Pagan C, Lebre A, Reynier P, Cossee M, Attarian S, Paquis‐Flucklinger V, Procaccio V. Primary mitochondrial disorders and mimics: Insights from a large French cohort. Ann Clin Transl Neurol 2024; 11:1478-1491. [PMID: 38703036 PMCID: PMC11187946 DOI: 10.1002/acn3.52062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 03/23/2024] [Indexed: 05/06/2024] Open
Abstract
OBJECTIVE The objective of this study was to evaluate the implementation of NGS within the French mitochondrial network, MitoDiag, from targeted gene panels to whole exome sequencing (WES) or whole genome sequencing (WGS) focusing on mitochondrial nuclear-encoded genes. METHODS Over 2000 patients suspected of Primary Mitochondrial Diseases (PMD) were sequenced by either targeted gene panels, WES or WGS within MitoDiag. We described the clinical, biochemical, and molecular data of 397 genetically confirmed patients, comprising 294 children and 103 adults, carrying pathogenic or likely pathogenic variants in nuclear-encoded genes. RESULTS The cohort exhibited a large genetic heterogeneity, with the identification of 172 distinct genes and 253 novel variants. Among children, a notable prevalence of pathogenic variants in genes associated with oxidative phosphorylation (OXPHOS) functions and mitochondrial translation was observed. In adults, pathogenic variants were primarily identified in genes linked to mtDNA maintenance. Additionally, a substantial proportion of patients (54% (42/78) and 48% (13/27) in children and adults, respectively), undergoing WES or WGS testing displayed PMD mimics, representing pathologies that clinically resemble mitochondrial diseases. INTERPRETATION We reported the largest French cohort of patients suspected of PMD with pathogenic variants in nuclear genes. We have emphasized the clinical complexity of PMD and the challenges associated with recognizing and distinguishing them from other pathologies, particularly neuromuscular disorders. We confirmed that WES/WGS, instead of panel approach, was more valuable to identify the genetic basis in patients with "possible" PMD and we provided a genetic testing flowchart to guide physicians in their diagnostic strategy.
Collapse
Affiliation(s)
- Cécile Rouzier
- Service de génétique médicale, Centre de référence des maladies mitochondriales, CHU NiceUniversité Côte d'Azur, CNRS, INSERM, IRCANNiceFrance
| | - Emmanuelle Pion
- Filnemus, laboratoire de génétique moléculaire, CHUMontpellierFrance
| | - Annabelle Chaussenot
- Service de génétique médicale, Centre de référence des maladies mitochondriales, CHU NiceUniversité Côte d'Azur, CNRS, INSERM, IRCANNiceFrance
| | - Céline Bris
- Service de génétique, Institut de Biologie en santé, CHU AngersUniv Angers, INSERM, CNRS, MITOVASC, Equipe MitoLab, SFR ICATAngersFrance
| | - Samira Ait‐El‐Mkadem Saadi
- Service de génétique médicale, Centre de référence des maladies mitochondriales, CHU NiceUniversité Côte d'Azur, CNRS, INSERM, IRCANNiceFrance
| | - Valérie Desquiret‐Dumas
- Service de biochimie et biologie moléculaire, Institut de Biologie en santé, CHU AngersUniv Angers, INSERM, CNRS, MITOVASC, Equipe MitoLab, SFR ICATAngersFrance
| | - Naïg Gueguen
- Service de biochimie et biologie moléculaire, Institut de Biologie en santé, CHU AngersUniv Angers, INSERM, CNRS, MITOVASC, Equipe MitoLab, SFR ICATAngersFrance
| | - Konstantina Fragaki
- Service de génétique médicale, Centre de référence des maladies mitochondriales, CHU NiceUniversité Côte d'Azur, CNRS, INSERM, IRCANNiceFrance
| | - Patrizia Amati‐Bonneau
- Service de biochimie et biologie moléculaire, Institut de Biologie en santé, CHU AngersUniv Angers, INSERM, CNRS, MITOVASC, Equipe MitoLab, SFR ICATAngersFrance
| | - Giulia Barcia
- Service de médecine génomique des maladies rares, Hôpital Necker‐Enfants MaladesUniversité Paris Cité, Institut Imagine Unité UMR 1161ParisFrance
| | - Pauline Gaignard
- Service de Biochimie, GHU APHP Paris SaclayHôpital BicêtreLe Kremlin‐BicêtreFrance
| | - Julie Steffann
- Service de médecine génomique des maladies rares, Hôpital Necker‐Enfants MaladesUniversité Paris Cité, Institut Imagine Unité UMR 1161ParisFrance
| | - Alessandra Pennisi
- Service de médecine génomique des maladies rares, Hôpital Necker‐Enfants MaladesUniversité Paris Cité, Institut Imagine Unité UMR 1161ParisFrance
| | - Jean‐Paul Bonnefont
- Service de médecine génomique des maladies rares, Hôpital Necker‐Enfants MaladesUniversité Paris Cité, Institut Imagine Unité UMR 1161ParisFrance
| | - Elise Lebigot
- Service de Biochimie, GHU APHP Paris SaclayHôpital BicêtreLe Kremlin‐BicêtreFrance
| | - Sylvie Bannwarth
- Service de génétique médicale, Centre de référence des maladies mitochondriales, CHU NiceUniversité Côte d'Azur, CNRS, INSERM, IRCANNiceFrance
| | - Bruno Francou
- Service de génétique médicale, Centre de référence des maladies mitochondriales, CHU NiceUniversité Côte d'Azur, CNRS, INSERM, IRCANNiceFrance
| | | | - Damien Sternberg
- Unité Fonctionnelle de cardiogénétique et myogénétique moléculaire et cellulaire, Centre de génétique moléculaire et chromosomiqueAP‐HP Sorbonne Université, Hopital de la Pitié‐SalpêtrièreParisFrance
| | - Marie‐Laure Martin‐Negrier
- Unité fonctionnelle d'histologie moléculaire, Service de pathologieCHU Bordeaux‐GU PellegrinBordeauxFrance
| | - Aurélien Trimouille
- Unité fonctionnelle d'histologie moléculaire, Service de pathologieCHU Bordeaux‐GU PellegrinBordeauxFrance
| | - Gaëlle Hardy
- Laboratoire de Génétique Moléculaire: Maladies Héréditaires et OncologieInstitut de Biologie et de Pathologie, CHU Grenoble AlpesGrenobleFrance
| | - Stéphane Allouche
- Service de biochimieInstitut Territorial de Biologie en Santé, CHU Caen, Hôpital de la Côte de NacreCaenFrance
| | - Cécile Acquaviva‐Bourdain
- Service de biochimie et biologie moléculaire Grand Est, UM Maladies Héréditaires du Métabolisme, Centre de biologie et pathologie EstCHU Lyon HCL, GH EstLyonFrance
| | - Cécile Pagan
- Service de biochimie et biologie moléculaire Grand Est, UM Maladies Héréditaires du Métabolisme, Centre de biologie et pathologie EstCHU Lyon HCL, GH EstLyonFrance
| | - Anne‐Sophie Lebre
- Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266 [Krebs team]Université de Reims Champagne‐Ardenne (UFR médicale) ‐ CHU de Reims‐Université Paris CitéParisFrance
| | - Pascal Reynier
- Service de biochimie et biologie moléculaire, Institut de Biologie en santé, CHU AngersUniv Angers, INSERM, CNRS, MITOVASC, Equipe MitoLab, SFR ICATAngersFrance
| | - Mireille Cossee
- Laboratoire de Génétique Moléculaire, CHU Montpellier, PhyMedExpUniversité de Montpellier, INSERM, CNRSMontpellierFrance
| | - Shahram Attarian
- Service des Maladies Neuromusculaires et la SLA, FILNEMUS, Euro‐NMDAIX‐CHU La TimoneMarseille UniversitéMarseilleFrance
| | - Véronique Paquis‐Flucklinger
- Service de génétique médicale, Centre de référence des maladies mitochondriales, CHU NiceUniversité Côte d'Azur, CNRS, INSERM, IRCANNiceFrance
| | | | - Vincent Procaccio
- Service de génétique, Institut de Biologie en santé, CHU AngersUniv Angers, INSERM, CNRS, MITOVASC, Equipe MitoLab, SFR ICATAngersFrance
| |
Collapse
|
11
|
Slade L, Deane CS, Szewczyk NJ, Etheridge T, Whiteman M. Hydrogen sulfide supplementation as a potential treatment for primary mitochondrial diseases. Pharmacol Res 2024; 203:107180. [PMID: 38599468 DOI: 10.1016/j.phrs.2024.107180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/06/2024] [Accepted: 04/06/2024] [Indexed: 04/12/2024]
Abstract
Primary mitochondrial diseases (PMD) are amongst the most common inborn errors of metabolism causing fatal outcomes within the first decade of life. With marked heterogeneity in both inheritance patterns and physiological manifestations, these conditions present distinct challenges for targeted drug therapy, where effective therapeutic countermeasures remain elusive within the clinic. Hydrogen sulfide (H2S)-based therapeutics may offer a new option for patient treatment, having been proposed as a conserved mitochondrial substrate and post-translational regulator across species, displaying therapeutic effects in age-related mitochondrial dysfunction and neurodegenerative models of mitochondrial disease. H2S can stimulate mitochondrial respiration at sites downstream of common PMD-defective subunits, augmenting energy production, mitochondrial function and reducing cell death. Here, we highlight the primary signalling mechanisms of H2S in mitochondria relevant for PMD and outline key cytoprotective proteins/pathways amenable to post-translational restoration via H2S-mediated persulfidation. The mechanisms proposed here, combined with the advent of potent mitochondria-targeted sulfide delivery molecules, could provide a framework for H2S as a countermeasure for PMD disease progression.
Collapse
Affiliation(s)
- Luke Slade
- University of Exeter Medical School, University of Exeter, St. Luke's Campus, Exeter EX1 2LU, UK; Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V, Dortmund, Germany
| | - Colleen S Deane
- Human Development & Health, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, UK
| | - Nathaniel J Szewczyk
- Medical Research Council Versus Arthritis Centre for Musculoskeletal Ageing Research, Royal Derby Hospital, University of Nottingham, Derby DE22 3DT, United Kingdom; Ohio Musculoskeletal and Neurologic Institute, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio 45701, Greece
| | - Timothy Etheridge
- Public Health and Sport Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter EX1 2LU, United Kingdom.
| | - Matthew Whiteman
- University of Exeter Medical School, University of Exeter, St. Luke's Campus, Exeter EX1 2LU, UK.
| |
Collapse
|
12
|
Wang Y, Feng G, Huang Y. The Schizosaccharomyces pombe DEAD-box protein Mss116 is required for mitoribosome assembly and mitochondrial translation. Mitochondrion 2024; 76:101881. [PMID: 38604460 DOI: 10.1016/j.mito.2024.101881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/02/2024] [Accepted: 04/07/2024] [Indexed: 04/13/2024]
Abstract
DEAD-box helicases are important players in mitochondrial gene expression, which is necessary for mitochondrial respiration. In this study, we characterized Schizosaccharomyces pombe Mss116 (spMss116), a member of the family of DEAD-box RNA helicases. Deletion of spmss116 in a mitochondrial intron-containing background significantly reduced the levels of mitochondrial DNA (mtDNA)-encoded cox1 and cob1 mRNAs and impaired mitochondrial translation, leading to a severe respiratory defect and a loss of cell viability during stationary phase. Deletion of mitochondrial introns restored the levels of cox1 and cob1 mRNAs to wide-type (WT) levels but could not restore mitochondrial translation and respiration in Δspmss116 cells. Furthermore, deletion of spmss116 in both mitochondrial intron-containing and intronless backgrounds impaired mitoribosome assembly and destabilization of mitoribosomal proteins. Our findings suggest that defective mitochondrial translation caused by deletion of spmss116 is most likely due to impaired mitoribosome assembly.
Collapse
Affiliation(s)
- Yirong Wang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, School of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Gang Feng
- Jiangsu Key Laboratory for Microbes and Functional Genomics, School of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China.
| | - Ying Huang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, School of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China.
| |
Collapse
|
13
|
Gervasoni J, Primiano A, Cicchinelli M, Santucci L, Servidei S, Urbani A, Primiano G, Iavarone F. Mitochondrial Biomarkers in the Omics Era: A Clinical-Pathophysiological Perspective. Int J Mol Sci 2024; 25:4855. [PMID: 38732076 PMCID: PMC11084339 DOI: 10.3390/ijms25094855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/19/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
Mitochondrial diseases (MDs) affect 4300 individuals, with different ages of presentation and manifestation in any organ. How defects in mitochondria can cause such a diverse range of human diseases remains poorly understood. In recent years, several published research articles regarding the metabolic and protein profiles of these neurogenetic disorders have helped shed light on the pathogenetic mechanisms. By investigating different pathways in MDs, often with the aim of identifying disease biomarkers, it is possible to identify molecular processes underlying the disease. In this perspective, omics technologies such as proteomics and metabolomics considered in this review, can support unresolved mitochondrial questions, helping to improve outcomes for patients.
Collapse
Affiliation(s)
- Jacopo Gervasoni
- Fondazione Policlinico Universitario ‘Agostino Gemelli’ IRCCS, 00168 Rome, Italy; (J.G.); (A.P.); (L.S.); (S.S.); (G.P.)
| | - Aniello Primiano
- Fondazione Policlinico Universitario ‘Agostino Gemelli’ IRCCS, 00168 Rome, Italy; (J.G.); (A.P.); (L.S.); (S.S.); (G.P.)
| | - Michela Cicchinelli
- Department of Basic Biotechnological Sciences, Intensive and Perioperative Clinics, Catholic University of Sacred Heart, 00168 Rome, Italy;
| | - Lavinia Santucci
- Fondazione Policlinico Universitario ‘Agostino Gemelli’ IRCCS, 00168 Rome, Italy; (J.G.); (A.P.); (L.S.); (S.S.); (G.P.)
| | - Serenella Servidei
- Fondazione Policlinico Universitario ‘Agostino Gemelli’ IRCCS, 00168 Rome, Italy; (J.G.); (A.P.); (L.S.); (S.S.); (G.P.)
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Andrea Urbani
- Fondazione Policlinico Universitario ‘Agostino Gemelli’ IRCCS, 00168 Rome, Italy; (J.G.); (A.P.); (L.S.); (S.S.); (G.P.)
- Department of Basic Biotechnological Sciences, Intensive and Perioperative Clinics, Catholic University of Sacred Heart, 00168 Rome, Italy;
| | - Guido Primiano
- Fondazione Policlinico Universitario ‘Agostino Gemelli’ IRCCS, 00168 Rome, Italy; (J.G.); (A.P.); (L.S.); (S.S.); (G.P.)
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Federica Iavarone
- Fondazione Policlinico Universitario ‘Agostino Gemelli’ IRCCS, 00168 Rome, Italy; (J.G.); (A.P.); (L.S.); (S.S.); (G.P.)
- Department of Basic Biotechnological Sciences, Intensive and Perioperative Clinics, Catholic University of Sacred Heart, 00168 Rome, Italy;
| |
Collapse
|
14
|
Gouiza I, Hechmi M, Zioudi A, Dallali H, Kheriji N, Charif M, Le Mao M, Galai S, Kraoua L, Ben Youssef-Turki I, Kraoua I, Lenaers G, Kefi R. Expanding the genetic spectrum of mitochondrial diseases in Tunisia: novel variants revealed by whole-exome sequencing. Front Genet 2024; 14:1259826. [PMID: 38283147 PMCID: PMC10811255 DOI: 10.3389/fgene.2023.1259826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 12/22/2023] [Indexed: 01/30/2024] Open
Abstract
Introduction: Inherited mitochondrial diseases are the most common group of metabolic disorders caused by a defect in oxidative phosphorylation. They are characterized by a wide clinical and genetic spectrum and can manifest at any age. In this study, we established novel phenotype-genotype correlations between the clinical and molecular features of a cohort of Tunisian patients with mitochondrial diseases. Materials and methods: Whole-exome sequencing was performed on five Tunisian patients with suspected mitochondrial diseases. Then, a combination of filtering and bioinformatics prediction tools was utilized to assess the pathogenicity of genetic variations. Sanger sequencing was subsequently performed to confirm the presence of potential deleterious variants in the patients and verify their segregation within families. Structural modeling was conducted to study the effect of novel variants on the protein structure. Results: We identified two novel homozygous variants in NDUFAF5 (c.827G>C; p.Arg276Pro) and FASTKD2 (c.496_497del; p.Leu166GlufsTer2) associated with a severe clinical form of Leigh and Leigh-like syndromes, respectively. Our results further disclosed two variants unreported in North Africa, in GFM2 (c.569G>A; p.Arg190Gln) and FOXRED1 (c.1261G>A; p.Val421Met) genes, and we described the first case of fumaric aciduria in a Tunisian patient harboring the c.1358T>C; p.Leu453Pro FH variant. Conclusion: Our study expands the mutational and phenotypic spectrum of mitochondrial diseases in Tunisia and highlights the importance of next-generation sequencing to decipher the pathomolecular mechanisms responsible for these disorders in an admixed population.
Collapse
Affiliation(s)
- Ismail Gouiza
- University of Angers, MitoLab Team, Unité MitoVasc, UMR CNRS (Unité mixte de recherche Centre national de la recherche scientifique) 6015 INSERM (Institut national de la santé et de la recherche médicale) U1083, SFR ICAT, University of Angers, Angers, France
- Laboratory of Biomedical Genomics and Oncogenetics, Institut Pasteur de Tunis, Tunis, Tunisia
- Tunis El Manar University, Tunis, Tunisia
- Faculty of Medicine of Tunis, Tunis, Tunisia
| | - Meriem Hechmi
- Laboratory of Biomedical Genomics and Oncogenetics, Institut Pasteur de Tunis, Tunis, Tunisia
- Tunis El Manar University, Tunis, Tunisia
| | - Abir Zioudi
- Tunis El Manar University, Tunis, Tunisia
- Faculty of Medicine of Tunis, Tunis, Tunisia
- Research Laboratory LR18SP04, Department of Child and Adolescent Neurology, National Institute Mongi Ben Hmida of Neurology, Tunis, Tunisia
| | - Hamza Dallali
- Laboratory of Biomedical Genomics and Oncogenetics, Institut Pasteur de Tunis, Tunis, Tunisia
- Tunis El Manar University, Tunis, Tunisia
| | - Nadia Kheriji
- Laboratory of Biomedical Genomics and Oncogenetics, Institut Pasteur de Tunis, Tunis, Tunisia
- Tunis El Manar University, Tunis, Tunisia
- Faculty of Medicine of Tunis, Tunis, Tunisia
| | - Majida Charif
- Genetics and Immuno-Cell Therapy Team, Mohammed First University, Oujda, Morocco
| | - Morgane Le Mao
- University of Angers, MitoLab Team, Unité MitoVasc, UMR CNRS (Unité mixte de recherche Centre national de la recherche scientifique) 6015 INSERM (Institut national de la santé et de la recherche médicale) U1083, SFR ICAT, University of Angers, Angers, France
| | - Said Galai
- Faculty of Medicine of Tunis, Tunis, Tunisia
- Department of Clinical Biology, National Institute Mongi Ben Hmida of Neurology, Tunis, Tunisia
| | - Lilia Kraoua
- Tunis El Manar University, Tunis, Tunisia
- Department of Congenital and Hereditary Diseases, Charles Nicolle Hospital, Tunis, Tunisia
| | - Ilhem Ben Youssef-Turki
- Tunis El Manar University, Tunis, Tunisia
- Faculty of Medicine of Tunis, Tunis, Tunisia
- Research Laboratory LR18SP04, Department of Child and Adolescent Neurology, National Institute Mongi Ben Hmida of Neurology, Tunis, Tunisia
| | - Ichraf Kraoua
- Tunis El Manar University, Tunis, Tunisia
- Faculty of Medicine of Tunis, Tunis, Tunisia
- Research Laboratory LR18SP04, Department of Child and Adolescent Neurology, National Institute Mongi Ben Hmida of Neurology, Tunis, Tunisia
| | - Guy Lenaers
- University of Angers, MitoLab Team, Unité MitoVasc, UMR CNRS (Unité mixte de recherche Centre national de la recherche scientifique) 6015 INSERM (Institut national de la santé et de la recherche médicale) U1083, SFR ICAT, University of Angers, Angers, France
- Department of Neurology, CHU d’Angers, Angers, France
| | - Rym Kefi
- Laboratory of Biomedical Genomics and Oncogenetics, Institut Pasteur de Tunis, Tunis, Tunisia
- Tunis El Manar University, Tunis, Tunisia
| |
Collapse
|
15
|
Wang Y, Shi Y, Li W, Han X, Lin X, Liu D, Lin Y, Shen L. Knockdown of BRAWNIN minimally affect mitochondrial complex III assembly in human cells. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119601. [PMID: 37769950 DOI: 10.1016/j.bbamcr.2023.119601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 09/20/2023] [Accepted: 09/21/2023] [Indexed: 10/03/2023]
Abstract
BRAWNIN was found as a mitochondrial respiratory complex III (CIII) assembly factor. Here, we showed that the deletion rather than knockdown of BRAWNIN impaired the assembly of CIII. BRAWNIN levels were affected by nutritional stress and negatively associated with AMPK activation. Although the BRAWNIN knockout via CRISPR/Cas9 led to decreased complex III levels, both biochemical and functional studies of oxidative phosphorylation system (OXPHOS) complexes revealed that knockdown of BRAWNIN neither affected mitochondrial respiration nor impaired the integrity of OXPHOS complexes I-V. Transcriptomic and proteomic profiling further confirmed that the BRAWNIN knockdown had a minimal effect on mitochondrial function. Moreover, only a small proportion of BRAWNIN interacted with the subunits of the OXPHOS complexes, which might be difficult to detect via co-immunoprecipitation and mass spectrometry. Finally, our findings also indicated that although only a minimal amount of BRAWNIN was required for CIII assembly, metabolic analyses revealed that it may fine-tune the pyruvate metabolism route in mitochondria.
Collapse
Affiliation(s)
- Ya Wang
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yu Shi
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Wen Li
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.; Clinical Laboratory of Central Hospital of Panzhihua City, Panzhihua, Sichuan 617000, China
| | - Xinyu Han
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Xi Lin
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Dandan Liu
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yuyan Lin
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Lijun Shen
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China..
| |
Collapse
|
16
|
Pizzamiglio C, Hanna MG, Pitceathly RDS. Primary mitochondrial diseases. HANDBOOK OF CLINICAL NEUROLOGY 2024; 204:53-76. [PMID: 39322395 DOI: 10.1016/b978-0-323-99209-1.00004-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Primary mitochondrial diseases (PMDs) are a heterogeneous group of hereditary disorders characterized by an impairment of the mitochondrial respiratory chain. They are the most common group of genetic metabolic disorders, with a prevalence of 1 in 4,300 people. The presence of leukoencephalopathy is recognized as an important feature in many PMDs and can be a manifestation of mutations in both mitochondrial DNA (classic syndromes such as mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes; myoclonic epilepsy with ragged-red fibers [RRFs]; Leigh syndrome; and Kearns-Sayre syndrome) and nuclear DNA (mutations in maintenance genes such as POLG, MPV17, and TYMP; Leigh syndrome; and mitochondrial aminoacyl-tRNA synthetase disorders). In this chapter, PMDs associated with white matter involvement are outlined, including details of clinical presentations, brain MRI features, and elements of differential diagnoses. The current approach to the diagnosis of PMDs and management strategies are also discussed. A PMD diagnosis in a subject with leukoencephalopathy should be considered in the presence of specific brain MRI features (for example, cyst-like lesions, bilateral basal ganglia lesions, and involvement of both cerebral hemispheres and cerebellum), in addition to a complex neurologic or multisystem disorder. Establishing a genetic diagnosis is crucial to ensure appropriate genetic counseling, multidisciplinary team input, and eligibility for clinical trials.
Collapse
Affiliation(s)
- Chiara Pizzamiglio
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, United Kingdom; NHS Highly Specialised Service for Rare Mitochondrial Disorders, Queen Square Centre for Neuromuscular Diseases, National Hospital for Neurology and Neurosurgery, London, United Kingdom
| | - Michael G Hanna
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, United Kingdom; NHS Highly Specialised Service for Rare Mitochondrial Disorders, Queen Square Centre for Neuromuscular Diseases, National Hospital for Neurology and Neurosurgery, London, United Kingdom
| | - Robert D S Pitceathly
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, United Kingdom; NHS Highly Specialised Service for Rare Mitochondrial Disorders, Queen Square Centre for Neuromuscular Diseases, National Hospital for Neurology and Neurosurgery, London, United Kingdom.
| |
Collapse
|
17
|
Sun Q, Shi L, Li S, Li J, Zhang R, Huang X, Shao Y, Feng Z, Peng Y, Yang Z, Liu J, Liu H, Long J. PET117 assembly factor stabilizes translation activator TACO1 thereby upregulates mitochondria-encoded cytochrome C oxidase 1 synthesis. Free Radic Biol Med 2023; 205:13-24. [PMID: 37247699 DOI: 10.1016/j.freeradbiomed.2023.05.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 05/19/2023] [Accepted: 05/19/2023] [Indexed: 05/31/2023]
Abstract
Cytochrome c oxidase, also known as complex IV, facilitates the transfer of electrons from cytochrome c to molecular oxygen, resulting in the production of ATP. The assembly of complex IV is a tightly regulated and intricate process that entails the coordinated synthesis and integration of subunits encoded by the mitochondria and nucleus into a functional complex. Accurate regulation of translation is crucial for maintaining proper mitochondrial function, and defects in this process can lead to a wide range of mitochondrial disorders and diseases. However, the mechanisms governing mRNA translation by mitoribosomes in mammals remain largely unknown. In this study, we elucidate the critical role of PET117, a chaperone protein involved in complex IV assembly, in the regulation of mitochondria-encoded cytochrome c oxidase 1 (COX1) protein synthesis in human cells. Depletion of PET117 reduced mitochondrial oxygen consumption rate and impaired mitochondrial function. PET117 was found to interact with and stabilize translational activator of COX1 (TACO1) and prevent its ubiquitination. TACO1 overexpression rescued the inhibitory effects on mitochondria caused by PET117 deficiency. These findings provide evidence for a novel PET117-TACO1 axis in the regulation of mitochondrial protein expression, and revealed a previously unknown role of PET117 in human cells.
Collapse
Affiliation(s)
- Qiong Sun
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Le Shi
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Shuaijun Li
- School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Jialu Li
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Ruifen Zhang
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Xinghuai Huang
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Yongping Shao
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Zhihui Feng
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Yunhua Peng
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Zhiwei Yang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Jiankang Liu
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, Shandong, 266071, China
| | - Huadong Liu
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, Shandong, 266071, China.
| | - Jiangang Long
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China.
| |
Collapse
|
18
|
Wojcik MH, Reuter CM, Marwaha S, Mahmoud M, Duyzend MH, Barseghyan H, Yuan B, Boone PM, Groopman EE, Délot EC, Jain D, Sanchis-Juan A, Starita LM, Talkowski M, Montgomery SB, Bamshad MJ, Chong JX, Wheeler MT, Berger SI, O'Donnell-Luria A, Sedlazeck FJ, Miller DE. Beyond the exome: What's next in diagnostic testing for Mendelian conditions. Am J Hum Genet 2023; 110:1229-1248. [PMID: 37541186 PMCID: PMC10432150 DOI: 10.1016/j.ajhg.2023.06.009] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 08/06/2023] Open
Abstract
Despite advances in clinical genetic testing, including the introduction of exome sequencing (ES), more than 50% of individuals with a suspected Mendelian condition lack a precise molecular diagnosis. Clinical evaluation is increasingly undertaken by specialists outside of clinical genetics, often occurring in a tiered fashion and typically ending after ES. The current diagnostic rate reflects multiple factors, including technical limitations, incomplete understanding of variant pathogenicity, missing genotype-phenotype associations, complex gene-environment interactions, and reporting differences between clinical labs. Maintaining a clear understanding of the rapidly evolving landscape of diagnostic tests beyond ES, and their limitations, presents a challenge for non-genetics professionals. Newer tests, such as short-read genome or RNA sequencing, can be challenging to order, and emerging technologies, such as optical genome mapping and long-read DNA sequencing, are not available clinically. Furthermore, there is no clear guidance on the next best steps after inconclusive evaluation. Here, we review why a clinical genetic evaluation may be negative, discuss questions to be asked in this setting, and provide a framework for further investigation, including the advantages and disadvantages of new approaches that are nascent in the clinical sphere. We present a guide for the next best steps after inconclusive molecular testing based upon phenotype and prior evaluation, including when to consider referral to research consortia focused on elucidating the underlying cause of rare unsolved genetic disorders.
Collapse
Affiliation(s)
- Monica H Wojcik
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Division of Newborn Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Chloe M Reuter
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Shruti Marwaha
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Medhat Mahmoud
- Human Genome Sequencing Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Michael H Duyzend
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Hayk Barseghyan
- Center for Genetics Medicine Research, Children's National Research Institute, Children's National Hospital, Washington, DC 20010, USA; Department of Genomics and Precision Medicine, School of Medicine and Health Sciences, George Washington University, Washington, DC 20037, USA
| | - Bo Yuan
- Department of Molecular and Human Genetics and Human Genome Sequencing Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Philip M Boone
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Emily E Groopman
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Emmanuèle C Délot
- Department of Genomics and Precision Medicine, School of Medicine and Health Sciences, George Washington University, Washington, DC 20037, USA; Center for Genetics Medicine Research, Children's National Research and Innovation Campus, Washington, DC, USA; Department of Pediatrics, George Washington University, School of Medicine and Health Sciences, George Washington University, Washington, DC 20037, USA
| | - Deepti Jain
- Department of Biostatistics, School of Public Health, University of Washington, Seattle, WA 98195, USA
| | - Alba Sanchis-Juan
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Lea M Starita
- Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, WA 98195, USA; Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Michael Talkowski
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Stephen B Montgomery
- Department of Biomedical Data Science, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Michael J Bamshad
- Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, WA 98195, USA; Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA; Department of Pediatrics, Division of Genetic Medicine, University of Washington, Seattle, WA 98195, USA
| | - Jessica X Chong
- Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, WA 98195, USA; Department of Pediatrics, Division of Genetic Medicine, University of Washington, Seattle, WA 98195, USA
| | - Matthew T Wheeler
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Seth I Berger
- Center for Genetics Medicine Research and Rare Disease Institute, Children's National Hospital, Washington, DC 20010, USA
| | - Anne O'Donnell-Luria
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Fritz J Sedlazeck
- Human Genome Sequencing Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Department of Computer Science, Rice University, 6100 Main Street, Houston, TX 77005, USA
| | - Danny E Miller
- Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, WA 98195, USA; Department of Pediatrics, Division of Genetic Medicine, University of Washington, Seattle, WA 98195, USA; Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
19
|
Amarasekera SSC, Hock DH, Lake NJ, Calvo SE, Grønborg SW, Krzesinski EI, Amor DJ, Fahey MC, Simons C, Wibrand F, Mootha VK, Lek M, Lunke S, Stark Z, Østergaard E, Christodoulou J, Thorburn DR, Stroud DA, Compton AG. Multi-omics identifies large mitoribosomal subunit instability caused by pathogenic MRPL39 variants as a cause of pediatric onset mitochondrial disease. Hum Mol Genet 2023; 32:2441-2454. [PMID: 37133451 PMCID: PMC10360397 DOI: 10.1093/hmg/ddad069] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 03/20/2023] [Accepted: 04/24/2023] [Indexed: 05/04/2023] Open
Abstract
MRPL39 encodes one of 52 proteins comprising the large subunit of the mitochondrial ribosome (mitoribosome). In conjunction with 30 proteins in the small subunit, the mitoribosome synthesizes the 13 subunits of the mitochondrial oxidative phosphorylation (OXPHOS) system encoded by mitochondrial Deoxyribonucleic acid (DNA). We used multi-omics and gene matching to identify three unrelated individuals with biallelic variants in MRPL39 presenting with multisystem diseases with severity ranging from lethal, infantile-onset (Leigh syndrome spectrum) to milder with survival into adulthood. Clinical exome sequencing of known disease genes failed to diagnose these patients; however quantitative proteomics identified a specific decrease in the abundance of large but not small mitoribosomal subunits in fibroblasts from the two patients with severe phenotype. Re-analysis of exome sequencing led to the identification of candidate single heterozygous variants in mitoribosomal genes MRPL39 (both patients) and MRPL15. Genome sequencing identified a shared deep intronic MRPL39 variant predicted to generate a cryptic exon, with transcriptomics and targeted studies providing further functional evidence for causation. The patient with the milder disease was homozygous for a missense variant identified through trio exome sequencing. Our study highlights the utility of quantitative proteomics in detecting protein signatures and in characterizing gene-disease associations in exome-unsolved patients. We describe Relative Complex Abundance analysis of proteomics data, a sensitive method that can identify defects in OXPHOS disorders to a similar or greater sensitivity to the traditional enzymology. Relative Complex Abundance has potential utility for functional validation or prioritization in many hundreds of inherited rare diseases where protein complex assembly is disrupted.
Collapse
Affiliation(s)
- Sumudu S C Amarasekera
- Murdoch Children’s Research Institute, Royal Children's Hospital, Melbourne, VIC 3052, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Daniella H Hock
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC 3010, Australia
| | - Nicole J Lake
- Murdoch Children’s Research Institute, Royal Children's Hospital, Melbourne, VIC 3052, Australia
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510 USA
| | - Sarah E Calvo
- Broad Institute, Cambridge, MA 02142, USA
- Howard Hughes Medical Institute and Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Systems Biology, Harvard Medical School, Boston, MA 02446, USA
| | - Sabine W Grønborg
- Department of Genetics, Copenhagen University Hospital Rigshospitalet, Copenhagen 2100, Denmark
- Center for Inherited Metabolic Disease, Department of Pediatrics and Adolescent Medicine, Copenhagen University Hospital Rigshospitalet, Copenhagen 2100, Denmark
| | - Emma I Krzesinski
- Monash Genetics, Monash Health, Melbourne, VIC 3168 Australia
- Department of Paediatrics, Monash University, Melbourne, VIC 3168 Australia
| | - David J Amor
- Murdoch Children’s Research Institute, Royal Children's Hospital, Melbourne, VIC 3052, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Michael C Fahey
- Monash Genetics, Monash Health, Melbourne, VIC 3168 Australia
- Department of Paediatrics, Monash University, Melbourne, VIC 3168 Australia
| | - Cas Simons
- Murdoch Children’s Research Institute, Royal Children's Hospital, Melbourne, VIC 3052, Australia
| | - Flemming Wibrand
- Department of Genetics, Copenhagen University Hospital Rigshospitalet, Copenhagen 2100, Denmark
| | - Vamsi K Mootha
- Broad Institute, Cambridge, MA 02142, USA
- Howard Hughes Medical Institute and Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Systems Biology, Harvard Medical School, Boston, MA 02446, USA
| | - Monkol Lek
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510 USA
| | - Sebastian Lunke
- Victorian Clinical Genetics Services, Murdoch Children’s Research Institute, Melbourne, VIC 3052, Australia
- Australian Genomics Health Alliance, Melbourne, VIC 3052, Australia
- Department of Pathology, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Zornitza Stark
- Department of Paediatrics, University of Melbourne, Melbourne, VIC 3010, Australia
- Victorian Clinical Genetics Services, Murdoch Children’s Research Institute, Melbourne, VIC 3052, Australia
- Australian Genomics Health Alliance, Melbourne, VIC 3052, Australia
| | - Elsebet Østergaard
- Department of Genetics, Copenhagen University Hospital Rigshospitalet, Copenhagen 2100, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen 2200, Denmark
| | - John Christodoulou
- Murdoch Children’s Research Institute, Royal Children's Hospital, Melbourne, VIC 3052, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, VIC 3010, Australia
- Victorian Clinical Genetics Services, Murdoch Children’s Research Institute, Melbourne, VIC 3052, Australia
- Australian Genomics Health Alliance, Melbourne, VIC 3052, Australia
- Discipline of Child & Adolescent Health, Sydney Medical School, University of Sydney, Sydney, NSW 2006, Australia
| | - David R Thorburn
- Murdoch Children’s Research Institute, Royal Children's Hospital, Melbourne, VIC 3052, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, VIC 3010, Australia
- Victorian Clinical Genetics Services, Murdoch Children’s Research Institute, Melbourne, VIC 3052, Australia
- Australian Genomics Health Alliance, Melbourne, VIC 3052, Australia
| | - David A Stroud
- Murdoch Children’s Research Institute, Royal Children's Hospital, Melbourne, VIC 3052, Australia
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC 3010, Australia
- Victorian Clinical Genetics Services, Murdoch Children’s Research Institute, Melbourne, VIC 3052, Australia
| | - Alison G Compton
- Murdoch Children’s Research Institute, Royal Children's Hospital, Melbourne, VIC 3052, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, VIC 3010, Australia
- Victorian Clinical Genetics Services, Murdoch Children’s Research Institute, Melbourne, VIC 3052, Australia
| |
Collapse
|
20
|
Southwell N, Primiano G, Nadkarni V, Attarwala N, Beattie E, Miller D, Alam S, Liparulo I, Shurubor YI, Valentino ML, Carelli V, Servidei S, Gross SS, Manfredi G, Chen Q, D'Aurelio M. A coordinated multiorgan metabolic response contributes to human mitochondrial myopathy. EMBO Mol Med 2023; 15:e16951. [PMID: 37222423 PMCID: PMC10331581 DOI: 10.15252/emmm.202216951] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 05/10/2023] [Accepted: 05/12/2023] [Indexed: 05/25/2023] Open
Abstract
Mitochondrial diseases are a heterogeneous group of monogenic disorders that result from impaired oxidative phosphorylation (OXPHOS). As neuromuscular tissues are highly energy-dependent, mitochondrial diseases often affect skeletal muscle. Although genetic and bioenergetic causes of OXPHOS impairment in human mitochondrial myopathies are well established, there is a limited understanding of metabolic drivers of muscle degeneration. This knowledge gap contributes to the lack of effective treatments for these disorders. Here, we discovered fundamental muscle metabolic remodeling mechanisms shared by mitochondrial disease patients and a mouse model of mitochondrial myopathy. This metabolic remodeling is triggered by a starvation-like response that evokes accelerated oxidation of amino acids through a truncated Krebs cycle. While initially adaptive, this response evolves in an integrated multiorgan catabolic signaling, lipid store mobilization, and intramuscular lipid accumulation. We show that this multiorgan feed-forward metabolic response involves leptin and glucocorticoid signaling. This study elucidates systemic metabolic dyshomeostasis mechanisms that underlie human mitochondrial myopathies and identifies potential new targets for metabolic intervention.
Collapse
Affiliation(s)
- Nneka Southwell
- Brain and Mind Research InstituteWeill Cornell MedicineNew YorkNYUSA
| | - Guido Primiano
- Fondazione Policlinico Universitario Agostino Gemelli IRCCSRomeItaly
- Dipartimento di NeuroscienzeUniversità Cattolica del Sacro CuoreRomeItaly
| | - Viraj Nadkarni
- Brain and Mind Research InstituteWeill Cornell MedicineNew YorkNYUSA
| | | | - Emelie Beattie
- Brain and Mind Research InstituteWeill Cornell MedicineNew YorkNYUSA
| | - Dawson Miller
- Department of PharmacologyWeill Cornell MedicineNew YorkNYUSA
| | - Sumaitaah Alam
- Department of PharmacologyWeill Cornell MedicineNew YorkNYUSA
| | - Irene Liparulo
- Brain and Mind Research InstituteWeill Cornell MedicineNew YorkNYUSA
| | | | - Maria Lucia Valentino
- IRCCS, Institute of Neurological Sciences of Bologna, Bellaria HospitalBolognaItaly
- Department of Biomedical and NeuroMotor Sciences (DIBINEM)University of BolognaBolognaItaly
| | - Valerio Carelli
- IRCCS, Institute of Neurological Sciences of Bologna, Bellaria HospitalBolognaItaly
- Department of Biomedical and NeuroMotor Sciences (DIBINEM)University of BolognaBolognaItaly
| | - Serenella Servidei
- Fondazione Policlinico Universitario Agostino Gemelli IRCCSRomeItaly
- Dipartimento di NeuroscienzeUniversità Cattolica del Sacro CuoreRomeItaly
| | - Steven S Gross
- Department of PharmacologyWeill Cornell MedicineNew YorkNYUSA
| | - Giovanni Manfredi
- Brain and Mind Research InstituteWeill Cornell MedicineNew YorkNYUSA
| | - Qiuying Chen
- Department of PharmacologyWeill Cornell MedicineNew YorkNYUSA
| | | |
Collapse
|
21
|
Voraberger B, Mayr JA, Fratzl-Zelman N, Blouin S, Uday S, Kopajtich R, Koedam M, Hödlmayr H, Wortmann SB, Csillag B, Prokisch H, van der Eerden BCJ, El-Gazzar A, Högler W. Investigating the role of ASCC1 in the causation of bone fragility. Front Endocrinol (Lausanne) 2023; 14:1137573. [PMID: 37455927 PMCID: PMC10348481 DOI: 10.3389/fendo.2023.1137573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 06/09/2023] [Indexed: 07/18/2023] Open
Abstract
Bi-allelic variants in ASCC1 cause the ultrarare bone fragility disorder "spinal muscular atrophy with congenital bone fractures-2" (SMABF2). However, the mechanism by which ASCC1 dysfunction leads to this musculoskeletal condition and the nature of the associated bone defect are poorly understood. By exome sequencing, we identified a novel homozygous deletion in ASCC1 in a female infant. She was born with severe muscular hypotonia, inability to breathe and swallow, and virtual absence of spontaneous movements; showed progressive brain atrophy, gracile long bones, very slender ribs, and a femur fracture; and died from respiratory failure aged 3 months. A transiliac bone sample taken postmortem revealed a distinct microstructural bone phenotype with low trabecular bone volume, low bone remodeling, disordered collagen organization, and an abnormally high bone marrow adiposity. Proteomics, RNA sequencing, and qPCR in patient-derived skin fibroblasts confirmed that ASCC1 was hardly expressed on protein and RNA levels compared with healthy controls. Furthermore, we demonstrate that mutated ASCC1 is associated with a downregulation of RUNX2, the master regulator of osteoblastogenesis, and SERPINF1, which is involved in osteoblast and adipocyte differentiation. It also exerts an inhibitory effect on TGF-β/SMAD signaling, which is important for bone development. Additionally, knockdown of ASCC1 in human mesenchymal stromal cells (hMSCs) suppressed their differentiation capacity into osteoblasts while increasing their differentiation into adipocytes. This resulted in reduced mineralization and elevated formation of lipid droplets. These findings shed light onto the pathophysiologic mechanisms underlying SMABF2 and assign a new biological role to ASCC1 acting as an important pro-osteoblastogenic and anti-adipogenic regulator.
Collapse
Affiliation(s)
- Barbara Voraberger
- Department of Paediatrics and Adolescent Medicine, Johannes Kepler University Linz, Linz, Austria
| | - Johannes A. Mayr
- University Children’s Hospital Salzburg, Paracelsus Medical University Salzburg, Salzburg, Austria
| | - Nadja Fratzl-Zelman
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of OEGK and AUVA Trauma Center Meidling, 1 Medical Department, Hanusch Hospital, Vienna, Austria
- Vienna Bone and Growth Center, Vienna, Austria
| | - Stéphane Blouin
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of OEGK and AUVA Trauma Center Meidling, 1 Medical Department, Hanusch Hospital, Vienna, Austria
- Vienna Bone and Growth Center, Vienna, Austria
| | - Suma Uday
- Department of Endocrinology and Diabetes, Birmingham Women’s and Children’s NHS Foundation Trust, Institute of Metabolism and Systems Research, University of Birmingham Edgbaston, Birmingham, United Kingdom
| | - Robert Kopajtich
- Institute of Neurogenomics, Helmholtz Zentrum München, Neuherberg, Germany
- Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany
| | - Marijke Koedam
- Laboratory for Calcium and Bone Metabolism, Department of Internal Medicine, Erasmus MC, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Helena Hödlmayr
- Department of Paediatrics and Adolescent Medicine, Johannes Kepler University Linz, Linz, Austria
| | - Saskia B. Wortmann
- University Children’s Hospital Salzburg, Paracelsus Medical University Salzburg, Salzburg, Austria
- Amalia Children’s Hospital, Radboudumc, Nijmegen, Netherlands
| | - Bernhard Csillag
- Department of Neonatology, Kepler University Hospital, Linz, Austria
| | - Holger Prokisch
- Institute of Neurogenomics, Helmholtz Zentrum München, Neuherberg, Germany
- Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany
| | - Bram C. J. van der Eerden
- Laboratory for Calcium and Bone Metabolism, Department of Internal Medicine, Erasmus MC, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Ahmed El-Gazzar
- Department of Paediatrics and Adolescent Medicine, Johannes Kepler University Linz, Linz, Austria
| | - Wolfgang Högler
- Department of Paediatrics and Adolescent Medicine, Johannes Kepler University Linz, Linz, Austria
| |
Collapse
|
22
|
Pickett SJ, Hudson G, Greaves LC. Single-cell multiomic analyses sheds light on mitochondrial mutational selection. Nat Genet 2023:10.1038/s41588-023-01436-5. [PMID: 37386252 DOI: 10.1038/s41588-023-01436-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/01/2023]
Affiliation(s)
- Sarah J Pickett
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Gavin Hudson
- Wellcome Centre for Mitochondrial Research, Biosciences Institute Newcastle University, Newcastle upon Tyne, UK
| | - Laura C Greaves
- Wellcome Centre for Mitochondrial Research, Biosciences Institute Newcastle University, Newcastle upon Tyne, UK.
| |
Collapse
|
23
|
Squires JE, Miethke AG, Valencia CA, Hawthorne K, Henn L, Van Hove JL, Squires RH, Bove K, Horslen S, Kohli R, Molleston JP, Romero R, Alonso EM, Bezerra JA, Guthery SL, Hsu E, Karpen SJ, Loomes KM, Ng VL, Rosenthal P, Mysore K, Wang KS, Friederich MW, Magee JC, Sokol RJ. Clinical spectrum and genetic causes of mitochondrial hepatopathy phenotype in children. Hepatol Commun 2023; 7:e0139. [PMID: 37184518 PMCID: PMC10187840 DOI: 10.1097/hc9.0000000000000139] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 01/19/2023] [Indexed: 05/16/2023] Open
Abstract
BACKGROUND Alterations in both mitochondrial DNA (mtDNA) and nuclear DNA genes affect mitochondria function, causing a range of liver-based conditions termed mitochondrial hepatopathies (MH), which are subcategorized as mtDNA depletion, RNA translation, mtDNA deletion, and enzymatic disorders. We aim to enhance the understanding of pathogenesis and natural history of MH. METHODS We analyzed data from patients with MH phenotypes to identify genetic causes, characterize the spectrum of clinical presentation, and determine outcomes. RESULTS Three enrollment phenotypes, that is, acute liver failure (ALF, n = 37), chronic liver disease (Chronic, n = 40), and post-liver transplant (n = 9), were analyzed. Patients with ALF were younger [median 0.8 y (range, 0.0, 9.4) vs 3.4 y (0.2, 18.6), p < 0.001] with fewer neurodevelopmental delays (40.0% vs 81.3%, p < 0.001) versus Chronic. Comprehensive testing was performed more often in Chronic than ALF (90.0% vs 43.2%); however, etiology was identified more often in ALF (81.3% vs 61.1%) with mtDNA depletion being most common (ALF: 77% vs Chronic: 41%). Of the sequenced cohort (n = 60), 63% had an identified mitochondrial disorder. Cluster analysis identified a subset without an underlying genetic etiology, despite comprehensive testing. Liver transplant-free survival was 40% at 2 years (ALF vs Chronic, 16% vs 65%, p < 0.001). Eighteen (21%) underwent transplantation. With 33 patient-years of follow-up after the transplant, 3 deaths were reported. CONCLUSIONS Differences between ALF and Chronic MH phenotypes included age at diagnosis, systemic involvement, transplant-free survival, and genetic etiology, underscoring the need for ultra-rapid sequencing in the appropriate clinical setting. Cluster analysis revealed a group meeting enrollment criteria but without an identified genetic or enzymatic diagnosis, highlighting the need to identify other etiologies.
Collapse
Affiliation(s)
- James E. Squires
- UPMC Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | - C. Alexander Valencia
- Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
- Interpath Laboratory, Pendleton, Oregon, USA
| | - Kieran Hawthorne
- Arbor Research Collaborative for Health, Ann Arbor, Michigan, USA
| | - Lisa Henn
- Arbor Research Collaborative for Health, Ann Arbor, Michigan, USA
| | - Johan L.K. Van Hove
- University of Colorado School of Medicine, Children’s Hospital Colorado, Aurora, Colorado, USA
| | - Robert H. Squires
- UPMC Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Kevin Bove
- Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Simon Horslen
- UPMC Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Rohit Kohli
- Children’s Hospital Los Angeles, Los Angeles, California, USA
| | - Jean P. Molleston
- Indiana University-Riley Hospital for Children, Indianapolis, Indiana, USA
| | - Rene Romero
- Emory University School of Medicine, Atlanta, Georgia, USA
| | - Estella M. Alonso
- Ann and Robert H. Lurie Children’s Hospital of Chicago, Chicago, Illinois, USA
| | - Jorge A. Bezerra
- Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Stephen L. Guthery
- University of Utah School of Medicine, Primary Children’s Hospital, Salt Lake City, Utah, USA
| | - Evelyn Hsu
- University of Washington School of Medicine and Seattle Children’s Hospital, Seattle, Washington, USA
| | - Saul J. Karpen
- Emory University School of Medicine, Atlanta, Georgia, USA
| | - Kathleen M. Loomes
- The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Vicky L. Ng
- Hospital for Sick Children, University of Toronto, Toronto, Canada
| | | | - Krupa Mysore
- Texas Children’s Hospital, Baylor College of Medicine, Houston, Texas, USA
| | - Kasper S. Wang
- Children’s Hospital Los Angeles, Los Angeles, California, USA
| | - Marisa W. Friederich
- University of Colorado School of Medicine, Children’s Hospital Colorado, Aurora, Colorado, USA
| | - John C. Magee
- University of Michigan Hospitals and Health Centers, Ann Arbor, Michigan, USA
| | - Ronald J. Sokol
- University of Colorado School of Medicine, Children’s Hospital Colorado, Aurora, Colorado, USA
| |
Collapse
|
24
|
Gill EL, Wang J, Viaene AN, Master SR, Ganetzky RD. Methodologies in Mitochondrial Testing: Diagnosing a Primary Mitochondrial Respiratory Chain Disorder. Clin Chem 2023:7143230. [PMID: 37099687 DOI: 10.1093/clinchem/hvad037] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 03/03/2023] [Indexed: 04/28/2023]
Abstract
BACKGROUND Mitochondria are cytosolic organelles within most eukaryotic cells. Mitochondria generate the majority of cellular energy in the form of adenosine triphosphate (ATP) through oxidative phosphorylation (OxPhos). Pathogenic variants in mitochondrial DNA (mtDNA) and nuclear DNA (nDNA) lead to defects in OxPhos and physiological malfunctions (Nat Rev Dis Primer 2016;2:16080.). Patients with primary mitochondrial disorders (PMD) experience heterogeneous symptoms, typically in multiple organ systems, depending on the tissues affected by mitochondrial dysfunction. Because of this heterogeneity, clinical diagnosis is challenging (Annu Rev Genomics Hum Genet 2017;18:257-75.). Laboratory diagnosis of mitochondrial disease depends on a multipronged analysis that can include biochemical, histopathologic, and genetic testing. Each of these modalities has complementary strengths and limitations in diagnostic utility. CONTENT The primary focus of this review is on diagnosis and testing strategies for primary mitochondrial diseases. We review tissue samples utilized for testing, metabolic signatures, histologic findings, and molecular testing approaches. We conclude with future perspectives on mitochondrial testing. SUMMARY This review offers an overview of the current biochemical, histologic, and genetic approaches available for mitochondrial testing. For each we review their diagnostic utility including complementary strengths and weaknesses. We identify gaps in current testing and possible future avenues for test development.
Collapse
Affiliation(s)
- Emily L Gill
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, United States
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Jing Wang
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Angela N Viaene
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, United States
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Stephen R Master
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Rebecca D Ganetzky
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, United States
- Division of Human Genetics, Children's Hospital of Philadelphia, Mitochondrial Medicine Frontier Program, Philadelphia, PA, United States
- Department of Pediatrics, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
25
|
Schäfer JA, Sutandy FXR, Münch C. Omics-based approaches for the systematic profiling of mitochondrial biology. Mol Cell 2023; 83:911-926. [PMID: 36931258 DOI: 10.1016/j.molcel.2023.02.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 02/06/2023] [Accepted: 02/14/2023] [Indexed: 03/18/2023]
Abstract
Mitochondria are essential for cellular functions such as metabolism and apoptosis. They dynamically adapt to the changing environmental demands by adjusting their protein, nucleic acid, metabolite, and lipid contents. In addition, the mitochondrial components are modulated on different levels in response to changes, including abundance, activity, and interaction. A wide range of omics-based approaches has been developed to be able to explore mitochondrial adaptation and how mitochondrial function is compromised in disease contexts. Here, we provide an overview of the omics methods that allow us to systematically investigate the different aspects of mitochondrial biology. In addition, we show examples of how these methods have provided new biological insights. The emerging use of these toolboxes provides a more comprehensive understanding of the processes underlying mitochondrial function.
Collapse
Affiliation(s)
- Jasmin Adriana Schäfer
- Institute of Biochemistry II, Goethe University Frankfurt, Theodor-Stern-Kai 7, Haus 75, 60590 Frankfurt am Main, Germany
| | - F X Reymond Sutandy
- Institute of Biochemistry II, Goethe University Frankfurt, Theodor-Stern-Kai 7, Haus 75, 60590 Frankfurt am Main, Germany
| | - Christian Münch
- Institute of Biochemistry II, Goethe University Frankfurt, Theodor-Stern-Kai 7, Haus 75, 60590 Frankfurt am Main, Germany.
| |
Collapse
|
26
|
Deen D, Alston CL, Hudson G, Taylor RW, Pyle A. Genomic Strategies in Mitochondrial Diagnostics. Methods Mol Biol 2023; 2615:397-425. [PMID: 36807806 DOI: 10.1007/978-1-0716-2922-2_27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
Pathogenic variants in both mitochondrial and nuclear genes contribute to the clinical and genetic heterogeneity of mitochondrial diseases. There are now pathogenic variants in over 300 nuclear genes linked to human mitochondrial diseases. Nonetheless, diagnosing mitochondrial disease with a genetic outcome remains challenging. However, there are now many strategies that help us to pinpoint causative variants in patients with mitochondrial disease. This chapter describes some of the approaches and recent advancements in gene/variant prioritization using whole-exome sequencing (WES).
Collapse
Affiliation(s)
- Dasha Deen
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Charlotte L Alston
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK.,NHS Highly Specialised Services for Rare Mitochondrial Disorders, Royal Victoria Infirmary, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Gavin Hudson
- Wellcome Centre for Mitochondrial Research, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Robert W Taylor
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK.,NHS Highly Specialised Services for Rare Mitochondrial Disorders, Royal Victoria Infirmary, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Angela Pyle
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK.
| |
Collapse
|
27
|
Thompson K, Stroud DA, Thorburn DR, Taylor RW. Investigation of oxidative phosphorylation activity and complex composition in mitochondrial disease. HANDBOOK OF CLINICAL NEUROLOGY 2023; 194:127-139. [PMID: 36813309 DOI: 10.1016/b978-0-12-821751-1.00008-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
A multidisciplinary approach to the laboratory diagnosis of mitochondrial disease has long been applied, with crucial information provided by deep clinical phenotyping, blood investigations, and biomarker screening as well as histopathological and biochemical testing of biopsy material to support molecular genetic screening. In an era of second and third generation sequencing technologies, traditional diagnostic algorithms for mitochondrial disease have been replaced by gene agnostic, genomic strategies including whole-exome sequencing (WES) and whole-genome sequencing (WGS), increasingly supported by other 'omics technologies (Alston et al., 2021). Whether a primary testing strategy, or one used to validate and interpret candidate genetic variants, the availability of a range of tests aimed at determining mitochondrial function (i.e., the assessment of individual respiratory chain enzyme activities in a tissue biopsy or cellular respiration in a patient cell line) remains an important part of the diagnostic armory. In this chapter, we summarize several disciplines used in the laboratory investigation of suspected mitochondrial disease, including the histopathological and biochemical assessment of mitochondrial function, as well as protein-based techniques to assess the steady-state levels of oxidative phosphorylation (OXPHOS) subunits and assembly of OXPHOS complexes via traditional (immunoblotting) and cutting-edge (quantitative proteomic) approaches.
Collapse
Affiliation(s)
- Kyle Thompson
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - David A Stroud
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, VIC, Australia; Brain and Mitochondrial Research Group, Murdoch Children's Research Institute, Melbourne, VIC, Australia
| | - David R Thorburn
- Brain and Mitochondrial Research Group, Murdoch Children's Research Institute, Melbourne, VIC, Australia; Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia; Mitochondrial Laboratory, Victorian Clinical Genetic Services, Melbourne, VIC, Australia
| | - Robert W Taylor
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom; NHS Highly Specialised Services for Rare Mitochondrial Disorders, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom.
| |
Collapse
|
28
|
Delivery Systems for Mitochondrial Gene Therapy: A Review. Pharmaceutics 2023; 15:pharmaceutics15020572. [PMID: 36839894 PMCID: PMC9964608 DOI: 10.3390/pharmaceutics15020572] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/26/2023] [Accepted: 02/05/2023] [Indexed: 02/11/2023] Open
Abstract
Mitochondria are membrane-bound cellular organelles of high relevance responsible for the chemical energy production used in most of the biochemical reactions of cells. Mitochondria have their own genome, the mitochondrial DNA (mtDNA). Inherited solely from the mother, this genome is quite susceptible to mutations, mainly due to the absence of an effective repair system. Mutations in mtDNA are associated with endocrine, metabolic, neurodegenerative diseases, and even cancer. Currently, therapeutic approaches are based on the administration of a set of drugs to alleviate the symptoms of patients suffering from mitochondrial pathologies. Mitochondrial gene therapy emerges as a promising strategy as it deeply focuses on the cause of mitochondrial disorder. The development of suitable mtDNA-based delivery systems to target and transfect mammalian mitochondria represents an exciting field of research, leading to progress in the challenging task of restoring mitochondria's normal function. This review gathers relevant knowledge on the composition, targeting performance, or release profile of such nanosystems, offering researchers valuable conceptual approaches to follow in their quest for the most suitable vectors to turn mitochondrial gene therapy clinically feasible. Future studies should consider the optimization of mitochondrial genes' encapsulation, targeting ability, and transfection to mitochondria. Expectedly, this effort will bring bright results, contributing to important hallmarks in mitochondrial gene therapy.
Collapse
|
29
|
Wojcik MH, Reuter CM, Marwaha S, Mahmoud M, Duyzend MH, Barseghyan H, Yuan B, Boone PM, Groopman EE, Délot EC, Jain D, Sanchis-Juan A, Starita LM, Talkowski M, Montgomery SB, Bamshad MJ, Chong JX, Wheeler MT, Berger SI, O’Donnell-Luria A, Sedlazeck FJ, Miller DE. Beyond the exome: what's next in diagnostic testing for Mendelian conditions. ARXIV 2023:arXiv:2301.07363v1. [PMID: 36713248 PMCID: PMC9882576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Despite advances in clinical genetic testing, including the introduction of exome sequencing (ES), more than 50% of individuals with a suspected Mendelian condition lack a precise molecular diagnosis. Clinical evaluation is increasingly undertaken by specialists outside of clinical genetics, often occurring in a tiered fashion and typically ending after ES. The current diagnostic rate reflects multiple factors, including technical limitations, incomplete understanding of variant pathogenicity, missing genotype-phenotype associations, complex gene-environment interactions, and reporting differences between clinical labs. Maintaining a clear understanding of the rapidly evolving landscape of diagnostic tests beyond ES, and their limitations, presents a challenge for non-genetics professionals. Newer tests, such as short-read genome or RNA sequencing, can be challenging to order and emerging technologies, such as optical genome mapping and long-read DNA or RNA sequencing, are not available clinically. Furthermore, there is no clear guidance on the next best steps after inconclusive evaluation. Here, we review why a clinical genetic evaluation may be negative, discuss questions to be asked in this setting, and provide a framework for further investigation, including the advantages and disadvantages of new approaches that are nascent in the clinical sphere. We present a guide for the next best steps after inconclusive molecular testing based upon phenotype and prior evaluation, including when to consider referral to a consortium such as GREGoR, which is focused on elucidating the underlying cause of rare unsolved genetic disorders.
Collapse
Affiliation(s)
- Monica H. Wojcik
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142 USA
- Division of Genetics and Genomics, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115 USA
- Division of Newborn Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Chloe M. Reuter
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA 94305 USA
| | - Shruti Marwaha
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA 94305 USA
| | - Medhat Mahmoud
- Human Genome Sequencing Center, Baylor College of Medicine, One Baylor Plaza, Houston TX 77030 USA
| | - Michael H. Duyzend
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142 USA
- Division of Genetics and Genomics, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115 USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114 USA
| | - Hayk Barseghyan
- Center for Genetics Medicine Research, Children’s National Research Institute, Children’s National Hospital, Washington, DC 20010 USA
- Department of Genomics and Precision Medicine, School of Medicine and Health Sciences, George Washington University, Washington, DC 20037 USA
| | - Bo Yuan
- Department of Molecular and Human Genetics and Human Genome Sequencing Center, Baylor College of Medicine, One Baylor Plaza, Houston TX 77030 USA
| | - Philip M. Boone
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142 USA
- Division of Genetics and Genomics, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115 USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114 USA
| | - Emily E. Groopman
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142 USA
- Division of Genetics and Genomics, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115 USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114 USA
| | - Emmanuèle C. Délot
- Department of Genomics and Precision Medicine, School of Medicine and Health Sciences, George Washington University, Washington, DC 20037 USA
- Center for Genetics Medicine Research, Children’s National Research and Innovation Campus, Washington, DC, USA
- Department of Pediatrics, George Washington University, School of Medicine and Health Sciences, George Washington University, Washington, DC 20037 USA
| | - Deepti Jain
- Department of Biostatistics, School of Public Health, University of Washington, Seattle WA 98195 USA
| | - Alba Sanchis-Juan
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142 USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114 USA
| | | | - Lea M. Starita
- Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, WA 98195 USA
- Department of Genome Sciences, University of Washington, Seattle, WA, 98195 USA
| | - Michael Talkowski
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142 USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114 USA
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA
| | - Stephen B. Montgomery
- Department of Biomedical Data Science, Stanford University School of Medicine, Stanford, CA 94305 USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305 USA
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305 USA
| | - Michael J. Bamshad
- Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, WA 98195 USA
- Department of Genome Sciences, University of Washington, Seattle, WA, 98195 USA
- Department of Pediatrics, Division of Genetic Medicine, University of Washington, Seattle, WA 98195 USA
| | - Jessica X. Chong
- Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, WA 98195 USA
- Department of Pediatrics, Division of Genetic Medicine, University of Washington, Seattle, WA 98195 USA
| | - Matthew T. Wheeler
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA 94305 USA
| | - Seth I. Berger
- Center for Genetics Medicine Research and Rare Disease Institute, Children’s National Hospital, Washington, DC 20010 USA
| | - Anne O’Donnell-Luria
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142 USA
- Division of Genetics and Genomics, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115 USA
- Center for Genomic Medicine, Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA 02114 USA
| | - Fritz J. Sedlazeck
- Human Genome Sequencing Center, Baylor College of Medicine, One Baylor Plaza, Houston TX 77030 USA
- Department of Computer Science, Rice University, 6100 Main Street, Houston, TX, 77005 USA
| | - Danny E. Miller
- Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, WA 98195 USA
- Department of Pediatrics, Division of Genetic Medicine, University of Washington, Seattle, WA 98195 USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98195 USA
| |
Collapse
|
30
|
Abstract
Mitochondrial dysfunction, especially perturbation of oxidative phosphorylation and adenosine triphosphate (ATP) generation, disrupts cellular homeostasis and is a surprisingly frequent cause of central and peripheral nervous system pathology. Mitochondrial disease is an umbrella term that encompasses a host of clinical syndromes and features caused by in excess of 300 different genetic defects affecting the mitochondrial and nuclear genomes. Patients with mitochondrial disease can present at any age, ranging from neonatal onset to late adult life, with variable organ involvement and neurological manifestations including neurodevelopmental delay, seizures, stroke-like episodes, movement disorders, optic neuropathy, myopathy, and neuropathy. Until relatively recently, analysis of skeletal muscle biopsy was the focus of diagnostic algorithms, but step-changes in the scope and availability of next-generation sequencing technology and multiomics analysis have revolutionized mitochondrial disease diagnosis. Currently, there is no specific therapy for most types of mitochondrial disease, although clinical trials research in the field is gathering momentum. In that context, active management of epilepsy, stroke-like episodes, dystonia, brainstem dysfunction, and Parkinsonism are all the more important in improving patient quality of life and reducing mortality.
Collapse
Affiliation(s)
- Yi Shiau Ng
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom.
| | - Robert McFarland
- NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
31
|
Colin E, Duffourd Y, Chevarin M, Tisserant E, Verdez S, Paccaud J, Bruel AL, Tran Mau-Them F, Denommé-Pichon AS, Thevenon J, Safraou H, Besnard T, Goldenberg A, Cogné B, Isidor B, Delanne J, Sorlin A, Moutton S, Fradin M, Dubourg C, Gorce M, Bonneau D, El Chehadeh S, Debray FG, Doco-Fenzy M, Uguen K, Chatron N, Aral B, Marle N, Kuentz P, Boland A, Olaso R, Deleuze JF, Sanlaville D, Callier P, Philippe C, Thauvin-Robinet C, Faivre L, Vitobello A. Stepwise use of genomics and transcriptomics technologies increases diagnostic yield in Mendelian disorders. Front Cell Dev Biol 2023; 11:1021920. [PMID: 36926521 PMCID: PMC10011630 DOI: 10.3389/fcell.2023.1021920] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 01/30/2023] [Indexed: 03/08/2023] Open
Abstract
Purpose: Multi-omics offer worthwhile and increasingly accessible technologies to diagnostic laboratories seeking potential second-tier strategies to help patients with unresolved rare diseases, especially patients clinically diagnosed with a rare OMIM (Online Mendelian Inheritance in Man) disease. However, no consensus exists regarding the optimal diagnostic care pathway to adopt after negative results with standard approaches. Methods: In 15 unsolved individuals clinically diagnosed with recognizable OMIM diseases but with negative or inconclusive first-line genetic results, we explored the utility of a multi-step approach using several novel omics technologies to establish a molecular diagnosis. Inclusion criteria included a clinical autosomal recessive disease diagnosis and single heterozygous pathogenic variant in the gene of interest identified by first-line analysis (60%-9/15) or a clinical diagnosis of an X-linked recessive or autosomal dominant disease with no causative variant identified (40%-6/15). We performed a multi-step analysis involving short-read genome sequencing (srGS) and complementary approaches such as mRNA sequencing (mRNA-seq), long-read genome sequencing (lrG), or optical genome mapping (oGM) selected according to the outcome of the GS analysis. Results: SrGS alone or in combination with additional genomic and/or transcriptomic technologies allowed us to resolve 87% of individuals by identifying single nucleotide variants/indels missed by first-line targeted tests, identifying variants affecting transcription, or structural variants sometimes requiring lrGS or oGM for their characterization. Conclusion: Hypothesis-driven implementation of combined omics technologies is particularly effective in identifying molecular etiologies. In this study, we detail our experience of the implementation of genomics and transcriptomics technologies in a pilot cohort of previously investigated patients with a typical clinical diagnosis without molecular etiology.
Collapse
Affiliation(s)
- Estelle Colin
- UFR Des Sciences de Santé, INSERM-Université de Bourgogne UMR1231 GAD "Génétique des Anomalies du Développement", FHUTRANSLAD, Dijon, France.,Service de Génétique Médicale, CHU d'Angers, Angers, France
| | - Yannis Duffourd
- UFR Des Sciences de Santé, INSERM-Université de Bourgogne UMR1231 GAD "Génétique des Anomalies du Développement", FHUTRANSLAD, Dijon, France
| | - Martin Chevarin
- UFR Des Sciences de Santé, INSERM-Université de Bourgogne UMR1231 GAD "Génétique des Anomalies du Développement", FHUTRANSLAD, Dijon, France.,Unité Fonctionnelle Innovation en Diagnostic Génomique des Maladies Rares, FHU-TRANSLAD, CHU Dijon Bourgogne, Dijon, France
| | - Emilie Tisserant
- UFR Des Sciences de Santé, INSERM-Université de Bourgogne UMR1231 GAD "Génétique des Anomalies du Développement", FHUTRANSLAD, Dijon, France
| | - Simon Verdez
- UFR Des Sciences de Santé, INSERM-Université de Bourgogne UMR1231 GAD "Génétique des Anomalies du Développement", FHUTRANSLAD, Dijon, France
| | - Julien Paccaud
- UFR Des Sciences de Santé, INSERM-Université de Bourgogne UMR1231 GAD "Génétique des Anomalies du Développement", FHUTRANSLAD, Dijon, France
| | - Ange-Line Bruel
- UFR Des Sciences de Santé, INSERM-Université de Bourgogne UMR1231 GAD "Génétique des Anomalies du Développement", FHUTRANSLAD, Dijon, France.,Unité Fonctionnelle Innovation en Diagnostic Génomique des Maladies Rares, FHU-TRANSLAD, CHU Dijon Bourgogne, Dijon, France
| | - Frédéric Tran Mau-Them
- UFR Des Sciences de Santé, INSERM-Université de Bourgogne UMR1231 GAD "Génétique des Anomalies du Développement", FHUTRANSLAD, Dijon, France.,Unité Fonctionnelle Innovation en Diagnostic Génomique des Maladies Rares, FHU-TRANSLAD, CHU Dijon Bourgogne, Dijon, France
| | - Anne-Sophie Denommé-Pichon
- UFR Des Sciences de Santé, INSERM-Université de Bourgogne UMR1231 GAD "Génétique des Anomalies du Développement", FHUTRANSLAD, Dijon, France.,Unité Fonctionnelle Innovation en Diagnostic Génomique des Maladies Rares, FHU-TRANSLAD, CHU Dijon Bourgogne, Dijon, France
| | - Julien Thevenon
- UFR Des Sciences de Santé, INSERM-Université de Bourgogne UMR1231 GAD "Génétique des Anomalies du Développement", FHUTRANSLAD, Dijon, France
| | - Hana Safraou
- UFR Des Sciences de Santé, INSERM-Université de Bourgogne UMR1231 GAD "Génétique des Anomalies du Développement", FHUTRANSLAD, Dijon, France.,Unité Fonctionnelle Innovation en Diagnostic Génomique des Maladies Rares, FHU-TRANSLAD, CHU Dijon Bourgogne, Dijon, France
| | - Thomas Besnard
- Service de Génétique Médicale, Nantes Université, CHU Nantes, Nantes, France.,CNRS, INSERM, L'institut du thorax, Nantes Université, CHU Nantes, Nantes, France
| | - Alice Goldenberg
- Department of Genetics and Reference Center for Developmental Disorders, Normandy Center for Genomic and Personalized Medicine, Rouen University Hospital, Rouen, France.,Normandie Univ, UNIROUEN, Inserm U1245, Rouen, France
| | - Benjamin Cogné
- Service de Génétique Médicale, Nantes Université, CHU Nantes, Nantes, France.,CNRS, INSERM, L'institut du thorax, Nantes Université, CHU Nantes, Nantes, France
| | - Bertrand Isidor
- Service de Génétique Médicale, CHU de Nantes, Nantes, France
| | - Julian Delanne
- UFR Des Sciences de Santé, INSERM-Université de Bourgogne UMR1231 GAD "Génétique des Anomalies du Développement", FHUTRANSLAD, Dijon, France.,Centre de Génétique et Centre de référence "Anomalies du Développement et Syndromes Malformatifs", Hôpital d'Enfants, Centre Hospitalier Universitaire de Dijon, Dijon, France
| | - Arthur Sorlin
- UFR Des Sciences de Santé, INSERM-Université de Bourgogne UMR1231 GAD "Génétique des Anomalies du Développement", FHUTRANSLAD, Dijon, France.,Centre de Génétique et Centre de référence "Anomalies du Développement et Syndromes Malformatifs", Hôpital d'Enfants, Centre Hospitalier Universitaire de Dijon, Dijon, France
| | - Sébastien Moutton
- UFR Des Sciences de Santé, INSERM-Université de Bourgogne UMR1231 GAD "Génétique des Anomalies du Développement", FHUTRANSLAD, Dijon, France.,Centre de Génétique et Centre de référence "Anomalies du Développement et Syndromes Malformatifs", Hôpital d'Enfants, Centre Hospitalier Universitaire de Dijon, Dijon, France
| | - Mélanie Fradin
- CHU Rennes, Service de Génétique Clinique, Centre de Référence Maladies Rares, CLAD-Ouest, Rennes, France
| | - Christèle Dubourg
- Service de Génétique Moléculaire et Génomique, CHU Rennes, Rennes, France.,Univ Rennes, CNRS, Institut de Genetique et Developpement de Rennes, UMR 6290, Rennes, France
| | - Magali Gorce
- Service de Génétique Médicale, CHU d'Angers, Angers, France
| | | | - Salima El Chehadeh
- Service de Génétique Médicale, Hôpital de Hautepierre, CHU Strasbourg, Strasbourg, France
| | | | - Martine Doco-Fenzy
- Medical School IFR53, EA3801, Université de Reims Champagne-Ardenne, Reims, France.,Service de Génétique, CHU Reims, Reims, France
| | - Kevin Uguen
- Department of Genetics and Reference Center for Developmental Disorders, Lyon University Hospital, Groupement Hospitalier Est, Hospices Civils de Lyon, Lyon, France.,CHU Brest, Inserm, Univ Brest, EFS, UMR 1078, GGB, Brest, France
| | - Nicolas Chatron
- Department of Genetics and Reference Center for Developmental Disorders, Lyon University Hospital, Groupement Hospitalier Est, Hospices Civils de Lyon, Lyon, France
| | - Bernard Aral
- Laboratoire de Génétique Chromosomique et Moléculaire, Pôle Biologie, CHU de Dijon, Dijon, France
| | - Nathalie Marle
- Laboratoire de Génétique Chromosomique et Moléculaire, Pôle Biologie, CHU de Dijon, Dijon, France
| | - Paul Kuentz
- UFR Des Sciences de Santé, INSERM-Université de Bourgogne UMR1231 GAD "Génétique des Anomalies du Développement", FHUTRANSLAD, Dijon, France.,Oncobiologie Génétique Bioinformatique, PCBio, Centre Hospitalier Universitaire de Besançon, Besançon, France
| | - Anne Boland
- Université Paris-Saclay, CEA, Centre National de Recherche en Génomique Humaine (CNRGH), Evry, France
| | - Robert Olaso
- Université Paris-Saclay, CEA, Centre National de Recherche en Génomique Humaine (CNRGH), Evry, France.,LabEx GENMED (Medical Genomics), Dijon, France
| | - Jean-François Deleuze
- Université Paris-Saclay, CEA, Centre National de Recherche en Génomique Humaine (CNRGH), Evry, France.,LabEx GENMED (Medical Genomics), Dijon, France
| | - Damien Sanlaville
- Department of Genetics and Reference Center for Developmental Disorders, Lyon University Hospital, Groupement Hospitalier Est, Hospices Civils de Lyon, Lyon, France
| | - Patrick Callier
- UFR Des Sciences de Santé, INSERM-Université de Bourgogne UMR1231 GAD "Génétique des Anomalies du Développement", FHUTRANSLAD, Dijon, France.,Laboratoire de Génétique Chromosomique et Moléculaire, Pôle Biologie, CHU de Dijon, Dijon, France
| | - Christophe Philippe
- UFR Des Sciences de Santé, INSERM-Université de Bourgogne UMR1231 GAD "Génétique des Anomalies du Développement", FHUTRANSLAD, Dijon, France.,Unité Fonctionnelle Innovation en Diagnostic Génomique des Maladies Rares, FHU-TRANSLAD, CHU Dijon Bourgogne, Dijon, France
| | - Christel Thauvin-Robinet
- UFR Des Sciences de Santé, INSERM-Université de Bourgogne UMR1231 GAD "Génétique des Anomalies du Développement", FHUTRANSLAD, Dijon, France.,Unité Fonctionnelle Innovation en Diagnostic Génomique des Maladies Rares, FHU-TRANSLAD, CHU Dijon Bourgogne, Dijon, France.,Centre de Référence Maladies Rares "Déficiences Intellectuelles de Causes Rares", Centre de Génétique, FHU-TRANSLAD, CHU Dijon Bourgogne, Dijon, France
| | - Laurence Faivre
- UFR Des Sciences de Santé, INSERM-Université de Bourgogne UMR1231 GAD "Génétique des Anomalies du Développement", FHUTRANSLAD, Dijon, France.,Centre de Génétique et Centre de référence "Anomalies du Développement et Syndromes Malformatifs", Hôpital d'Enfants, Centre Hospitalier Universitaire de Dijon, Dijon, France
| | - Antonio Vitobello
- UFR Des Sciences de Santé, INSERM-Université de Bourgogne UMR1231 GAD "Génétique des Anomalies du Développement", FHUTRANSLAD, Dijon, France.,Unité Fonctionnelle Innovation en Diagnostic Génomique des Maladies Rares, FHU-TRANSLAD, CHU Dijon Bourgogne, Dijon, France
| |
Collapse
|
32
|
Baker MJ, Crameri JJ, Thorburn DR, Frazier AE, Stojanovski D. Mitochondrial biology and dysfunction in secondary mitochondrial disease. Open Biol 2022; 12:220274. [PMID: 36475414 PMCID: PMC9727669 DOI: 10.1098/rsob.220274] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Mitochondrial diseases are a broad, genetically heterogeneous class of metabolic disorders characterized by deficits in oxidative phosphorylation (OXPHOS). Primary mitochondrial disease (PMD) defines pathologies resulting from mutation of mitochondrial DNA (mtDNA) or nuclear genes affecting either mtDNA expression or the biogenesis and function of the respiratory chain. Secondary mitochondrial disease (SMD) arises due to mutation of nuclear-encoded genes independent of, or indirectly influencing OXPHOS assembly and operation. Despite instances of novel SMD increasing year-on-year, PMD is much more widely discussed in the literature. Indeed, since the implementation of next generation sequencing (NGS) techniques in 2010, many novel mitochondrial disease genes have been identified, approximately half of which are linked to SMD. This review will consolidate existing knowledge of SMDs and outline discrete categories within which to better understand the diversity of SMD phenotypes. By providing context to the biochemical and molecular pathways perturbed in SMD, we hope to further demonstrate the intricacies of SMD pathologies outside of their indirect contribution to mitochondrial energy generation.
Collapse
Affiliation(s)
- Megan J. Baker
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Jordan J. Crameri
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3052, Australia
| | - David R. Thorburn
- Murdoch Children's Research Institute, Royal Children's Hospital and Department of Paediatrics, University of Melbourne, Parkville, Victoria 3052, Australia,Victorian Clinical Genetics Services, Royal Children's Hospital, Parkville, Victoria 3052, Australia
| | - Ann E. Frazier
- Murdoch Children's Research Institute, Royal Children's Hospital and Department of Paediatrics, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Diana Stojanovski
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3052, Australia
| |
Collapse
|
33
|
Liu L, Su R, Huang P, Li X, Xiong J, Xiao Y, Mao D, Liu L. Case Report: Evidences of myasthenia and cerebellar atrophy in a chinese patient with novel compound heterozygous MSTO1 variants. Front Genet 2022; 13:947886. [PMID: 36035138 PMCID: PMC9402982 DOI: 10.3389/fgene.2022.947886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 07/05/2022] [Indexed: 11/29/2022] Open
Abstract
Misato Mitochondrial Distribution and Morphology Regulator 1 (MSTO1) is a soluble cytoplasmic protein that regulates mitochondrial dynamics by promoting mitochondrial fusion. Variants in the MSTO1 gene cause a rare disease characterized by early-onset myopathy and cerebellar ataxia, with almost 30 cases reported worldwide. Here we report a case of a 3-year-old boy with novel heterozygous variants of the MSTO1 gene (c.1A>G (p.M1?) and c.727G>C(p.Ala243Pro)). Sequencing data and subsequent validation show that the two variants were inherited from the mother and father of the patient (both were heterozygous). The clinical features are infancy-onset mental and motor retardation, language disorder, dysarthria, scoliosis, cerebellar atrophy, tremor, lower-extremity muscle weakness, elevated muscle enzymes, extensive myopathy with chronic atrophy, hyperventilation lungs, and previously unreported hairy back and enlarged gastrocnemius. Finally, novel heterozygous MSTO1 variants were discovered in this case, which expands the gene spectrum and clinical phenotype of this type of disease, and provides a new direction for future treatment and research. Then we summarize the mutational spectrum, pathological, clinical features and imaging of MSTO1 variants in a cohort of reported 31 patients and discuss the pathogenesis of MSTO1 in humans.
Collapse
Affiliation(s)
- Liqun Liu
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, China
- Department of Pediatric Neurology, Patientren’s Medical Center, Xiangya Hospital of Central South University, Changsha, China
| | - Ruiting Su
- Department of Clinical Medicine, Xiangya Medical College, Central South University, Changsha, China
| | - Peng Huang
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, China
- Department of Pediatric Neurology, Patientren’s Medical Center, Xiangya Hospital of Central South University, Changsha, China
| | - Xingfang Li
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, China
- Department of Pediatric Neurology, Patientren’s Medical Center, Xiangya Hospital of Central South University, Changsha, China
| | - Jie Xiong
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, China
- Department of Pediatric Neurology, Patientren’s Medical Center, Xiangya Hospital of Central South University, Changsha, China
| | - Yangyang Xiao
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, China
- Department of Pediatric Neurology, Patientren’s Medical Center, Xiangya Hospital of Central South University, Changsha, China
| | - Dingan Mao
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, China
- Department of Pediatric Neurology, Patientren’s Medical Center, Xiangya Hospital of Central South University, Changsha, China
| | - Lingjuan Liu
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, China
- Department of Pediatric Neurology, Patientren’s Medical Center, Xiangya Hospital of Central South University, Changsha, China
- *Correspondence: Lingjuan Liu,
| |
Collapse
|
34
|
Alix JJP, Plesia M, Lloyd GR, Dudgeon AP, Kendall CA, Hewamadduma C, Hadjivassiliou M, McDermott CJ, Gorman GS, Taylor RW, Shaw PJ, Day JCC. Rapid identification of human muscle disease with fibre optic Raman spectroscopy. Analyst 2022; 147:2533-2540. [PMID: 35545877 PMCID: PMC9150427 DOI: 10.1039/d1an01932e] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 03/24/2022] [Indexed: 12/13/2022]
Abstract
The diagnosis of muscle disorders ("myopathies") can be challenging and new biomarkers of disease are required to enhance clinical practice and research. Despite advances in areas such as imaging and genomic medicine, muscle biopsy remains an important but time-consuming investigation. Raman spectroscopy is a vibrational spectroscopy application that could provide a rapid analysis of muscle tissue, as it requires no sample preparation and is simple to perform. Here, we investigated the feasibility of using a miniaturised, portable fibre optic Raman system for the rapid identification of muscle disease. Samples were assessed from 27 patients with a final clinico-pathological diagnosis of a myopathy and 17 patients in whom investigations and clinical follow-up excluded myopathy. Multivariate classification techniques achieved accuracies ranging between 71-77%. To explore the potential of Raman spectroscopy to identify different myopathies, patients were subdivided into mitochondrial and non-mitochondrial myopathy groups. Classification accuracies were between 74-89%. Observed spectral changes were related to changes in protein structure. These data indicate fibre optic Raman spectroscopy is a promising technique for the rapid identification of muscle disease that could provide real time diagnostic information. The application of fibre optic Raman technology raises the prospect of in vivo bedside testing for muscle diseases which would significantly streamline the diagnostic pathway of these disorders.
Collapse
Affiliation(s)
- James J P Alix
- Sheffield Institute for Translational Neuroscience, University of Sheffield, UK.
- Neuroscience Institute, University of Sheffield, UK
| | - Maria Plesia
- Sheffield Institute for Translational Neuroscience, University of Sheffield, UK.
| | - Gavin R Lloyd
- Phenome Centre Birmingham, University of Birmingham, UK
| | - Alexander P Dudgeon
- Biophotonics Research Unit, Gloucestershire Hospitals NHS Foundation Trust, UK
- Biomedical Spectroscopy, School of Physics and Astronomy, University of Exeter, UK
| | - Catherine A Kendall
- Biophotonics Research Unit, Gloucestershire Hospitals NHS Foundation Trust, UK
| | - Channa Hewamadduma
- Sheffield Institute for Translational Neuroscience, University of Sheffield, UK.
- Neuroscience Institute, University of Sheffield, UK
- Department of Neurology, Sheffield Teaching Hospitals NHS Foundation Trust, UK
| | | | - Christopher J McDermott
- Sheffield Institute for Translational Neuroscience, University of Sheffield, UK.
- Neuroscience Institute, University of Sheffield, UK
| | - Gráinne S Gorman
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
- NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Robert W Taylor
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
- NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Pamela J Shaw
- Sheffield Institute for Translational Neuroscience, University of Sheffield, UK.
- Neuroscience Institute, University of Sheffield, UK
| | - John C C Day
- Interface Analysis Centre, School of Physics, University of Bristol, UK
| |
Collapse
|
35
|
Ng YS, Lim AZ, Panagiotou G, Turnbull DM, Walker M. Endocrine Manifestations and New Developments in Mitochondrial Disease. Endocr Rev 2022; 43:583-609. [PMID: 35552684 PMCID: PMC9113134 DOI: 10.1210/endrev/bnab036] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Indexed: 11/19/2022]
Abstract
Mitochondrial diseases are a group of common inherited diseases causing disruption of oxidative phosphorylation. Some patients with mitochondrial disease have endocrine manifestations, with diabetes mellitus being predominant but also include hypogonadism, hypoadrenalism, and hypoparathyroidism. There have been major developments in mitochondrial disease over the past decade that have major implications for all patients. The collection of large cohorts of patients has better defined the phenotype of mitochondrial diseases and the majority of patients with endocrine abnormalities have involvement of several other systems. This means that patients with mitochondrial disease and endocrine manifestations need specialist follow-up because some of the other manifestations, such as stroke-like episodes and cardiomyopathy, are potentially life threatening. Also, the development and follow-up of large cohorts of patients means that there are clinical guidelines for the management of patients with mitochondrial disease. There is also considerable research activity to identify novel therapies for the treatment of mitochondrial disease. The revolution in genetics, with the introduction of next-generation sequencing, has made genetic testing more available and establishing a precise genetic diagnosis is important because it will affect the risk for involvement for different organ systems. Establishing a genetic diagnosis is also crucial because important reproductive options have been developed that will prevent the transmission of mitochondrial disease because of mitochondrial DNA variants to the next generation.
Collapse
Affiliation(s)
- Yi Shiau Ng
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
- NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Albert Zishen Lim
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
- NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Grigorios Panagiotou
- Department of Diabetes and Endocrinology, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Doug M Turnbull
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
- NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Mark Walker
- Department of Diabetes and Endocrinology, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
36
|
Stokes JC, Bornstein RL, James K, Park KY, Spencer KA, Vo K, Snell JC, Johnson BM, Morgan PG, Sedensky MM, Baertsch NA, Johnson SC. Leukocytes mediate disease pathogenesis in the Ndufs4(KO) mouse model of Leigh syndrome. JCI Insight 2022; 7:156522. [PMID: 35050903 PMCID: PMC8983133 DOI: 10.1172/jci.insight.156522] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 01/19/2022] [Indexed: 11/23/2022] Open
Abstract
Symmetric, progressive, necrotizing lesions in the brainstem are a defining feature of Leigh syndrome (LS). A mechanistic understanding of the pathogenesis of these lesions has been elusive. Here, we report that leukocyte proliferation is causally involved in the pathogenesis of LS. Depleting leukocytes with a colony-stimulating factor 1 receptor inhibitor disrupted disease progression, including suppression of CNS lesion formation and a substantial extension of survival. Leukocyte depletion rescued diverse symptoms, including seizures, respiratory center function, hyperlactemia, and neurologic sequelae. These data reveal a mechanistic explanation for the beneficial effects of mTOR inhibition. More importantly, these findings dramatically alter our understanding of the pathogenesis of LS, demonstrating that immune involvement is causal in disease. This work has important implications for the mechanisms of mitochondrial disease and may lead to novel therapeutic strategies.
Collapse
Affiliation(s)
- Julia C Stokes
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, United States of America
| | - Rebecca L Bornstein
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, United States of America
| | - Katerina James
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, United States of America
| | - Kyung Yeon Park
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, United States of America
| | - Kira A Spencer
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, United States of America
| | - Katie Vo
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, United States of America
| | - John C Snell
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, United States of America
| | - Brittany M Johnson
- Department of Neurology, University of Washington, Seattle, United States of America
| | - Philip G Morgan
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, United States of America
| | - Margaret M Sedensky
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, United States of America
| | - Nathan A Baertsch
- Department of Pediatrics, University of Washington, Seattle, United States of America
| | - Simon C Johnson
- Department of Neurology, University of Washington, Seattle, United States of America
| |
Collapse
|
37
|
Bellusci M, Paredes-Fuentes AJ, Ruiz-Pesini E, Gómez B, Martín MA, Montoya J, Artuch R. The Genetic Landscape of Mitochondrial Diseases in Spain: A Nationwide Call. Genes (Basel) 2021; 12:genes12101590. [PMID: 34680984 PMCID: PMC8535857 DOI: 10.3390/genes12101590] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 09/30/2021] [Accepted: 10/05/2021] [Indexed: 01/21/2023] Open
Abstract
The frequency of mitochondrial diseases (MD) has been scarcely documented, and only a few studies have reported data in certain specific geographical areas. In this study, we arranged a nationwide call in Spain to obtain a global estimate of the number of cases. A total of 3274 cases from 49 Spanish provinces were reported by 39 centres. Excluding duplicated and unsolved cases, 2761 patients harbouring pathogenic mutations in 140 genes were recruited between 1990 and 2020. A total of 508 patients exhibited mutations in nuclear DNA genes (75% paediatric patients) and 1105 in mitochondrial DNA genes (33% paediatric patients). A further 1148 cases harboured mutations in the MT-RNR1 gene (56% paediatric patients). The number of reported cases secondary to nuclear DNA mutations increased in 2014, owing to the implementation of next-generation sequencing technologies. Between 2014 and 2020, excepting MT-RNR1 cases, the incidence was 6.34 (95% CI: 5.71–6.97) cases per million inhabitants at the paediatric age and 1.36 (95% CI: 1.22–1.50) for adults. In conclusion, this is the first study to report nationwide epidemiological data for MD in Spain. The lack of identification of a remarkable number of mitochondrial genes necessitates the systematic application of high-throughput technologies in the routine diagnosis of MD.
Collapse
Affiliation(s)
- Marcello Bellusci
- Reference Centre for Inherited Metabolic Disorders, 12 de Octubre University Hospital, 28041 Madrid, Spain;
- Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain; (E.R.-P.); (B.G.)
| | - Abraham J Paredes-Fuentes
- Clinical Biochemistry Department, Institut de Recerca Sant Joan de Déu, Hospital Sant Joan de Déu, Esplugues de Llobregat, 08950 Barcelona, Spain;
| | - Eduardo Ruiz-Pesini
- Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain; (E.R.-P.); (B.G.)
- Department of Biochemistry and Molecular Biology, Institute for Health Research of Aragón (IISAragón), University of Zaragoza, 50009 Zaragoza, Spain
| | - Beatriz Gómez
- Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain; (E.R.-P.); (B.G.)
| | | | - Miguel A Martín
- Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain; (E.R.-P.); (B.G.)
- Mitochondrial & Neuromuscular Disorders Laboratory, Instituto de Investigación Sanitaria 12 de Octubre (imas12), 28041 Madrid, Spain
- Correspondence: (M.A.M.); (J.M.); (R.A.)
| | - Julio Montoya
- Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain; (E.R.-P.); (B.G.)
- Department of Biochemistry and Molecular Biology, Institute for Health Research of Aragón (IISAragón), University of Zaragoza, 50009 Zaragoza, Spain
- Correspondence: (M.A.M.); (J.M.); (R.A.)
| | - Rafael Artuch
- Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain; (E.R.-P.); (B.G.)
- Clinical Biochemistry Department, Institut de Recerca Sant Joan de Déu, Hospital Sant Joan de Déu, Esplugues de Llobregat, 08950 Barcelona, Spain;
- Correspondence: (M.A.M.); (J.M.); (R.A.)
| |
Collapse
|
38
|
Gayathri N, Deepha S, Sharma S. Diagnosis of primary mitochondrial disorders -Emphasis on myopathological aspects. Mitochondrion 2021; 61:69-84. [PMID: 34592422 DOI: 10.1016/j.mito.2021.09.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/03/2021] [Accepted: 09/22/2021] [Indexed: 12/29/2022]
Abstract
Mitochondrial disorders are one of the most common neurometabolic disorders affecting all age groups. The phenotype-genotype heterogeneity in these disorders can be attributed to the dual genetic control on mitochondrial functions, posing a challenge for diagnosis. Though the advancement in the high-throughput sequencing and other omics platforms resulted in a "genetics-first" approach, the muscle biopsy remains the benchmark in most of the mitochondrial disorders. This review focuses on the myopathological aspects of primary mitochondrial disorders. The utility of muscle biopsy is not limited to analyse the structural abnormalities; rather it also proves to be a potential tool to understand the deranged sub-cellular functions.
Collapse
Affiliation(s)
- Narayanappa Gayathri
- Department of Neuropathology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore 560 029, India.
| | - Sekar Deepha
- Department of Neuropathology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore 560 029, India
| | - Shivani Sharma
- Department of Neuropathology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore 560 029, India
| |
Collapse
|
39
|
Lepelley A, Wai T, Crow YJ. Mitochondrial Nucleic Acid as a Driver of Pathogenic Type I Interferon Induction in Mendelian Disease. Front Immunol 2021; 12:729763. [PMID: 34512665 PMCID: PMC8428523 DOI: 10.3389/fimmu.2021.729763] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 08/05/2021] [Indexed: 12/17/2022] Open
Abstract
The immune response to viral infection involves the recognition of pathogen-derived nucleic acids by intracellular sensors, leading to type I interferon (IFN), and downstream IFN-stimulated gene, induction. Ineffective discrimination of self from non-self nucleic acid can lead to autoinflammation, a phenomenon implicated in an increasing number of disease states, and well highlighted by the group of rare genetic disorders referred to as the type I interferonopathies. To understand the pathogenesis of these monogenic disorders, and polyfactorial diseases associated with pathogenic IFN upregulation, such as systemic lupus erythematosus and dermatomyositis, it is important to define the self-derived nucleic acid species responsible for such abnormal IFN induction. Recently, attention has focused on mitochondria as a novel source of immunogenic self nucleic acid. Best appreciated for their function in oxidative phosphorylation, metabolism and apoptosis, mitochondria are double membrane-bound organelles that represent vestigial bacteria in the cytosol of eukaryotic cells, containing their own DNA and RNA enclosed within the inner mitochondrial membrane. There is increasing recognition that a loss of mitochondrial integrity and compartmentalization can allow the release of mitochondrial nucleic acid into the cytosol, leading to IFN induction. Here, we provide recent insights into the potential of mitochondrial-derived DNA and RNA to drive IFN production in Mendelian disease. Specifically, we summarize current understanding of how nucleic acids are detected as foreign when released into the cytosol, and then consider the findings implicating mitochondrial nucleic acid in type I interferonopathy disease states. Finally, we discuss the potential for IFN-driven pathology in primary mitochondrial disorders.
Collapse
Affiliation(s)
- Alice Lepelley
- Université de Paris, Imagine Institute, Laboratory of Neurogenetics and Neuroinflammation, Inserm UMR 1163, Paris, France
| | - Timothy Wai
- Mitochondrial Biology Group, Institut Pasteur CNRS UMR 3691, Paris, France
| | - Yanick J Crow
- Université de Paris, Imagine Institute, Laboratory of Neurogenetics and Neuroinflammation, Inserm UMR 1163, Paris, France.,Medical Research Council Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
40
|
Tang J, Zhuo Y, Li Y. Effects of Iron and Zinc on Mitochondria: Potential Mechanisms of Glaucomatous Injury. Front Cell Dev Biol 2021; 9:720288. [PMID: 34447755 PMCID: PMC8383321 DOI: 10.3389/fcell.2021.720288] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 07/22/2021] [Indexed: 12/26/2022] Open
Abstract
Glaucoma is the most substantial cause of irreversible blinding, which is accompanied by progressive retinal ganglion cell damage. Retinal ganglion cells are energy-intensive neurons that connect the brain and retina, and depend on mitochondrial homeostasis to transduce visual information through the brain. As cofactors that regulate many metabolic signals, iron and zinc have attracted increasing attention in studies on neurons and neurodegenerative diseases. Here, we summarize the research connecting iron, zinc, neuronal mitochondria, and glaucomatous injury, with the aim of updating and expanding the current view of how retinal ganglion cells degenerate in glaucoma, which can reveal novel potential targets for neuroprotection.
Collapse
Affiliation(s)
- Jiahui Tang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Yehong Zhuo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Yiqing Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
41
|
Dabravolski SA, Bezsonov EE, Orekhov AN. The role of mitochondria dysfunction and hepatic senescence in NAFLD development and progression. Biomed Pharmacother 2021; 142:112041. [PMID: 34411916 DOI: 10.1016/j.biopha.2021.112041] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/29/2021] [Accepted: 08/09/2021] [Indexed: 02/07/2023] Open
Abstract
Senescence is a crucial player in several metabolic disorders and chronic inflammatory diseases. Recent data prove the involvement of hepatocyte senescence in the development of NAFLD (non-alcoholic fatty liver disease). As the main energy and ROS (reactive oxygen species) producing organelle, mitochondria play the central role in accelerated senescence and diseases development. In this review, we focus on the role of regulation of mitochondrial Ca2+ homeostasis, NAD+/NADH ratio, UPRmt (mitochondrial unfolded protein response), phospholipids and fatty acid oxidation in hepatic senescence, lifespan and NAFLD disease susceptibility. Additionally, the involvement of mitochondrial and nuclear mutations in lifespan-modulation and NAFLD development is discussed. While nuclear and mitochondria DNA mutations and SNPs (single nucleotide polymorphisms) can be used as effective diagnostic markers and targets for treatments, advanced age should be considered as an independent risk factor for NAFLD development.
Collapse
Affiliation(s)
- Siarhei A Dabravolski
- Department of Clinical Diagnostics, Vitebsk State Academy of Veterinary Medicine [UO VGAVM], 7/11 Dovatora str., 210026 Vitebsk, Belarus.
| | - Evgeny E Bezsonov
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Institute of Human Morphology, 3 Tsyurupa Street, 117418 Moscow, Russia; Laboratory of Angiopathology, The Institute of General Pathology and Pathophysiology, 8 Baltiyskaya Street, 125315 Moscow, Russia.
| | - Alexander N Orekhov
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Institute of Human Morphology, 3 Tsyurupa Street, 117418 Moscow, Russia; Laboratory of Angiopathology, The Institute of General Pathology and Pathophysiology, 8 Baltiyskaya Street, 125315 Moscow, Russia; Department of Basic Research, Institute for Atherosclerosis Research, Moscow 121609, Russia.
| |
Collapse
|
42
|
Dorado G, Gálvez S, Rosales TE, Vásquez VF, Hernández P. Analyzing Modern Biomolecules: The Revolution of Nucleic-Acid Sequencing - Review. Biomolecules 2021; 11:1111. [PMID: 34439777 PMCID: PMC8393538 DOI: 10.3390/biom11081111] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/12/2021] [Accepted: 07/23/2021] [Indexed: 02/06/2023] Open
Abstract
Recent developments have revolutionized the study of biomolecules. Among them are molecular markers, amplification and sequencing of nucleic acids. The latter is classified into three generations. The first allows to sequence small DNA fragments. The second one increases throughput, reducing turnaround and pricing, and is therefore more convenient to sequence full genomes and transcriptomes. The third generation is currently pushing technology to its limits, being able to sequence single molecules, without previous amplification, which was previously impossible. Besides, this represents a new revolution, allowing researchers to directly sequence RNA without previous retrotranscription. These technologies are having a significant impact on different areas, such as medicine, agronomy, ecology and biotechnology. Additionally, the study of biomolecules is revealing interesting evolutionary information. That includes deciphering what makes us human, including phenomena like non-coding RNA expansion. All this is redefining the concept of gene and transcript. Basic analyses and applications are now facilitated with new genome editing tools, such as CRISPR. All these developments, in general, and nucleic-acid sequencing, in particular, are opening a new exciting era of biomolecule analyses and applications, including personalized medicine, and diagnosis and prevention of diseases for humans and other animals.
Collapse
Affiliation(s)
- Gabriel Dorado
- Dep. Bioquímica y Biología Molecular, Campus Rabanales C6-1-E17, Campus de Excelencia Internacional Agroalimentario (ceiA3), Universidad de Córdoba, 14071 Córdoba, Spain
| | - Sergio Gálvez
- Dep. Lenguajes y Ciencias de la Computación, Boulevard Louis Pasteur 35, Universidad de Málaga, 29071 Málaga, Spain;
| | - Teresa E. Rosales
- Laboratorio de Arqueobiología, Avda. Universitaria s/n, Universidad Nacional de Trujillo, 13011 Trujillo, Peru;
| | - Víctor F. Vásquez
- Centro de Investigaciones Arqueobiológicas y Paleoecológicas Andinas Arqueobios, Martínez de Companón 430-Bajo 100, Urbanización San Andres, 13088 Trujillo, Peru;
| | - Pilar Hernández
- Instituto de Agricultura Sostenible (IAS), Consejo Superior de Investigaciones Científicas (CSIC), Alameda del Obispo s/n, 14080 Córdoba, Spain;
| |
Collapse
|