1
|
Ladas EJ, Collier W, Park H, Auletta JJ, Dvorak CC, August A, Esbenshade AJ, Bhatia M, Fisher BT, Levine JE, Pollock BH, Uhlemann AC, Verneris MR, Walters M, Yu L, Nieder M. A Randomized Clinical Trial Evaluating Lactiplantibacillus Plantarum for the Prevention of GI aGvHD: A Report From the Children's Oncology Group (ACCL1633). Transplant Cell Ther 2025:S2666-6367(25)01141-8. [PMID: 40306553 DOI: 10.1016/j.jtct.2025.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 04/04/2025] [Accepted: 04/12/2025] [Indexed: 05/02/2025]
Abstract
Gastrointestinal (GI) acute graft-versus-host disease (aGvHD) is a leading cause of non-relapse mortality following allogeneic hematopoietic cell transplant (alloHCT). Previous studies have suggested that the intestinal microbiome may influence the risk of GI aGvHD. We performed a Phase 3, randomized, placebo-controlled clinical trial to examine the effect of L. plantarum 299v (LBP 299v) in preventing GI aGvHD. Participants (N = 161 evaluable participants) received LBP 299v or placebo from the start of conditioning therapy to 56 days post alloHCT (D56). Blood, stool, and clinical data were collected until 120 days post-transplant (D120). The D120 cumulative incidences of stages 1-4 GI aGvHD were 16% and 15% (P = .54), and overall grades 2-4 aGvHD were 26% and 29% (P = .95), LBP 299v and placebo groups, respectively. No patients developed L. plantarum bacteremia and no difference in serious adverse events was reported (P = 1.00). Administration of LBP 299v was associated with increased microbial diversity at D0 (P = .02) and reduced mucosal barrier injury at D7 (P = .02). Microbial signatures significantly differed between the groups; however, this was not associated with the investigated clinical outcomes. We conclude that administration of LBP 299v is safe among children and adolescents undergoing alloHCT but ineffective at preventing GI aGvHD.
Collapse
Affiliation(s)
- E J Ladas
- Division of Pediatric Hematology/Oncology/Stem Cell Transplant, Columbia University Irving Medical Center, New York, New York.
| | - W Collier
- Division of Biostatistics, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - H Park
- Department of Medicine, Division of Infectious Disease, Columbia University Irving Medical Center, New York, New York; Columbia University Microbiome and Pathogen Genomics Core, New York, New York
| | - J J Auletta
- Center for International Blood and Marrow Transplant Research (CIBMTR) NMDP, Minneapolis, Minnesota; Divisions of Hematology/Oncology/BMT and Infectious Diseases, Nationwide Children's Hospital, Columbus, Ohio
| | - C C Dvorak
- Division of Pediatric Allergy, Immunology, and Bone Marrow Transplantation, University of California San Francisco, San Francisco, California
| | - A August
- Health Information Technology, Children's Mercy Kansas City, Kansas City, Missouri
| | - A J Esbenshade
- Division of Pediatric Hematology/Oncology, Vanderbilt University Medical Center and the Vanderbilt Ingram Cancer Center, Nashville, Tennessee
| | - M Bhatia
- Division of Pediatric Hematology/Oncology/Stem Cell Transplant, Columbia University Irving Medical Center, New York, New York
| | - B T Fisher
- Division of Infectious Diseases, Children's Hospital of Philadelphia and Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia Pennsylvania
| | - J E Levine
- The Tisch Cancer Institute and Division of Hematology/Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - B H Pollock
- Department of Public Health Sciences, University of California Davis School of Medicine, Davis, California
| | - A C Uhlemann
- Department of Medicine, Division of Infectious Disease, Columbia University Irving Medical Center, New York, New York; Columbia University Microbiome and Pathogen Genomics Core, New York, New York
| | - M R Verneris
- Children's Cancer and Blood Disorders, Department of Pediatric, University of Colorado, Boulder, Colorado
| | - M Walters
- Division of Pediatric Hematology/Oncology/Stem Cell Transplant, Columbia University Irving Medical Center, New York, New York
| | - L Yu
- Division of Hematology-Oncology/HSCT, LSUHSC/Children's Hospital, New Orleans, Louisiana
| | - M Nieder
- Division of Blood and Marrow Transplant and Cellular Immunotherapy, Moffitt Cancer Center, Tampa, Florida
| |
Collapse
|
2
|
Sohouli MH, Zahmatkesh A, Khan Z, Behfar M, Hamidieh AA, Rohani P. Gut microbiota variation and diversity and gut graft-versus-host disease (GVHD) in pediatrics: A systematic review. Transpl Immunol 2025; 89:102199. [PMID: 39947487 DOI: 10.1016/j.trim.2025.102199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 02/05/2025] [Accepted: 02/09/2025] [Indexed: 02/16/2025]
Abstract
BACKGROUND Allogeneic hematopoietic stem cell transplantation (HSCT) provides children with life-threatening conditions an opportunity for survival. Complications from graft-versus-host disease (GVHD) are a major source of morbidity and death, recently linked to gut dysbiosis in the hematopoietic stem cell transplantation (HSCT) population. But so far, no comprehensive study has been conducted to investigate this relationship in the children population. In this systematic study, we investigated the Gut microbiota variation and diversity and gut GVHD in pediatrics. METHODS A systematic review according to PRISMA standards was performed from inception till August 2024. Out of 568 originally chosen publications, 10 studies involving 490 pediatric subjects satisfied the eligibility criteria and were included. RESULTS The findings obtained from the study included in the present systematic study mostly indicated the use of combined treatments including Busulfan, Cyclophosphamide, and total body irradiation and in some studies the use of anti-thymocyte globulin and Melphalan as conditioning regimens. In addition, out of 10 reviewed studies, 9 reported a significant decrease in gut microbiota diversity following GVHD. However, in all studies, an increased variation was reported. So that most of the studies showed a decrease in the levels of beneficial bacteria and producers of short-chain fatty acid products in the intestine such as Ruminococcaceae and Enterococcus, which is also observed in the intestinal microbiota population of healthy people. CONCLUSION As a result, our findings indicated a decrease in diversity as well as a change in intestinal microbiota in children with GVHD under HSCT in most of the studies.
Collapse
Affiliation(s)
- Mohammad Hassan Sohouli
- Pediatric Gastroenterology and Hepatology Research Center, Pediatrics Centre of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Arefeh Zahmatkesh
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahid Khan
- Cardiology Specialist Registrar, Bart's Heart Centre London, UK
| | - Maryam Behfar
- Pediatric Cell and Gene Therapy Research Center, Gene, Cell & Tissue Research Institute, Tehran University of Medical Sciences, Tehran 14194, Iran
| | - Amir Ali Hamidieh
- Pediatric Cell and Gene Therapy Research Center, Gene, Cell & Tissue Research Institute, Tehran University of Medical Sciences, Tehran 14194, Iran.
| | - Pejman Rohani
- Pediatric Gastroenterology and Hepatology Research Center, Pediatrics Centre of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Todor SB, Ichim C. Microbiome Modulation in Pediatric Leukemia: Impact on Graft-Versus-Host Disease and Treatment Outcomes: A Narrative Review. CHILDREN (BASEL, SWITZERLAND) 2025; 12:166. [PMID: 40003268 PMCID: PMC11854176 DOI: 10.3390/children12020166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 01/18/2025] [Accepted: 01/27/2025] [Indexed: 02/27/2025]
Abstract
The gut microbiome significantly influences the outcomes of pediatric leukemia, particularly in patients undergoing hematopoietic stem cell transplantation (HSCT). Dysbiosis, caused by chemotherapy, antibiotics, and immune system changes, contributes to complications such as graft-versus-host disease (GVHD), gastrointestinal issues, and infections. Various microbiome-related interventions, including prebiotics, probiotics, postbiotics, and fecal microbiota transplantation (FMT), have shown potential in mitigating these complications. Specific microbial signatures have been linked to GVHD risk, and interventions like inulin, Lactobacillus, and SCFAs (short-chain fatty acids), particularly butyrate, may help modulate the immune system and improve outcomes. FMT, while showing promising results in restoring microbial balance and alleviating GVHD, still requires careful monitoring due to potential risks in immunocompromised patients. Despite positive findings, more research is needed to optimize microbiome-based therapies and ensure their safety and efficacy in pediatric leukemia care.
Collapse
Affiliation(s)
- Samuel Bogdan Todor
- Faculty of Medicine, University Lucian Blaga of Sibiu, 550024 Sibiu, Romania;
| | | |
Collapse
|
4
|
Hakalehto E, Laatikainen R, Pesola J, Dahlquist E, Everett J. Mixed Strain Fermentation and Metabonomics for Solving Issues of Bioproduction. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2025; 189:71-89. [PMID: 39586841 DOI: 10.1007/10_2024_266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
In the research of mixed microbial cultures, the numbers and identifications of individual strains are often only partially unknown. Their metabolic capabilities are also not wholly predictable especially if the joint potential is to be understood. In these kinds of situations, deeper insight into the variable microbial communities cannot be obtained by genetic analysis only. Even more critical than the taxonomic aspect is usually the functional metabolic outcome of the mixed flora in question. The results from such studies as NMR (nucleic magnetic resonance) give a precise view from versatile angles into the biochemical activities during the multiparametric metabolic responses of the microflora as a whole.Originally, metabonomics was mainly used for the pathophysiological research of various microbes or for recording the genetic or biochemical modifications of mixed microflora. This approach offers a tool for monitoring changes in microscopic or otherwise confined ecosystems or at multiple locations from which representative specimens are difficult to obtain. It also offers repeatability in various processes. In microbiological studies, the research group can attain overall views on variable populations and their alterations in time and space.
Collapse
Affiliation(s)
- Elias Hakalehto
- University of Helsinki, Helsinki, Finland
- University of Eastern Finland, Kuopio, Finland
- Finnoflag Oy, Kuopio, Finland
| | | | - Jouni Pesola
- University of Eastern Finland, Kuopio, Finland
- Department of Paediatrics, Kuopio University Hospital, Kuopio, Finland
| | - Erik Dahlquist
- School of Business Society and Engineering, Division of Sustainable Energy Systems, Mälardalen University, Västerås, Sweden
| | - Jeremy Everett
- School of Science within the Faculty of Engineering and Science, University of Greenwich, London, UK
| |
Collapse
|
5
|
Hoogendijk R, van den Broek TJM, Lee H, Mueller S, Kline C, Bianco J, Top J, de Zoete MR, Kester L, Calkoen F, van der Lugt J. Omnigene-Gut tm ensures fecal microbiome stability in the pediatric population. AMB Express 2024; 14:132. [PMID: 39641864 PMCID: PMC11624167 DOI: 10.1186/s13568-024-01798-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 11/23/2024] [Indexed: 12/07/2024] Open
Abstract
Increasing evidence exists that the gut microbiome influences toxicity as well as outcomes in a variety of cancers. To investigate the role of the gut microbiome in pediatric neuro-oncology, microbiome analysis has been included in multiple prospective pediatric neuro-oncology clinical trials (NCT05009992, NCT04732065, NCT04775485). In these trials, the OMNIgene-GUTtm preservation tubes are used for the collection of the feces. OMNIgene-GUTtm has demonstrated reliability in preserving the composition of the gut microbiome in adults; however, its validation for use in the pediatric population remains limited. Therefore, we compared the quality of the DNA by 16S rRNA gene sequencing after various methods of stabilizing fecal samples in pediatric populations, from the direct freeze method at - 80 °C to preserving samples with OMNIgene-GUTtm at room temperature for various durations. Our results showed that there were no statistically significant differences between the alpha-diversity, and beta-diversity. However, pairwise differential abundance analyses demonstrated that OMNIgene-GUT™ is superior in maintaining microbial community structure compared to storing samples without any preservation method. With the OMNIgene-GUTtm's stabilization of the fecal samples being superior and its ease-of-use benefits, it proves to be a valid and ideal method of stabilizing fecal samples for current and future pediatric clinical trials.
Collapse
Affiliation(s)
- Raoull Hoogendijk
- Princess Máxima Center for Pediatric Oncology, 3584 CS, Utrecht, The Netherlands.
- Department of Neurology, Brain Tumor Center, Erasmus MC Cancer Institute, University Medical Center, 3015 GD, Rotterdam, The Netherlands.
| | | | - Hyunju Lee
- Department of Pediatrics, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Sabine Mueller
- Department of Pediatrics, University of California San Francisco, San Francisco, CA, 94143, USA
- Neurology, University of California San Francisco, San Francisco, CA, 94143, USA
- Neurological Surgery, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Cassie Kline
- Division of Oncology, Department of Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - John Bianco
- Princess Máxima Center for Pediatric Oncology, 3584 CS, Utrecht, The Netherlands
| | - Janetta Top
- Department of Medical Microbiology, University Medical Center, Utrecht, 3584 CX, Utrecht, The Netherlands
| | - Marcel R de Zoete
- Department of Medical Microbiology, University Medical Center, Utrecht, 3584 CX, Utrecht, The Netherlands
| | - Lennart Kester
- Princess Máxima Center for Pediatric Oncology, 3584 CS, Utrecht, The Netherlands
| | - Friso Calkoen
- Princess Máxima Center for Pediatric Oncology, 3584 CS, Utrecht, The Netherlands
| | - Jasper van der Lugt
- Princess Máxima Center for Pediatric Oncology, 3584 CS, Utrecht, The Netherlands.
| |
Collapse
|
6
|
Webster CI, Withycombe JS, Bhutada JS, Bai J. Review of the microbiome and metabolic pathways associated with psychoneurological symptoms in children with cancer. Asia Pac J Oncol Nurs 2024; 11:100535. [PMID: 39104728 PMCID: PMC11298867 DOI: 10.1016/j.apjon.2024.100535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 06/11/2024] [Indexed: 08/07/2024] Open
Abstract
Children with cancer often endure a range of psychoneurological symptoms (PNS), including pain, fatigue, cognitive impairment, anxiety, depressive symptoms, and sleep disturbance. Despite their prevalence, the underlying pathophysiology of PNS remains unclear. Hypotheses suggest an interplay between the gut microbiome and the functional metabolome, given the immune, neurological, and inflammatory influences these processes exert. This mini-review aims to provide a synopsis of the literature that examines the relationship between microbiome-metabolome pathways and PNS in children with cancer, drawing insights from the adult population when applicable. While there is limited microbiome research in the pediatric population, promising results in adult cancer patients include an association between lower microbial diversity and compositional changes, including decreased abundance of the beneficial microbes Fusicatenibacter, Ruminococcus, and Odoribacter, and more PNS. In pediatric patients, associations between peptide, tryptophan, carnitine shuttle, and gut microbial metabolism pathways and PNS outcomes were found. Utilizing multi-omics methods that combine microbiome and metabolome analyses provide insights into the functional capacity of microbiomes and their associated microbial metabolites. In children with cancer receiving chemotherapy, increased abundances of Intestinibacter and Megasphaera correlated with six metabolic pathways, notably carnitine shuttle and tryptophan metabolism. Interventions that target the underlying microbiome-metabolome pathway may be effective in reducing PNS, including the use of pre- and probiotics, fecal microbiome transplantation, dietary modifications, and increased physical activity. Future multi-omics research is needed to corroborate the associations between the microbiome, metabolome, and PNS outcomes in the pediatric oncology population.
Collapse
Affiliation(s)
- Caitlin I. Webster
- Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, GA, USA
| | | | - Jessica Sheth Bhutada
- Cancer and Blood Disease Institute, Children's Hospital Los Angeles, Los Angeles, CA, USA
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Jinbing Bai
- Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, GA, USA
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
| |
Collapse
|
7
|
Elgarten CW, Margolis EB, Kelly MS. The Microbiome and Pediatric Transplantation. J Pediatric Infect Dis Soc 2024; 13:S80-S89. [PMID: 38417089 PMCID: PMC10901476 DOI: 10.1093/jpids/piad062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 08/25/2023] [Indexed: 03/01/2024]
Abstract
The microbial communities that inhabit our bodies have been increasingly linked to host physiology and pathophysiology. This microbiome, through its role in colonization resistance, influences the risk of infections after transplantation, including those caused by multidrug-resistant organisms. In addition, through both direct interactions with the host immune system and via the production of metabolites that impact local and systemic immunity, the microbiome plays an important role in the establishment of immune tolerance after transplantation, and conversely, in the development of graft-versus-host disease and graft rejection. This review offers a comprehensive overview of the evidence for the role of the microbiome in hematopoietic cell and solid organ transplant complications, drivers of microbiome shift during transplantation, and the potential of microbiome-based therapies to improve pediatric transplantation outcomes.
Collapse
Affiliation(s)
- Caitlin W Elgarten
- Division of Oncology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Elisa B Margolis
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
- Department of Pediatrics, University of Tennessee Health Sciences Center, Memphis, Tennessee, USA
| | - Matthew S Kelly
- Departments of Pediatrics and Molecular Genetics & Microbiology, Duke University School of Medicine, Durham, North Carolina, USA
| |
Collapse
|
8
|
Patel PA, Teherani MF, Xiang Y, Bernardo V, Chandrakasan S, Goggin KP, Haight A, Horwitz E, Liang WH, Parikh SH, Schoettler ML, Spencer K, Stenger E, Watkins B, Williams KM, Leung K, Jaggi P, Qayed M. Short-Course Empiric Antibiotics in Children Undergoing Allogeneic Hematopoietic Cell Transplantation. Transplant Cell Ther 2023; 29:778.e1-778.e6. [PMID: 37739225 DOI: 10.1016/j.jtct.2023.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/13/2023] [Accepted: 09/16/2023] [Indexed: 09/24/2023]
Abstract
Fever is common in children undergoing hematopoietic cell transplantation (HCT). Empiric antibiotic (EA) therapy is initiated and often continued until neutrophil engraftment. Prolonged antibiotic exposure reduces microbiome diversity and causes overgrowth of pathogenic organisms, leading to such complications as infections from antibiotic-resistant organisms and Clostridium difficile colitis. Shorter courses of EA therapy have been studied in adults undergoing HCT without significant safety concerns, but data in children are lacking. We instituted a single-center preintervention/ postintervention quality improvement (QI) project to assess the feasibility of short-course EA therapy for first fever in patients undergoing HCT. We aimed to reduce the median duration of broad-spectrum antibiotic use in eligible patients from 20 days in 2020 to 10 days in 2021. Patients were eligible for the intervention, limiting EAs to 7 days for first fever, if they were admitted for their first allogeneic HCT, were afebrile for >24 hours, had no infection requiring systemic treatment, and were hemodynamically stable. Outcome measures included days of EA therapy for first fever and total broad-spectrum antibiotic use during the period of hospitalization, defined as the time from the start of conditioning to 30 days after HCT or hospital discharge, whichever occurred first. Balancing measures included bloodstream infection (BSI), fever, and intensive care (ICU) admission within 3 days of stopping EA therapy. Project criteria were applied retrospectively to patients who underwent HCT in 2020 to construct a preintervention short-course-eligible cohort. During the intervention period, 41 patients underwent allogeneic HCT, of whom 17 (41%) were eligible for short-course EA therapy. Among eligible patients, the median age was 5.3 years, 47% had an underlying malignancy, and 88% received myeloablative conditioning. There were no differences in demographic or HCT characteristics between patients eligible for short-course EA during the intervention and preintervention period (n = 24). The short-course EA schedule was adhered to by 14 of the 17 eligible patients (82%). The duration of EA for first fever and total broad-spectrum antibiotic use was significantly decreased in the short-course EA-eligible patients compared to the preintervention cohort, from a median of 17 days to 8 days and from 20 days to 10 days, respectively (P < .01). Of the 14 patients adhering to short-course EA, 2 experienced a balancing measure of recurrent fever requiring resumption of EA, but no infection was identified. There were no BSIs, ICU admissions, or deaths during the hospitalization period in patients who received short-course EA. In this single-center QI project, short-course EA for initial fever was successfully applied to children undergoing allogeneic HCT using strict criteria and led to a significant decrease in broad-spectrum antibiotic use during hospitalization. These results should be validated in a prospective clinical trial to include the impact of short-course EA on antibiotic-resistant organisms, the intestinal microbiome, and HCT outcomes.
Collapse
Affiliation(s)
- Pratik A Patel
- Aflac Cancer & Blood Disorders Center of Children's Healthcare of Atlanta and Emory University Department of Pediatrics, Atlanta, Georgia; Pediatric Infectious Disease at Children's Healthcare of Atlanta, Emory University Department of Pediatrics, Atlanta, Georgia.
| | - Mehgan F Teherani
- Division of Pediatric Infectious Diseases, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Yijin Xiang
- Department of Pediatrics, Emory University, Atlanta, Georgia
| | | | - Shanmuganathan Chandrakasan
- Aflac Cancer & Blood Disorders Center of Children's Healthcare of Atlanta and Emory University Department of Pediatrics, Atlanta, Georgia
| | - Kathryn P Goggin
- Pediatric Infectious Disease at Children's Healthcare of Atlanta, Emory University Department of Pediatrics, Atlanta, Georgia
| | - Ann Haight
- Aflac Cancer & Blood Disorders Center of Children's Healthcare of Atlanta and Emory University Department of Pediatrics, Atlanta, Georgia
| | - Edwin Horwitz
- Aflac Cancer & Blood Disorders Center of Children's Healthcare of Atlanta and Emory University Department of Pediatrics, Atlanta, Georgia
| | - Wayne H Liang
- Aflac Cancer & Blood Disorders Center of Children's Healthcare of Atlanta and Emory University Department of Pediatrics, Atlanta, Georgia
| | - Suhag H Parikh
- Aflac Cancer & Blood Disorders Center of Children's Healthcare of Atlanta and Emory University Department of Pediatrics, Atlanta, Georgia
| | - Michelle L Schoettler
- Aflac Cancer & Blood Disorders Center of Children's Healthcare of Atlanta and Emory University Department of Pediatrics, Atlanta, Georgia
| | | | - Elizabeth Stenger
- Aflac Cancer & Blood Disorders Center of Children's Healthcare of Atlanta and Emory University Department of Pediatrics, Atlanta, Georgia
| | - Benjamin Watkins
- Aflac Cancer & Blood Disorders Center of Children's Healthcare of Atlanta and Emory University Department of Pediatrics, Atlanta, Georgia
| | - Kirsten M Williams
- Aflac Cancer & Blood Disorders Center of Children's Healthcare of Atlanta and Emory University Department of Pediatrics, Atlanta, Georgia
| | - Kathryn Leung
- Aflac Cancer & Blood Disorders Center of Children's Healthcare of Atlanta and Emory University Department of Pediatrics, Atlanta, Georgia
| | - Preeti Jaggi
- Pediatric Infectious Disease at Children's Healthcare of Atlanta, Emory University Department of Pediatrics, Atlanta, Georgia
| | - Muna Qayed
- Aflac Cancer & Blood Disorders Center of Children's Healthcare of Atlanta and Emory University Department of Pediatrics, Atlanta, Georgia
| |
Collapse
|
9
|
Zhang L, Kang H, Zhang W, Wang J, Liu Z, Jing J, Han L, Gao A. Probiotics ameliorate benzene-induced systemic inflammation and hematopoietic toxicity by inhibiting Bacteroidaceae-mediated ferroptosis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 899:165678. [PMID: 37478946 DOI: 10.1016/j.scitotenv.2023.165678] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/07/2023] [Accepted: 07/18/2023] [Indexed: 07/23/2023]
Abstract
The intestinal microbiota is associated with the development of benzene-induced hematopoietic toxicity. Modulation of intestinal homeostasis by probiotic supplementation has been considered an effective strategy to prevent adverse health effects. However, the role and mechanism of probiotics in benzene-induced hematopoietic toxicity are unclear. After 45 days of exposure, benzene caused bone marrow hematopoietic toxicity in mice. Furthermore, we found that benzene altered the intestinal barrier in mice, leading to an increase in the abundance of Bacteroidaceae and the activation of systemic inflammation. Interestingly, Fe2+ accumulation, lipid peroxidation, and differential expression of ferroptosis proteins were observed in the intestinal tissues of benzene-exposed mice. After fecal microbiota transplantation, stool microbes from benzene-exposed mice led to the development of intestinal ferroptosis in recipient mice. In particular, oral probiotics significantly reversed elevated Bacteroidaceae and intestinal ferroptosis, ultimately improving benzene-induced hematopoietic damage. We further used the benzene metabolite 1,4-BQ to treat human normal colonic epithelial cells (NCM460) and intervened with the ferroptosis inhibitor liproxstatin-1 (Lip-1) to validate the relationship between intestinal ferroptosis and inflammation. The results showed that 1,4-BQ treatment resulted in increased intracellular ROS levels and abnormal expression of ferroptosis proteins and the inflammatory factors IL-5 and IL-13. However, the use of Lip-1 significantly inhibited oxidative stress, ferroptosis, and inflammation in NCM460 cells. This result suggested that ferroptosis might be involved in benzene-induced hematopoietic toxicity by mediating Th2-type systemic inflammation. Overall, these findings revealed a role for Bacteroidaceae-intestinal ferroptosis-inflammation in benzene-induced hematopoietic toxicity and highlighted that probiotics could be a promising strategy to prevent adverse hematologic outcomes.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Huiwen Kang
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Wei Zhang
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China
| | - JingYu Wang
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Ziyan Liu
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Jiaru Jing
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Lin Han
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Ai Gao
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
10
|
Xu J, Kang Y, Zhong Y, Ye W, Sheng T, Wang Q, Zheng J, Yang Q, Yi P, Li Z. Alteration of gut microbiome and correlated amino acid metabolism are associated with acute myelocytic leukemia carcinogenesis. Cancer Med 2023; 12:16431-16443. [PMID: 37409640 PMCID: PMC10469656 DOI: 10.1002/cam4.6283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 06/08/2023] [Accepted: 06/12/2023] [Indexed: 07/07/2023] Open
Abstract
BACKGROUND The aim of this study is to investigate the profiles of gut microbiota and metabolites in acute myelocytic leukemia (AML) patients treated with/without chemotherapy. METHODS Herein, high-throughput 16S rRNA gene sequencing was performed to analysis gut microbiota profiles, and liquid chromatography and mass spectrometry were performed to analysis metabolites profiles. The correlation between gut microbiota biomarkers identified by LEfSe and differentially expressed metabolites were determined by spearman association analysis. RESULTS The results showed the distinguished gut microbiota and metabolites profiles between AML patients and control individuals or AML patients treated with chemotherapy. Compared to normal populations, the ratio of Firmicutes to Bacteroidetes was increased at the phylum level than that in AML patients, and LEfSe analysis identified Collinsella and Coriobacteriaceae as biomarkers of AML patients. Differential metabolite analysis indicated that, compared to AML patients, numerous differential amino acids and analogs could be observed in control individuals and AML patients treated with chemotherapy. Interestingly, spearman association analysis demonstrated that plenty of bacteria biomarkers shows statistical correlations with differentially expressed amino acid metabolites. In addition, we found that both Collinsella and Coriobacteriaceae demonstrate remarkable positive correlation with hydroxyprolyl-hydroxyproline, prolyl-tyrosine, and tyrosyl-proline. CONCLUSION In conclusion, our present study investigated the role of the gut-microbiome-metabolome axis in AML and revealed the possibility of AML treatment by gut-microbiome-metabolome axis in the further.
Collapse
Affiliation(s)
- Jing Xu
- Department of HematologyThe Second Affiliated Hospital of Nanchang UniversityNanchangChina
| | - Yong Kang
- Department of HematologyThe Second Affiliated Hospital of Nanchang UniversityNanchangChina
- Department of HematologyFirst Affiliated Hospital of Gannan Medical UniversityGanzhouChina
| | - Yan Zhong
- Department of HematologyThe Second Affiliated Hospital of Nanchang UniversityNanchangChina
- Department of General MedicineGanzhou People's hospitalGanzhouChina
| | - Wencan Ye
- Department of HematologyThe Second Affiliated Hospital of Nanchang UniversityNanchangChina
- Department of HematologyFirst Affiliated Hospital of Gannan Medical UniversityGanzhouChina
| | - Tianle Sheng
- Department of Clinical LaboratoryThe Second Affiliated Hospital of Nanchang UniversityNanchangChina
| | - Qingming Wang
- Department of HematologyThe Second Affiliated Hospital of Nanchang UniversityNanchangChina
| | - Jifu Zheng
- Department of HematologyThe Second Affiliated Hospital of Nanchang UniversityNanchangChina
| | - Qiuyue Yang
- Department of Scientific Research ProjectWuhan Kindstar Medical Laboratory Co., Ltd.WuhanChina
- Kindstar Global Precision Medicine InstituteWuhanChina
| | - Ping Yi
- Department of Scientific Research ProjectWuhan Kindstar Medical Laboratory Co., Ltd.WuhanChina
- Kindstar Global Precision Medicine InstituteWuhanChina
| | - Zhenjiang Li
- Department of HematologyThe Second Affiliated Hospital of Nanchang UniversityNanchangChina
| |
Collapse
|
11
|
Gray AN, DeFilipp Z. Fecal Microbiota Transplantation for Acute Graft-versus-Host Disease After Allogeneic Hematopoietic Cell Transplantation: Expanding the Horizon into Pediatrics. Transplant Cell Ther 2023:S2666-6367(23)01289-7. [PMID: 37169290 DOI: 10.1016/j.jtct.2023.05.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/02/2023] [Accepted: 05/05/2023] [Indexed: 05/13/2023]
Abstract
The microbiome plays a vital role in maintaining homeostasis of the intestinal microenvironment and immune response in allogeneic hematopoietic cell transplantation (HCT) recipients. Disruption of the intestinal microbiome has been associated with the development of acute graft-versus-host disease (GVHD) of the lower GI tract and worse survival. Fecal microbiota transplantation (FMT) can achieve clinical responses in refractory GVHD, establishing the promise of microbiome-directed interventions in this population. While most data about microbial changes in HCT recipients have been generated from the adult population, children with refractory GVHD represent an important group that may benefit from FMT. In this review, we first highlight characteristics that distinguish the pediatric intestinal microbiome from adults. Subsequently, we explore multiple clinical factors that warrant careful consideration to optimize the application of FMT and other microbiome-directed therapeutics to children.
Collapse
Affiliation(s)
- Ashley N Gray
- Children's Hospital Los Angeles, Children's Center for Cancer and Blood Diseases, Division of Hematology, Oncology and Blood & Marrow Transplantation, Los Angeles, CA, USA.
| | - Zachariah DeFilipp
- Hematopoieitic Cell Transplant and Cell Therapy Program, Massachusetts General Hospital, Boston, MA
| |
Collapse
|
12
|
Gray AN, Tobin NH, Moore TB, Li F, Aldrovandi GM. Longitudinal relationship between the gut microbiota variation and diversity and gut graft-versus-host disease (GVHD) following pediatric allogeneic hematopoietic cell transplantation (HCT) - Case series. Int J Med Microbiol 2023; 313:151580. [PMID: 37121094 DOI: 10.1016/j.ijmm.2023.151580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/15/2023] [Accepted: 04/13/2023] [Indexed: 05/02/2023] Open
Abstract
Allogeneic Hematopoietic Cell Transplantation (HCT) offers children with life-threatening diseases a chance at survival. Complications from graft-versus-host disease (GVHD, Stages 0-4) represent a significant cause of morbidity and mortality which has been recently associated with gut dysbiosis the adult HCT population. Here, our objective was to conduct a prospective, longitudinal cohort study in nine pediatric allogeneic HCT participants by collecting longitudinally post-HCT stool specimens up to 1 year. Stool microbiota analyses showed that allogeneic HCT and antibiotic therapy lead to acute shifts in the diversity of the gut microbiota with those experiencing stages 3-4 gut GVHD having significantly greater microbiota variation over time when compared to control participants (p = 0.007). Pre-HCT microbiota diversity trended towards an inverse relationship with gut microbiota stability over time, however, this did not reach statistical significance (p = 0.05). Future large prospective studies are necessary to elucidate the mechanisms underlying these dynamic changes in the gut microbiota following pediatric allogeneic HCT.
Collapse
Affiliation(s)
- Ashley N Gray
- Department of Pediatrics, Blood and Marrow Transplantation Program, Keck School of Medicine, University of Southern California, Children's Hospital Los Angeles, Los Angeles, CA, USA.
| | - Nicole H Tobin
- Division of Pediatric Infectious Diseases, Department of Pediatrics, David Geffen School of Medicine at University of California, 675 Charles E Young Dr S, Room 4780 (MRL 4-780), Los Angeles, CA 90095, USA
| | - Theodore B Moore
- Division of Pediatric Hematology-Oncology, Department of Pediatrics, David Geffen School of Medicine at University of California, 10833 Le Conte Ave, Los Angeles, CA 90095, USA
| | - Fan Li
- Division of Pediatric Infectious Diseases, Department of Pediatrics, David Geffen School of Medicine at University of California, 675 Charles E Young Dr S, Room 4780 (MRL 4-780), Los Angeles, CA 90095, USA
| | - Grace M Aldrovandi
- Division of Pediatric Infectious Diseases, Department of Pediatrics, David Geffen School of Medicine at University of California, 675 Charles E Young Dr S, Room 4780 (MRL 4-780), Los Angeles, CA 90095, USA
| |
Collapse
|