1
|
Garrido-Miranda KA, Gonzalez ME, Hernandez-Montelongo J, Jaramillo A, Oñate A, Burgos-Díaz C, Manso-Silvan M. Poly(3-hydroxybutyrate)/Clay/Essential Oils Bionanocomposites Incorporating Biochar: Thermo-Mechanical and Antioxidant Properties. Polymers (Basel) 2025; 17:1157. [PMID: 40362941 PMCID: PMC12073600 DOI: 10.3390/polym17091157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 03/14/2025] [Accepted: 03/18/2025] [Indexed: 05/15/2025] Open
Abstract
The use of biodegradable active materials is being explored as a strategy to reduce food loss and waste. The aim is to extend the shelf life of food and to ensure biodegradation when these materials are discarded. The utilization of biodegradable polymers remains limited due to their inherent properties and cost-effectiveness. An alternative approach involves the fabrication of bionanocomposites, which offer a potential solution to address these challenges. Therefore, this study investigates the production of a polyhydroxybutyrate/biochar/clay/essential oil (Tepa:Eugenol) bionanocomposite with antioxidant and antimicrobial properties. The morphological, physicochemical, and antioxidant properties of the materials were evaluated in comparison to those of the original PHB. The materials obtained showed a porous surface with cavities, associated with the presence of biochar. It was also determined that it presented an intercalated-exfoliated morphology by XRD. Thermal properties showed minor improvements over those of PHB, indicating that the components did not substantially influence properties such as crystallization temperature, decomposition temperature, or degree of crystallinity; the melting temperature decreased up to 11%. In addition, the PHB/biochar_7/MMT-OM_3/EO_3 bionanocomposites showed a tendency toward hydrophobicity and the highest elastic modulus with respect to PHB. Finally, all essential-oil-loaded bionanocomposites exhibited excellent antioxidant properties against DPPH and ABTS radicals. The results highlight the potential of these bionanocomposites for the development of antioxidant active packaging.
Collapse
Affiliation(s)
- Karla A. Garrido-Miranda
- Scientific and Technological Bioresource Nucleus (BIOREN-UFRO), Universidad de La Frontera, Temuco 4780000, Chile
| | - María Eugenia Gonzalez
- Center of Waste Management and Bioenergy-BIOREN, Universidad de La Frontera, Francisco Salazar 01145, Temuco 4780000, Chile;
| | | | - Andrés Jaramillo
- Department of Mechanical Engineering, Universidad de La Frontera, Francisco Salazar 01145, Temuco 4780000, Chile;
- Departamento de Ingeniería Mecánica, Universidad de Córdoba, Cr 6 #76-103, Montería 230002, Colombia
| | - Angelo Oñate
- Department of Materials Engineering (DIMAT), Faculty of Engineering, Universidad de Concepción, 315 Edmundo Larenas, Concepción 4070415, Chile;
| | - César Burgos-Díaz
- Agriaquaculture Nutritional Genomic Center, CGNA, Temuco 4780000, Chile;
| | - Miguel Manso-Silvan
- Departamento de Física Aplicada and Instituto de Ciencia de Materiales Nicolás Cabrera, Universidad Autónoma de Madrid, 28049 Madrid, Spain;
| |
Collapse
|
2
|
Bi Y, Gao J, Zhang Y, Zhang Y, Du K, Su J, Zhang S. In-situ construction of chitosan@tannin structure on bamboo fiber for green and convenient reinforcement of poly(3-hydroxybutyrate) biocomposite. Int J Biol Macromol 2024; 278:134954. [PMID: 39187105 DOI: 10.1016/j.ijbiomac.2024.134954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/26/2024] [Accepted: 08/20/2024] [Indexed: 08/28/2024]
Abstract
Fiber-reinforced biocomposites were widely considered as the optimal sustainable alternative to traditional petroleum-based polymers due to their renewable, degradable, and environmentally friendly characteristics, along with economic benefits. However, the poor interfacial bonding between the matrix and natural fiber reinforcement remained a key issue limiting their mechanical and thermal properties. Focusing on cost-effective, convenient, and low-pollution chemical methods, this work proposed a strategy for in-situ synthesis of composite structures on bamboo fiber (BF) surfaces. Crude chitosan (CS) and reclaimed tannic acid (TA) were utilized as the raw materials, to construct stereo-netlike chitosan @ tannin structures (CS@TA) via a one-pot method facilitated by hydrogen bonding and complexation. The influence of reactant concentration and pH value on the process was further investigated and optimized. The CS@TA structure improved the interfacial bonding between the BF reinforcement and matrix poly(3-hydroxybutyrate) (PHB), and this non-amino-driven construction provided a potential reaction platform for functionalizing the interfacial layer. The modified biocomposite showed improvements in tensile and impact strengths (51.58 %, 41.18 %), also in tensile and flexural moduli (13.59 %, 26.88 %). Enhancements were also observed in thermal properties and heat capacity. This work presents a simple and promising approach to increase biocomposite interface bonding.
Collapse
Affiliation(s)
- Yanbin Bi
- Key Laboratory of Wood Material Science and Application (Beijing Forestry University), Ministry of Education, Beijing 100083, China; Beijing Key Laboratory of Wood Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Jian Gao
- Key Laboratory of Wood Material Science and Application (Beijing Forestry University), Ministry of Education, Beijing 100083, China; Beijing Key Laboratory of Wood Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Yutong Zhang
- Key Laboratory of Wood Material Science and Application (Beijing Forestry University), Ministry of Education, Beijing 100083, China; Beijing Key Laboratory of Wood Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Yi Zhang
- Key Laboratory of Wood Material Science and Application (Beijing Forestry University), Ministry of Education, Beijing 100083, China; Beijing Key Laboratory of Wood Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Keke Du
- Key Laboratory of Wood Material Science and Application (Beijing Forestry University), Ministry of Education, Beijing 100083, China; Beijing Key Laboratory of Wood Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Jixing Su
- Key Laboratory of Wood Material Science and Application (Beijing Forestry University), Ministry of Education, Beijing 100083, China; Beijing Key Laboratory of Wood Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Shuangbao Zhang
- Key Laboratory of Wood Material Science and Application (Beijing Forestry University), Ministry of Education, Beijing 100083, China; Beijing Key Laboratory of Wood Science and Engineering, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
3
|
Melendez-Rodriguez B, Prieto C, Pardo-Figuerez M, Angulo I, Bourbon AI, Amado IR, Cerqueira MA, Pastrana LM, Hilliou LHG, Vicente AA, Cabedo L, Lagaron JM. Multilayer Film Comprising Polybutylene Adipate Terephthalate and Cellulose Nanocrystals with High Barrier and Compostable Properties. Polymers (Basel) 2024; 16:2095. [PMID: 39125122 PMCID: PMC11314578 DOI: 10.3390/polym16152095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/19/2024] [Accepted: 07/20/2024] [Indexed: 08/12/2024] Open
Abstract
In the present study, a multilayer, high-barrier, thin blown film based on a polybutylene adipate terephthalate (PBAT) blend with polyhydroxyalkanoate (PHA), and composed of four layers including a cellulose nanocrystal (CNC) barrier layer and an electrospun poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) hot-tack layer, was characterized in terms of the surface roughness, surface tension, migration, mechanical and peel performance, barrier properties, and disintegration rate. The results showed that the film exhibited a smooth surface. The overall migration tests showed that the material is suitable to be used as a food contact layer. The addition of the CNC interlayer had a significant effect on the mechanical properties of the system, drastically reducing the elongation at break and, thus, the flexibility of the material. The film containing CNCs and electrospun PHBV hot-tack interlayers exhibited firm but not strong adhesion. However, the multilayer was a good barrier to water vapor (2.4 ± 0.1 × 10-12 kg·m-2·s-1·Pa-1), and especially to oxygen (0.5 ± 0.3 × 10-15 m3·m-2·s-1·Pa-1), the permeance of which was reduced by up to 90% when the CNC layer was added. The multilayer system disintegrated completely in 60 days. All in all, the multilayer system developed resulted in a fully compostable structure with significant potential for use in high-barrier food packaging applications.
Collapse
Affiliation(s)
- Beatriz Melendez-Rodriguez
- Novel Materials and Nanotechnology Group, Institute of Agrochemistry and Food Technology (IATA), Spanish Council for Scientific Research (CSIC), Calle Catedrático Agustín Escardino Benllonch 7, 46980 Valencia, Spain; (B.M.-R.); (C.P.); (M.P.-F.)
| | - Cristina Prieto
- Novel Materials and Nanotechnology Group, Institute of Agrochemistry and Food Technology (IATA), Spanish Council for Scientific Research (CSIC), Calle Catedrático Agustín Escardino Benllonch 7, 46980 Valencia, Spain; (B.M.-R.); (C.P.); (M.P.-F.)
| | - Maria Pardo-Figuerez
- Novel Materials and Nanotechnology Group, Institute of Agrochemistry and Food Technology (IATA), Spanish Council for Scientific Research (CSIC), Calle Catedrático Agustín Escardino Benllonch 7, 46980 Valencia, Spain; (B.M.-R.); (C.P.); (M.P.-F.)
- Bioinicia R&D, Bioinicia S.L., Calle Algepser 65, Nave 3, 46980 Paterna, Spain
| | - Inmaculada Angulo
- Gaiker Technological Centre, Department of Plastics and Composites, Parque Tecnológico Edificio 202, 48170 Zamudio, Spain;
| | - Ana I. Bourbon
- International Iberian Nanotechnology Laboratory (INL), Av. Mestre José Veiga s/n, 4715-330 Braga, Portugal; (A.I.B.); (I.R.A.); (M.A.C.); (L.M.P.)
| | - Isabel R. Amado
- International Iberian Nanotechnology Laboratory (INL), Av. Mestre José Veiga s/n, 4715-330 Braga, Portugal; (A.I.B.); (I.R.A.); (M.A.C.); (L.M.P.)
| | - Miguel A. Cerqueira
- International Iberian Nanotechnology Laboratory (INL), Av. Mestre José Veiga s/n, 4715-330 Braga, Portugal; (A.I.B.); (I.R.A.); (M.A.C.); (L.M.P.)
| | - Lorenzo M. Pastrana
- International Iberian Nanotechnology Laboratory (INL), Av. Mestre José Veiga s/n, 4715-330 Braga, Portugal; (A.I.B.); (I.R.A.); (M.A.C.); (L.M.P.)
| | | | - António A. Vicente
- Centre of Biological Engineering, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal;
| | - Luis Cabedo
- Polymers and Advanced Materials Group (PIMA), School of Technology and Experimental Sciences, Universitat Jaume I (UJI), Avenida de Vicent Sos Baynat s/n, 12071 Castellón, Spain;
| | - Jose M. Lagaron
- Novel Materials and Nanotechnology Group, Institute of Agrochemistry and Food Technology (IATA), Spanish Council for Scientific Research (CSIC), Calle Catedrático Agustín Escardino Benllonch 7, 46980 Valencia, Spain; (B.M.-R.); (C.P.); (M.P.-F.)
| |
Collapse
|
4
|
Alfano S, Doineau E, Perdrier C, Preziosi-Belloy L, Gontard N, Martinelli A, Grousseau E, Angellier-Coussy H. Influence of the 3-Hydroxyvalerate Content on the Processability, Nucleating and Blending Ability of Poly(3-Hydroxybutyrate- co-3-hydroxyvalerate)-Based Materials. ACS OMEGA 2024; 9:29360-29371. [PMID: 39005805 PMCID: PMC11238206 DOI: 10.1021/acsomega.4c01282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/14/2024] [Accepted: 04/23/2024] [Indexed: 07/16/2024]
Abstract
Poly(3-hydroxybutyrate-co-3-hydroxyvalerate (P(3HB-co-3HV) copolymers are an attractive class of biopolymers whose properties can be tailored by changing the 3-hydroxyvalerate monomer (3HV) concentration, offering the possibility of counteracting problems related to high crystallinity, brittleness, and processability. However, there are few studies about the effects of 3HV content on the processability of copolymers. The present study aims to provide new insights into the effect of 3HV content on the processing step including common practices like compounding, addition of nucleation agents and/or amorphous polymers as plasticizers. P(3HB-co-3HV)-based films containing 3, 18, and 28 mol % 3HV were processed into films by extrusion and subsequent molding. The characterization results confirmed that increasing the 3HV content from 3 to 28 mol % resulted in a decrease in the melting point (from 175 to 100 °C) and an improvement in mechanical properties (i.e., elongation at break from 7 ± 1% to 120 ± 3%). The behavior of P(3HB-co-3HV) in the presence of additives was also investigated. It was shown that an increase in the 3HV content leads to better miscibility with amorphous polymers.
Collapse
Affiliation(s)
- Sara Alfano
- Department
of Chemistry, University of Rome La Sapienza, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Estelle Doineau
- JRU
IATE 1208, INRAE, Montpellier SupAgro, University
of Montpellier, CEDEX 02, 34060 Montpellier, France
| | - Coline Perdrier
- JRU
IATE 1208, INRAE, Montpellier SupAgro, University
of Montpellier, CEDEX 02, 34060 Montpellier, France
| | - Laurence Preziosi-Belloy
- JRU
IATE 1208, INRAE, Montpellier SupAgro, University
of Montpellier, CEDEX 02, 34060 Montpellier, France
| | - Nathalie Gontard
- JRU
IATE 1208, INRAE, Montpellier SupAgro, University
of Montpellier, CEDEX 02, 34060 Montpellier, France
| | - Andrea Martinelli
- Department
of Chemistry, University of Rome La Sapienza, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Estelle Grousseau
- JRU
IATE 1208, INRAE, Montpellier SupAgro, University
of Montpellier, CEDEX 02, 34060 Montpellier, France
| | - Hélène Angellier-Coussy
- JRU
IATE 1208, INRAE, Montpellier SupAgro, University
of Montpellier, CEDEX 02, 34060 Montpellier, France
| |
Collapse
|
5
|
Siddiqui SA, Yang X, Deshmukh RK, Gaikwad KK, Bahmid NA, Castro-Muñoz R. Recent advances in reinforced bioplastics for food packaging - A critical review. Int J Biol Macromol 2024; 263:130399. [PMID: 38403219 DOI: 10.1016/j.ijbiomac.2024.130399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/07/2024] [Accepted: 02/21/2024] [Indexed: 02/27/2024]
Abstract
Recently, diversifying the material, method, and application in food packaging has been massively developed to find more environment-friendly materials. However, the mechanical and barrier properties of the bioplastics are major hurdles to expansion in commercial realization. The compositional variation with the inclusion of different fillers could resolve the lacking performance of the bioplastic. This review summarizes the various reinforcement fillers and their effect on bioplastic development. In this review, we first discussed the status of bioplastics and their definition, advantages, and limitations regarding their performance in the food packaging application. Further, the overview of different fillers and development methods has been discussed thoroughly. The application of reinforced bioplastic for food packaging and its effect on food quality and shelf life are highlighted. The environmental issues, health concerns, and future perspectives of the reinforced bioplastic are also discussed at the end of the manuscript. Adding different fillers into the bioplastic improves physical, mechanical, barrier, and active properties, which render the required protective functions to replace conventional plastic for food packaging applications. Various fillers, such as natural and chemically synthesized, could be incorporated into the bioplastic, and their overall properties improve significantly for the food packaging application.
Collapse
Affiliation(s)
- Shahida Anusha Siddiqui
- Technical University of Munich, Campus Straubing for Biotechnology and Sustainability, Essigberg 3, 94315 Straubing, Germany; German Institute of Food Technologies (DIL e.V.), Prof.-von-Klitzing Str. 7, 49610, Quakenbrück, Germany.
| | - Xi Yang
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, Japan.
| | - Ram Kumar Deshmukh
- Department of Paper Technology, Indian Institute of Technology Roorkee, Uttarakhand 247667, India.
| | - Kirtiraj K Gaikwad
- Department of Paper Technology, Indian Institute of Technology Roorkee, Uttarakhand 247667, India.
| | - Nur Alim Bahmid
- Research Center for Food Technology and Processing, National Research and Innovation Agency (BRIN), Gading, Playen, Gunungkidul, 55861 Yogyakarta, Indonesia; Gdansk University of Technology, Faculty of Civil and Environmental Engineering, Department of Sanitary Engineering, 80 - 233 Gdansk, G. Narutowicza St. 11/12, Poland.
| | - Roberto Castro-Muñoz
- Gdansk University of Technology, Faculty of Civil and Environmental Engineering, Department of Sanitary Engineering, 80 - 233 Gdansk, G. Narutowicza St. 11/12, Poland.
| |
Collapse
|
6
|
Panaitescu DM, Frone AN, Nicolae CA, Gabor AR, Miu DM, Soare MG, Vasile BS, Lupescu I. Poly(3-hydroxybutyrate) nanocomposites modified with even and odd chain length polyhydroxyalkanoates. Int J Biol Macromol 2023:125324. [PMID: 37307975 DOI: 10.1016/j.ijbiomac.2023.125324] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/17/2023] [Accepted: 06/08/2023] [Indexed: 06/14/2023]
Abstract
Poly(3-hydroxybutyrate) (PHB) was blended with medium-chain-length PHAs (mcl-PHAs) for improving its flexibility while nanocellulose (NC) was added as a reinforcing agent. Even and odd-chain-length PHAs, having as main component poly(3-hydroxyoctanoate) (PHO) or poly(3-hydroxynonanoate) (PHN) were synthesized and served as PHB modifiers. The effects of PHO and PHN on the morphology, thermal, mechanical and biodegradation behaviors of PHB were different, especially in the presence of NC. The addition of mcl-PHAs decreased the storage modulus (E') of PHB blends by about 40 %. The further addition of NC mitigated this decrease bringing the E' of PHB/PHO/NC close to that of PHB and having a minor effect on the E' of PHB/PHN/NC. The biodegradability of PHB/PHN/NC was higher than that of PHB/PHO/NC, the latter's being close to that of neat PHB after soil burial for four months. The results showed a complex effect of NC, which enhanced the interaction between PHB and mcl-PHAs and decreased the size of PHO/PHN inclusions (1.9 ± 0.8/2.6 ± 0.9 μm) while increasing the accessibility of water and microorganisms during soil burial. The blown film extrusion test showed the ability of mcl-PHA and NC modified PHB to stretch forming uniform tube and supports the application of these biomaterials in the packaging sector.
Collapse
Affiliation(s)
- Denis Mihaela Panaitescu
- National Institute for Research & Development in Chemistry and Petrochemistry - ICECHIM, 202 Splaiul Independentei, 060021 Bucharest, Romania.
| | - Adriana Nicoleta Frone
- National Institute for Research & Development in Chemistry and Petrochemistry - ICECHIM, 202 Splaiul Independentei, 060021 Bucharest, Romania.
| | - Cristian-Andi Nicolae
- National Institute for Research & Development in Chemistry and Petrochemistry - ICECHIM, 202 Splaiul Independentei, 060021 Bucharest, Romania
| | - Augusta Raluca Gabor
- National Institute for Research & Development in Chemistry and Petrochemistry - ICECHIM, 202 Splaiul Independentei, 060021 Bucharest, Romania
| | - Dana Maria Miu
- National Institute for Chemical Pharmaceutical Research and Development, 112 Calea Vitan, 031299 Bucharest, Romania
| | - Mariana-Gratiela Soare
- National Institute for Chemical Pharmaceutical Research and Development, 112 Calea Vitan, 031299 Bucharest, Romania
| | - Bogdan Stefan Vasile
- National Research Centre for Micro and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University POLITEHNICA of Bucharest, 060042 Bucharest, Romania
| | - Irina Lupescu
- National Institute for Chemical Pharmaceutical Research and Development, 112 Calea Vitan, 031299 Bucharest, Romania; Department of Veterinary Medicine, Spiru Haret University, 256 Bulevardul Basarabia, 030352 Bucharest, Romania
| |
Collapse
|
7
|
Novel Production Methods of Polyhydroxyalkanoates and Their Innovative Uses in Biomedicine and Industry. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238351. [PMID: 36500442 PMCID: PMC9740486 DOI: 10.3390/molecules27238351] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/25/2022] [Accepted: 11/27/2022] [Indexed: 12/03/2022]
Abstract
Polyhydroxyalkanoate (PHA), a biodegradable polymer obtained from microorganisms and plants, have been widely used in biomedical applications and devices, such as sutures, cardiac valves, bone scaffold, and drug delivery of compounds with pharmaceutical interests, as well as in food packaging. This review focuses on the use of polyhydroxyalkanoates beyond the most common uses, aiming to inform about the potential uses of the biopolymer as a biosensor, cosmetics, drug delivery, flame retardancy, and electrospinning, among other interesting uses. The novel applications are based on the production and composition of the polymer, which can be modified by genetic engineering, a semi-synthetic approach, by changing feeding carbon sources and/or supplement addition, among others. The future of PHA is promising, and despite its production costs being higher than petroleum-based plastics, tools given by synthetic biology, bioinformatics, and machine learning, among others, have allowed for great production yields, monomer and polymer functionalization, stability, and versatility, a key feature to increase the uses of this interesting family of polymers.
Collapse
|
8
|
Usurelu CD, Badila S, Frone AN, Panaitescu DM. Poly(3-hydroxybutyrate) Nanocomposites with Cellulose Nanocrystals. Polymers (Basel) 2022; 14:1974. [PMID: 35631856 PMCID: PMC9144865 DOI: 10.3390/polym14101974] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/09/2022] [Accepted: 05/10/2022] [Indexed: 01/14/2023] Open
Abstract
Poly(3-hydroxybutyrate) (PHB) is one of the most promising substitutes for the petroleum-based polymers used in the packaging and biomedical fields due to its biodegradability, biocompatibility, good stiffness, and strength, along with its good gas-barrier properties. One route to overcome some of the PHB's weaknesses, such as its slow crystallization, brittleness, modest thermal stability, and low melt strength is the addition of cellulose nanocrystals (CNCs) and the production of PHB/CNCs nanocomposites. Choosing the adequate processing technology for the fabrication of the PHB/CNCs nanocomposites and a suitable surface treatment for the CNCs are key factors in obtaining a good interfacial adhesion, superior thermal stability, and mechanical performances for the resulting nanocomposites. The information provided in this review related to the preparation routes, thermal, mechanical, and barrier properties of the PHB/CNCs nanocomposites may represent a starting point in finding new strategies to reduce the manufacturing costs or to design better technological solutions for the production of these materials at industrial scale. It is outlined in this review that the use of low-value biomass resources in the obtaining of both PHB and CNCs might be a safe track for a circular and bio-based economy. Undoubtedly, the PHB/CNCs nanocomposites will be an important part of a greener future in terms of successful replacement of the conventional plastic materials in many engineering and biomedical applications.
Collapse
Affiliation(s)
| | | | - Adriana Nicoleta Frone
- National Institute for Research and Development in Chemistry and Petrochemistry—ICECHIM, 202 Splaiul Independentei, 060021 Bucharest, Romania; (C.D.U.); (S.B.)
| | - Denis Mihaela Panaitescu
- National Institute for Research and Development in Chemistry and Petrochemistry—ICECHIM, 202 Splaiul Independentei, 060021 Bucharest, Romania; (C.D.U.); (S.B.)
| |
Collapse
|
9
|
Majerczak K, Wadkin‐Snaith D, Magueijo V, Mulheran P, Liggat J, Johnston K. Polyhydroxybutyrate: a review of experimental and simulation studies on the effect of fillers on crystallinity and mechanical properties. POLYM INT 2022. [DOI: 10.1002/pi.6402] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Katarzyna Majerczak
- Department of Pure and Applied Chemistry Thomas Graham Building, 295 Cathedral Street, University of Strathclyde Glasgow G1 1XL United Kingdom
| | - Dominic Wadkin‐Snaith
- Department of Chemical and Processing Engineering James Weir Building, 75 Montrose Street, University of Strathclyde Glasgow G1 1XJ United Kingdom
| | - Vitor Magueijo
- Department of Chemical and Processing Engineering James Weir Building, 75 Montrose Street, University of Strathclyde Glasgow G1 1XJ United Kingdom
| | - Paul Mulheran
- Department of Chemical and Processing Engineering James Weir Building, 75 Montrose Street, University of Strathclyde Glasgow G1 1XJ United Kingdom
| | - John Liggat
- Department of Pure and Applied Chemistry Thomas Graham Building, 295 Cathedral Street, University of Strathclyde Glasgow G1 1XL United Kingdom
| | - Karen Johnston
- Department of Chemical and Processing Engineering James Weir Building, 75 Montrose Street, University of Strathclyde Glasgow G1 1XJ United Kingdom
| |
Collapse
|
10
|
Palechor-Trochez JJ, Ramírez-Gonzales G, Villada-Castillo HS, Solanilla-Duque JF. A review of trends in the development of bionanocomposites from lignocellulosic and polyacids biomolecules as packing material making alternative: A bibliometric analysis. Int J Biol Macromol 2021; 192:832-868. [PMID: 34634331 DOI: 10.1016/j.ijbiomac.2021.10.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 09/15/2021] [Accepted: 10/01/2021] [Indexed: 11/25/2022]
Abstract
Contamination caused by the accumulation of petrochemical-based plastics has reached worrying magnitudes and led to the development of biopolymers as an option to mitigate the problem. This work thus presents a bibliometric analysis of all that concerns the development of such bionanocomposite materials, using ScientoPy and SciMAT software to establish associations between the number of published documents, countries, institutions and most relevant topics. The bionanocomposites topic was found to throw up the biggest number of documents associated (2008) with the different types of raw materials and methods used to obtain nanoparticles and their combination with biopolymeric materials, the result known as a "bionancomposite*". Analysis of the documents related to the application for development of packaging materials from biological molecules, carbohydrate polymers, compounds, conjugates, gels, glucans, hydrogels, membranes, mucilage (source unspecified), mucoadhesives, paper, polymers, polysaccharide, saccharides etc, is also presented, emphasizing mechanical, thermal and barrier properties, which, due to the inclusion of nanoparticles mainly from natural sources of cellulose, show increases of up to 30%. The inclusion of nanoparticles, especially those derived from cellulose sources, generally seeks to increase the properties of bionanocomposite materials. Regarding an increase in mechanical properties, specifically tensile strength, inclusions at percentages not exceeding 10 wt% can register increases that exceed 30% were reported.
Collapse
|
11
|
Shin G, Jeong DW, Kim H, Park SA, Kim S, Lee JY, Hwang SY, Park J, Oh DX. Biosynthesis of Polyhydroxybutyrate with Cellulose Nanocrystals Using Cupriavidus necator. Polymers (Basel) 2021; 13:2604. [PMID: 34451143 PMCID: PMC8398664 DOI: 10.3390/polym13162604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/30/2021] [Accepted: 08/03/2021] [Indexed: 11/16/2022] Open
Abstract
Polyhydroxybutyrate (PHB) is a natural polyester synthesized by several microorganisms. Moreover, it has excellent biodegradability and is an eco-friendly material because it converts water and carbon dioxide as final decomposition products. However, the applications of PHB are limited because of its stiffness and brittleness. Because cellulose nanocrystals (CNCs) have excellent intrinsic mechanical properties such as high specific strength and modulus, they may compensate for the insufficient physical properties of PHB by producing their nanocomposites. In this study, natural polyesters were extracted from Cupriavidus necator fermentation with CNCs, which were well-dispersed in nitrogen-limited liquid culture media. Fourier-transform infrared spectroscopy results revealed that the additional O-H peak originating from cellulose at 3500-3200 cm-1 was observed for PHB along with the C=O and -COO bands at 1720 cm-1. This suggests that PHB-CNC nanocomposites could be readily obtained using C. necator fermented in well-dispersed CNC-supplemented culture media.
Collapse
Affiliation(s)
- Giyoung Shin
- Research Center for Bio-Based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44429, Korea
| | - Da-Woon Jeong
- Research Center for Bio-Based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44429, Korea
| | - Hyeri Kim
- Research Center for Bio-Based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44429, Korea
| | - Seul-A Park
- Research Center for Bio-Based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44429, Korea
| | - Semin Kim
- Research Center for Bio-Based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44429, Korea
| | - Ju Young Lee
- Research Center for Bio-Based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44429, Korea
| | - Sung Yeon Hwang
- Research Center for Bio-Based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44429, Korea
- Advanced Materials and Chemical Engineering, University of Science and Technology (UST), Daejeon 34113, Korea
| | - Jeyoung Park
- Research Center for Bio-Based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44429, Korea
- Advanced Materials and Chemical Engineering, University of Science and Technology (UST), Daejeon 34113, Korea
| | - Dongyeop X Oh
- Research Center for Bio-Based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44429, Korea
- Advanced Materials and Chemical Engineering, University of Science and Technology (UST), Daejeon 34113, Korea
| |
Collapse
|
12
|
Mtibe A, Motloung MP, Bandyopadhyay J, Ray SS. Synthetic Biopolymers and Their Composites: Advantages and Limitations-An Overview. Macromol Rapid Commun 2021; 42:e2100130. [PMID: 34216411 DOI: 10.1002/marc.202100130] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 06/20/2021] [Indexed: 12/17/2022]
Abstract
Recently, polymer science and engineering research has shifted toward the development of environmentally benign polymers to reduce the impact of plastic leakage on the ecosystems. Stringent regulations and concerns regarding conventional polymers are the main driving forces for the development of renewable, biodegradable, sustainable, and environmentally benign materials. Although biopolymers can alleviate plastic-related pollution, several factors dictate the utilization of biopolymers. Herein, an overview of the potential and limitations of synthetic biopolymers and their composites in the context of environmentally benign materials for a sustainable future are presented. The synthetic biopolymer market, technical advancements for different applications, lifecycle analysis, and biodegradability are covered. The current trends, challenges, and opportunities for bioplastic recycling are also discussed. In summary, this review is expected to provide guidelines for future development related to synthetic biopolymer-based sustainable polymeric materials suitable for various applications.
Collapse
Affiliation(s)
- Asanda Mtibe
- Centre for Nanostructures and Advanced Materials, DSI-CSIR Nanotechnology Innovation Centre, Council for Scientific and Industrial Research, Pretoria, 0001, South Africa
| | - Mpho Phillip Motloung
- Centre for Nanostructures and Advanced Materials, DSI-CSIR Nanotechnology Innovation Centre, Council for Scientific and Industrial Research, Pretoria, 0001, South Africa.,Department of Chemical Sciences, University of Johannesburg, Doornfontein, 2028, Johannesburg, South Africa
| | - Jayita Bandyopadhyay
- Centre for Nanostructures and Advanced Materials, DSI-CSIR Nanotechnology Innovation Centre, Council for Scientific and Industrial Research, Pretoria, 0001, South Africa
| | - Suprakas Sinha Ray
- Centre for Nanostructures and Advanced Materials, DSI-CSIR Nanotechnology Innovation Centre, Council for Scientific and Industrial Research, Pretoria, 0001, South Africa
| |
Collapse
|
13
|
Research Progress and Development Demand of Nanocellulose Reinforced Polymer Composites. Polymers (Basel) 2020; 12:polym12092113. [PMID: 32957464 PMCID: PMC7570232 DOI: 10.3390/polym12092113] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/09/2020] [Accepted: 09/14/2020] [Indexed: 11/17/2022] Open
Abstract
Nanocellulose is a type of nanomaterial with high strength, high specific surface area and high surface energy. Additionally, it is nontoxic, harmless, biocompatible and environmentally friendly and can be extracted from biomass resources. The surface groups of cellulose show high surface energy and binding activity on the nanoscale and can be modified by using various methods. Because nanocellulose has a high elastic modulus, rigidity and a low thermal expansion coefficient, it is an excellent material for polymer reinforcement. This paper summarizes the reinforcement mechanisms of nanocellulose polymer composites with a focus on the role of theoretical models in elucidating these mechanisms. Furthermore, the influence of various factors on the properties of nanocellulose reinforced polymer composites are discussed in combination with analyses and comparisons of specific research results in related fields. Finally, research focus and development directions for the design of high-performance nanocellulose reinforced polymer composites are proposed.
Collapse
|
14
|
Effects of Cellulose Nanocrystals and Cellulose Nanofibers on the Structure and Properties of Polyhydroxybutyrate Nanocomposites. Polymers (Basel) 2019; 11:polym11122063. [PMID: 31835805 PMCID: PMC6960622 DOI: 10.3390/polym11122063] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 12/03/2019] [Accepted: 12/06/2019] [Indexed: 01/19/2023] Open
Abstract
One of the major obstacles for polyhydroxybutyrate (PHB), a biodegradable and biocompatible polymer, in commercial applications is its poor elongation at break (~3%). In this study, the effects of nanocellulose contents and their types, including cellulose nanocrystals (CNCs) and cellulose nanofibers (CNFs) on the crystallization, thermal, and mechanical properties of PHB composites were systematically compared. We explored the toughening mechanisms of PHB by adding CNCs and cellulose CNFs. The results showed that when the morphology of bagasse nanocellulose was rod-like and its content was 1 wt %, the toughening modification of PHB was the best. Compared with pure PHB, the elongation at break and Young’s modulus increased by 91.2% and 18.4%, respectively. Cellulose nanocrystals worked as heterogeneous nucleating agents in PHB and hence reduced its crystallinity and consequently improved the toughness of PHB. This simple approach could potentially be explored as a strategy to extend the possible applications of this biopolymer in packaging fields.
Collapse
|
15
|
Patel DK, Dutta SD, Lim KT. Nanocellulose-based polymer hybrids and their emerging applications in biomedical engineering and water purification. RSC Adv 2019; 9:19143-19162. [PMID: 35516880 PMCID: PMC9065078 DOI: 10.1039/c9ra03261d] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 05/29/2019] [Indexed: 01/03/2023] Open
Abstract
Nanocellulose, derived from cellulose hydrolysis, has unique optical and mechanical properties, high surface area, and good biocompatibility. It is frequently used as a reinforcing agent to improve the native properties of materials. The presence of functional groups in its surface enables the alteration of its behavior and its use under different conditions. Nanocellulose is typically used in the form of cellulose nanocrystals (CNCs), cellulose nanofibers (CNFs), or bacterial nanocellulose (BNC). CNCs and CNFs have a high aspect ratio with typical lengths of ∼100-250 nm and 0.1-2 μm, respectively; BNC is nanostructured cellulose produced by bacteria. Nanohybrid materials are a combination of organic or inorganic nanomaterials with macromolecules forming a single composite and typically exhibit superior optical, thermal, and mechanical properties to those of native polymers, owing to the greater interactions between the macromolecule matrix and the nanomaterials. Excellent biocompatibility and biodegradability make nanocellulose an ideal material for applications in biomedicine. Unlike native polymers, nanocellulose-based nanohybrids exhibit a sustained drug release ability, which can be further optimized by changing the content or chemical environment of the nanocellulose, as well as the external stimuli, such as the pH and electric fields. In this review, we describe the process of extraction of nanocellulose from different natural sources; its effects on the structural, morphological, and mechanical properties of polymers; and its various applications.
Collapse
Affiliation(s)
- Dinesh K Patel
- The Institute of Forest Science, Kangwon National University Chuncheon 24341 Republic of Korea
| | - Sayan Deb Dutta
- Department of Biosystems Engineering, College of Agriculture and Life Sciences, Kangwon National University Chuncheon 24341 Republic of Korea
| | - Ki-Taek Lim
- Department of Biosystems Engineering, College of Agriculture and Life Sciences, Kangwon National University Chuncheon 24341 Republic of Korea
| |
Collapse
|
16
|
Raza ZA, Noor S, Khalil S. Recent developments in the synthesis of poly(hydroxybutyrate) based biocomposites. Biotechnol Prog 2019; 35:e2855. [PMID: 31136087 DOI: 10.1002/btpr.2855] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 05/07/2019] [Accepted: 05/22/2019] [Indexed: 11/06/2022]
Abstract
Poly(hydroxybutyrate) (PHB) has become an attractive biomaterial in research and development for past few years. It is natural bio-based aliphatic polyester produced by many types of bacteria. Due to its biodegradable, biocompatible, and eco-friendly nature, PHB can be used in line with bioactive species. However, high production cost, thermal instability, and poor mechanical properties limit its desirable applications. So there is need to incorporate PHB with other materials or biopolymers for the development of some novel PHB based biocomposites for value addition. Many attempts have been employed to incorporate PHB with other biomaterials (or biopolymers) to develop sustainable biocomposites. In this review, some recent developments in the synthesis of PHB based biocomposites and their biomedical, packaging and tissue engineering applications have been focused. The development of biodegradable PHB based biocomposites with improved mechanical properties could be used to overcome its native limitations hence to open new possibilities for industrial applications.
Collapse
Affiliation(s)
- Zulfiqar Ali Raza
- Department of Applied Sciences, National Textile University, Faisalabad, Pakistan
| | - Safa Noor
- Department of Chemistry, University of Agriculture, Faisalabad, Pakistan
| | - Shanza Khalil
- Department of Applied Sciences, National Textile University, Faisalabad, Pakistan
| |
Collapse
|
17
|
Salari M, Bitounis D, Bhattacharya K, Pyrgiotakis G, Zhang Z, Purington E, Gramlich W, Grondin Y, Rogers R, Bousfield D, Demokritou P. Development & Characterization of Fluorescently Tagged Nanocellulose for Nanotoxicological Studies. ENVIRONMENTAL SCIENCE. NANO 2019; 6:1516-1526. [PMID: 31844523 PMCID: PMC6914317 DOI: 10.1039/c8en01381k] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The rapid adoption of nanocellulose-based engineered nanomaterials (CNM) by many industries generates environmental health and safety (EHS) concerns. This work presents the development of fluorescently tagged CNM which can be used to study their interactions with biological systems. Specifically, cellulose nano-fibrils and cellulose nano-crystals with covalently attached fluorescein isothiocyanate (FITC) molecules on their surface were synthesized. The fluorescence of the FITC-tagged materials was assessed along with potential FITC detachment under pH conditions encountered in the human gastrointestinal tract, in intracellular compartments, and in cell culture media. Finally, the potential cytotoxicity due to the presence of FITC molecules on the surface of CNM was assessed using a cellular gut epithelium model. The results showed that neither FITC-CNF nor FITC-CNC were cytotoxic and that they have a comparable bioactivity to their untagged counterparts, rendering them suitable for biological studies.
Collapse
Affiliation(s)
- Maryam Salari
- Center for Nanotechnology and Nanotoxicology, Harvard T. H. Chan School of Public Health, Boston, MA, 07016, USA
| | - Dimitrios Bitounis
- Center for Nanotechnology and Nanotoxicology, Harvard T. H. Chan School of Public Health, Boston, MA, 07016, USA
| | - Kunal Bhattacharya
- Center for Nanotechnology and Nanotoxicology, Harvard T. H. Chan School of Public Health, Boston, MA, 07016, USA
| | - Georgios Pyrgiotakis
- Center for Nanotechnology and Nanotoxicology, Harvard T. H. Chan School of Public Health, Boston, MA, 07016, USA
| | - Zhenyuan Zhang
- Center for Nanotechnology and Nanotoxicology, Harvard T. H. Chan School of Public Health, Boston, MA, 07016, USA
| | - Emilia Purington
- Department of Chemical and Biological Engineering, University of Maine, Orono ME 04469 USA
| | - William Gramlich
- Department of Chemistry, University of Maine, Orono, ME 04469 USA
| | - Yohann Grondin
- Department of Environmental Health, Molecular and Integrative Physiological Sciences Program, Harvard T. H. Chan School of Public Health, Boston, MA, 07016, USA
| | - Rick Rogers
- Department of Environmental Health, Molecular and Integrative Physiological Sciences Program, Harvard T. H. Chan School of Public Health, Boston, MA, 07016, USA
| | - Douglas Bousfield
- Department of Chemical and Biological Engineering, University of Maine, Orono ME 04469 USA
| | - Philip Demokritou
- Center for Nanotechnology and Nanotoxicology, Harvard T. H. Chan School of Public Health, Boston, MA, 07016, USA
| |
Collapse
|
18
|
Bio-based thin films of cellulose nanofibrils and magnetite for potential application in green electronics. Carbohydr Polym 2019; 207:100-107. [DOI: 10.1016/j.carbpol.2018.11.081] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 11/23/2018] [Accepted: 11/25/2018] [Indexed: 12/12/2022]
|
19
|
Ribeiro PLL, Figueiredo TVB, Moura LE, Druzian JI. Chemical modification of cellulose nanocrystals and their application in thermoplastic starch (TPS) and poly(3-hydroxybutyrate) (P3HB) nanocomposites. POLYM ADVAN TECHNOL 2018. [DOI: 10.1002/pat.4494] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
| | | | - Lívia Eloy Moura
- Department of Bromatological Analysis, College of Pharmacy; Federal University of Bahia; Salvador City Brazil
| | - Janice Izabel Druzian
- Department of Bromatological Analysis, College of Pharmacy; Federal University of Bahia; Salvador City Brazil
| |
Collapse
|
20
|
Seoane IT, Cerrutti P, Vazquez A, Cyras VP, Manfredi LB. Ternary nanocomposites based on plasticized poly(3-hydroxybutyrate) and nanocellulose. Polym Bull (Berl) 2018. [DOI: 10.1007/s00289-018-2421-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
21
|
Garcia-Garcia D, Lopez-Martinez J, Balart R, Strömberg E, Moriana R. Reinforcing capability of cellulose nanocrystals obtained from pine cones in a biodegradable poly(3-hydroxybutyrate)/poly(ε-caprolactone) (PHB/PCL) thermoplastic blend. Eur Polym J 2018. [DOI: 10.1016/j.eurpolymj.2018.04.036] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
22
|
|
23
|
Chakrabarty A, Teramoto Y. Recent Advances in Nanocellulose Composites with Polymers: A Guide for Choosing Partners and How to Incorporate Them. Polymers (Basel) 2018; 10:E517. [PMID: 30966551 PMCID: PMC6415375 DOI: 10.3390/polym10050517] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 04/21/2018] [Accepted: 04/26/2018] [Indexed: 12/31/2022] Open
Abstract
In recent years, the research on nanocellulose composites with polymers has made significant contributions to the development of functional and sustainable materials. This review outlines the chemistry of the interaction between the nanocellulose and the polymer matrix, along with the extent of the reinforcement in their nanocomposites. In order to fabricate well-defined nanocomposites, the type of nanomaterial and the selection of the polymer matrix are always crucial from the viewpoint of polymer⁻filler compatibility for the desired reinforcement and specific application. In this review, recent articles on polymer/nanocellulose composites were taken into account to provide a clear understanding on how to use the surface functionalities of nanocellulose and to choose the polymer matrix in order to produce the nanocomposite. Here, we considered cellulose nanocrystal (CNC) and cellulose nanofiber (CNF) as the nanocellulosic materials. A brief discussion on their synthesis and properties was also incorporated. This review, overall, is a guide to help in designing polymer/nanocellulose composites through the utilization of nanocellulose properties and the selection of functional polymers, paving the way to specific polymer⁻filler interaction.
Collapse
Affiliation(s)
- Arindam Chakrabarty
- Department of Applied Biological Sciences, Gifu University, Gifu 501-1193, Japan.
| | - Yoshikuni Teramoto
- Department of Applied Biological Sciences, Gifu University, Gifu 501-1193, Japan.
- Center for Highly Advanced Integration of Nano and Life Sciences (G-CHAIN), Gifu University, Gifu 501-1193, Japan.
| |
Collapse
|
24
|
Seoane IT, Manfredi LB, Cyras VP. Effect of two different plasticizers on the properties of poly(3-hydroxybutyrate) binary and ternary blends. J Appl Polym Sci 2017. [DOI: 10.1002/app.46016] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Irene Teresita Seoane
- Instituto de Investigaciones en Ciencia y Tecnología de Materiales (INTEMA), UNMdP, CONICET, Facultad de Ingeniería; Av. Juan B Justo 4302, Mar del Plata B7608FDQ Argentina
| | - Liliana Beatriz Manfredi
- Instituto de Investigaciones en Ciencia y Tecnología de Materiales (INTEMA), UNMdP, CONICET, Facultad de Ingeniería; Av. Juan B Justo 4302, Mar del Plata B7608FDQ Argentina
| | - Viviana Paola Cyras
- Instituto de Investigaciones en Ciencia y Tecnología de Materiales (INTEMA), UNMdP, CONICET, Facultad de Ingeniería; Av. Juan B Justo 4302, Mar del Plata B7608FDQ Argentina
| |
Collapse
|
25
|
Recent advances in the development of biodegradable PHB-based toughening materials: Approaches, advantages and applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 92:1092-1116. [PMID: 30184731 DOI: 10.1016/j.msec.2017.11.006] [Citation(s) in RCA: 129] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 11/03/2017] [Accepted: 11/11/2017] [Indexed: 10/18/2022]
Abstract
Polyhydroxybutyrate (PHB) is a natural biodegradable polymer that is produced by many types of bacteria as an intracellular energy storage material. Due to its numerous advantages such as biodegradability, biocompatibility, availability and with physical properties comparable to petroleum-based thermoplastics, PHB is a potential substitute in biomedical and packaging fields. However, several physical drawbacks, such as high production cost, thermal instability, and poor mechanical properties, due to secondary crystallization and slow nucleation rate, limit its competition with traditional plastics in industrial and biomedical applications. Thereby, many attempts have been employed to improve the material performance of toughened PHB so as to achieve greater competitiveness and sustainability. In this review, the most recent developments of PHB-based toughening materials are discussed with respect to their approaches and strategies, which includes: drawing and thermal treatment, blending with materials from natural sources and synthetic polymers, as well as forming reinforced composites with natural fibers and inorganic fillers. The alternation of PHB chemical structure to form various types of functional copolymers with enhanced materials performance is also summarized. The expanded utilization of these newly developed sophisticated PHB materials as engineering materials and the biomedical significance in different domains are also addressed.
Collapse
|
26
|
Effect of Cellulose Nanocrystals and Bacterial Cellulose on Disintegrability in Composting Conditions of Plasticized PHB Nanocomposites. Polymers (Basel) 2017; 9:polym9110561. [PMID: 30965865 PMCID: PMC6418597 DOI: 10.3390/polym9110561] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 10/23/2017] [Accepted: 10/26/2017] [Indexed: 11/17/2022] Open
Abstract
Poly(hydroxybutyrate) (PHB)-based films, reinforced with bacterial cellulose (BC) or cellulose nanocrystals (CNC) and plasticized using a molecular (tributyrin) or a polymeric plasticizer (poly(adipate diethylene)), were produced by solvent casting. Their morphological, thermal, wettability, and chemical properties were investigated. Furthermore, the effect of adding both plasticizers (20 wt % respect to the PHB content) and biobased selected nanofillers added at different contents (2 and 4 wt %) on disintegrability in composting conditions was studied. Results of contact angle measurements and calorimetric analysis validated the observed behavior during composting experiments, indicating how CNC aggregation, due to the hydrophilic nature of the filler, slows down the degradation rate but accelerates it in case of increasing content. In contrast, nanocomposites with BC presented an evolution in composting similar to neat PHB, possibly due to the lower hydrophilic character of this material. The addition of the two plasticizers contributed to a better dispersion of the nanoparticles by increasing the interaction between the cellulosic reinforcements and the matrix, whereas the increased crystallinity of the incubated samples in a second stage in composting provoked a reduction in the disintegration rate.
Collapse
|