1
|
Ferguson JN, Schmuker P, Dmitrieva A, Quach T, Zhang T, Ge Z, Nersesian N, Sato SJ, Clemente TE, Leakey ADB. Reducing stomatal density by expression of a synthetic epidermal patterning factor increases leaf intrinsic water use efficiency and reduces plant water use in a C4 crop. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:6823-6836. [PMID: 39021331 PMCID: PMC11565208 DOI: 10.1093/jxb/erae289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 07/17/2024] [Indexed: 07/20/2024]
Abstract
Enhancing crop water use efficiency (WUE) is a key target trait for climatic resilience and expanding cultivation on marginal lands. Engineering lower stomatal density to reduce stomatal conductance (gs) has improved WUE in multiple C3 crop species. However, reducing gs in C3 species often reduces photosynthetic carbon gain. A different response is expected in C4 plants because they possess specialized anatomy and biochemistry which concentrates CO2 at the site of fixation. This modifies the relationship of photosynthesis (AN) with intracellular CO2 concentration (ci), such that photosynthesis is CO2 saturated and reductions in gs are unlikely to limit AN. To test this hypothesis, genetic strategies were investigated to reduce stomatal density in the C4 crop sorghum. Constitutive expression of a synthetic epidermal patterning factor (EPF) transgenic allele in sorghum led to reduced stomatal densities, reduced gs, reduced plant water use, and avoidance of stress during a period of water deprivation. In addition, moderate reduction in stomatal density did not increase stomatal limitation to AN. However, these positive outcomes were associated with negative pleiotropic effects on reproductive development and photosynthetic capacity. Avoiding pleiotropy by targeting expression of the transgene to specific tissues could provide a pathway to improved agronomic outcomes.
Collapse
Affiliation(s)
- John N Ferguson
- Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Peter Schmuker
- Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Anna Dmitrieva
- Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Truyen Quach
- Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE, USA
| | - Tieling Zhang
- Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE, USA
| | - Zhengxiang Ge
- Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE, USA
| | - Natalya Nersesian
- Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE, USA
| | - Shirley J Sato
- Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE, USA
| | - Tom E Clemente
- Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE, USA
| | - Andrew D B Leakey
- Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Department of Plant Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
2
|
Weerarathne LVY, Jahufer Z, Schäufele R, Lopez I, Matthew C. A comparative analysis of agronomic water-use efficiency and its proxy measures as derived from key morpho-physiological and supportive quantitative genetics attributes of perennial ryegrass under imposed drought. PLANT-ENVIRONMENT INTERACTIONS (HOBOKEN, N.J.) 2023; 4:291-307. [PMID: 37829998 PMCID: PMC10565840 DOI: 10.1002/pei3.10123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/01/2023] [Accepted: 08/12/2023] [Indexed: 10/14/2023]
Abstract
Water-use efficiency (WUE) is an under-researched but very important drought tolerance trait in forage breeding. This research estimated quantitative genetic parameters of morpho-physiological traits linked to agronomic water-use efficiency (WUEA) and its proxy measures based on δ13C (WUEi) or gas exchange (evapotranspiration, WUEAET, or stomatal conductance WUEASC) of genotypes from half-sib families of Lolium perenne L. (PRG) in a simulated summer drought cycle. Principal component analysis (PCA) of trait data distinguished a group of PRG genotypes where high WUEA and dry matter yield was associated with deep rooting, leaf hydration at more negative leaf osmotic and water potential, and reduced soil moisture depletion. Plants with this trait association sustained net assimilation and postdefoliation regrowth in drought. However, WUEi, WUEASC, and WUEAET were poorly correlated with most traits of interest at p < .05. Another PCA revealed a weak association between WUEA and its proxy measures under conditions tested. Quantitative genetic parameters including high estimates of narrow-sense heritability (h n 2 > 0.7 ; p < .05 ) of WUEA and related traits emphasized the genetic potential of the key trait combination for selecting PRG for improved drought tolerance. Research findings highlight the relative importance of WUEA and its proxy measures in the broad definition of PRG drought tolerance for breeding purposes.
Collapse
Affiliation(s)
- L. V. Y. Weerarathne
- Department of Crop Science, Faculty of AgricultureUniversity of PeradeniyaPeradeniyaSri Lanka
- School of Agriculture and Environment, College of SciencesMassey UniversityPalmerston NorthNew Zealand
| | - Z. Jahufer
- School of Agriculture and Food Sciences, Faculty of ScienceThe University of QueenslandBrisbaneQueenslandAustralia
| | - R. Schäufele
- Crop Physiology, School of Life SciencesTechnical University of MunichFreisingGermany
| | - I. Lopez
- School of Agriculture and Environment, College of SciencesMassey UniversityPalmerston NorthNew Zealand
| | - C. Matthew
- School of Agriculture and Environment, College of SciencesMassey UniversityPalmerston NorthNew Zealand
- College of Pastoral Agriculture Science and TechnologyLanzhou UniversityLanzhouChina
| |
Collapse
|
3
|
Abstract
Water-use efficiency (WUE) is the ratio of biomass produced per unit of water consumed; thus, it can be altered by genetic factors that affect either side of the ratio. In the present study, we exploited natural variation for WUE to discover loci affecting either biomass accumulation or water use as factors affecting WUE. Genome-wide association studies (GWAS) using integrated WUE measured through carbon isotope discrimination (δ13C) of Arabidopsis thaliana accessions identified genomic regions associated with WUE. Reverse genetic analysis of 70 candidate genes selected based on the GWAS results and transcriptome data identified 25 genes affecting WUE as measured by gravimetric and δ13C analyses. Mutants of four genes had higher WUE than wild type, while mutants of the other 21 genes had lower WUE. The differences in WUE were caused by either altered biomass or water consumption (or both). Stomatal density (SD) was not a primary cause of altered WUE in these mutants. Leaf surface temperatures indicated that transpiration differed for mutants of 16 genes, but generally biomass accumulation had a greater effect on WUE. The genes we identified are involved in diverse cellular processes, including hormone and calcium signaling, meristematic activity, photosynthesis, flowering time, leaf/vasculature development, and cell wall composition; however, none of them had been previously linked to WUE. Thus, our study successfully identified effectors of WUE that can be used to understand the genetic basis of WUE and improve crop productivity.
Collapse
|
4
|
Inoue T, Yamada Y, Noguchi K. Growth temperature affects O 2 consumption rates and plasticity of respiratory flux to support shoot growth at various growth temperatures. PLANT, CELL & ENVIRONMENT 2022; 45:133-146. [PMID: 34719799 DOI: 10.1111/pce.14217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 10/20/2021] [Accepted: 10/22/2021] [Indexed: 06/13/2023]
Abstract
The temperature dependence of respiration rates and their acclimation to growth temperature vary among species/ecotypes, but the details remain unclear. Here, we compared the temperature dependence of shoot O2 consumption rates among Arabidopsis thaliana ecotypes to clarify how the temperature dependence and their acclimation to temperature differ among ecotypes, and how these differences relate to shoot growth. We examined growth analysis, temperature dependence of O2 consumption rates, and protein amounts of the respiratory chain components in shoots of twelve ecotypes of A. thaliana grown at three different temperatures. The temperature dependence of the O2 consumption rates were fitted to the modified Arrhenius model. The dynamic response of activation energy to measurement temperature was different among growth temperatures, suggesting that the plasticity of respiratory flux to temperatures differs among growth temperatures. The similar values of activation energy at growth temperature among ecotypes suggest that a similar process may determine the O2 consumption rates at the growth temperature in any ecotype. These results suggest that the growth temperature affects not only the absolute rate of O2 consumption but also the plasticity of respiratory flux in response to temperature, supporting the acclimation of shoot growth to various temperatures.
Collapse
Affiliation(s)
- Tomomi Inoue
- National Institute for Environmental Studies, Ibaraki, Japan
| | - Yusuke Yamada
- School of Life Science, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Ko Noguchi
- School of Life Science, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| |
Collapse
|
5
|
Delfin EF, Drobnitch ST, Comas LH. Plant strategies for maximizing growth during water stress and subsequent recovery in Solanum melongena L. (eggplant). PLoS One 2021; 16:e0256342. [PMID: 34469437 PMCID: PMC8409672 DOI: 10.1371/journal.pone.0256342] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 08/05/2021] [Indexed: 12/26/2022] Open
Abstract
Climate change is projected to increase the incidence of severe drought in many regions, potentially requiring selection for different traits in crop species to maintain productivity under water stress. In this study, we identified a suite of hydraulic traits associated with high productivity under water stress in four genotypes of S. melongena L. We also assessed the potential for recovery of this suite of traits from drought stress after re-watering. We observed that two genotypes, PHL 4841 and PHL 2778, quickly grew into large plants with smaller, thicker leaves and increasingly poor hydraulic status (a water-spender strategy), whereas PHL 2789 and Mara maintained safer water status and larger leaves but sacrificed large gains in biomass (a water-saver strategy). The best performing genotype under water stress, PHL 2778, additionally showed a significant increase in root biomass allocation relative to other genotypes. Biomass traits of all genotypes were negatively impacted by water deficit and remained impaired after a week of recovery; however, physiological traits such as electron transport capacity of photosystem II, and proportional allocation to root biomass and fine root length, and leaf area recovered after one week, indicating a strong capacity for eggplant to rebound from short-term deficits via recovery of physiological activity and allocation to resource acquiring tissues. These traits should be considered in selection and breeding of eggplant hybrids for future agricultural outlooks.
Collapse
Affiliation(s)
- Evelyn F. Delfin
- Institute of Plant Breeding, College of Agriculture and Food Science, University of the Philippines at Los Baños, Laguna, Philippines
- * E-mail:
| | - Sarah Tepler Drobnitch
- Soil and Crop Department, Colorado State University, Fort Collins, Colorado, United States of America
| | - Louise H. Comas
- United States Department of Agriculture, Agricultural Research Service, Fort Collins, Colorado, United States of America
| |
Collapse
|
6
|
Franco-Navarro JD, Díaz-Rueda P, Rivero-Núñez CM, Brumós J, Rubio-Casal AE, de Cires A, Colmenero-Flores JM, Rosales MA. Chloride nutrition improves drought resistance by enhancing water deficit avoidance and tolerance mechanisms. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:5246-5261. [PMID: 33783493 PMCID: PMC8272566 DOI: 10.1093/jxb/erab143] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 03/25/2021] [Indexed: 05/27/2023]
Abstract
Chloride (Cl-), traditionally considered harmful for agriculture, has recently been defined as a beneficial macronutrient with specific roles that result in more efficient use of water (WUE), nitrogen (NUE), and CO2 in well-watered plants. When supplied in a beneficial range of 1-5 mM, Cl- increases leaf cell size, improves leaf osmoregulation, and reduces water consumption without impairing photosynthetic efficiency, resulting in overall higher WUE. Thus, adequate management of Cl- nutrition arises as a potential strategy to increase the ability of plants to withstand water deficit. To study the relationship between Cl- nutrition and drought resistance, tobacco plants treated with 0.5-5 mM Cl- salts were subjected to sustained water deficit (WD; 60% field capacity) and water deprivation/rehydration treatments, in comparison with plants treated with equivalent concentrations of nitrate, sulfate, and phosphate salts. The results showed that Cl- application reduced stress symptoms and improved plant growth during water deficit. Drought resistance promoted by Cl- nutrition resulted from the simultaneous occurrence of water deficit avoidance and tolerance mechanisms, which improved leaf turgor, water balance, photosynthesis performance, and WUE. Thus, it is proposed that beneficial Cl- levels increase the ability of crops to withstand drought, promoting a more sustainable and resilient agriculture.
Collapse
Affiliation(s)
- Juan D Franco-Navarro
- Group of Plant Ion and Water Regulation, Instituto de Recursos Naturales y Agrobiología, Consejo Superior de Investigaciones Científicas (CSIC), Seville, Spain
| | - Pablo Díaz-Rueda
- Group of Plant Ion and Water Regulation, Instituto de Recursos Naturales y Agrobiología, Consejo Superior de Investigaciones Científicas (CSIC), Seville, Spain
| | - Carlos M Rivero-Núñez
- Group of Plant Ion and Water Regulation, Instituto de Recursos Naturales y Agrobiología, Consejo Superior de Investigaciones Científicas (CSIC), Seville, Spain
| | - Javier Brumós
- Instituto Valenciano de Investigaciones Agrarias, Centro de Genómica, Moncada, Valencia, Spain
| | - Alfredo E Rubio-Casal
- Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| | - Alfonso de Cires
- Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| | - José M Colmenero-Flores
- Group of Plant Ion and Water Regulation, Instituto de Recursos Naturales y Agrobiología, Consejo Superior de Investigaciones Científicas (CSIC), Seville, Spain
- Laboratory of Plant Molecular Ecophysiology, Instituto de Recursos Naturales y Agrobiología, Consejo Superior de Investigaciones Científicas (CSIC), Seville, Spain
| | - Miguel A Rosales
- Group of Plant Ion and Water Regulation, Instituto de Recursos Naturales y Agrobiología, Consejo Superior de Investigaciones Científicas (CSIC), Seville, Spain
- Laboratory of Plant Molecular Ecophysiology, Instituto de Recursos Naturales y Agrobiología, Consejo Superior de Investigaciones Científicas (CSIC), Seville, Spain
| |
Collapse
|
7
|
Marmagne A, Jasinski S, Fagard M, Bill L, Guerche P, Masclaux-Daubresse C, Chardon F. Post-flowering biotic and abiotic stresses impact nitrogen use efficiency and seed filling in Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:4578-4590. [PMID: 31930315 PMCID: PMC7382380 DOI: 10.1093/jxb/eraa011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 01/10/2020] [Indexed: 05/31/2023]
Abstract
Nitrogen (N) is an essential nutrient that plants require for the synthesis of amino acids, proteins, and many other important metabolites. Plant metabolism and growth are consequently dependent on the amount of N that is assimilated and distributed from source leaves to developing sinks, such as fruits and seeds. The environmental stresses enhanced by climate change deeply influence seed yield and seed composition, and may disturb N use efficiency (NUE) in pants. We aimed to investigate plant responses to extreme climates with regard to NUE, N remobilization efficiency, and seed composition. By studying a collection of Arabidopsis genotypes showing a range of C:N ratios in seeds, we investigated the impact of different post-flowering growth conditions (control, heat, drought, low nitrate availability, induced senescence, and induced plant defense) on seed yield, N allocation in organs, NUE, and N remobilization efficiency. We analysed how post-flowering stresses could change seed filling and showed that post-flowering stresses change both the range of N and C concentrations and the C:N stoichiometry in seeds. Using a new trait, called delta seed composition, we measured the deviation in C:N stoichiometry of each genotype and revealed the genetic determinism of the C:N stoichiometry. Altogether, the results indicate that extreme climate impacts NUE dramatically in plants and generates different bottlenecks in N fluxes during seed filling.
Collapse
Affiliation(s)
- Anne Marmagne
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay,, Versailles, France
| | - Sophie Jasinski
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay,, Versailles, France
| | - Mathilde Fagard
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay,, Versailles, France
| | - Laurence Bill
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay,, Versailles, France
| | - Philippe Guerche
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay,, Versailles, France
| | | | - Fabien Chardon
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay,, Versailles, France
| |
Collapse
|
8
|
Simon NML, Graham CA, Comben NE, Hetherington AM, Dodd AN. The Circadian Clock Influences the Long-Term Water Use Efficiency of Arabidopsis. PLANT PHYSIOLOGY 2020; 183:317-330. [PMID: 32179629 PMCID: PMC7210627 DOI: 10.1104/pp.20.00030] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 02/25/2020] [Indexed: 05/04/2023]
Abstract
In plants, water use efficiency (WUE) is a complex trait arising from numerous physiological and developmental characteristics. Here, we investigated the involvement of circadian regulation in long-term WUE in Arabidopsis (Arabidopsis thaliana) under light and dark conditions. Circadian rhythms are generated by the circadian oscillator, which provides a cellular measure of the time of day. In plants, the circadian oscillator contributes to the regulation of many aspects of physiology, including stomatal opening, rate of photosynthesis, carbohydrate metabolism, and developmental processes such as the initiation of flowering. We investigated the impact of the misregulation of numerous genes encoding various components of the circadian oscillator on whole plant, long-term WUE. From this analysis, we identified a role for the circadian oscillator in WUE. It appears that the circadian clock contributes to the control of transpiration and biomass accumulation. We also established that the circadian oscillator within guard cells can contribute to long-term WUE. Our experiments indicate that knowledge of circadian regulation will be important for developing crops with improved WUE.
Collapse
Affiliation(s)
- Noriane M L Simon
- School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, United Kingdom
| | - Calum A Graham
- School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, United Kingdom
- John Innes Centre, Norwich NR4 7UH, United Kingdom
| | - Nicholas E Comben
- School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, United Kingdom
| | | | | |
Collapse
|
9
|
Han J, Lei Z, Zhang Y, Yi X, Zhang W, Zhang Y. Drought-introduced variability of mesophyll conductance in Gossypium and its relationship with leaf anatomy. PHYSIOLOGIA PLANTARUM 2019; 166:873-887. [PMID: 30264467 DOI: 10.1111/ppl.12845] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 09/19/2018] [Accepted: 09/24/2018] [Indexed: 05/26/2023]
Abstract
Mesophyll conductance (gm ) is one of the major determinants of photosynthetic rate, for which it has an impact on crop yield. However, the regulatory mechanisms behind the decline in gm of cotton (Gossypium. spp) by drought are unclear. An upland cotton (Gossypium hirsutum) genotype and a pima cotton (Gossypium barbadense) genotype were used to determine the gas exchange parameters, leaf anatomical structure as well as aquaporin and carbonic anhydrase gene expression under well-watered and drought treatment conditions. In this study, the decrease of net photosynthetic rate (AN ) under drought conditions was related to a decline in gm and in stomatal conductance (gs ). gm and gs coordinate with each other to ensure optimum state of CO2 diffusion and achieve the balance of water and CO2 demand in the process of photosynthesis. Meanwhile, mesophyll limitations to photosynthesis are equally important to the stomatal limitations. Considering gm , its decline in cotton leaves under drought was mostly regulated by the chloroplast surface area exposed to leaf intercellular air spaces per leaf area (Sc /S) and might also be regulated by the expression of leaf CARBONIC ANHYDRASE (CA1). Meanwhile, cotton leaves can minimize the decrease in gm under drought by maintaining cell wall thickness (Tcw ). Our results indicated that modification of chloroplasts might be a target trait in future attempts to improve cotton drought tolerance.
Collapse
Affiliation(s)
- Jimei Han
- The Key Laboratory of Oasis Eco-Agriculture, Xinjiang Production and Construction Group, Shihezi University, Shihezi 832003, China
| | - Zhangying Lei
- The Key Laboratory of Oasis Eco-Agriculture, Xinjiang Production and Construction Group, Shihezi University, Shihezi 832003, China
| | - Yujie Zhang
- The Key Laboratory of Oasis Eco-Agriculture, Xinjiang Production and Construction Group, Shihezi University, Shihezi 832003, China
| | - Xiaoping Yi
- The Key Laboratory of Oasis Eco-Agriculture, Xinjiang Production and Construction Group, Shihezi University, Shihezi 832003, China
| | - Wangfeng Zhang
- The Key Laboratory of Oasis Eco-Agriculture, Xinjiang Production and Construction Group, Shihezi University, Shihezi 832003, China
| | - Yali Zhang
- The Key Laboratory of Oasis Eco-Agriculture, Xinjiang Production and Construction Group, Shihezi University, Shihezi 832003, China
| |
Collapse
|
10
|
Ferguson J, Meyer R, Edwards K, Humphry M, Brendel O, Bechtold U. Accelerated flowering time reduces lifetime water use without penalizing reproductive performance in Arabidopsis. PLANT, CELL & ENVIRONMENT 2019; 42:1847-1867. [PMID: 30707443 PMCID: PMC6563486 DOI: 10.1111/pce.13527] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 01/14/2019] [Indexed: 05/30/2023]
Abstract
Natural selection driven by water availability has resulted in considerable variation for traits associated with drought tolerance and leaf-level water-use efficiency (WUE). In Arabidopsis, little is known about the variation of whole-plant water use (PWU) and whole-plant WUE (transpiration efficiency). To investigate the genetic basis of PWU, we developed a novel proxy trait by combining flowering time and rosette water use to estimate lifetime PWU. We validated its usefulness for large-scale screening of mapping populations in a subset of ecotypes. This parameter subsequently facilitated the screening of water use and drought tolerance traits in a recombinant inbred line population derived from two Arabidopsis accessions with distinct water-use strategies, namely, C24 (low PWU) and Col-0 (high PWU). Subsequent quantitative trait loci mapping and validation through near-isogenic lines identified two causal quantitative trait loci, which showed that a combination of weak and nonfunctional alleles of the FRIGIDA (FRI) and FLOWERING LOCUS C (FLC) genes substantially reduced plant water use due to their control of flowering time. Crucially, we observed that reducing flowering time and consequently water use did not penalize reproductive performance, as such water productivity (seed produced per unit of water transpired) improved. Natural polymorphisms of FRI and FLC have previously been elucidated as key determinants of natural variation in intrinsic WUE (δ13 C). However, in the genetic backgrounds tested here, drought tolerance traits, stomatal conductance, δ13 C. and rosette water use were independent of allelic variation at FRI and FLC, suggesting that flowering is critical in determining lifetime PWU but not always leaf-level traits.
Collapse
Affiliation(s)
- John N. Ferguson
- School of Biological SciencesUniversity of EssexColchesterUK
- Institute for Genomic BiologyUniversity of Illinois at Urbana‐ChampaignUrbanaIllinoisUSA
| | - Rhonda C. Meyer
- Department of Molecular GeneticsLeibniz Institute of Plant Genetics and Crop Plant Research (IPK) GaterslebenSeelandGermany
| | - Kieron D. Edwards
- Sibelius Natural Products Health Wellness and FitnessOxfordUK
- Advanced Technologies CambridgeCambridgeUK
| | - Matt Humphry
- Advanced Technologies CambridgeCambridgeUK
- Quantitative GeneticsBritish American TobaccoCambridgeUK
| | - Oliver Brendel
- Université de LorraineAgroParisTech, INRA, SilvaNancyFrance
| | - Ulrike Bechtold
- School of Biological SciencesUniversity of EssexColchesterUK
| |
Collapse
|
11
|
Affiliation(s)
- Lisa M Smith
- Department of Animal and Plant Sciences and The Plant Production and Protection (P3) Centre, University of Sheffield, Sheffield S10 2TN, United Kingdom
| |
Collapse
|
12
|
Climate change and abiotic stress mechanisms in plants. Emerg Top Life Sci 2019; 3:165-181. [DOI: 10.1042/etls20180105] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 04/05/2019] [Accepted: 04/09/2019] [Indexed: 12/20/2022]
Abstract
Abstract
Predicted global climatic change will perturb the productivity of our most valuable crops as well as detrimentally impact ecological fitness. The most important aspects of climate change with respect to these effects relate to water availability and heat stress. Over multiple decades, the plant research community has amassed a highly comprehensive understanding of the physiological mechanisms that facilitate the maintenance of productivity in response to drought, flooding, and heat stress. Consequently, the foundations necessary to begin the development of elite crop varieties that are primed for climate change are in place. To meet the food and fuel security concerns of a growing population, it is vital that biotechnological and breeding efforts to harness these mechanisms are accelerated in the coming decade. Despite this, those concerned with crop improvement must approach such efforts with caution and ensure that potentially harnessed mechanisms are viable under the context of a dynamically changing environment.
Collapse
|
13
|
Chaplin AK, Chernukhin I, Bechtold U. Profiling of advanced glycation end products uncovers abiotic stress-specific target proteins in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:653-670. [PMID: 30395279 PMCID: PMC6322573 DOI: 10.1093/jxb/ery389] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 10/12/2018] [Indexed: 05/03/2023]
Abstract
Non-enzymatic post-translational modifications of proteins can occur when the nucleophilic amino acid side chains of lysine and arginine encounter a reactive metabolite to form advanced glycation end products (AGEs). Glycation arises predominantly from the degradation of reducing sugars, and glycation has been observed during metabolic stress from glucose metabolism in both animals and plants. The implications of glycating proteins on plant proteins and biology has received little attention, and here we describe a robust assessment of global glycation profiles. We identified 112 glycated proteins that were common under a range of growth conditions and abiotic stress treatments, but also showed rosette age, diurnal, and drought stress-specific targets. Among 18 drought stress-specific glycation targets included several thioredoxin and thioredoxin-like proteins. In vitro glycation of two carbohydrate metabolism enzymes led either to a reduction or to a complete inhibition of activity, demonstrating the impact of glycation on protein function. Taken together, our results suggest that stress-specific glycation patterns of a small number of regulatory proteins may have a much broader impact on downstream target proteins that are, for example, associated with primary metabolism.
Collapse
Affiliation(s)
- Amanda K Chaplin
- School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, UK
| | - Igor Chernukhin
- School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, UK
| | - Ulrike Bechtold
- School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, UK
| |
Collapse
|
14
|
Bechtold U, Ferguson JN, Mullineaux PM. To defend or to grow: lessons from Arabidopsis C24. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:2809-2821. [PMID: 29562306 DOI: 10.1093/jxb/ery106] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Accepted: 03/13/2018] [Indexed: 06/08/2023]
Abstract
The emergence of Arabidopsis as a model species and the availability of genetic and genomic resources have resulted in the identification and detailed characterization of abiotic stress signalling pathways. However, this has led only to limited success in engineering abiotic stress tolerance in crops. This is because there needs to be a deeper understanding of how to combine resistances to a range of stresses with growth and productivity. The natural variation and genomic resources of Arabidopsis thaliana (Arabidopsis) are a great asset to understand the mechanisms of multiple stress tolerances. One natural variant in Arabidopsis is the accession C24, and here we provide an overview of the increasing research interest in this accession. C24 is highlighted as a source of tolerance for multiple abiotic and biotic stresses, and a key accession to understand the basis of basal immunity to infection, high water use efficiency, and water productivity. Multiple biochemical, physiological, and phenological mechanisms have been attributed to these traits in C24, and none of them constrains productivity. Based on the uniqueness of C24, we postulate that the use of variation derived from natural selection in undomesticated species provides opportunities to better understand how complex environmental stress tolerances and resource use efficiency are co-ordinated.
Collapse
Affiliation(s)
- Ulrike Bechtold
- University of Essex, School of Biological Sciences, Wivenhoe Park, Colchester, UK
| | - John N Ferguson
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Philip M Mullineaux
- University of Essex, School of Biological Sciences, Wivenhoe Park, Colchester, UK
| |
Collapse
|
15
|
Bechtold U. Plant Life in Extreme Environments: How Do You Improve Drought Tolerance? FRONTIERS IN PLANT SCIENCE 2018; 9:543. [PMID: 29868044 PMCID: PMC5962824 DOI: 10.3389/fpls.2018.00543] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 04/09/2018] [Indexed: 05/11/2023]
Abstract
Systems studies of drought stress in resurrection plants and other xerophytes are rapidly identifying a large number of genes, proteins and metabolites that respond to severe drought stress or desiccation. This has provided insight into drought resistance mechanisms, which allow xerophytes to persist under such extreme environmental conditions. Some of the mechanisms that ensure cellular protection during severe dehydration appear to be unique to desert species, while many other stress signaling pathways are in common with well-studied model and crop species. However, despite the identification of many desiccation inducible genes, there are few "gene-to-field" examples that have led to improved drought tolerance and yield stability derived from resurrection plants, and only few examples have emerged from model species. This has led to many critical reviews on the merit of the experimental approaches and the type of plants used to study drought resistance mechanisms. This article discusses the long-standing arguments between the ecophysiology and molecular biology communities, on how to "drought-proof" future crop varieties. It concludes that a more positive and inclusive dialogue between the different disciplines is needed, to allow us to move forward in a much more constructive way.
Collapse
Affiliation(s)
- Ulrike Bechtold
- School of Biological Sciences, University of Essex, Colchester, United Kingdom
| |
Collapse
|