1
|
Grimaud A, Babović M, Holck FH, Jensen ON, Schwämmle V. How to Deal With Internal Fragment Ions? Mol Cell Proteomics 2025; 24:100896. [PMID: 39954811 DOI: 10.1016/j.mcpro.2024.100896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 10/29/2024] [Accepted: 12/15/2024] [Indexed: 02/17/2025] Open
Abstract
Tandem mass spectrometry of peptides and proteins generates 3mass spectra of their gas-phase fragmentation product ions, including N-terminal, C-terminal, and internal fragment ions. While N- and C-terminal ions are routinely assigned and identified using computational methods, internal fragment ions are often difficult to annotate correctly. They become particularly relevant for long peptides and full proteoforms where the peptide backbone is more likely to be fragmented multiple times. Internal fragment ions potentially offer tremendous information regarding amino acid sequences and positions of post-translational modifications of peptides and intact proteins. However, their practical application is challenged by the vast number of theoretical internal fragments that exist for long amino acid sequences, leading to a high risk of false-positive annotations. We analyze the mass spectral contributions of internal fragment ions in spectra from middle-down and top-down experiments and introduce a novel graph-based annotation approach designed to manage the complexity of internal fragments. Our graph-based representation allows us to compare multiple candidate proteoforms in a single graph, and to assess different candidate annotations in a fragment ion spectrum. We demonstrate cases from middle-down and top-down data where internal ions enhance amino acid sequence coverage of polypeptides and proteins and accurate localization of post-translational modifications. We conclude that our graph-based method provides a general approach to process complex tandem mass spectra, enhance annotation of internal fragment ions, and improve proteoform sequencing and characterization by mass spectrometry.
Collapse
Affiliation(s)
- Arthur Grimaud
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark.
| | - Maša Babović
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Frederik Haugaard Holck
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Ole N Jensen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Veit Schwämmle
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
2
|
Bashyal A, Brodbelt JS. Uncommon posttranslational modifications in proteomics: ADP-ribosylation, tyrosine nitration, and tyrosine sulfation. MASS SPECTROMETRY REVIEWS 2024; 43:289-326. [PMID: 36165040 PMCID: PMC10040477 DOI: 10.1002/mas.21811] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 09/06/2022] [Accepted: 09/07/2022] [Indexed: 06/16/2023]
Abstract
Posttranslational modifications (PTMs) are covalent modifications of proteins that modulate the structure and functions of proteins and regulate biological processes. The development of various mass spectrometry-based proteomics workflows has facilitated the identification of hundreds of PTMs and aided the understanding of biological significance in a high throughput manner. Improvements in sample preparation and PTM enrichment techniques, instrumentation for liquid chromatography-tandem mass spectrometry (LC-MS/MS), and advanced data analysis tools enhance the specificity and sensitivity of PTM identification. Highly prevalent PTMs like phosphorylation, glycosylation, acetylation, ubiquitinylation, and methylation are extensively studied. However, the functions and impact of less abundant PTMs are not as well understood and underscore the need for analytical methods that aim to characterize these PTMs. This review focuses on the advancement and analytical challenges associated with the characterization of three less common but biologically relevant PTMs, specifically, adenosine diphosphate-ribosylation, tyrosine sulfation, and tyrosine nitration. The advantages and disadvantages of various enrichment, separation, and MS/MS techniques utilized to identify and localize these PTMs are described.
Collapse
Affiliation(s)
- Aarti Bashyal
- Department of Chemistry, The University of Texas at Austin, Austin, Texas, USA
| | - Jennifer S Brodbelt
- Department of Chemistry, The University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
3
|
Saintmont F, Cazals G, Bich C, Dutertre S. Proteomic Analysis of the Predatory Venom of Conus striatus Reveals Novel and Population-Specific κA-Conotoxin SIVC. Toxins (Basel) 2022; 14:toxins14110799. [PMID: 36422973 PMCID: PMC9699092 DOI: 10.3390/toxins14110799] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 11/19/2022] Open
Abstract
Animal venoms are a rich source of pharmacological compounds with ecological and evolutionary significance, as well as with therapeutic and biotechnological potentials. Among the most promising venomous animals, cone snails produce potent neurotoxic venom to facilitate prey capture and defend against aggressors. Conus striatus, one of the largest piscivorous species, is widely distributed, from east African coasts to remote Polynesian Islands. In this study, we investigated potential intraspecific differences in venom composition between distinct geographical populations from Mayotte Island (Indian Ocean) and Australia (Pacific Ocean). Significant variations were noted among the most abundant components, namely the κA-conotoxins, which contain three disulfide bridges and complex glycosylations. The amino acid sequence of a novel κA-conotoxin SIVC, including its N-terminal acetylated variant, was deciphered using tandem mass spectrometry (MS/MS). In addition, the glycosylation pattern was found to be consisting of two HexNAc and four Hex for the Mayotte population, which diverge from the previously characterized two HexNAc and three Hex combinations for this species, collected elsewhere. Whereas the biological and ecological roles of these modifications remain to be investigated, population-specific glycosylation patterns provide, for the first time, a new level of intraspecific variations in cone snail venoms.
Collapse
|
4
|
Lee ST, Park H, Jang I, Lee CS, Moon B, Oh HB. New free radical-initiated peptide sequencing (FRIPS) mass spectrometry reagent with high conjugation efficiency enabling single-step peptide sequencing. Sci Rep 2022; 12:9494. [PMID: 35680949 PMCID: PMC9184593 DOI: 10.1038/s41598-022-13624-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 05/17/2022] [Indexed: 12/04/2022] Open
Abstract
A newly designed TEMPO-FRIPS reagent, 4-(2,2,6,6-tetramethylpiperidine-1-oxyl) methyl benzyl succinic acid N-hydroxysuccinimide ester or p-TEMPO–Bn–Sc–NHS, was synthesized to achieve single-step free radical-initiated peptide sequencing mass spectrometry (FRIPS MS) for a number of model peptides, including phosphopeptides. The p-TEMPO–Bn–Sc–NHS reagent was conjugated to target peptides, and the resulting peptides were subjected to collisional activation. The peptide backbone dissociation behaviors of the MS/MS and MS3 experiments were monitored in positive ion mode. Fragment ions were observed even at the single-step thermal activation of the p-TEMPO–Bn–Sc–peptides, showing mainly a-/x- and c-/z-type fragments and neutral loss ions. This confirms that radical-driven peptide backbone dissociations occurred with the p-TEMPO–Bn–Sc–peptides. Compared to the previous version of the TEMPO reagent, i.e., o-TEMPO–Bz–C(O)–NHS, the newly designed p-TEMPO–Bn–Sc–NHS has better conjugation efficiency for the target peptides owing to its improved structural flexibility and solubility in the experimental reagents. An energetic interpretation using the survival fraction as a function of applied normalized collision energy (NCE) ascertained the difference in the thermal activation between p-TEMPO–Bn–Sc– and o-TEMPO–Bz–C(O)– radical initiators. This study clearly demonstrates that the application of the p-TEMPO–Bn–Sc– radical initiator can improve the duty cycle, and this FRIPS MS approach has the potential to be implemented in proteomics studies, including phosphoproteomics.
Collapse
Affiliation(s)
- Sang Tak Lee
- Department of Chemistry, Sogang University, Seoul, 04107, Korea
| | - Hyemi Park
- Department of Chemistry, Sogang University, Seoul, 04107, Korea
| | - Inae Jang
- Department of Chemistry, Sogang University, Seoul, 04107, Korea
| | - Choong Sik Lee
- Department of Chemistry, Sogang University, Seoul, 04107, Korea.,Department of Toxicology and Chemistry, Scientific Investigation Laboratory, Criminal Investigation Command, Ministry of National Defense, Seoul, 04351, Korea
| | - Bongjin Moon
- Department of Chemistry, Sogang University, Seoul, 04107, Korea.
| | - Han Bin Oh
- Department of Chemistry, Sogang University, Seoul, 04107, Korea.
| |
Collapse
|
5
|
LeBlanc BM, Moreno RY, Escobar EE, Venkat Ramani MK, Brodbelt JS, Zhang Y. What's all the phos about? Insights into the phosphorylation state of the RNA polymerase II C-terminal domain via mass spectrometry. RSC Chem Biol 2021; 2:1084-1095. [PMID: 34458825 PMCID: PMC8341212 DOI: 10.1039/d1cb00083g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 06/03/2021] [Indexed: 12/31/2022] Open
Abstract
RNA polymerase II (RNAP II) is one of the primary enzymes responsible for expressing protein-encoding genes and some small nuclear RNAs. The enigmatic carboxy-terminal domain (CTD) of RNAP II and its phosphorylation state are critically important in regulating transcription in vivo. Early methods of identifying phosphorylation on the CTD heptad were plagued by issues of low specificity and ambiguous signals. However, advancements in the field of mass spectrometry (MS) have presented the opportunity to gain new insights into well-studied processes as well as explore new frontiers in transcription. By using MS, residues which are modified within the CTD heptad and across repeats are now able to be pinpointed. Likewise, identification of kinase and phosphatase specificity towards residues of the CTD has reached a new level of accuracy. Now, MS is being used to investigate the crosstalk between modified residues of the CTD and may be a critical technique for understanding how phosphorylation plays a role in the new LLPS model of transcription. Herein, we discuss the development of various MS techniques and evaluate their capabilities. By highlighting the pros and cons of each technique, we aim to provide future investigators with a comprehensive overview of how MS can be used to investigate the complexities of RNAP-II mediated transcription.
Collapse
Affiliation(s)
- Blase M LeBlanc
- Department of Molecular Biosciences, University of Texas Austin USA
| | - R Yvette Moreno
- Department of Molecular Biosciences, University of Texas Austin USA
| | | | | | | | - Yan Zhang
- Department of Molecular Biosciences, University of Texas Austin USA
- Institute of Cellular and Molecular Biology, University of Texas Austin USA
| |
Collapse
|
6
|
Identification and Relative Quantification of hFSH Glycoforms in Women's Sera via MS-PRM-Based Approach. Pharmaceutics 2021; 13:pharmaceutics13060798. [PMID: 34071747 PMCID: PMC8226871 DOI: 10.3390/pharmaceutics13060798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/23/2021] [Accepted: 04/28/2021] [Indexed: 11/17/2022] Open
Abstract
Follicle-stimulating hormone (FSH) is a glycohormone synthesized by adenohypophysis, and it stimulates ovulation in women and spermatogenesis in men by binding to its receptor (FSHR). FSHR is involved in several mechanisms to transduce intracellular signals in response to the FSH stimulus. Exogenous FSH is currently used in the clinic for ovarian hyperstimulation during in vitro fertilization in women, and for treatment of infertility caused by gonadotropin deficiency in men. The glycosylation of FSH strongly affects the binding affinity to its receptor, hence significantly influencing the biological activity of the hormone. Therefore, the accurate measurement and characterization of serum hFSH glycoforms will contribute to elucidating the complex mechanism of action by which different glycoforms elicit distinct biological activity. Nowadays ELISA is the official method with which to monitor serum hFSH, but the test is unable to distinguish between the different FSH glycovariants and is therefore unsuitable to study the biological activity of this hormone. This study presents a preliminary alternative strategy for identifying and quantifying serum hFSH glycoforms based on immunopurification assay and mass spectrometry (MS), and parallel reaction monitoring (PRM) analysis. In this study, we provide an MS–PRM data acquisition method for hFSH glycopeptides identification with high specificity and their quantification by extracting the chromatographic traces of selected fragments of glycopeptides. Once set up for all its features, the proposed method could be transferred to the clinic to improve fertility treatments and follow-ups in men and women.
Collapse
|
7
|
Quantitative Phosphoproteomic Analysis of Legume Using TiO 2-Based Enrichment Coupled with Isobaric Labeling. Methods Mol Biol 2020; 2107:395-406. [PMID: 31893461 DOI: 10.1007/978-1-0716-0235-5_22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Phosphorylation of proteins is the most dynamic protein modification, and its analysis aids in determining the functional and regulatory principles of important cellular pathways. The legumes constitute the third largest family of higher plants, Fabaceae, comprising about 20,000 species and are second to cereals in agricultural importance on the basis of global production. Therefore, an understanding of the developmental and adaptive processes of legumes demands identification of their regulatory components. The most crucial signature of the legume family is the symbiotic nitrogen fixation, which makes this fascinating and interesting to investigate phosphorylation events. The research on protein phosphorylation in legumes has been focused primarily on two model species, Medicago truncatula and Lotus japonicus. The development of reciprocal research in other species, particularly the crops, is lagging behind which has limited its beneficial uses in agricultural productivity. In this chapter, we outline the titanium dioxide-based enrichment of phosphopeptides for nuclear proteome analysis of a grain legume, chickpea.
Collapse
|
8
|
Maitre P, Scuderi D, Corinti D, Chiavarino B, Crestoni ME, Fornarini S. Applications of Infrared Multiple Photon Dissociation (IRMPD) to the Detection of Posttranslational Modifications. Chem Rev 2019; 120:3261-3295. [PMID: 31809038 DOI: 10.1021/acs.chemrev.9b00395] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Infrared multiple photon dissociation (IRMPD) spectroscopy allows for the derivation of the vibrational fingerprint of molecular ions under tandem mass spectrometry (MS/MS) conditions. It provides insight into the nature and localization of posttranslational modifications (PTMs) affecting single amino acids and peptides. IRMPD spectroscopy, which takes advantage of the high sensitivity and resolution of MS/MS, relies on a wavelength specific fragmentation process occurring on resonance with an IR active vibrational mode of the sampled species and is well suited to reveal the presence of a PTM and its impact in the molecular environment. IRMPD spectroscopy is clearly not a proteomics tool. It is rather a valuable source of information for fixed wavelength IRMPD exploited in dissociation protocols of peptides and proteins. Indeed, from the large variety of model PTM containing amino acids and peptides which have been characterized by IRMPD spectroscopy, specific signatures of PTMs such as phosphorylation or sulfonation can be derived. High throughput workflows relying on the selective fragmentation of modified peptides within a complex mixture have thus been proposed. Sequential fragmentations can be observed upon IR activation, which do not only give rise to rich fragmentation patterns but also overcome low mass cutoff limitations in ion trap mass analyzers. Laser-based vibrational spectroscopy of mass-selected ions holding various PTMs is an increasingly expanding field both in the variety of chemical issues coped with and in the technological advancements and implementations.
Collapse
Affiliation(s)
- Philippe Maitre
- Laboratoire de Chimie Physique (UMR8000), Université Paris-Sud, CNRS, Université Paris Saclay, 91405, Orsay, France
| | - Debora Scuderi
- Laboratoire de Chimie Physique (UMR8000), Université Paris-Sud, CNRS, Université Paris Saclay, 91405, Orsay, France
| | - Davide Corinti
- Dipartimento di Chimica e Tecnologie del Farmaco, Università di Roma "La Sapienza", I-00185 Roma, Italy
| | - Barbara Chiavarino
- Dipartimento di Chimica e Tecnologie del Farmaco, Università di Roma "La Sapienza", I-00185 Roma, Italy
| | - Maria Elisa Crestoni
- Dipartimento di Chimica e Tecnologie del Farmaco, Università di Roma "La Sapienza", I-00185 Roma, Italy
| | - Simonetta Fornarini
- Dipartimento di Chimica e Tecnologie del Farmaco, Università di Roma "La Sapienza", I-00185 Roma, Italy
| |
Collapse
|
9
|
Cunsolo V, Foti S, Ner‐Kluza J, Drabik A, Silberring J, Muccilli V, Saletti R, Pawlak K, Harwood E, Yu F, Ciborowski P, Anczkiewicz R, Altweg K, Spoto G, Pawlaczyk A, Szynkowska MI, Smoluch M, Kwiatkowska D. Mass Spectrometry Applications. Mass Spectrom (Tokyo) 2019. [DOI: 10.1002/9781119377368.ch8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
10
|
de Souza CL, Dos Santos-Pinto JRA, Esteves FG, Perez-Riverol A, Fernandes LGR, de Lima Zollner R, Palma MS. Revisiting Polybia paulista wasp venom using shotgun proteomics - Insights into the N-linked glycosylated venom proteins. J Proteomics 2019; 200:60-73. [PMID: 30905720 DOI: 10.1016/j.jprot.2019.03.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 02/26/2019] [Accepted: 03/20/2019] [Indexed: 12/21/2022]
Abstract
The partial proteome of Polybia paulista wasp venom was previously reported elsewhere using a gel-dependent approach and resulted in the identification of a limited number of venom toxins. Here, we reinvestigated the P. paulista venom using a gel-free shotgun proteomic approach; the highly dynamic range of this approach facilitated the detection and identification of 1673 proteins, of which 23 venom proteins presented N-linked glycosylation as a posttranslational modification. Three different molecular forms of PLA1 were identified as allergenic proteins, and two of these forms were modified by N-linked glycosylation. This study reveals an extensive repertoire of hitherto undescribed proteins that were classified into the following six different functional groups: (i) typical venom proteins; (ii) proteins related to the folding/conformation and PTMs of toxins; (iii) proteins that protect toxins from oxidative stress; (iv) proteins involved in chemical communication; (v) housekeeping proteins; and (vi) uncharacterized proteins. It was possible to identify venom toxin-like proteins that are commonly reported in other animal venoms, including arthropods such as spiders and scorpions. Thus, the findings reported here may contribute to improving our understanding of the composition of P. paulista venom, its envenoming mechanism and the pathologies experienced by the victim after the wasp stinging accident. BIOLOGICAL SIGNIFICANCE: The present study significantly expanded the number of proteins identified in P. paulista venom, contributing to improvements in our understanding of the envenoming mechanism produced by sting accidents caused by this wasp. For example, novel wasp venom neurotoxins have been identified, but no studies have assessed the presence of this type of toxin in social wasp venoms. In addition, 23 N-linked glycosylated venom proteins were identified in the P. paulista venom proteome, and some of these proteins might be relevant allergens that are immunoreactive to human IgE.
Collapse
Affiliation(s)
- Caroline Lacerra de Souza
- Center of the Study of Social Insects, Department of Biology, Institute of Biosciences of Rio Claro, São Paulo State University, Rio Claro, SP 13500, Brazil
| | - José Roberto Aparecido Dos Santos-Pinto
- Center of the Study of Social Insects, Department of Biology, Institute of Biosciences of Rio Claro, São Paulo State University, Rio Claro, SP 13500, Brazil.
| | - Franciele Grego Esteves
- Center of the Study of Social Insects, Department of Biology, Institute of Biosciences of Rio Claro, São Paulo State University, Rio Claro, SP 13500, Brazil
| | - Amilcar Perez-Riverol
- Center of the Study of Social Insects, Department of Biology, Institute of Biosciences of Rio Claro, São Paulo State University, Rio Claro, SP 13500, Brazil
| | - Luís Gustavo Romani Fernandes
- Laboratory of Translational Immunology, Faculty of Medicine, University of Campinas (UNICAMP), Cidade Universitária "Zeferino Vaz", Campinas, SP 13083887, Brazil
| | - Ricardo de Lima Zollner
- Laboratory of Translational Immunology, Faculty of Medicine, University of Campinas (UNICAMP), Cidade Universitária "Zeferino Vaz", Campinas, SP 13083887, Brazil
| | - Mario Sergio Palma
- Center of the Study of Social Insects, Department of Biology, Institute of Biosciences of Rio Claro, São Paulo State University, Rio Claro, SP 13500, Brazil.
| |
Collapse
|
11
|
Kempkes LM, Martens J, Berden G, Oomens J. Spectroscopic Characterization of an Extensive Set of c-Type Peptide Fragment Ions Formed by Electron Transfer Dissociation Suggests Exclusive Formation of Amide Isomers. J Phys Chem Lett 2018; 9:6404-6411. [PMID: 30343579 PMCID: PMC6240889 DOI: 10.1021/acs.jpclett.8b02850] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Accepted: 10/18/2018] [Indexed: 06/08/2023]
Abstract
Electron attachment dissociation (electron capture dissociation (ECD) and electron transfer dissociation (ETD)) applied to gaseous multiply protonated peptides leads predominantly to backbone N-Cα bond cleavages and the formation of c- and z-type fragment ions. The mechanisms involved in the formation of these ions have been the subject of much discussion. Here, we determine the molecular structures of an extensive set of c-type ions produced by ETD using infrared ion spectroscopy. Nine c3- and c4-ions are investigated to establish their C-terminal structure as either enol-imine or amide isomers by comparison of the experimental infrared spectra with quantum-chemically predicted spectra for both structural variants. The spectra suggest that all c-ions investigated possess an amide structure; the absence of the NH bending mode at approximately 1000-1200 cm-1 serves as an important diagnostic feature.
Collapse
Affiliation(s)
- Lisanne
J. M. Kempkes
- FELIX
Laboratory, Institute for Molecules and Materials, Radboud University, Toernooiveld 7, 6525 ED Nijmegen, The Netherlands
| | - Jonathan Martens
- FELIX
Laboratory, Institute for Molecules and Materials, Radboud University, Toernooiveld 7, 6525 ED Nijmegen, The Netherlands
| | - Giel Berden
- FELIX
Laboratory, Institute for Molecules and Materials, Radboud University, Toernooiveld 7, 6525 ED Nijmegen, The Netherlands
| | - Jos Oomens
- FELIX
Laboratory, Institute for Molecules and Materials, Radboud University, Toernooiveld 7, 6525 ED Nijmegen, The Netherlands
- Van’t
Hoff Institute for Molecular Sciences, University
of Amsterdam, Science
Park 904, 1098 XH Amsterdam, The Netherlands
| |
Collapse
|
12
|
He M, Jiang Y, Wang X, Zhao Y, Ye S, Ma J, Fang X, Xu W. Rapid characterization of structure-dependency gas-phase ion/ion reaction via accumulative tandem MS. Talanta 2018; 195:17-22. [PMID: 30625528 DOI: 10.1016/j.talanta.2018.11.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 10/24/2018] [Accepted: 11/05/2018] [Indexed: 12/25/2022]
Abstract
To enable the rapid detection of biomolecule reactivity and reaction sites, we developed a method based on gas-phase ion/ion reaction and accumulative tandem mass spectrometry (MS). Structure-dependency reactions in gas-phase were performed between biomolecule ions and their reaction partner ions with opposite polarities in a quadrupole ion trap. Gas-phase peptide bioconjugation with pyridoxal-5-phosphate (PLP) was chosen as a proof-of-principle example. It is found that the Coulomb attraction force holds reaction partners close together, which increasing the reaction probability. Post reaction, reaction sites were identified by the consequent accumulative tandem MS method, in which informative product ions in low abundance were enriched by more than 100 times in another quadrupole ion trap. With enough product ions, tandem MS was performed, and reaction sites could be identified unambiguously. Since those reactions are normally biomolecular structure dependent, density functional theory (DFT) calculations were also carried out to understand the reaction mechanism. The method allows for rapid characterization of structure dependent reactivity of a biomolecule, and opens a new avenue for drug development and biomolecule structure analyses.
Collapse
Affiliation(s)
- Muyi He
- College of Information Science, Shenzhen University, Shenzhen 518060, China; School of Life Science, Beijing Institute of Technology, No. 5 South Zhongguancun Street, Haidian Dist, Beijing 100081, PR China
| | - You Jiang
- National Institute of Metrology, No.18, Bei San Huan Dong Lu, Chaoyang Dist, Beijing 100013, PR China
| | - Xiaofeng Wang
- Institute of High Energy Physics, Chinese Academy of Science, Beijing, PR China
| | - Yue Zhao
- School of Chemistry, Beijing Institute of Technology, No. 5 South Zhongguancun Street, Haidian Dist, Beijing, PR China
| | - Sijian Ye
- Department of Chemistry & Environmental Engineering, Changchun University of Science and Technology, Changchun, Jilin, PR China
| | - Jiabi Ma
- School of Chemistry, Beijing Institute of Technology, No. 5 South Zhongguancun Street, Haidian Dist, Beijing, PR China
| | - Xiang Fang
- National Institute of Metrology, No.18, Bei San Huan Dong Lu, Chaoyang Dist, Beijing 100013, PR China.
| | - Wei Xu
- School of Life Science, Beijing Institute of Technology, No. 5 South Zhongguancun Street, Haidian Dist, Beijing 100081, PR China.
| |
Collapse
|
13
|
Narimatsu H, Kaji H, Vakhrushev SY, Clausen H, Zhang H, Noro E, Togayachi A, Nagai-Okatani C, Kuno A, Zou X, Cheng L, Tao SC, Sun Y. Current Technologies for Complex Glycoproteomics and Their Applications to Biology/Disease-Driven Glycoproteomics. J Proteome Res 2018; 17:4097-4112. [PMID: 30359034 DOI: 10.1021/acs.jproteome.8b00515] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Glycoproteomics is an important recent advance in the field of glycoscience. In glycomics, glycan structures are comprehensively analyzed after glycans are released from glycoproteins. However, a major limitation of glycomics is the lack of insight into glycoprotein functions. The Biology/Disease-driven Human Proteome Project has a particular focus on biological and medical applications. Glycoproteomics technologies aimed at obtaining a comprehensive understanding of intact glycoproteins, i.e., the kind of glycan structures that are attached to particular amino acids and proteins, have been developed. This Review focuses on the recent progress of the technologies and their applications. First, the methods for large-scale identification of both N- and O-glycosylated proteins are summarized. Next, the progress of analytical methods for intact glycopeptides is outlined. MS/MS-based methods were developed for improving the sensitivity and speed of the mass spectrometer, in parallel with the software for complex spectrum assignment. In addition, a unique approach to identify intact glycopeptides using MS1-based accurate masses is introduced. Finally, as an advance of glycomics, two approaches to provide the spatial distribution of glycans in cells are described, i.e., MS imaging and lectin microarray. These methods allow rapid glycomic profiling of different types of biological samples and thus facilitate glycoproteomics.
Collapse
Affiliation(s)
- Hisashi Narimatsu
- Biotechnology Research Institute for Drug Discovery , National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono , Tsukuba , Ibaraki 305-8568 , Japan
| | - Hiroyuki Kaji
- Biotechnology Research Institute for Drug Discovery , National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono , Tsukuba , Ibaraki 305-8568 , Japan
| | - Sergey Y Vakhrushev
- Copenhagen Center for Glycomics , University of Copenhagen , Blegdamsvej 3 , Copenhagen 2200 , Denmark
| | - Henrik Clausen
- Copenhagen Center for Glycomics , University of Copenhagen , Blegdamsvej 3 , Copenhagen 2200 , Denmark
| | - Hui Zhang
- Center for Biomarker Discovery and Translation , Johns Hopkins University , 400 North Broadway , Baltimore , Maryland 21205 , United States
| | - Erika Noro
- Biotechnology Research Institute for Drug Discovery , National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono , Tsukuba , Ibaraki 305-8568 , Japan
| | - Akira Togayachi
- Biotechnology Research Institute for Drug Discovery , National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono , Tsukuba , Ibaraki 305-8568 , Japan
| | - Chiaki Nagai-Okatani
- Biotechnology Research Institute for Drug Discovery , National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono , Tsukuba , Ibaraki 305-8568 , Japan
| | - Atsushi Kuno
- Biotechnology Research Institute for Drug Discovery , National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono , Tsukuba , Ibaraki 305-8568 , Japan
| | - Xia Zou
- Biotechnology Research Institute for Drug Discovery , National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono , Tsukuba , Ibaraki 305-8568 , Japan.,Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education) , Shanghai Jiao Tong University , 800 Dong Chuan Road , Minhang , Shanghai 200240 , P.R. China
| | - Li Cheng
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education) , Shanghai Jiao Tong University , 800 Dong Chuan Road , Minhang , Shanghai 200240 , P.R. China
| | - Sheng-Ce Tao
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education) , Shanghai Jiao Tong University , 800 Dong Chuan Road , Minhang , Shanghai 200240 , P.R. China
| | - Yangyang Sun
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education) , Shanghai Jiao Tong University , 800 Dong Chuan Road , Minhang , Shanghai 200240 , P.R. China
| |
Collapse
|
14
|
Dos Santos-Pinto JRA, Arcuri HA, Esteves FG, Palma MS, Lubec G. Spider silk proteome provides insight into the structural characterization of Nephila clavipes flagelliform spidroin. Sci Rep 2018; 8:14674. [PMID: 30279551 PMCID: PMC6168590 DOI: 10.1038/s41598-018-33068-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 09/12/2018] [Indexed: 12/13/2022] Open
Abstract
The capture spiral of web from N. clavipes spider consists of a single type of spidroin - the flagelliform silk protein, a natural material representing a combination of strength and high elasticity. Flagelliform spider silk is the most extensible silk fibre produced by orb weaver spiders and the structure of this remarkable material is still largely unknown. In the present study we used a proteomic approach to elucidate the complete sequence and the post-translational modifications of flagelliform silk proteins. The long sequence of flagelliform silk protein presents 45 hydroxylated proline residues, which may contribute to explain the mechanoelastic property of these fibres, since they are located in the GPGGX motif. The 3D-structure of the protein was modelled considering the three domains together, i.e., the N- and C-terminal non-repetitive domains, and the central repetitive domain. In the resulting molecular model there is a predominance of random structures in the solid fibres of the silk protein. The N-terminal domain is composed of three α-helices and the C-terminal domain is composed of one small helical section. Proteomic data reported herein may be relevant for the development of novel approaches for the synthetic or recombinant production of novel silk-based spider polymers.
Collapse
Affiliation(s)
- José Roberto Aparecido Dos Santos-Pinto
- Center of the Study of Social Insects, Department of Biology, Institute of Biosciences of Rio Claro, São Paulo State University, Rio Claro, SP, 13500, Brazil
| | - Helen Andrade Arcuri
- Center of the Study of Social Insects, Department of Biology, Institute of Biosciences of Rio Claro, São Paulo State University, Rio Claro, SP, 13500, Brazil
| | - Franciele Grego Esteves
- Center of the Study of Social Insects, Department of Biology, Institute of Biosciences of Rio Claro, São Paulo State University, Rio Claro, SP, 13500, Brazil
| | - Mario Sergio Palma
- Center of the Study of Social Insects, Department of Biology, Institute of Biosciences of Rio Claro, São Paulo State University, Rio Claro, SP, 13500, Brazil.
| | - Gert Lubec
- Paracelsus Medical University, A 5020, Salzburg, Austria.
| |
Collapse
|
15
|
Chouinard CD, Nagy G, Webb IK, Shi T, Baker ES, Prost SA, Liu T, Ibrahim YM, Smith RD. Improved Sensitivity and Separations for Phosphopeptides using Online Liquid Chromotography Coupled with Structures for Lossless Ion Manipulations Ion Mobility-Mass Spectrometry. Anal Chem 2018; 90:10889-10896. [PMID: 30118596 PMCID: PMC6211290 DOI: 10.1021/acs.analchem.8b02397] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Phosphoproteomics greatly augments proteomics and holds tremendous potential for insights into the modulation of biological systems for various disease states. However, numerous challenges hinder conventional methods in terms of measurement sensitivity, throughput, quantification, and capabilities for confident phosphopeptide and phosphosite identification. In this work, we report the first example of integrating structures for lossless ion manipulations ion mobility-mass spectrometry (SLIM IM-MS) with online reversed-phase liquid chromatography (LC) to evaluate its potential for addressing the aforementioned challenges. A mixture of 51 heavy-labeled phosphopeptides was analyzed with a SLIM IM module having integrated ion accumulation and long-path separation regions. The SLIM IM-MS provided limits of detection as low as 50-100 pM (50-100 amol/μL) for several phosphopeptides, with the potential for significant further improvements. In addition, conventionally problematic phosphopeptide isomers could be resolved following an 18 m SLIM IM separation. The 2-D LC-IM peak capacity was estimated as ∼9000 for a 90 min LC separation coupled to an 18 m SLIM IM separation, considerably higher than LC alone and providing a basis for both improved identification and quantification, with additional gains projected with the future use of longer path SLIM IM separations. Thus, LC-SLIM IM-MS offers great potential for improving the sensitivity, separation, and throughput of phosphoproteomics analyses.
Collapse
Affiliation(s)
- Christopher D. Chouinard
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Gabe Nagy
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Ian K. Webb
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Tujin Shi
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Erin S. Baker
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Spencer A. Prost
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Tao Liu
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Yehia M. Ibrahim
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Richard D. Smith
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| |
Collapse
|
16
|
Greer SM, Sidoli S, Coradin M, Schack Jespersen M, Schwämmle V, Jensen ON, Garcia BA, Brodbelt JS. Extensive Characterization of Heavily Modified Histone Tails by 193 nm Ultraviolet Photodissociation Mass Spectrometry via a Middle-Down Strategy. Anal Chem 2018; 90:10425-10433. [PMID: 30063333 PMCID: PMC6383154 DOI: 10.1021/acs.analchem.8b02320] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The ability to map combinatorial patterns of post-translational modifications (PTMs) of proteins remains challenging for traditional bottom-up mass spectrometry workflows. There are also hurdles associated with top-down approaches related to limited data analysis options for heavily modified proteoforms. These shortcomings have accelerated interest in middle-down MS methods that focus on analysis of large peptides generated by specific proteases in conjunction with validated bioinformatics strategies to allow quantification of isomeric histoforms. Mapping multiple PTMs simultaneously requires the ability to obtain high sequence coverage to allow confident localization of the modifications, and 193 nm ultraviolet photodissociation (UVPD) has been shown to cause extensive fragmentation for large peptides and proteins. Histones are an ideal system to test the ability of UVPD to characterize multiple modifications, as the combinations of PTMs are the underpinning of the biological significance of histones and at the same time create an imposing challenge for characterization. The present study focuses on applying 193 nm UVPD to the identification and localization of PTMs on histones by UVPD and comparison to a popular alternative, electron-transfer dissociation (ETD), via a high-throughput middle-down LC/MS/MS strategy. Histone Coder and IsoScale, bioinformatics tools for verification of PTM assignments and quantification of histone peptides, were adapted for UVPD data and applied in the present study. In total, over 300 modified forms were identified, and the distributions of PTMs were quantified between UVPD and ETD. Significant differences in patterns of PTMs were found for histones from HeLa cells prior to and after treatment with a deacetylase inhibitor. Additional fragment ion types generated by UVPD proved essential for extensive characterization of the most heavily modified forms (>5 PTMs).
Collapse
Affiliation(s)
- Sylvester M Greer
- Department of Chemistry , University of Texas at Austin , Austin , Texas 78712 , United States
| | - Simone Sidoli
- Epigenetics Institute, Department of Biochemistry and Biophysics, Perelman School of Medicine , University of Pennsylvania , Philadelphia , Pennsylvania 19104 , United States
| | - Mariel Coradin
- Epigenetics Institute, Department of Biochemistry and Biophysics, Perelman School of Medicine , University of Pennsylvania , Philadelphia , Pennsylvania 19104 , United States
| | - Malena Schack Jespersen
- Department of Biochemistry and Molecular Biology , University of Southern Denmark , DK-5230 Odense , Denmark
| | - Veit Schwämmle
- Department of Biochemistry and Molecular Biology , University of Southern Denmark , DK-5230 Odense , Denmark
| | - Ole N Jensen
- Department of Biochemistry and Molecular Biology , University of Southern Denmark , DK-5230 Odense , Denmark
| | - Benjamin A Garcia
- Epigenetics Institute, Department of Biochemistry and Biophysics, Perelman School of Medicine , University of Pennsylvania , Philadelphia , Pennsylvania 19104 , United States
| | - Jennifer S Brodbelt
- Department of Chemistry , University of Texas at Austin , Austin , Texas 78712 , United States
| |
Collapse
|
17
|
Rathore D, Faustino A, Schiel J, Pang E, Boyne M, Rogstad S. The role of mass spectrometry in the characterization of biologic protein products. Expert Rev Proteomics 2018; 15:431-449. [DOI: 10.1080/14789450.2018.1469982] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Deepali Rathore
- Division of Pharmaceutical Analysis, Office of Testing and Research, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
- Center for Biomedical Mass Spectrometry Research, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Anneliese Faustino
- Division of Pharmaceutical Analysis, Office of Testing and Research, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - John Schiel
- Biomolecular Measurement Division, National Institute of Standards and Technology, Institute for Bioscience and Biotechnology Research, Rockville, MD, USA
| | - Eric Pang
- Office of Lifecycle Drug Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - Michael Boyne
- Division of Pharmaceutical Analysis, Office of Testing and Research, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
- COUR Pharmaceuticals Development Company, Northbrook, IL, USA
| | - Sarah Rogstad
- Division of Pharmaceutical Analysis, Office of Testing and Research, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| |
Collapse
|
18
|
Gusenkov S, Stutz H. Top-down and bottom-up characterization of nitrated birch pollen allergen Bet v 1a with CZE hyphenated to an Orbitrap mass spectrometer. Electrophoresis 2018; 39:1190-1200. [PMID: 29389018 PMCID: PMC6175448 DOI: 10.1002/elps.201700413] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 01/19/2018] [Accepted: 01/19/2018] [Indexed: 11/19/2022]
Abstract
Tyrosine (Tyr) residues of the major pollen allergen of birch Betula verrucosa, Bet v 1a, were nitrated by peroxynitrite. This modification enhances the allergenicity. Modified tyrosines were identified by analyzing intact allergen variants in combination with top-down and bottom-up approaches. Therefore, a laboratory-built sheath-liquid assisted ESI interface was applied for hyphenation of CE to an Orbitrap mass spectrometer to localize individual nitration sites. The major focus was on identification of primary nitration sites. The top-down approach unambiguously identified Tyr 5 as the most prominent modification site. Fragments from the allergen core and the C-terminal part carried up to three potential nitration sites, respectively. Thus, a bottom-up approach with tryptic digest was used as a complementary strategy which allowed for the unambiguous localization of nitration sites within the respective peptides. Nitration propensity for individual Tyr residues was addressed by comparison of MS signals of nitrated peptides relative to all cognates of homolog primary sequence. Combined data identified surface exposed Tyr 5 and Tyr 66 as major nitration sites followed by less accessible Tyr 158 whereas Tyr 81, 83 and 150 possess a lower nitration tendency and are apparently modified in variants with higher nitration levels.
Collapse
Affiliation(s)
- Sergey Gusenkov
- Department of BiosciencesUniversity of SalzburgSalzburgAustria
| | - Hanno Stutz
- Department of BiosciencesUniversity of SalzburgSalzburgAustria
| |
Collapse
|
19
|
Affiliation(s)
- Nicholas
M. Riley
- Department
of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Genome
Center of Wisconsin, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Joshua J. Coon
- Department
of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Genome
Center of Wisconsin, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Department
of Biomolecular Chemistry, University of
Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Morgridge
Institute for Research, Madison, Wisconsin 53715, United States
| |
Collapse
|
20
|
Nagnan-Le Meillour P, Joly A, Le Danvic C, Marie A, Zirah S, Cornard JP. Binding Specificity of Native Odorant-Binding Protein Isoforms Is Driven by Phosphorylation and O-N-Acetylglucosaminylation in the Pig Sus scrofa. Front Endocrinol (Lausanne) 2018; 9:816. [PMID: 30740091 PMCID: PMC6355697 DOI: 10.3389/fendo.2018.00816] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 12/27/2018] [Indexed: 11/16/2022] Open
Abstract
Odorant-binding proteins (OBP) are secreted in the nasal mucus at the vicinity of olfactory receptors (ORs). They act, at least, as an interface between hydrophobic and volatile odorant molecules and the hydrophilic medium bathing the ORs. They have also been hypothesized to be part of the molecular coding of odors and pheromones, by forming specific complexes with odorant molecules that could ultimately stimulate ORs to trigger the olfactory transduction cascade. In a previous study, we have evidenced that pig olfactory secretome was composed of numerous olfactory binding protein isoforms, generated by O-GlcNAcylation and phosphorylation. In addition, we have shown that recombinant OBP (stricto sensu) produced in yeast is made up of a mixture of isoforms that differ in their phosphorylation pattern, which in turn determines binding specificity. Taking advantage of the high amount of OBP secreted by a single animal, we performed a similar study, under exactly the same experimental conditions, on native isoforms isolated from pig, Sus scrofa, nasal tissue. Four fractions were obtained by using strong anion exchange HPLC. Mapping of phosphorylation and O-GlcNAcylation sites by CID-nanoLC-MS/MS allowed unambiguous localization of phosphosites at S13 and T122 and HexNAc sites at S13 and S19. T112 or T115 could also be phosphorylated. BEMAD analysis suggested extra phosphosites located at S23, S24, S41, S49, S57, S67, and T71. Due to the very low stoichiometry of GlcNAc-peptides and phosphopeptides, these sites were identified on total mixture of OBP isoforms instead of HPLC-purified OBP isoforms. Nevertheless, binding properties of native OBP isoforms to specific ligands in S. scrofa were monitored by fluorescence spectroscopy. Recombinant phosphorylated OBP-Pichia isoforms bind steroids and fatty acids with slight differences. Native isoforms, that are phosphorylated but also O-GlcNAcylated show radically different binding affinities for the same compounds, which strongly suggests that O-GlcNAcylation increases the binding specificity of OBP isoforms. These findings extend the role of O-GlcNAc in regulating the function of proteins involved in many mechanisms of metabolic homeostasis, including extracellular signaling in olfaction. Data is available via ProteomeXChange with identifier PXD011371.
Collapse
Affiliation(s)
- Patricia Nagnan-Le Meillour
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR8576, USC-UGSF INRA 1409, CNRS-Université de Lille, Lille, France
- *Correspondence: Patricia Nagnan-Le Meillour
| | - Alexandre Joly
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR8576, USC-UGSF INRA 1409, CNRS-Université de Lille, Lille, France
| | - Chrystelle Le Danvic
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR8576, USC-UGSF INRA 1409, CNRS-Université de Lille, Lille, France
- ALLICE R&D, Paris, France
| | - Arul Marie
- Unité Molécules de Communication et Adaptation des Microorganismes, Muséum National d'Histoire Naturelle, UMR 7245 CNRS/MNHN, Paris, France
| | - Séverine Zirah
- Unité Molécules de Communication et Adaptation des Microorganismes, Muséum National d'Histoire Naturelle, UMR 7245 CNRS/MNHN, Paris, France
| | - Jean-Paul Cornard
- Laboratoire de Spectroscopie Infrarouge et Raman, UMR8516 CNRS-Université de Lille, Lille, France
| |
Collapse
|
21
|
Shvartsburg AA, Haris A, Andrzejewski R, Entwistle A, Giles R. Differential Ion Mobility Separations in the Low-Pressure Regime. Anal Chem 2017; 90:936-943. [DOI: 10.1021/acs.analchem.7b03925] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Alexandre A. Shvartsburg
- Department of Chemistry, Wichita State University, 1845 Fairmount, Wichita, Kansas 67260, United States
| | - Anisha Haris
- Shimadzu Research Laboratory, Wharfside, Trafford Wharf Road, Manchester M17 1GP, United Kingdom
| | - Roch Andrzejewski
- Shimadzu Research Laboratory, Wharfside, Trafford Wharf Road, Manchester M17 1GP, United Kingdom
| | - Andrew Entwistle
- Shimadzu Research Laboratory, Wharfside, Trafford Wharf Road, Manchester M17 1GP, United Kingdom
| | - Roger Giles
- Shimadzu Research Laboratory, Wharfside, Trafford Wharf Road, Manchester M17 1GP, United Kingdom
| |
Collapse
|
22
|
The role of mass spectrometry analysis in bacterial effector characterization. Biochem J 2017; 474:2779-2784. [DOI: 10.1042/bcj20160797] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Revised: 06/26/2017] [Accepted: 07/06/2017] [Indexed: 12/20/2022]
Abstract
Many secreted bacterial effector proteins play a critical role in host–pathogen interactions by mediating a variety of post-translational modifications, some of which do not occur natively within the eukaryotic proteome. The characterization of bacterial effector protein activity remains an important step to understanding the subversion of host cell biology during pathogen infection and although molecular biology and immunochemistry remain critical tools for gaining insights into bacterial effector functions, increasingly mass spectrometry (MS) and proteomic approaches are also playing an indispensable role. The focus of this editorial is to highlight the strengths of specific MS approaches and their utility for the characterization of bacterial effector activity. With the capability of new generation MS instrumentation, MS-based technologies can provide information that is inaccessible using traditional molecular or immunochemical approaches.
Collapse
|
23
|
He M, Jiang Y, Guo D, Xiong X, Fang X, Xu W. Dual-Polarity Ion Trap Mass Spectrometry: Dynamic Monitoring and Controlling Gas-phase Ion-Ion Reactions. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2017; 28:1262-1270. [PMID: 28547725 DOI: 10.1007/s13361-016-1504-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 08/29/2016] [Accepted: 09/08/2016] [Indexed: 06/07/2023]
Abstract
A dual-polarity linear ion trap (LIT) mass spectrometer was developed in this study, and the method for simultaneously controlling and detecting cations and anions was proposed and realized in the LIT. With the application of an additional dipolar DC field on the ejection electrodes of an LIT, dual-polarity mass spectra could be obtained, which include both the mass-to-charge (m/z) ratio and charge polarity information of an ion. Compared with conventional method, the ion ejection and detection efficiency could also be improved by about one-fold. Furthermore, ion-ion reactions within the LIT could be dynamically controlled and monitored by manipulating the distributions of ions with opposite charge polarities. This method was then used to control and study the reaction kinetics of ion-ion reactions, including electron transfer dissociation (ETD) and charge inversion reactions. A dual-polarity collision-induced dissociation (CID) experiment was proposed and performed to enhance the sequence coverage of a peptide ion. Ion trajectory simulations were also carried out for concept validation and system optimization. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Muyi He
- School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - You Jiang
- National Institute of Metrology, Beijing, 100013, China
| | - Dan Guo
- School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | | | - Xiang Fang
- National Institute of Metrology, Beijing, 100013, China.
| | - Wei Xu
- School of Life Science, Beijing Institute of Technology, Beijing, 100081, China.
- State Key Laboratory Explosion Science and Technology, Beijing Institute of Technology, Beijing, 100081, China.
- Key Laboratory of Convergence Medical Engineering System and Healthcare Technology, the Ministry of Industry and Information Technology, Beijing Institute of Technology, Beijing, 100081, China.
| |
Collapse
|
24
|
Yan Y, Kusalik AJ, Wu FX. NovoExD: De novo Peptide Sequencing for ETD/ECD Spectra. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2017; 14:337-344. [PMID: 28368811 DOI: 10.1109/tcbb.2015.2389813] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
De novo peptide sequencing using tandem mass spectrometry (MS/MS) data has become a major computational method for sequence identification in recent years. With the development of new instruments and technology, novel computational methods have emerged with enhanced performance. However, there are only a few methods focusing on ECD/ETD spectra, which mainly contain variants of c -ions and z-ions. Here, a de novo sequencing method for ECD/ETD spectra, NovoExD, is presented. NovoExD applies a new form of spectrum graph with multiple edge types (called a GMET), considers multiple peptide tags, and integrates amino acid combination (AAC) and fragment ion charge information. Its performance is compared with another successful de novo sequencing method, pNovo+, which has an option for ECD/ETD spectra. Experiments conducted on three different datasets show that the average full length peptide identification accuracy of NovoExD is as high as 88.70 percent, and that NovoExD's average accuracy is more than 20 percent greater on all datasets than that of pNovo+.
Collapse
|
25
|
Cramer CN, Brown JM, Tomczyk N, Nielsen PK, Haselmann KF. Electron Transfer Dissociation of All Ions at All Times, MS ETD, in a Quadrupole Time-of-Flight (Q-ToF) Mass Spectrometer. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2017; 28:384-388. [PMID: 27914015 DOI: 10.1007/s13361-016-1538-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 09/02/2016] [Accepted: 09/25/2016] [Indexed: 06/06/2023]
Abstract
Data-independent mass spectral acquisition is particularly powerful when combined with ultra-performance liquid chromatography (LC) that provides excellent separation of most components present in a given sample. Data-independent analysis (DIA) consists of alternating full MS scans and scans with fragmentation of all ions within a selected m/z range, providing precursor masses and structure information, respectively. Fragmentation spectra are acquired either by sequential isolation and fragmentation of sliding m/z ranges or fragmenting all ions entering the MS instrument with no ion isolation, termed broadband DIA. Previously, broadband DIA has only been possible using collision induced dissociation (CID). Here, we report the use of electron transfer dissociation (ETD) as the fragmentation technique in broadband DIA instead of traditional collision induced dissociation (CID) during MSE. In this approach, which we refer to as MSETD, we implement the inherent benefits provided by ETD, such as discrimination of leucine and isoleucine, in a DIA setup. The combination of DIA analysis and ETD fragmentation with supplemental CID energy provides a powerful platform to obtain information on all precursors and their sequence from a single experiment. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Christian N Cramer
- Novo Nordisk A/S, Protein Engineering, Global Research, Novo Nordisk Park, DK-2760, Måløv, Denmark
| | - Jeffery M Brown
- Waters Corporation, Stamford Ave., Altrincham Road, Wilmslow, SK9 4AX, UK
| | - Nick Tomczyk
- Waters Corporation, Stamford Ave., Altrincham Road, Wilmslow, SK9 4AX, UK
| | - Peter Kresten Nielsen
- Novo Nordisk A/S, Protein Engineering, Global Research, Novo Nordisk Park, DK-2760, Måløv, Denmark
| | - Kim F Haselmann
- Novo Nordisk A/S, Protein Engineering, Global Research, Novo Nordisk Park, DK-2760, Måløv, Denmark.
| |
Collapse
|
26
|
Liao R, Zheng D, Nie A, Zhou S, Deng H, Gao Y, Yang P, Yu Y, Tan L, Qi W, Wu J, Li E, Yi W. Sensitive and Precise Characterization of Combinatorial Histone Modifications by Selective Derivatization Coupled with RPLC-EThcD-MS/MS. J Proteome Res 2017; 16:780-787. [PMID: 28034318 DOI: 10.1021/acs.jproteome.6b00788] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Deciphering the combinatorial histone codes has been a long-standing interest in the epigenetics field, which requires the reliable and robust characterization of the post-translational modifications (PTMs) coexisting on histones. To this end, weak cation exchange hydrophilic interaction liquid chromatography is commonly used in middle-down liquid chromatography-mass spectrometry approaches for online separation of variously modified histone peptides. Here we provide a novel strategy that combines the selective histone peptide derivatization using N-hydroxysuccinimide propionate ester with reversed-phase liquid chromatography (RPLC) for the robust, sensitive, and reliable characterization of combinatorial histone PTMs. Derivatization amplifies the subtle physical differences between similarly modified histone peptides, thereby allowing baseline separation of these peptides by standard RPLC. Also, the sensitivity of MS is enhanced greatly by derivatization due to the increased peptide hydrophobicity and concentrated charge-state envelope during electrospray ionization. Furthermore, we systematically optimized the dual electron transfer and higher energy collision dissociation and achieved near-complete peptide sequence coverage in MS/MS spectra, allowing highly precise and reliable PTM identification. Using this method, we identified 311 and 293 combinations of histone H3 PTMs from the lymphoma cells Karpas-422 with/without drug treatment, confirming the advantages of our method in serving as a platform for profiling combinatorial histone PTMs.
Collapse
Affiliation(s)
- Rijing Liao
- Xuhui Central Hospital, Shanghai Clinical Center, Chinese Academy of Sciences , Shanghai 200031, China
| | - Dan Zheng
- Novartis Institutes for BioMedical Research (China) Co., Ltd. , 4218 Jinke Road, Shanghai 201203, China
| | - Aiying Nie
- Thermo Fisher Scientific (China) Co., Ltd. , Building 6, No. 27 Xin Jinqiao Road, Shanghai 201206, China
| | - Shaolian Zhou
- Novartis Institutes for BioMedical Research (China) Co., Ltd. , 4218 Jinke Road, Shanghai 201203, China
| | - Haibing Deng
- Novartis Institutes for BioMedical Research (China) Co., Ltd. , 4218 Jinke Road, Shanghai 201203, China
| | - Yuan Gao
- Novartis Institutes for BioMedical Research (China) Co., Ltd. , 4218 Jinke Road, Shanghai 201203, China
| | - Pengyuan Yang
- Department of Chemistry, Fudan University , 220 Handan Road, Shanghai 200433, China
| | - Yanyan Yu
- Novartis Institutes for BioMedical Research (China) Co., Ltd. , 4218 Jinke Road, Shanghai 201203, China
| | - Lin Tan
- Novartis Institutes for BioMedical Research (China) Co., Ltd. , 4218 Jinke Road, Shanghai 201203, China
| | - Wei Qi
- Novartis Institutes for BioMedical Research (China) Co., Ltd. , 4218 Jinke Road, Shanghai 201203, China
| | - Jiaxi Wu
- Xuhui Central Hospital, Shanghai Clinical Center, Chinese Academy of Sciences , Shanghai 200031, China
| | - En Li
- Novartis Institutes for BioMedical Research (China) Co., Ltd. , 4218 Jinke Road, Shanghai 201203, China
| | - Wei Yi
- Novartis Institutes for BioMedical Research (China) Co., Ltd. , 4218 Jinke Road, Shanghai 201203, China
| |
Collapse
|
27
|
Abstract
Chemical tools have accelerated progress in glycoscience, reducing experimental barriers to studying protein glycosylation, the most widespread and complex form of posttranslational modification. For example, chemical glycoproteomics technologies have enabled the identification of specific glycosylation sites and glycan structures that modulate protein function in a number of biological processes. This field is now entering a stage of logarithmic growth, during which chemical innovations combined with mass spectrometry advances could make it possible to fully characterize the human glycoproteome. In this review, we describe the important role that chemical glycoproteomics methods are playing in such efforts. We summarize developments in four key areas: enrichment of glycoproteins and glycopeptides from complex mixtures, emphasizing methods that exploit unique chemical properties of glycans or introduce unnatural functional groups through metabolic labeling and chemoenzymatic tagging; identification of sites of protein glycosylation; targeted glycoproteomics; and functional glycoproteomics, with a focus on probing interactions between glycoproteins and glycan-binding proteins. Our goal with this survey is to provide a foundation on which continued technological advancements can be made to promote further explorations of protein glycosylation.
Collapse
Affiliation(s)
- Krishnan K. Palaniappan
- Verily Life Sciences, 269 East Grand Ave., South San Francisco, California 94080, United States
| | - Carolyn R. Bertozzi
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
- Howard Hughes Medical Institute, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
28
|
Giorgianni F, Beranova-Giorgianni S. Phosphoproteome Discovery in Human Biological Fluids. Proteomes 2016; 4:proteomes4040037. [PMID: 28248247 PMCID: PMC5260970 DOI: 10.3390/proteomes4040037] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 11/11/2016] [Accepted: 11/23/2016] [Indexed: 01/07/2023] Open
Abstract
Phosphorylation plays a critical role in regulating protein function and thus influences a vast spectrum of cellular processes. With the advent of modern bioanalytical technologies, examination of protein phosphorylation on a global scale has become one of the major research areas. Phosphoproteins are found in biological fluids and interrogation of the phosphoproteome in biological fluids presents an exciting opportunity for discoveries that hold great potential for novel mechanistic insights into protein function in health and disease, and for translation to improved diagnostic and therapeutic approaches for the clinical setting. This review focuses on phosphoproteome discovery in selected human biological fluids: serum/plasma, urine, cerebrospinal fluid, saliva, and bronchoalveolar lavage fluid. Bioanalytical workflows pertinent to phosphoproteomics of biological fluids are discussed with emphasis on mass spectrometry-based approaches, and summaries of studies on phosphoproteome discovery in major fluids are presented.
Collapse
Affiliation(s)
- Francesco Giorgianni
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| | - Sarka Beranova-Giorgianni
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| |
Collapse
|
29
|
Pröfrock D. Coupling Techniques and Orthogonal Combination of Mass Spectrometric Techniques. Metallomics 2016. [DOI: 10.1002/9783527694907.ch2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Daniel Pröfrock
- Helmholtz-Zentrum Geesthacht, Centre for Materials and Coastal Research; Department Marine Bioanalytical Chemistry, Institute of Coastal Research/Biogeochemistry in Coastal Seas; Max-Planck Str.1 21502 Geesthacht Germany
| |
Collapse
|
30
|
Pai PJ, Hu Y, Lam H. Direct glycan structure determination of intact N-linked glycopeptides by low-energy collision-induced dissociation tandem mass spectrometry and predicted spectral library searching. Anal Chim Acta 2016; 934:152-62. [DOI: 10.1016/j.aca.2016.05.049] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 05/24/2016] [Accepted: 05/30/2016] [Indexed: 11/24/2022]
|
31
|
Robinson MR, Taliaferro JM, Dalby KN, Brodbelt JS. 193 nm Ultraviolet Photodissociation Mass Spectrometry for Phosphopeptide Characterization in the Positive and Negative Ion Modes. J Proteome Res 2016; 15:2739-48. [PMID: 27425180 DOI: 10.1021/acs.jproteome.6b00289] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Advances in liquid chromatography tandem mass spectrometry (LC-MS/MS) have permitted phosphoproteomic analysis on a grand scale, but ongoing challenges specifically associated with confident phosphate localization continue to motivate the development of new fragmentation techniques. In the present study, ultraviolet photodissociation (UVPD) at 193 nm is evaluated for the characterization of phosphopeptides in both positive and negative ion modes. Compared to the more standard higher energy collisional dissociation (HCD), UVPD provided more extensive fragmentation with improved phosphate retention on product ions. Negative mode UVPD showed particular merit for detecting and sequencing highly acidic phosphopeptides from alpha and beta casein, but was not as robust for larger scale analysis because of lower ionization efficiencies in the negative mode. HeLa and HCC70 cell lysates were analyzed by both UVPD and HCD. While HCD identified more phosphopeptides and proteins compared to UVPD, the unique matches from UVPD analysis could be combined with the HCD data set to improve the overall depth of coverage compared to either method alone.
Collapse
Affiliation(s)
- Michelle R Robinson
- Department of Chemistry, and ‡Division of Chemical Biology and Medicinal Chemistry College of Pharmacy, The University of Texas Austin, Texas 78712, United States
| | - Juliana M Taliaferro
- Department of Chemistry, and ‡Division of Chemical Biology and Medicinal Chemistry College of Pharmacy, The University of Texas Austin, Texas 78712, United States
| | - Kevin N Dalby
- Department of Chemistry, and ‡Division of Chemical Biology and Medicinal Chemistry College of Pharmacy, The University of Texas Austin, Texas 78712, United States
| | - Jennifer S Brodbelt
- Department of Chemistry, and ‡Division of Chemical Biology and Medicinal Chemistry College of Pharmacy, The University of Texas Austin, Texas 78712, United States
| |
Collapse
|
32
|
Rathore D, Aboufazeli F, Dodds ED. Obtaining complementary polypeptide sequence information from a single precursor ion packet via sequential ion mobility-resolved electron transfer and vibrational activation. Analyst 2016; 140:7175-83. [PMID: 26357706 DOI: 10.1039/c5an01225b] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Tandem mass spectrometry (MS/MS) is now well-known as a powerful tool for characterizing the primary structures of peptides and proteins; however, in many cases the use of but a single dissociation method provides only a partial view of the amino acid sequences and post-translational modification patterns of polypeptides. While the application of multiple fragmentation methods can be more informative, this introduces the burden of acquiring multiple MS/MS spectra per analyte, thus reducing the effective duty cycle of such methods. In this work, initial proof-of-concept is provided for a method designed to overcome these barriers. This method relies on the complementary fragmentation information that can be provided by performing collision-induced dissociation (CID) and electron transfer dissociation (ETD) in concert, while also taking advantage of an ion mobility (IM) dimension to temporally resolve the occurrence of CID and ETD when applied to a single accumulated packet of precursor ions. In this way, the significant proportion of the precursor ion population that remains unreacted in ETD experiments is subjected to CID rather than being fruitlessly discarded. In addition, the two distinct fragmentation spectra can be extracted from their corresponding IM domains to render readily interpretable individual fragmentation spectra. This scheme was demonstrated for several polypeptides ranging from 1.3 to 8.6 kDa in molecular weight. In each case, IM-resolved CID and ETD events resulted in b/y and c/z ions, respectively, which each covered both unique and overlapping sequence information. These findings demonstrate that the combination of CID and ETD can be achieved with greater utilization of the available ion population and little or no loss of duty cycle.
Collapse
Affiliation(s)
- Deepali Rathore
- Department of Chemistry, University of Nebraska - Lincoln, Lincoln, NE 68588-0304, USA.
| | | | | |
Collapse
|
33
|
The N-Terminus of the Floral Arabidopsis TGA Transcription Factor PERIANTHIA Mediates Redox-Sensitive DNA-Binding. PLoS One 2016; 11:e0153810. [PMID: 27128442 PMCID: PMC4851370 DOI: 10.1371/journal.pone.0153810] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 04/04/2016] [Indexed: 12/19/2022] Open
Abstract
The Arabidopsis TGA transcription factor (TF) PERIANTHIA (PAN) regulates the formation of the floral organ primordia as revealed by the pan mutant forming an abnormal pentamerous arrangement of the outer three floral whorls. The Arabidopsis TGA bZIP TF family comprises 10 members, of which PAN and TGA9/10 control flower developmental processes and TGA1/2/5/6 participate in stress-responses. For the TGA1 protein it was shown that several cysteines can be redox-dependently modified. TGA proteins interact in the nucleus with land plant-specific glutaredoxins, which may alter their activities posttranslationally. Here, we investigated the DNA-binding of PAN to the AAGAAT motif under different redox-conditions. The AAGAAT motif is localized in the second intron of the floral homeotic regulator AGAMOUS (AG), which controls stamen and carpel development as well as floral determinacy. Whereas PAN protein binds to this regulatory cis-element under reducing conditions, the interaction is strongly reduced under oxidizing conditions in EMSA studies. The redox-sensitive DNA-binding is mediated via a special PAN N-terminus, which is not present in other Arabidopsis TGA TFs and comprises five cysteines. Two N-terminal PAN cysteines, Cys68 and Cys87, were shown to form a disulfide bridge and Cys340, localized in a C-terminal putative transactivation domain, can be S-glutathionylated. Comparative land plant analyses revealed that the AAGAAT motif exists in asterid and rosid plant species. TGA TFs with N-terminal extensions of variable length were identified in all analyzed seed plants. However, a PAN-like N-terminus exists only in the rosids and exclusively Brassicaceae homologs comprise four to five of the PAN N-terminal cysteines. Redox-dependent modifications of TGA cysteines are known to regulate the activity of stress-related TGA TFs. Here, we show that the N-terminal PAN cysteines participate in a redox-dependent control of the PAN interaction with a highly conserved regulatory AG cis-element, emphasizing the importance of redox-modifications in the regulation of flower developmental processes.
Collapse
|
34
|
Robotham SA, Horton AP, Cannon JR, Cotham VC, Marcotte EM, Brodbelt JS. UVnovo: A de Novo Sequencing Algorithm Using Single Series of Fragment Ions via Chromophore Tagging and 351 nm Ultraviolet Photodissociation Mass Spectrometry. Anal Chem 2016; 88:3990-7. [PMID: 26938041 PMCID: PMC4850734 DOI: 10.1021/acs.analchem.6b00261] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
De novo peptide sequencing by mass spectrometry represents an important strategy for characterizing novel peptides and proteins, in which a peptide's amino acid sequence is inferred directly from the precursor peptide mass and tandem mass spectrum (MS/MS or MS(3)) fragment ions, without comparison to a reference proteome. This method is ideal for organisms or samples lacking a complete or well-annotated reference sequence set. One of the major barriers to de novo spectral interpretation arises from confusion of N- and C-terminal ion series due to the symmetry between b and y ion pairs created by collisional activation methods (or c, z ions for electron-based activation methods). This is known as the "antisymmetric path problem" and leads to inverted amino acid subsequences within a de novo reconstruction. Here, we combine several key strategies for de novo peptide sequencing into a single high-throughput pipeline: high-efficiency carbamylation blocks lysine side chains, and subsequent tryptic digestion and N-terminal peptide derivatization with the ultraviolet chromophore AMCA yield peptides susceptible to 351 nm ultraviolet photodissociation (UVPD). UVPD-MS/MS of the AMCA-modified peptides then predominantly produces y ions in the MS/MS spectra, specifically addressing the antisymmetric path problem. Finally, the program UVnovo applies a random forest algorithm to automatically learn from and then interpret UVPD mass spectra, passing results to a hidden Markov model for de novo sequence prediction and scoring. We show this combined strategy provides high-performance de novo peptide sequencing, enabling the de novo sequencing of thousands of peptides from an Escherichia coli lysate at high confidence.
Collapse
Affiliation(s)
- Scott A Robotham
- Department of Chemistry, University of Texas , Austin, Texas 78712, United States
| | - Andrew P Horton
- Center for Systems and Synthetic Biology, Department of Molecular Biosciences, University of Texas , Austin, Texas 78712, United States
| | - Joe R Cannon
- Department of Chemistry, University of Texas , Austin, Texas 78712, United States
| | - Victoria C Cotham
- Department of Chemistry, University of Texas , Austin, Texas 78712, United States
| | - Edward M Marcotte
- Center for Systems and Synthetic Biology, Department of Molecular Biosciences, University of Texas , Austin, Texas 78712, United States
| | - Jennifer S Brodbelt
- Department of Chemistry, University of Texas , Austin, Texas 78712, United States
| |
Collapse
|
35
|
Fort KL, Dyachenko A, Potel CM, Corradini E, Marino F, Barendregt A, Makarov AA, Scheltema RA, Heck AJR. Implementation of Ultraviolet Photodissociation on a Benchtop Q Exactive Mass Spectrometer and Its Application to Phosphoproteomics. Anal Chem 2016; 88:2303-10. [DOI: 10.1021/acs.analchem.5b04162] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Kyle L. Fort
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute of Pharmaceutical Sciences, Utrecht University, 3584 Utrecht, The Netherlands
- Netherlands Proteomics Center, 3584 Utrecht, The Netherlands
- Thermo Fisher Scientific (Bremen), 28199 Bremen, Germany
| | - Andrey Dyachenko
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute of Pharmaceutical Sciences, Utrecht University, 3584 Utrecht, The Netherlands
- Netherlands Proteomics Center, 3584 Utrecht, The Netherlands
- Thermo Fisher Scientific (Bremen), 28199 Bremen, Germany
| | - Clement M. Potel
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute of Pharmaceutical Sciences, Utrecht University, 3584 Utrecht, The Netherlands
- Netherlands Proteomics Center, 3584 Utrecht, The Netherlands
- Thermo Fisher Scientific (Bremen), 28199 Bremen, Germany
| | - Eleonora Corradini
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute of Pharmaceutical Sciences, Utrecht University, 3584 Utrecht, The Netherlands
- Netherlands Proteomics Center, 3584 Utrecht, The Netherlands
- Thermo Fisher Scientific (Bremen), 28199 Bremen, Germany
| | - Fabio Marino
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute of Pharmaceutical Sciences, Utrecht University, 3584 Utrecht, The Netherlands
- Netherlands Proteomics Center, 3584 Utrecht, The Netherlands
- Thermo Fisher Scientific (Bremen), 28199 Bremen, Germany
| | - Arjan Barendregt
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute of Pharmaceutical Sciences, Utrecht University, 3584 Utrecht, The Netherlands
- Netherlands Proteomics Center, 3584 Utrecht, The Netherlands
- Thermo Fisher Scientific (Bremen), 28199 Bremen, Germany
| | - Alexander A. Makarov
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute of Pharmaceutical Sciences, Utrecht University, 3584 Utrecht, The Netherlands
- Netherlands Proteomics Center, 3584 Utrecht, The Netherlands
- Thermo Fisher Scientific (Bremen), 28199 Bremen, Germany
| | - Richard A. Scheltema
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute of Pharmaceutical Sciences, Utrecht University, 3584 Utrecht, The Netherlands
- Netherlands Proteomics Center, 3584 Utrecht, The Netherlands
- Thermo Fisher Scientific (Bremen), 28199 Bremen, Germany
| | - Albert J. R. Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute of Pharmaceutical Sciences, Utrecht University, 3584 Utrecht, The Netherlands
- Netherlands Proteomics Center, 3584 Utrecht, The Netherlands
- Thermo Fisher Scientific (Bremen), 28199 Bremen, Germany
| |
Collapse
|
36
|
Affiliation(s)
- Jennifer S Brodbelt
- Department of Chemistry, University of Texas at Austin , Austin, Texas 78712, United States
| |
Collapse
|
37
|
Xie Q, Moore B, Beardsley RL. Discovery and characterization of hydroxylysine in recombinant monoclonal antibodies. MAbs 2015; 8:371-8. [PMID: 26651858 DOI: 10.1080/19420862.2015.1122148] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Tryptic peptide mapping analysis of a Chinese hamster ovary (CHO)-expressed, recombinant IgG1 monoclonal antibody revealed a previously unreported +16 Da modification. Through a combination of MS(n) experiments, and preparation and analysis of known synthetic peptides, the possibility of a sequence variant (Ala to Ser) was ruled out and the presence of hydroxylysine was confirmed. Post-translational hydroxylation of lysine was found in a consensus sequence (XKG) known to be the site of modification in other proteins such as collagen, and was therefore presumed to result from the activity of the CHO homolog of the lysyl hydroxylase complex. Although this consensus sequence was present in several locations in the antibody sequence, only a single site on the heavy-chain Fab was found to be modified.
Collapse
Affiliation(s)
| | | | - Richard L Beardsley
- a Protein Analytical Chemistry Department , Genentech, 1 DNA Way, 94080, South San Francisco , CA , USA
| |
Collapse
|
38
|
Characterization of top-down ETD in a travelling-wave ion guide. Methods 2015; 89:22-9. [DOI: 10.1016/j.ymeth.2015.05.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 04/30/2015] [Accepted: 05/19/2015] [Indexed: 11/20/2022] Open
|
39
|
Abelin JG, Trantham PD, Penny SA, Patterson AM, Ward ST, Hildebrand WH, Cobbold M, Bai DL, Shabanowitz J, Hunt DF. Complementary IMAC enrichment methods for HLA-associated phosphopeptide identification by mass spectrometry. Nat Protoc 2015; 10:1308-18. [PMID: 26247297 PMCID: PMC4640213 DOI: 10.1038/nprot.2015.086] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Phosphorylation events within cancer cells often become dysregulated, leading to oncogenic signaling and abnormal cell growth. Phosphopeptides derived from aberrantly phosphorylated proteins that are presented on tumors and not on normal tissues by human leukocyte antigen (HLA) class I molecules are promising candidates for future cancer immunotherapies, because they are tumor specific and have been shown to elicit cytotoxic T cell responses. Robust phosphopeptide enrichments that are suitable for low input amounts must be developed to characterize HLA-associated phosphopeptides from clinical samples that are limited by material availability. We present two complementary mass spectrometry-compatible, iron(III)-immobilized metal affinity chromatography (IMAC) methods that use either nitrilotriacetic acid (NTA) or iminodiacetic acid (IDA) in-house-fabricated columns. We developed these protocols to enrich for subfemtomole-level phosphopeptides from cell line and human tissue samples containing picograms of starting material, which is an order of magnitude less material than what is commonly used. In addition, we added a peptide esterification step to increase phosphopeptide specificity from these low-input samples. To date, hundreds of phosphopeptides displayed on melanoma, ovarian cancer, leukemia and colorectal cancer have been identified using these highly selective phosphopeptide enrichment protocols in combination with a program called 'CAD Neutral Loss Finder' that identifies all spectra containing the characteristic neutral loss of phosphoric acid from phosphorylated serine and threonine residues. This methodology enables the identification of HLA-associated phosphopeptides presented by human tissue samples containing as little as nanograms of peptide material in 2 d.
Collapse
Affiliation(s)
- Jennifer G Abelin
- Department of Chemistry, University of Virginia, Charlottesville, Virginia, USA
| | - Paisley D Trantham
- Department of Chemistry, University of Virginia, Charlottesville, Virginia, USA
| | - Sarah A Penny
- Department of Clinical Immunology, University of Birmingham, Birmingham, UK
| | - Andrea M Patterson
- Department of Microbiology and Immunology, University of Oklahoma, Oklahoma City, Oklahoma, USA
| | - Stephen T Ward
- Department of Clinical Immunology, University of Birmingham, Birmingham, UK
| | - William H Hildebrand
- Department of Microbiology and Immunology, University of Oklahoma, Oklahoma City, Oklahoma, USA
| | - Mark Cobbold
- Department of Clinical Immunology, University of Birmingham, Birmingham, UK
| | - Dina L Bai
- Department of Chemistry, University of Virginia, Charlottesville, Virginia, USA
| | - Jeffrey Shabanowitz
- Department of Chemistry, University of Virginia, Charlottesville, Virginia, USA
| | - Donald F Hunt
- 1] Department of Chemistry, University of Virginia, Charlottesville, Virginia, USA. [2] Department of Pathology, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
40
|
Robotham SA, Brodbelt JS. Comparison of Ultraviolet Photodissociation and Collision Induced Dissociation of Adrenocorticotropic Hormone Peptides. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2015; 26:1570-9. [PMID: 26122515 DOI: 10.1007/s13361-015-1186-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 04/19/2015] [Accepted: 05/10/2015] [Indexed: 05/16/2023]
Abstract
In an effort to better characterize the fragmentation pathways promoted by ultraviolet photoexcitation in comparison to collision induced dissociation (CID), six adrenocorticotropic hormone (ACTH) peptides in a range of charge states were subjected to 266 nm ultraviolet photodissociation (UVPD), 193 nm UVPD, and CID. Similar fragment ions and distributions were observed for 266 nm UVPD and 193 nm UVPD for all peptides investigated. While both UVPD and CID led to preferential cleavage of the Y-S bond for all ACTH peptides [except ACTH (1-39)], UVPD was far less dependent on charge state and location of basic sites for the production of C-terminal and N-terminal ions. For ACTH (1-16), ACTH (1-17), ACTH (1-24), and ACTH (1-39), changes in the distributions of fragment ion types (a, b, c, x, y, z, and collectively N-terminal ions versus C-terminal ions) showed only minor changes upon UVPD for all charge states. In contrast, CID displayed significant changes in the fragment ion type distributions as a function of charge state, an outcome consistent with the dependence on the number and location of mobile protons that is not prominent for UVPD. Sequence coverages obtained by UVPD showed less dependence on charge state than those determined by CID, with the latter showing a consistent decrease in coverage as charge state increased.
Collapse
Affiliation(s)
- Scott A Robotham
- Department of Chemistry, University of Texas, Austin, TX, 78712, USA
| | | |
Collapse
|
41
|
Johnson AR, Carlson EE. Collision-Induced Dissociation Mass Spectrometry: A Powerful Tool for Natural Product Structure Elucidation. Anal Chem 2015; 87:10668-78. [PMID: 26132379 DOI: 10.1021/acs.analchem.5b01543] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Mass spectrometry is a powerful tool in natural product structure elucidation, but our ability to directly correlate fragmentation spectra to these structures lags far behind similar efforts in peptide sequencing and proteomics. Often, manual data interpretation is required and our knowledge of the expected fragmentation patterns for many scaffolds is limited, further complicating analysis. Here, we summarize advances in natural product structure elucidation based upon the application of collision induced dissociation fragmentation mechanisms.
Collapse
Affiliation(s)
- Andrew R Johnson
- Department of Chemistry, Indiana University , 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Erin E Carlson
- Department of Chemistry, Indiana University , 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States.,Department of Molecular and Cellular Biochemistry, Indiana University , 212 South Hawthorne Drive, Bloomington, Indiana 47405, United States
| |
Collapse
|
42
|
Lermyte F, Sobott F. Electron transfer dissociation provides higher-order structural information of native and partially unfolded protein complexes. Proteomics 2015; 15:2813-22. [DOI: 10.1002/pmic.201400516] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Revised: 03/13/2015] [Accepted: 06/15/2015] [Indexed: 12/31/2022]
Affiliation(s)
- Frederik Lermyte
- UA-VITO Center for Proteomics; University of Antwerp; Antwerp Belgium
- Biomolecular & Analytical Mass Spectrometry group; Department of Chemistry; University of Antwerp; Antwerp Belgium
| | - Frank Sobott
- UA-VITO Center for Proteomics; University of Antwerp; Antwerp Belgium
- Biomolecular & Analytical Mass Spectrometry group; Department of Chemistry; University of Antwerp; Antwerp Belgium
| |
Collapse
|
43
|
Rombouts I, Lagrain B, Scherf KA, Koehler P, Delcour JA. Formation and reshuffling of disulfide bonds in bovine serum albumin demonstrated using tandem mass spectrometry with collision-induced and electron-transfer dissociation. Sci Rep 2015; 5:12210. [PMID: 26193081 PMCID: PMC4507448 DOI: 10.1038/srep12210] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 06/18/2015] [Indexed: 12/28/2022] Open
Abstract
Thermolysin hydrolyzates of freshly isolated, extensively stored (6 years, 6 °C, dry) and heated (60 min, 90 °C, in excess water) bovine serum albumin (BSA) samples were analyzed with liquid chromatography (LC) electrospray ionization (ESI) tandem mass spectrometry (MS/MS) using alternating electron-transfer dissociation (ETD) and collision-induced dissociation (CID). The positions of disulfide bonds and free thiol groups in the different samples were compared to those deduced from the crystal structure of native BSA. Results revealed non-enzymatic posttranslational modifications of cysteine during isolation, extensive dry storage, and heating. Heat-induced extractability loss of BSA was linked to the impact of protein unfolding on the involvement of specific cysteine residues in intermolecular and intramolecular thiol-disulfide interchange and thiol oxidation reactions. The here developed approach holds promise for exploring disulfide bond formation and reshuffling in various proteins under conditions relevant for chemical, biochemical, pharmaceutical and food processing.
Collapse
Affiliation(s)
- Ine Rombouts
- Laboratory of Food Chemistry and Biochemistry, Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Kasteelpark Arenberg 20, box 2463, B-3001 Leuven, Belgium
| | - Bert Lagrain
- Laboratory of Food Chemistry and Biochemistry, Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Kasteelpark Arenberg 20, box 2463, B-3001 Leuven, Belgium
| | - Katharina A. Scherf
- Deutsche Forschungsanstalt für Lebensmittelchemie, Leibniz Institut, Lise-Meitner-Straβe 34, D-85354 Freising, Germany
| | - Peter Koehler
- Deutsche Forschungsanstalt für Lebensmittelchemie, Leibniz Institut, Lise-Meitner-Straβe 34, D-85354 Freising, Germany
| | - Jan A. Delcour
- Laboratory of Food Chemistry and Biochemistry, Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Kasteelpark Arenberg 20, box 2463, B-3001 Leuven, Belgium
| |
Collapse
|
44
|
Brown R, Stuart SA, Houel S, Ahn NG, Old WM. Large-Scale Examination of Factors Influencing Phosphopeptide Neutral Loss during Collision Induced Dissociation. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2015; 26:1128-42. [PMID: 25851653 PMCID: PMC4509682 DOI: 10.1007/s13361-015-1109-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 02/18/2015] [Accepted: 02/18/2015] [Indexed: 05/14/2023]
Abstract
Collision-induced dissociation (CID) remains the predominant mass spectrometry-based method for identifying phosphorylation sites in complex mixtures. Unfortunately, the gas-phase reactivity of phosphoester bonds results in MS/MS spectra dominated by phosphoric acid (H3PO4) neutral loss events, suppressing informative peptide backbone cleavages. To understand the major drivers of H3PO4 neutral loss, we performed robust nonparametric statistical analysis of local and distal sequence effects on the magnitude and variability of neutral loss, using a collection of over 35,000 unique phosphopeptide MS/MS spectra. In contrast to peptide amide dissociation pathways, which are strongly influenced by adjacent amino acid side chains, we find that neutral loss of H3PO4 is affected by both proximal and distal sites, most notably basic residues and the peptide N-terminal primary amine. Previous studies have suggested that protonated basic residues catalyze neutral loss through direct interactions with the phosphate. In contrast, we find that nearby basic groups decrease neutral loss regardless of mobility class, an effect only seen by stratifying spectra by charge-mobility. The most inhibitory bases are those immediately N-terminal to the phosphate, presumably because of steric hindrances in catalyzing neutral loss. Further evidence of steric effects is shown by the presence of proline, which can dramatically reduce the presence of neutral loss when between the phosphate and a possible charge donor. In mobile proton spectra, the N-terminus is the strongest predictor of high neutral loss, with proximity to the N-terminus essential for peptides to exhibit the highest levels of neutral loss.
Collapse
Affiliation(s)
- Robert Brown
- Department of Molecular Cellular and Developmental Biology, University of Colorado, Boulder, CO 80309
| | - Scott A. Stuart
- Department of Molecular Cellular and Developmental Biology, University of Colorado, Boulder, CO 80309
| | | | - Natalie G. Ahn
- Department of Molecular Cellular and Developmental Biology, University of Colorado, Boulder, CO 80309
- Howard Hughes Medical Institute, University of Colorado, Boulder, CO 80309
| | - William M. Old
- Department of Molecular Cellular and Developmental Biology, University of Colorado, Boulder, CO 80309
- Corresponding author: William M. Old, Department of Molecular Cellular and Developmental Biology, University of Colorado, Boulder, Colorado 80309, Phone: 303-492-5519, Fax: 303-492-2439,
| |
Collapse
|
45
|
Guo D, He M, Wang Y, Xiong X, Fang X, Xu W. GPU Assisted Simulation Study of Ion-Ion Reactions within Quadrupole Ion Traps. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2015; 26:1233-1241. [PMID: 25868905 DOI: 10.1007/s13361-015-1098-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 11/28/2014] [Accepted: 02/09/2015] [Indexed: 06/04/2023]
Abstract
In this study, a gas-phase ion-ion reaction model was developed, and it was integrated into an ion trajectory simulation program. GPU parallel computation techniques were also applied to accelerate the simulation process. With this simulation tool, the dependence of ion-ion reaction rate within 3D quadrupole ion traps on both ion trap operation parameters and the characteristics of reaction pair were investigated. It was found that the m/z values and charge states of ions have significant influences on the reaction rate. Moreover, higher ion-ion reaction rate was achieved under higher trapping voltages and higher buffer gas pressures. Furthermore, secondary reaction and/or neutralization of ETD fragment ions were observed from simulation. The reaction and/or neutralization rate depends on the charge state and m/z of each fragment ion.
Collapse
Affiliation(s)
- Dan Guo
- School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | | | | | | | | | | |
Collapse
|
46
|
Pejchinovski M, Klein J, Ramírez-Torres A, Bitsika V, Mermelekas G, Vlahou A, Mullen W, Mischak H, Jankowski V. Comparison of higher energy collisional dissociation and collision-induced dissociation MS/MS sequencing methods for identification of naturally occurring peptides in human urine. Proteomics Clin Appl 2015; 9:531-42. [DOI: 10.1002/prca.201400163] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 02/27/2015] [Accepted: 03/23/2015] [Indexed: 01/11/2023]
Affiliation(s)
- Martin Pejchinovski
- Charite-Universitätsmedizin Berlin; Berlin Germany
- Mosaiques Diagnostics GmbH; Hanover Germany
| | | | | | - Vasiliki Bitsika
- Biotechnology Division; Biomedical Research Foundation; Academy of Athens; Athens Greece
| | - George Mermelekas
- Biotechnology Division; Biomedical Research Foundation; Academy of Athens; Athens Greece
| | - Antonia Vlahou
- Biotechnology Division; Biomedical Research Foundation; Academy of Athens; Athens Greece
| | - William Mullen
- Institute of Cardiovascular and Medical Sciences; University of Glasgow; Glasgow UK
| | - Harald Mischak
- Mosaiques Diagnostics GmbH; Hanover Germany
- Institute of Cardiovascular and Medical Sciences; University of Glasgow; Glasgow UK
| | - Vera Jankowski
- Universitätsklinikum RWTH Aachen; Institute of Molecular Cardiovascular Research; Aachen Germany
| |
Collapse
|
47
|
Massonnet P, Upert G, Smargiasso N, Gilles N, Quinton L, De Pauw E. Combined Use of Ion Mobility and Collision-Induced Dissociation To Investigate the Opening of Disulfide Bridges by Electron-Transfer Dissociation in Peptides Bearing Two Disulfide Bonds. Anal Chem 2015; 87:5240-6. [DOI: 10.1021/acs.analchem.5b00245] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Philippe Massonnet
- Laboratory of
Mass Spectrometry, Department of Chemistry, GIGA-R, University of Liege, Allée de la Chimie 3, B-4000 Liege, Belgium
| | - Gregory Upert
- Commissariat
à
l’Energie Atomique, DSV/iBiTec-S/SIMOPRO, F91191 Gif-sur-Yvette, France
| | - Nicolas Smargiasso
- Laboratory of
Mass Spectrometry, Department of Chemistry, GIGA-R, University of Liege, Allée de la Chimie 3, B-4000 Liege, Belgium
| | - Nicolas Gilles
- Commissariat
à
l’Energie Atomique, DSV/iBiTec-S/SIMOPRO, F91191 Gif-sur-Yvette, France
| | - Loïc Quinton
- Laboratory of
Mass Spectrometry, Department of Chemistry, GIGA-R, University of Liege, Allée de la Chimie 3, B-4000 Liege, Belgium
| | - Edwin De Pauw
- Laboratory of
Mass Spectrometry, Department of Chemistry, GIGA-R, University of Liege, Allée de la Chimie 3, B-4000 Liege, Belgium
| |
Collapse
|
48
|
Multiple proteases to localize oxidation sites. PLoS One 2015; 10:e0116606. [PMID: 25775238 PMCID: PMC4361631 DOI: 10.1371/journal.pone.0116606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 12/12/2014] [Indexed: 11/19/2022] Open
Abstract
Proteins present in cellular environments with high levels of reactive oxygen and nitrogen species and/or low levels of antioxidants are highly susceptible to oxidative post-translational modification (PTM). Irreversible oxidative PTMs can generate a complex distribution of modified protein molecules, recently termed as proteoforms. Using ubiquitin as a model system, we mapped oxidative modification sites using trypsin, Lys-C, and Glu-C peptides. Several M+16 Da proteoforms were detected as well as proteoforms that include other previously unidentified oxidative modifications. This work highlights the use of multiple protease digestions to give insights to the complexity of oxidative modifications possible in bottom-up analyses.
Collapse
|
49
|
Leurs U, Mistarz UH, Rand KD. Getting to the core of protein pharmaceuticals--Comprehensive structure analysis by mass spectrometry. Eur J Pharm Biopharm 2015; 93:95-109. [PMID: 25791210 DOI: 10.1016/j.ejpb.2015.03.012] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 02/27/2015] [Accepted: 03/02/2015] [Indexed: 01/19/2023]
Abstract
Protein pharmaceuticals are the fastest growing class of novel therapeutic agents, and have been a major research and development focus in the (bio)pharmaceutical industry. Due to their large size and structural diversity, biopharmaceuticals represent a formidable challenge regarding analysis and characterization compared to traditional small molecule drugs. Any changes to the primary, secondary, tertiary or quaternary structure of a protein can potentially impact its function, efficacy and safety. The analysis and characterization of (structural) protein heterogeneity is therefore of utmost importance. Mass spectrometry has evolved as a powerful tool for the characterization of both primary and higher order structures of protein pharmaceuticals. Furthermore, the chemical and physical stability of protein drugs, as well as their pharmacokinetics are nowadays routinely determined by mass spectrometry. Here we review current techniques in primary, secondary and tertiary structure analysis of proteins by mass spectrometry. An overview of established top-down and bottom-up protein analyses will be given, and in particular the use of advanced technologies such as hydrogen/deuterium exchange mass spectrometry (HDX-MS) for higher-order structure analysis will be discussed. Modification and degradation pathways of protein drugs and their detection by mass spectrometry will be described, as well as the growing use of mass spectrometry to assist protein design and biopharmaceutical development.
Collapse
Affiliation(s)
- Ulrike Leurs
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Ulrik H Mistarz
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Kasper D Rand
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark.
| |
Collapse
|
50
|
Kaur P, Kiselar J, Yang S, Chance MR. Quantitative protein topography analysis and high-resolution structure prediction using hydroxyl radical labeling and tandem-ion mass spectrometry (MS). Mol Cell Proteomics 2015; 14:1159-68. [PMID: 25687570 DOI: 10.1074/mcp.o114.044362] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Indexed: 11/06/2022] Open
Abstract
Hydroxyl radical footprinting based MS for protein structure assessment has the goal of understanding ligand induced conformational changes and macromolecular interactions, for example, protein tertiary and quaternary structure, but the structural resolution provided by typical peptide-level quantification is limiting. In this work, we present experimental strategies using tandem-MS fragmentation to increase the spatial resolution of the technique to the single residue level to provide a high precision tool for molecular biophysics research. Overall, in this study we demonstrated an eightfold increase in structural resolution compared with peptide level assessments. In addition, to provide a quantitative analysis of residue based solvent accessibility and protein topography as a basis for high-resolution structure prediction; we illustrate strategies of data transformation using the relative reactivity of side chains as a normalization strategy and predict side-chain surface area from the footprinting data. We tested the methods by examination of Ca(+2)-calmodulin showing highly significant correlations between surface area and side-chain contact predictions for individual side chains and the crystal structure. Tandem ion based hydroxyl radical footprinting-MS provides quantitative high-resolution protein topology information in solution that can fill existing gaps in structure determination for large proteins and macromolecular complexes.
Collapse
Affiliation(s)
- Parminder Kaur
- From the ‡Center for Proteomics and Bioinformatics, Case Western Reserve University School of Medicine, 10009 Euclid Ave, Cleveland, Ohio, 44109
| | - Janna Kiselar
- From the ‡Center for Proteomics and Bioinformatics, Case Western Reserve University School of Medicine, 10009 Euclid Ave, Cleveland, Ohio, 44109
| | - Sichun Yang
- From the ‡Center for Proteomics and Bioinformatics, Case Western Reserve University School of Medicine, 10009 Euclid Ave, Cleveland, Ohio, 44109
| | - Mark R Chance
- From the ‡Center for Proteomics and Bioinformatics, Case Western Reserve University School of Medicine, 10009 Euclid Ave, Cleveland, Ohio, 44109
| |
Collapse
|