1
|
Telleria J, Costales JA. An Overview of Trypanosoma cruzi Biology Through the Lens of Proteomics: A Review. Pathogens 2025; 14:337. [PMID: 40333120 PMCID: PMC12030004 DOI: 10.3390/pathogens14040337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Revised: 02/27/2025] [Accepted: 03/01/2025] [Indexed: 05/09/2025] Open
Abstract
The protozoan parasite Trypanosoma cruzi, causative agent of Chagas disease, affects millions of people in endemic Latin American countries and beyond. In Latin America, Chagas disease is an important cause of death and disability, for which vaccines are lacking and improved treatment options are required. Additionally, the factors governing the development of a variety of clinical manifestations during Chagas disease, ranging from complete lack of symptoms to severe irreversible chronic organ damage (mainly cardiac or digestive), remain largely unknown. Much remains to be learned regarding the biology of T. cruzi in order to enhance our understanding of these lines of inquiry. In this context, proteomic methods have been leveraged to investigate different parasite strains, life-cycle forms, subcellular compartments, macromolecular complexes, signaling events and secreted molecules. The factors driving morphological transformation during the life cycle, the composition and functions of the parasite's organelles and secreted molecules as well as the determinants of pathogenicity have been explored via proteomic methods, yielding insights into the fundamental processes behind the parasite biology and informing drug design and vaccine development. Importantly, the correlation between the wide genetic and phenotypic variability displayed by T. cruzi has been examined through proteomic methods as well. Here, we review the literature on T. cruzi proteomics and discuss it in the light of its limitations and in the context of the parasite's genetic diversity.
Collapse
Affiliation(s)
- Jenny Telleria
- Institut de Recherche Pour le Développement (IRD), UMR Intertryp IRD-CIRAD, 34398 Montpellier, Cedex 5, France;
| | - Jaime A. Costales
- Centro de Investigación Para la Salud en América Latina, Pontificia Universidad Católica del Ecuador, Quito 170525, Ecuador
| |
Collapse
|
2
|
Reséndiz-Juárez ME, Rosas-Soto AL, Pérez-Rangel A, Tapia-Ramírez J, Ríos-Castro E, Rodríguez-Cruz F, Alejandre-Aguilar R, Manning-Cela R, León-Avila G, Hernández-Hernández JM. Trypanosoma cruzi has Two Peptidyl-tRNA Hydrolases Showing Different Localization and Function. Acta Parasitol 2025; 70:60. [PMID: 39945942 DOI: 10.1007/s11686-025-00989-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 01/13/2025] [Indexed: 03/04/2025]
Abstract
PURPOSE Peptidyl-tRNA hydrolase (Pth), first described in Escherichia coli, is responsible for rescuing stalled ribosomes during peptidyl-tRNA "drop off". Bacterial Pth has been widely studied, but the characterization of eukaryotic Pth remains a poorly researched field, especially in protozoan parasites. This work aimed to characterize Trypanosoma cruzi Pths and determine their localization. METHODS Two open reading frames (ORFs) that may encode Pths were identified in the T. cruzi genome. Bioinformatics analysis was performed for each protein using conserved domain analysis and multiple alignment. ORFs were cloned into an expression vector, E. coli pth(Ts) competent cells were transformed, and thermosensitivity tests were performed. Recombinant proteins were expressed and purified to immunize rats and obtain polyclonal antibodies. Pull down and immunoprecipitation followed by mass spectrometry to verify the interactions. RESULTS TcPth and TcPth2 have a conserved domain corresponding to the Pth2 superfamily. Multiple alignments with previously characterized amino acid sequences of Pths showed that they are unrelated to T. cruzi proteins, considering that conserved residues of catalytic importance are absent. TcPth was able to rescue the E. coli thermosensitive pth(Ts) mutation, but TcPth2 was not. TcPth2 interacts with reservosome proteins such as cysteine peptidase and endocytic pathway proteins. CONCLUSION The results suggest that TcPth and TcPth2 has a different function. This work represents the first in its area since the Pths of the T. cruzi were characterized and breaks ground for the characterization of Pths from other protozoan parasites.
Collapse
Affiliation(s)
- María Elizabeth Reséndiz-Juárez
- Departamento de Zoología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Carpio y Plan de Ayala S/N, Ciudad de México, C.P. 11340, México
| | - Ana Laura Rosas-Soto
- Departamento de Zoología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Carpio y Plan de Ayala S/N, Ciudad de México, C.P. 11340, México
| | - Armando Pérez-Rangel
- Departamento de Biología Celular, CINVESTAV, Av. IPN 2508, Ciudad de México, C.P. 07300, México
| | - José Tapia-Ramírez
- Departamento de Genética y Biología Molecular, CINVESTAV, Av. IPN 2508, Ciudad de México, C.P. 07300, México
| | - Emmanuel Ríos-Castro
- Unidad de Genómica, Proteómica y Metabolómica, CINVESTAV, Av. IPN 2508, LaNSE, Ciudad de México, C.P. 07300, México
| | - Fanny Rodríguez-Cruz
- Departamento de Biología Celular, CINVESTAV, Av. IPN 2508, Ciudad de México, C.P. 07300, México
| | - Ricardo Alejandre-Aguilar
- Departamento de Parasitología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Carpio y Plan de Ayala S/N, Ciudad de México, C.P. 11340, México
| | - Rebeca Manning-Cela
- Departamento de Biomedicina Molecular, CINVESTAV, Av. IPN 2508, Ciudad de México, C.P. 07300, México
| | - Gloria León-Avila
- Departamento de Zoología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Carpio y Plan de Ayala S/N, Ciudad de México, C.P. 11340, México.
| | | |
Collapse
|
3
|
de Souza W. Contribution of microscopy to a better understanding of the anatomy of pathogenic protists. Proc Natl Acad Sci U S A 2024; 121:e2321515121. [PMID: 38621128 PMCID: PMC11046605 DOI: 10.1073/pnas.2321515121] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 02/08/2024] [Indexed: 04/17/2024] Open
Abstract
In this Inaugural Article the author briefly revises its scientific career and how he starts to work with parasitic protozoa. Emphasis is given to his contribution to topics such as a) the structural organization of the surface of protozoa using freeze-fracture and deep-etching; b) the cytoskeleton of protozoa, especially structures such as the subpellicular microtubules of trypanosomatids, the conoid of Toxoplasma gondii, microtubules and inner membrane complex of this protozoan, and the costa of Tritrichomonas foetus; c) the flagellulm of trypanosomatids, that in addition to the axoneme contains a complex network of filaments that constitute the paraflagellar rod; d) special organelles such as the acidocalcisome, hydrogenosome, and glycosome; and e) the highly polarized endocytic pathway found in epimastigote forms of Trypanosoma cruzi.
Collapse
Affiliation(s)
- Wanderley de Souza
- Laboratório de Ultraestrutura Celular Hertha Meyer, Centro de Pesquisa em Medicina de Precisão, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro21941-902, Brazil
- Centro Nacional de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro21941-902, Brazil
- Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagem—Universidade Federal do Rio de Janeiro, Rio de Janeiro21941-902, Brazil
- Centro Multiusuário para Análise de Fenômenos Biomédicos, Universidade do Estado do Amazonas, Amazonas69065-001, Brazil
| |
Collapse
|
4
|
Ossowski MS, Gallardo JP, Niborski LL, Rodríguez-Durán J, Lapadula WJ, Juri Ayub M, Chadi R, Hernandez Y, Fernandez ML, Potenza M, Gómez KA. Characterization of Novel Trypanosoma cruzi-Specific Antigen with Potential Use in the Diagnosis of Chagas Disease. Int J Mol Sci 2024; 25:1202. [PMID: 38256275 PMCID: PMC10816184 DOI: 10.3390/ijms25021202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 11/30/2023] [Accepted: 12/05/2023] [Indexed: 01/24/2024] Open
Abstract
Chagas disease is caused by the parasite Trypanosoma cruzi. In humans, it evolves into a chronic disease, eventually resulting in cardiac, digestive, and/or neurological disorders. In the present study, we characterized a novel T. cruzi antigen named Tc323 (TcCLB.504087.20), recognized by a single-chain monoclonal antibody (scFv 6B6) isolated from the B cells of patients with cardiomyopathy related to chronic Chagas disease. Tc323, a ~323 kDa protein, is an uncharacterized protein showing putative quinoprotein alcohol dehydrogenase-like domains. A computational molecular docking study revealed that the scFv 6B6 binds to an internal domain of Tc323. Immunofluorescence microscopy and Western Blot showed that Tc323 is expressed in the main developmental forms of T. cruzi, localized intracellularly and exhibiting a membrane-associated pattern. According to phylogenetic analysis, Tc323 is highly conserved throughout evolution in all the lineages of T. cruzi so far identified, but it is absent in Leishmania spp. and Trypanosoma brucei. Most interestingly, only plasma samples from patients infected with T. cruzi and those with mixed infection with Leishmania spp. reacted against Tc323. Collectively, our findings demonstrate that Tc323 is a promising candidate for the differential serodiagnosis of chronic Chagas disease in areas where T. cruzi and Leishmania spp. infections coexist.
Collapse
Affiliation(s)
- Micaela S. Ossowski
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular “Dr. Héctor N. Torres” (INGEBI-CONICET), Buenos Aires 1428, Argentina; (M.S.O.); (J.P.G.); (L.L.N.); (J.R.-D.)
| | - Juan Pablo Gallardo
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular “Dr. Héctor N. Torres” (INGEBI-CONICET), Buenos Aires 1428, Argentina; (M.S.O.); (J.P.G.); (L.L.N.); (J.R.-D.)
| | - Leticia L. Niborski
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular “Dr. Héctor N. Torres” (INGEBI-CONICET), Buenos Aires 1428, Argentina; (M.S.O.); (J.P.G.); (L.L.N.); (J.R.-D.)
| | - Jessica Rodríguez-Durán
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular “Dr. Héctor N. Torres” (INGEBI-CONICET), Buenos Aires 1428, Argentina; (M.S.O.); (J.P.G.); (L.L.N.); (J.R.-D.)
| | - Walter J. Lapadula
- Instituto Multidisciplinario de Investigaciones Biológicas de San Luis (IMIBIO-SL-CONICET), Facultad de Química Bioquímica y Farmacia, Universidad Nacional de San Luis, San Luis 5700, Argentina; (W.J.L.); (M.J.A.)
| | - Maximiliano Juri Ayub
- Instituto Multidisciplinario de Investigaciones Biológicas de San Luis (IMIBIO-SL-CONICET), Facultad de Química Bioquímica y Farmacia, Universidad Nacional de San Luis, San Luis 5700, Argentina; (W.J.L.); (M.J.A.)
| | - Raúl Chadi
- Hospital General de Agudos “Dr. Ignacio Pirovano”, Buenos Aires 1430, Argentina;
| | - Yolanda Hernandez
- Instituto Nacional de Parasitología “Dr. Mario Fatala Chaben”, Buenos Aires 1063, Argentina; (Y.H.); (M.L.F.)
| | - Marisa L. Fernandez
- Instituto Nacional de Parasitología “Dr. Mario Fatala Chaben”, Buenos Aires 1063, Argentina; (Y.H.); (M.L.F.)
| | - Mariana Potenza
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular “Dr. Héctor N. Torres” (INGEBI-CONICET), Buenos Aires 1428, Argentina; (M.S.O.); (J.P.G.); (L.L.N.); (J.R.-D.)
| | - Karina A. Gómez
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular “Dr. Héctor N. Torres” (INGEBI-CONICET), Buenos Aires 1428, Argentina; (M.S.O.); (J.P.G.); (L.L.N.); (J.R.-D.)
| |
Collapse
|
5
|
Safi R, Sánchez-Álvarez M, Bosch M, Demangel C, Parton RG, Pol A. Defensive-lipid droplets: Cellular organelles designed for antimicrobial immunity. Immunol Rev 2023; 317:113-136. [PMID: 36960679 DOI: 10.1111/imr.13199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2023]
Abstract
Microbes have developed many strategies to subvert host organisms, which, in turn, evolved several innate immune responses. As major lipid storage organelles of eukaryotes, lipid droplets (LDs) are an attractive source of nutrients for invaders. Intracellular viruses, bacteria, and protozoan parasites induce and physically interact with LDs, and the current view is that they "hijack" LDs to draw on substrates for host colonization. This dogma has been challenged by the recent demonstration that LDs are endowed with a protein-mediated antibiotic activity, which is upregulated in response to danger signals and sepsis. Dependence on host nutrients could be a generic "Achilles' heel" of intracellular pathogens and LDs a suitable chokepoint harnessed by innate immunity to organize a front-line defense. Here, we will provide a brief overview of the state of the conflict and discuss potential mechanisms driving the formation of the 'defensive-LDs' functioning as hubs of innate immunity.
Collapse
Affiliation(s)
- Rémi Safi
- Lipid Trafficking and Disease Group, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- Josep Carreras Leukemia Research Institute, Barcelona, Spain
| | - Miguel Sánchez-Álvarez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Instituto de Investigaciones Biomédicas Alberto Sols (IIB), Madrid, Spain
| | - Marta Bosch
- Lipid Trafficking and Disease Group, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- Department of Biomedical Sciences, Faculty of Medicine, Universitat de Barcelona, Barcelona, Spain
| | - Caroline Demangel
- Immunobiology and Therapy Unit, Institut Pasteur, Université Paris Cité, INSERM U1224, Paris, France
| | - Robert G Parton
- Institute for Molecular Bioscience (IMB), Brisbane, Queensland, Australia
- Centre for Microscopy and Microanalysis (CMM), University of Queensland, Brisbane, Queensland, Australia
| | - Albert Pol
- Lipid Trafficking and Disease Group, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- Department of Biomedical Sciences, Faculty of Medicine, Universitat de Barcelona, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| |
Collapse
|
6
|
Dick CF, Alcantara CL, Carvalho-Kelly LF, Lacerda-Abreu MA, Cunha-E-Silva NL, Meyer-Fernandes JR, Vieyra A. Iron Uptake Controls Trypanosoma cruzi Metabolic Shift and Cell Proliferation. Antioxidants (Basel) 2023; 12:antiox12050984. [PMID: 37237850 DOI: 10.3390/antiox12050984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/18/2023] [Accepted: 04/20/2023] [Indexed: 05/28/2023] Open
Abstract
(1) Background: Ionic transport in Trypanosoma cruzi is the object of intense studies. T. cruzi expresses a Fe-reductase (TcFR) and a Fe transporter (TcIT). We investigated the effect of Fe depletion and Fe supplementation on different structures and functions of T. cruzi epimastigotes in culture. (2) Methods: We investigated growth and metacyclogenesis, variations of intracellular Fe, endocytosis of transferrin, hemoglobin, and albumin by cell cytometry, structural changes of organelles by transmission electron microscopy, O2 consumption by oximetry, mitochondrial membrane potential measuring JC-1 fluorescence at different wavelengths, intracellular ATP by bioluminescence, succinate-cytochrome c oxidoreductase following reduction of ferricytochrome c, production of H2O2 following oxidation of the Amplex® red probe, superoxide dismutase (SOD) activity following the reduction of nitroblue tetrazolium, expression of SOD, elements of the protein kinase A (PKA) signaling, TcFR and TcIT by quantitative PCR, PKA activity by luminescence, glyceraldehyde-3-phosphate dehydrogenase abundance and activity by Western blotting and NAD+ reduction, and glucokinase activity recording NADP+ reduction. (3) Results: Fe depletion increased oxidative stress, inhibited mitochondrial function and ATP formation, increased lipid accumulation in the reservosomes, and inhibited differentiation toward trypomastigotes, with the simultaneous metabolic shift from respiration to glycolysis. (4) Conclusion: The processes modulated for ionic Fe provide energy for the T. cruzi life cycle and the propagation of Chagas disease.
Collapse
Affiliation(s)
- Claudia F Dick
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil
- Centro Nacional de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro/CENABIO, Rio de Janeiro 21941-902, RJ, Brazil
| | - Carolina L Alcantara
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil
- Centro Nacional de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro/CENABIO, Rio de Janeiro 21941-902, RJ, Brazil
| | - Luiz F Carvalho-Kelly
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil
| | - Marco Antonio Lacerda-Abreu
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil
| | - Narcisa L Cunha-E-Silva
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil
- Centro Nacional de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro/CENABIO, Rio de Janeiro 21941-902, RJ, Brazil
| | - José R Meyer-Fernandes
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil
| | - Adalberto Vieyra
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil
- Centro Nacional de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro/CENABIO, Rio de Janeiro 21941-902, RJ, Brazil
- Programa de Pós-Graduação em Biomedicina Translacional /BIOTRANS, Universidade do Grande Rio, Duque de Caxias 25071-202, RJ, Brazil
| |
Collapse
|
7
|
Cruz Camacho A, Alfandari D, Kozela E, Regev-Rudzki N. Biogenesis of extracellular vesicles in protozoan parasites: The ESCRT complex in the trafficking fast lane? PLoS Pathog 2023; 19:e1011140. [PMID: 36821560 PMCID: PMC9949670 DOI: 10.1371/journal.ppat.1011140] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023] Open
Abstract
Extracellular vesicles (EVs) provide a central mechanism of cell-cell communication. While EVs are found in most organisms, their pathogenesis-promoting roles in parasites are of particular interest given the potential for medical insight and consequential therapeutic intervention. Yet, a key feature of EVs in human parasitic protozoa remains elusive: their mechanisms of biogenesis. Here, we survey the current knowledge on the biogenesis pathways of EVs secreted by the four main clades of human parasitic protozoa: apicomplexans, trypanosomatids, flagellates, and amoebae. In particular, we shine a light on findings pertaining to the Endosomal Sorting Complex Required for Transport (ESCRT) machinery, as in mammals it plays important roles in EV biogenesis. This review highlights the diversity in EV biogenesis in protozoa, as well as the related involvement of the ESCRT system in these unique organisms.
Collapse
Affiliation(s)
- Abel Cruz Camacho
- Department of Biomolecular Sciences, Faculty of Biochemistry, Weizmann Institute of Science, Rehovot, Israel
| | - Daniel Alfandari
- Department of Biomolecular Sciences, Faculty of Biochemistry, Weizmann Institute of Science, Rehovot, Israel
| | - Ewa Kozela
- Department of Biomolecular Sciences, Faculty of Biochemistry, Weizmann Institute of Science, Rehovot, Israel
| | - Neta Regev-Rudzki
- Department of Biomolecular Sciences, Faculty of Biochemistry, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
8
|
Smircich P, Pérez-Díaz L, Hernández F, Duhagon MA, Garat B. Transcriptomic analysis of the adaptation to prolonged starvation of the insect-dwelling Trypanosoma cruzi epimastigotes. Front Cell Infect Microbiol 2023; 13:1138456. [PMID: 37091675 PMCID: PMC10117895 DOI: 10.3389/fcimb.2023.1138456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 03/20/2023] [Indexed: 04/25/2023] Open
Abstract
Trypanosoma cruzi is a digenetic unicellular parasite that alternates between a blood-sucking insect and a mammalian, host causing Chagas disease or American trypanosomiasis. In the insect gut, the parasite differentiates from the non-replicative trypomastigote forms that arrive upon blood ingestion to the non-infective replicative epimastigote forms. Epimastigotes develop into infective non-replicative metacyclic trypomastigotes in the rectum and are delivered via the feces. In addition to these parasite stages, transitional forms have been reported. The insect-feeding behavior, characterized by few meals of large blood amounts followed by long periods of starvation, impacts the parasite population density and differentiation, increasing the transitional forms while diminishing both epimastigotes and metacyclic trypomastigotes. To understand the molecular changes caused by nutritional restrictions in the insect host, mid-exponentially growing axenic epimastigotes were cultured for more than 30 days without nutrient supplementation (prolonged starvation). We found that the parasite population in the stationary phase maintains a long period characterized by a total RNA content three times smaller than that of exponentially growing epimastigotes and a distinctive transcriptomic profile. Among the transcriptomic changes induced by nutrient restriction, we found differentially expressed genes related to managing protein quality or content, the reported switch from glucose to amino acid consumption, redox challenge, and surface proteins. The contractile vacuole and reservosomes appeared as cellular components enriched when ontology term overrepresentation analysis was carried out, highlighting the roles of these organelles in starving conditions possibly related to their functions in regulating cell volume and osmoregulation as well as metabolic homeostasis. Consistent with the quiescent status derived from nutrient restriction, genes related to DNA metabolism are regulated during the stationary phase. In addition, we observed differentially expressed genes related to the unique parasite mitochondria. Finally, our study identifies gene expression changes that characterize transitional parasite forms enriched by nutrient restriction. The analysis of the here-disclosed regulated genes and metabolic pathways aims to contribute to the understanding of the molecular changes that this unicellular parasite undergoes in the insect vector.
Collapse
Affiliation(s)
- Pablo Smircich
- Sección Genómica Funcional, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
- Laboratorio de Bioinformática, Departamento de Genómica, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
- *Correspondence: Beatriz Garat, ; Pablo Smircich,
| | - Leticia Pérez-Díaz
- Sección Genómica Funcional, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Fabricio Hernández
- Sección Genómica Funcional, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - María Ana Duhagon
- Sección Genómica Funcional, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
- Departamento de Genética, Facultad de Medicina Universidad de la República, Montevideo, Uruguay
| | - Beatriz Garat
- Sección Genómica Funcional, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
- *Correspondence: Beatriz Garat, ; Pablo Smircich,
| |
Collapse
|
9
|
Fader Kaiser CM, Romano PS, Vanrell MC, Pocognoni CA, Jacob J, Caruso B, Delgui LR. Biogenesis and Breakdown of Lipid Droplets in Pathological Conditions. Front Cell Dev Biol 2022; 9:826248. [PMID: 35198567 PMCID: PMC8860030 DOI: 10.3389/fcell.2021.826248] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 12/22/2021] [Indexed: 12/17/2022] Open
Abstract
Lipid droplets (LD) have long been considered as mere fat drops; however, LD have lately been revealed to be ubiquitous, dynamic and to be present in diverse organelles in which they have a wide range of key functions. Although incompletely understood, the biogenesis of eukaryotic LD initiates with the synthesis of neutral lipids (NL) by enzymes located in the endoplasmic reticulum (ER). The accumulation of NL leads to their segregation into nanometric nuclei which then grow into lenses between the ER leaflets as they are further filled with NL. The lipid composition and interfacial tensions of both ER and the lenses modulate their shape which, together with specific ER proteins, determine the proneness of LD to bud from the ER toward the cytoplasm. The most important function of LD is the buffering of energy. But far beyond this, LD are actively integrated into physiological processes, such as lipid metabolism, control of protein homeostasis, sequestration of toxic lipid metabolic intermediates, protection from stress, and proliferation of tumours. Besides, LD may serve as platforms for pathogen replication and defense. To accomplish these functions, from biogenesis to breakdown, eukaryotic LD have developed mechanisms to travel within the cytoplasm and to establish contact with other organelles. When nutrient deprivation occurs, LD undergo breakdown (lipolysis), which begins with the LD-associated members of the perilipins family PLIN2 and PLIN3 chaperone-mediated autophagy degradation (CMA), a specific type of autophagy that selectively degrades a subset of cytosolic proteins in lysosomes. Indeed, PLINs CMA degradation is a prerequisite for further true lipolysis, which occurs via cytosolic lipases or by lysosome luminal lipases when autophagosomes engulf portions of LD and target them to lysosomes. LD play a crucial role in several pathophysiological processes. Increased accumulation of LD in non-adipose cells is commonly observed in numerous infectious diseases caused by intracellular pathogens including viral, bacterial, and parasite infections, and is gradually recognized as a prominent characteristic in a variety of cancers. This review discusses current evidence related to the modulation of LD biogenesis and breakdown caused by intracellular pathogens and cancer.
Collapse
Affiliation(s)
- Claudio M Fader Kaiser
- CONICET Dr. Mario H. Burgos Institute of Histology and Embryology (IHEM), Mendoza, Argentina
| | - Patricia S Romano
- CONICET Dr. Mario H. Burgos Institute of Histology and Embryology (IHEM), Mendoza, Argentina
| | - M Cristina Vanrell
- CONICET Dr. Mario H. Burgos Institute of Histology and Embryology (IHEM), Mendoza, Argentina
| | - Cristian A Pocognoni
- CONICET Dr. Mario H. Burgos Institute of Histology and Embryology (IHEM), Mendoza, Argentina
| | - Julieta Jacob
- CONICET Dr. Mario H. Burgos Institute of Histology and Embryology (IHEM), Mendoza, Argentina
| | - Benjamín Caruso
- Instituto de Investigaciones Biologicas y Tecnologicas, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Cordoba, Cordoba, Argentina
| | - Laura R Delgui
- CONICET Dr. Mario H. Burgos Institute of Histology and Embryology (IHEM), Mendoza, Argentina
| |
Collapse
|
10
|
De-Simone SG, Bourguignon SC, Gonçalves PS, Lechuga GC, Provance DW. Metabolic Alteration of Trypanosoma cruzi during Differentiation of Epimastigote to Trypomastigote Forms. Pathogens 2022; 11:pathogens11020268. [PMID: 35215210 PMCID: PMC8879499 DOI: 10.3390/pathogens11020268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 12/10/2022] Open
Abstract
Intracellular parasites such as Trypanosoma cruzi need to acquire valuable carbon sources from the host cell to replicate. Here, we investigated the energetic metabolism of T. cruzi during metacyclogenesis through the determination of enzymatic activities and quantification by HPLC of glycolytic and Krebs cycle short-chain carboxylic acids. Altered concentrations in pyruvate, acetate, succinate, and glycerate were measured during the growth of epimastigote in the complex medium BHI and their differentiation to trypomastigotes in the chemically defined medium, TAU3AAG. These alterations should represent significant differential metabolic modifications utilized by either form to generate energy. This paper is the first work dealing with the intracellular organic acid concentration measurement in T. cruzi parasites. Although it confirms the previous assumption of the importance of carbohydrate metabolism, it yields an essential improvement in T. cruzi metabolism knowledge.
Collapse
Affiliation(s)
- Salvatore G. De-Simone
- Center for Technological Development in Health (CDTS), FIOCRUZ, National Institute of Science and Technology for Innovation in Neglected Populations Diseases (INCT-IDPN), Rio de Janeiro 21040-900, RJ, Brazil; (P.S.G.); (G.C.L.); (D.W.P.J.)
- Epidemiology and Molecular Systematic Laboratory, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro 21040-900, RJ, Brazil
- Cellular and Molecular Biology Department, Biology Institute, Federal Fluminense University, Niterói 24020-141, RJ, Brazil;
- Correspondence:
| | - Saulo C. Bourguignon
- Cellular and Molecular Biology Department, Biology Institute, Federal Fluminense University, Niterói 24020-141, RJ, Brazil;
| | - Priscila S. Gonçalves
- Center for Technological Development in Health (CDTS), FIOCRUZ, National Institute of Science and Technology for Innovation in Neglected Populations Diseases (INCT-IDPN), Rio de Janeiro 21040-900, RJ, Brazil; (P.S.G.); (G.C.L.); (D.W.P.J.)
- Cellular and Molecular Biology Department, Biology Institute, Federal Fluminense University, Niterói 24020-141, RJ, Brazil;
| | - Guilherme C. Lechuga
- Center for Technological Development in Health (CDTS), FIOCRUZ, National Institute of Science and Technology for Innovation in Neglected Populations Diseases (INCT-IDPN), Rio de Janeiro 21040-900, RJ, Brazil; (P.S.G.); (G.C.L.); (D.W.P.J.)
- Epidemiology and Molecular Systematic Laboratory, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro 21040-900, RJ, Brazil
| | - David W. Provance
- Center for Technological Development in Health (CDTS), FIOCRUZ, National Institute of Science and Technology for Innovation in Neglected Populations Diseases (INCT-IDPN), Rio de Janeiro 21040-900, RJ, Brazil; (P.S.G.); (G.C.L.); (D.W.P.J.)
- Epidemiology and Molecular Systematic Laboratory, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro 21040-900, RJ, Brazil
| |
Collapse
|
11
|
Bosch M, Sweet MJ, Parton RG, Pol A. Lipid droplets and the host-pathogen dynamic: FATal attraction? J Cell Biol 2021; 220:e202104005. [PMID: 34165498 PMCID: PMC8240858 DOI: 10.1083/jcb.202104005] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/02/2021] [Accepted: 06/03/2021] [Indexed: 02/06/2023] Open
Abstract
In the ongoing conflict between eukaryotic cells and pathogens, lipid droplets (LDs) emerge as a choke point in the battle for nutrients. While many pathogens seek the lipids stored in LDs to fuel an expensive lifestyle, innate immunity rewires lipid metabolism and weaponizes LDs to defend cells and animals. Viruses, bacteria, and parasites directly and remotely manipulate LDs to obtain substrates for metabolic energy, replication compartments, assembly platforms, membrane blocks, and tools for host colonization and/or evasion such as anti-inflammatory mediators, lipoviroparticles, and even exosomes. Host LDs counterattack such advances by synthesizing bioactive lipids and toxic nucleotides, organizing immune signaling platforms, and recruiting a plethora of antimicrobial proteins to provide a front-line defense against the invader. Here, we review the current state of this conflict. We will discuss why, when, and how LDs efficiently coordinate and precisely execute a plethora of immune defenses. In the age of antimicrobial resistance and viral pandemics, understanding innate immune strategies developed by eukaryotic cells to fight and defeat dangerous microorganisms may inform future anti-infective strategies.
Collapse
Affiliation(s)
- Marta Bosch
- Lipid Trafficking and Disease Group, Institut d’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Department of Biomedical Sciences, Faculty of Medicine, Universitat de Barcelona, Barcelona, Spain
| | - Matthew J. Sweet
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
- Centre for Inflammation and Disease Research, Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
- Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, Australia
| | - Robert G. Parton
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
- Centre for Microscopy and Microanalysis, University of Queensland, Brisbane, Australia
| | - Albert Pol
- Lipid Trafficking and Disease Group, Institut d’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Department of Biomedical Sciences, Faculty of Medicine, Universitat de Barcelona, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| |
Collapse
|
12
|
Cruz-Saavedra L, Vallejo GA, Guhl F, Messenger LA, Ramírez JD. Transcriptional remodeling during metacyclogenesis in Trypanosoma cruzi I. Virulence 2021; 11:969-980. [PMID: 32715914 PMCID: PMC7549971 DOI: 10.1080/21505594.2020.1797274] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Metacyclogenesis is one of the most important processes in the life cycle of Trypanosoma cruzi. In this stage, noninfective epimastigotes become infective metacyclic trypomastigotes. However, the transcriptomic changes that occur during this transformation remain uncertain. Illumina RNA-sequencing of epimastigotes and metacyclic trypomastigotes belonging to T. cruzi DTU I was undertaken. Sequencing reads were aligned and mapped against the reference genome, differentially expressed genes between the two life cycle stages were identified, and metabolic pathways were reconstructed. Gene expression differed significantly between epimastigotes and metacyclic trypomastigotes. The cellular pathways that were mostly downregulated during metacyclogenesis involved glucose energy metabolism (glycolysis, pyruvate metabolism, the Krebs cycle, and oxidative phosphorylation), amino acid metabolism, and DNA replication. By contrast, the processes where an increase in gene expression was observed included those related to autophagy (particularly Atg7 and Atg8 transcripts), corroborating its importance during metacyclogenesis, endocytosis, by an increase in the expression of the AP-2 complex subunit alpha, protein processing in the endoplasmic reticulum and meiosis. Study findings indicate that in T. cruzi metacyclic trypomastigotes, metabolic processes are decreased, and expression of genes involved in specific cell cycle processes is increased to facilitate transformation to this infective stage.
Collapse
Affiliation(s)
- Lissa Cruz-Saavedra
- Grupo de Investigaciones Microbiológicas-UR (GIMUR), Departamento de Biología, Facultad de Ciencias Naturales, Universidad del Rosario , Bogotá, Colombia
| | - Gustavo A Vallejo
- Laboratorio de Investigaciones en Parasitología Tropical, Facultad de Ciencias, Universidad del Tolima , Ibagué, Colombia
| | - Felipe Guhl
- Centro de Investigaciones en Microbiología y Parasitología Tropical (CIMPAT), Facultad de Ciencias, Universidad de Los Andes , Bogotá, Colombia
| | | | - Juan David Ramírez
- Grupo de Investigaciones Microbiológicas-UR (GIMUR), Departamento de Biología, Facultad de Ciencias Naturales, Universidad del Rosario , Bogotá, Colombia
| |
Collapse
|
13
|
Lopinavir and Nelfinavir Induce the Accumulation of Crystalloid Lipid Inclusions within the Reservosomes of Trypanosoma cruzi and Inhibit Both Aspartyl-Type Peptidase and Cruzipain Activities Detected in These Crucial Organelles. Trop Med Infect Dis 2021; 6:tropicalmed6030120. [PMID: 34287373 PMCID: PMC8293474 DOI: 10.3390/tropicalmed6030120] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/19/2021] [Accepted: 06/29/2021] [Indexed: 12/20/2022] Open
Abstract
Several research groups have explored the repositioning of human immunodeficiency virus aspartyl peptidase inhibitors (HIV-PIs) on opportunistic infections caused by bacteria, fungi and protozoa. In Trypanosoma cruzi, HIV-PIs have a high impact on parasite viability, and one of the main alterations promoted by this treatment is the imbalance in the parasite’s lipid metabolism. However, the reasons behind this phenomenon are unknown. In the present work, we observed by transmission electron microscopy (TEM) that the treatment of T. cruzi epimastigotes with the HIV-PIs lopinavir and nelfinavir induced a huge accumulation of crystalloid-shaped lipids within the reservosomes, most of them deforming these key organelles. As previously reported, those structures are characteristic of lipid inclusions formed mostly of cholesterol and cholesterol-esters. The fractionation of nontreated epimastigotes generated two distinct fractions enriched in reservosomes: one mostly composed of lipid inclusion-containing reservosomes (Fraction B1) and one where lipid inclusions were much less abundant (Fraction B2). Interestingly, the extract of Fraction B2 presented enzymatic activity related to aspartyl-type peptidases 3.5 times higher than that found in the extract obtained from Fraction B1. The cleavage of cathepsin D substrate by this class of peptidases was strongly impaired by pepstatin A, a prototypical aspartyl PI, and the HIV-PIs lopinavir and nelfinavir. In addition, both HIV-PIs also inhibited (to a lesser extent) the cruzipain activity present in reservosomes. Finally, our work provides new evidence concerning the presence and supposed participation of aspartyl peptidases in T. cruzi, even as it adds new information about the mechanisms behind the alterations promoted by lopinavir and nelfinavir in the protozoan.
Collapse
|
14
|
Orrego LM, Cabello-Donayre M, Vargas P, Martínez-García M, Sánchez C, Pineda-Molina E, Jiménez M, Molina R, Pérez-Victoria JM. Heme synthesis through the life cycle of the heme auxotrophic parasite Leishmania major. FASEB J 2019; 33:13367-13385. [PMID: 31553893 DOI: 10.1096/fj.201901274rr] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Heme is an essential molecule synthetized through a broadly conserved 8-step route that has been lost in trypanosomatid parasites. Interestingly, Leishmania reacquired by horizontal gene transfer from γ-proteobacteria the genes coding for the last 3 enzymes of the pathway. Here we show that intracellular amastigotes of Leishmania major can scavenge heme precursors from the host cell to fulfill their heme requirements, demonstrating the functionality of this partial pathway. To dissect its role throughout the L. major life cycle, the significance of L. major ferrochelatase (LmFeCH), the terminal enzyme of the route, was evaluated. LmFeCH expression in a heterologous system demonstrated its activity. Knockout promastigotes lacking lmfech were not able to use the ferrochelatase substrate protoporphyrin IX as a source of heme. In vivo infection of Phlebotomus perniciosus with knockout promastigotes shows that LmFeCH is not required for their development in the sandfly. In contrast, the replication of intracellular amastigotes was hampered in vitro by the deletion of lmfech. However, LmFeCH-/- parasites produced disease in a cutaneous leishmaniasis murine model in a similar way as control parasites. Therefore, although L. major can synthesize de novo heme from macrophage precursors, this activity is dispensable being an unsuited target for leishmaniasis treatment.-Orrego, L. M., Cabello-Donayre, M., Vargas, P., Martínez-García, M., Sánchez, C., Pineda-Molina, E., Jiménez, M., Molina, R., Pérez-Victoria, J. M. Heme synthesis through the life cycle of the heme auxotrophic parasite Leishmania major.
Collapse
Affiliation(s)
- Lina M Orrego
- Instituto de Parasitología y Biomedicina López-Neyra, Consejo Superior de Investigaciones Científicas (IPBLN-CSIC), Parque Tecnológico de la Salud (PTS) Granada, Granada, Spain
| | - María Cabello-Donayre
- Instituto de Parasitología y Biomedicina López-Neyra, Consejo Superior de Investigaciones Científicas (IPBLN-CSIC), Parque Tecnológico de la Salud (PTS) Granada, Granada, Spain
| | - Paola Vargas
- Instituto de Parasitología y Biomedicina López-Neyra, Consejo Superior de Investigaciones Científicas (IPBLN-CSIC), Parque Tecnológico de la Salud (PTS) Granada, Granada, Spain
| | - Marta Martínez-García
- Instituto de Parasitología y Biomedicina López-Neyra, Consejo Superior de Investigaciones Científicas (IPBLN-CSIC), Parque Tecnológico de la Salud (PTS) Granada, Granada, Spain
| | - Clara Sánchez
- Instituto de Parasitología y Biomedicina López-Neyra, Consejo Superior de Investigaciones Científicas (IPBLN-CSIC), Parque Tecnológico de la Salud (PTS) Granada, Granada, Spain
| | - Estela Pineda-Molina
- Instituto de Parasitología y Biomedicina López-Neyra, Consejo Superior de Investigaciones Científicas (IPBLN-CSIC), Parque Tecnológico de la Salud (PTS) Granada, Granada, Spain
| | - Maribel Jiménez
- Unidad de Entomología Médica, Servicio de Parasitología, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | - Ricardo Molina
- Unidad de Entomología Médica, Servicio de Parasitología, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | - José M Pérez-Victoria
- Instituto de Parasitología y Biomedicina López-Neyra, Consejo Superior de Investigaciones Científicas (IPBLN-CSIC), Parque Tecnológico de la Salud (PTS) Granada, Granada, Spain
| |
Collapse
|
15
|
Landoni M, Piñero T, Soprano LL, Garcia-Bournissen F, Fichera L, Esteva MI, Duschak VG, Couto AS. Tamoxifen acts on Trypanosoma cruzi sphingolipid pathway triggering an apoptotic death process. Biochem Biophys Res Commun 2019; 516:934-940. [PMID: 31277939 DOI: 10.1016/j.bbrc.2019.06.149] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 06/27/2019] [Indexed: 12/26/2022]
Abstract
This study shows the effects of tamoxifen, a known estrogen receptor antagonist used in the treatment of breast cancer, on the sphingolipid pathway of Trypanosoma cruzi, searching for potential chemotherapeutic targets. A dose-dependent epimastigote growth inhibition at increasing concentration of tamoxifen was determined. In blood trypomastigotes, treatment with 10 μM showed 90% lysis, while 86% inhibition of intracellular amastigote development was obtained using 50 μM. Lipid extracts from treated and non-treated metabolically labelled epimastigotes evidenced by thin layer chromatography different levels of sphingolipids and MALDI-TOF mass spectrometry analysis assured the identity of the labelled species. Comparison by HPLC-ESI mass spectrometry of lipids, notably exhibited a dramatic increase in the level of ceramide in tamoxifen-treated parasites and a restrained increase of ceramide-1P and sphingosine, indicating that the drug is acting on the enzymes involved in the final breakdown of ceramide. The ultrastructural analysis of treated parasites revealed characteristic morphology of cells undergoing an apoptotic-like death process. Flow cytometry confirmed cell death by an apoptotic-like machinery indicating that tamoxifen triggers this process by acting on the parasitic sphingolipid pathway.
Collapse
Affiliation(s)
- Malena Landoni
- Universidad de Buenos Aires, FCEN, Departamento de Química Orgánica - CONICET, CIHIDECAR, Intendente Güiraldes 2160, C1428GA, Ciudad Universitaria, Buenos Aires, Argentina
| | - Tamara Piñero
- Universidad de Buenos Aires, FCEN, Departamento de Química Orgánica - CONICET, CIHIDECAR, Intendente Güiraldes 2160, C1428GA, Ciudad Universitaria, Buenos Aires, Argentina
| | - Luciana L Soprano
- Instituto Nacional de Parasitología "Dr Mario Fatala Chaben", ANLIS-Malbrán, Secretaría de Salud de la Nación, Departamento de Investigación, Av. Paseo Colon 568, Buenos Aires, 1063, Argentina
| | - Facundo Garcia-Bournissen
- Instituto Multidisciplinario de Investigaciones en Enfermedades Pedíatricas (IMIPP), CONICET, Hospital de Niños "Ricardo Gutiérrez", Gallo 1330, Buenos Aires, 1425, Argentina
| | - Laura Fichera
- Instituto Nacional de Parasitología "Dr Mario Fatala Chaben", ANLIS-Malbrán, Secretaría de Salud de la Nación, Departamento de Investigación, Av. Paseo Colon 568, Buenos Aires, 1063, Argentina
| | - Monica I Esteva
- Instituto Nacional de Parasitología "Dr Mario Fatala Chaben", ANLIS-Malbrán, Secretaría de Salud de la Nación, Departamento de Investigación, Av. Paseo Colon 568, Buenos Aires, 1063, Argentina
| | - Vilma G Duschak
- Instituto Nacional de Parasitología "Dr Mario Fatala Chaben", ANLIS-Malbrán, Secretaría de Salud de la Nación, Departamento de Investigación, Av. Paseo Colon 568, Buenos Aires, 1063, Argentina
| | - Alicia S Couto
- Universidad de Buenos Aires, FCEN, Departamento de Química Orgánica - CONICET, CIHIDECAR, Intendente Güiraldes 2160, C1428GA, Ciudad Universitaria, Buenos Aires, Argentina.
| |
Collapse
|
16
|
Gonçalves DDS, Ferreira MDS, Liedke SC, Gomes KX, de Oliveira GA, Leão PEL, Cesar GV, Seabra SH, Cortines JR, Casadevall A, Nimrichter L, Domont GB, Junqueira MR, Peralta JM, Guimaraes AJ. Extracellular vesicles and vesicle-free secretome of the protozoa Acanthamoeba castellanii under homeostasis and nutritional stress and their damaging potential to host cells. Virulence 2018; 9:818-836. [PMID: 29560793 PMCID: PMC5955443 DOI: 10.1080/21505594.2018.1451184] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Accepted: 03/06/2018] [Indexed: 12/14/2022] Open
Abstract
Acanthamoeba castellanii (Ac) are ubiquitously distributed in nature, and by contaminating medical devices such as heart valves and contact lenses, they cause a broad range of clinical presentations to humans. Although several molecules have been described to play a role in Ac pathogenesis, including parasite host-tissue invasion and escaping of host-defense, little information is available on their mechanisms of secretion. Herein, we describe the molecular components secreted by Ac, under different protein availability conditions to simulate host niches. Ac extracellular vesicles (EVs) were morphologically and biochemically characterized. Dynamic light scattering analysis of Ac EVs identified polydisperse populations, which correlated to electron microscopy measurements. High-performance thin liquid chromatography of Ac EVs identified phospholipids, steryl-esters, sterol and free-fatty acid, the last two also characterized by GC-MS. Secretome composition (EVs and EVs-free supernatants) was also determined and proteins biological functions classified. In peptone-yeast-glucose (PYG) medium, a total of 179 proteins were identified (21 common proteins, 89 exclusive of EVs and 69 in EVs-free supernatant). In glucose alone, 205 proteins were identified (134 in EVs, 14 common and 57 proteins in EVs-free supernatant). From those, stress response, oxidative and protein and amino acid metabolism proteins prevailed. Qualitative differences were observed on carbohydrate metabolism enzymes from Krebs cycle and pentose phosphate shunt. Serine proteases and metalloproteinases predominated. Analysis of the cytotoxicity of Ac EVs (upon uptake) and EVs-free supernatant to epithelial and glioblastoma cells revealed a dose-dependent effect. Therefore, the Ac secretome differs depending on nutrient conditions, and is also likely to vary during infection.
Collapse
Affiliation(s)
- Diego de Souza Gonçalves
- Departamento de Microbiologia e Parasitologia, Instituto Biomédico, Universidade Federal Fluminense, Niterói, Brazil
| | - Marina da Silva Ferreira
- Departamento de Imunologia, Instituto de Microbiologia Professor Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Susie Coutinho Liedke
- Departamento de Imunologia, Instituto de Microbiologia Professor Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Kamilla Xavier Gomes
- Departamento de Microbiologia e Parasitologia, Instituto Biomédico, Universidade Federal Fluminense, Niterói, Brazil
| | - Gabriel Afonso de Oliveira
- Departamento de Microbiologia e Parasitologia, Instituto Biomédico, Universidade Federal Fluminense, Niterói, Brazil
| | - Pedro Ernesto Lopes Leão
- Laboratório de Glicobiologia de Eucariotos, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gabriele Vargas Cesar
- Laboratório de Glicobiologia de Eucariotos, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Sergio H. Seabra
- Laboratório de Tecnologia em Cultura de Células, Centro Universitário Estadual da Zona Oeste (UEZO), Rio de Janeiro, Brazil
| | - Juliana Reis Cortines
- Departamento de Virologia, Instituto de Microbiologia Professor Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Arturo Casadevall
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Leonardo Nimrichter
- Laboratório de Glicobiologia de Eucariotos, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gilberto Barbosa Domont
- Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Magno Rodrigues Junqueira
- Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jose Mauro Peralta
- Departamento de Imunologia, Instituto de Microbiologia Professor Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Allan J. Guimaraes
- Departamento de Microbiologia e Parasitologia, Instituto Biomédico, Universidade Federal Fluminense, Niterói, Brazil
| |
Collapse
|
17
|
Trypanosoma cruzi epimastigotes store cholesteryl esters in lipid droplets after cholesterol endocytosis. Mol Biochem Parasitol 2018; 224:6-16. [PMID: 30016698 DOI: 10.1016/j.molbiopara.2018.07.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 07/05/2018] [Accepted: 07/10/2018] [Indexed: 11/21/2022]
Abstract
The Chagas disease agent Trypanosoma cruzi proliferates in the insect vector as highly endocytic epimastigotes that store nutrients, including lipids in reservosomes (lysosome related compartments). Although nutrient storage is important for epimastigote transformation into infective metacyclics, the epimastigote lipid droplets (LDs) remain uncharacterized. Here, we characterized the epimastigote LDs and examined their relationship with the endocytic pathway. Fluorescence microscopy using BODIPY showed that LDs have high neutral lipid content and harbor Rab18, differently from other lipid-rich organelles (such as reservosomes). Using transmission electron microscopy (TEM), we observed a close relationship between LDs and the endoplasmic reticulum, mitochondria and glycosomes. We developed a reproducible protocol to isolate LDs, and showed (by HTPLC and GC/MS analyses) that they have 89% neutral lipids and 11% phospholipids, which are likely to form the LD monolayer seen by TEM. The LD neutral lipids were mostly sterols, although triacylglycerol, diacylglycerol, monoacylglycerol and free fatty acids (FFA) were also found. Endocytosis of 3H-labeled cholesterol-BSA showed that internalized cholesterol is stored in LDs mostly in the cholesteryl ester form. Together, these results suggest that exogenous cholesterol internalized by endocytosis reaches the reservosomes and is then stored into LDs after esterification.
Collapse
|
18
|
Vallochi AL, Teixeira L, Oliveira KDS, Maya-Monteiro CM, Bozza PT. Lipid Droplet, a Key Player in Host-Parasite Interactions. Front Immunol 2018; 9:1022. [PMID: 29875768 PMCID: PMC5974170 DOI: 10.3389/fimmu.2018.01022] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 04/24/2018] [Indexed: 12/18/2022] Open
Abstract
Lipid droplets (lipid bodies, LDs) are dynamic organelles that have important roles in regulating lipid metabolism, energy homeostasis, cell signaling, membrane trafficking, and inflammation. LD biogenesis, composition, and functions are highly regulated and may vary according to the stimuli, cell type, activation state, and inflammatory environment. Increased cytoplasmic LDs are frequently observed in leukocytes and other cells in a number of infectious diseases. Accumulating evidence reveals LDs participation in fundamental mechanisms of host-pathogen interactions, including cell signaling and immunity. LDs are sources of eicosanoid production, and may participate in different aspects of innate signaling and antigen presentation. In addition, intracellular pathogens evolved mechanisms to subvert host metabolism and may use host LDs, as ways of immune evasion and nutrients source. Here, we review mechanisms of LDs biogenesis and their contributions to the infection progress, and discuss the latest discoveries on mechanisms and pathways involving LDs roles as regulators of the immune response to protozoan infection.
Collapse
Affiliation(s)
- Adriana Lima Vallochi
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
| | | | | | | | - Patricia T. Bozza
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
| |
Collapse
|
19
|
Ribeiro KS, Vasconcellos CI, Soares RP, Mendes MT, Ellis CC, Aguilera-Flores M, de Almeida IC, Schenkman S, Iwai LK, Torrecilhas AC. Proteomic analysis reveals different composition of extracellular vesicles released by two Trypanosoma cruzi strains associated with their distinct interaction with host cells. J Extracell Vesicles 2018; 7:1463779. [PMID: 29696081 PMCID: PMC5912195 DOI: 10.1080/20013078.2018.1463779] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 04/07/2018] [Indexed: 12/12/2022] Open
Abstract
Trypanosoma cruzi, the aetiologic agent of Chagas disease, releases vesicles containing a wide range of surface molecules known to affect the host immunological responses and the cellular infectivity. Here, we compared the secretome of two distinct strains (Y and YuYu) of T. cruzi, which were previously shown to differentially modulate host innate and acquired immune responses. Tissue culture-derived trypomastigotes of both strains secreted extracellular vesicles (EVs), as demonstrated by electron scanning microscopy. EVs were purified by exclusion chromatography or ultracentrifugation and quantitated using nanoparticle tracking analysis. Trypomastigotes from YuYu strain released higher number of EVs than those from Y strain, enriched with virulence factors trans-sialidase (TS) and cruzipain. Proteomic analysis confirmed the increased abundance of proteins coded by the TS gene family, mucin-like glycoproteins, and some typical exosomal proteins in the YuYu strain, which also showed considerable differences between purified EVs and vesicle-free fraction as compared to the Y strain. To evaluate whether such differences were related to parasite infectivity, J774 macrophages and LLC-MK2 kidney cells were preincubated with purified EVs from both strains and then infected with Y strain trypomastigotes. EVs released by YuYu strain caused a lower infection but higher intracellular proliferation in J774 macrophages than EVs from Y strain. In contrast, YuYu strain-derived EVs caused higher infection of LLC-MK2 cells than Y strain-derived EVs. In conclusion, quantitative and qualitative differences in EVs and secreted proteins from different T. cruzi strains may correlate with infectivity/virulence during the host-parasite interaction.
Collapse
Affiliation(s)
| | | | | | - Maria Tays Mendes
- Border Biomedical Research Center, Department of Biological Sciences, University of Texas at El Paso (UTEP), El Paso, TX, USA
| | - Cameron C Ellis
- Border Biomedical Research Center, Department of Biological Sciences, University of Texas at El Paso (UTEP), El Paso, TX, USA
| | - Marcela Aguilera-Flores
- Border Biomedical Research Center, Department of Biological Sciences, University of Texas at El Paso (UTEP), El Paso, TX, USA
| | - Igor Correia de Almeida
- Border Biomedical Research Center, Department of Biological Sciences, University of Texas at El Paso (UTEP), El Paso, TX, USA
| | - Sergio Schenkman
- Departamento de Microbiologia, Imunologia e Parasitologia, UNIFESP, São Paulo, Brazil
| | - Leo Kei Iwai
- Laboratório Especial de Toxicologia Aplicada (LETA), Center of Toxins, Immune-Response and Cell Signaling (CeTICS), Instituto Butantan, São Paulo, Brazil
| | | |
Collapse
|
20
|
Secretome analysis of Trypanosoma cruzi by proteomics studies. PLoS One 2017; 12:e0185504. [PMID: 28972996 PMCID: PMC5626432 DOI: 10.1371/journal.pone.0185504] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 09/13/2017] [Indexed: 12/31/2022] Open
Abstract
Background Chagas disease is a debilitating often fatal disease resulting from infection by the protozoan parasite Trypanosoma cruzi. Chagas disease is endemic in 21 countries of the Americas, and it is an emerging disease in other countries as a result of migration. Given the chronic nature of the infection where intracellular parasites persist for years, the diagnosis of T. cruzi by direct detection is difficult, whereas serologic tests though sensitive may yield false-positive results. The development of new rapid test based on the identification of soluble parasitic antigens in serum would be a real innovation in the diagnosis of Chagas disease. Methods To identify new soluble biomarkers that may improve diagnostic tests, we investigated the proteins secreted by T. cruzi using mass spectrometric analyses of conditioned culture media devoid of serum collected during the emergence of trypomastigotes from infected Vero cells. In addition, we compared the secretomes of two T. cruzi strains from DTU Tc VI (VD and CL Brener). Results Analysis of the secretome collected during the emergence of trypomastigotes from Vero cells led to the identification of 591 T. cruzi proteins. Three hundred sixty three proteins are common to both strains and most belong to different multigenic super families (i.e. TcS, GP63, MASP, and DGF1). Ultimately we have established a list of 94 secreted proteins, common to both DTU Tc VI strains that do not belong to members of multigene families. Conclusions This study provides the first comparative analysis of the secretomes from two distinct T. cruzi strains of DTU TcVI. This led us to identify a subset of common secreted proteins that could potentially serve as serum markers for T. cruzi infection. Their potential could now be evaluated, with specific antibodies using sera collected from patients and residents from endemic regions.
Collapse
|
21
|
Brosson S, Bottu G, Pays E, Bousbata S, Salmon D. Identification and preliminary characterization of a putative C-type lectin receptor-like protein in the T. cruzi tomato lectin endocytic-enriched proteome. Microbiol Res 2017; 205:73-79. [PMID: 28942847 DOI: 10.1016/j.micres.2017.07.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 06/23/2017] [Accepted: 07/05/2017] [Indexed: 11/17/2022]
Abstract
Trypanosoma cruzi, the etiological agent of the Chagas' disease in Latin America undergoes a complex life cycle involving two hosts, a mammalian host and a reduviid insect vector (triatomine). In the insect midgut the parasite multiplies as epimastigote forms, which rely on endocytosis for their energy requirement. We recently showed that posttranslational modification of endocytic N-glycoproteins by tomato lectin (TL) binding-N-glycans is crucial for receptor-mediated endocytosis (RME) in epimastigote forms. In an attempt to characterize the endocytic proteome we used a TL affinity chromatography, which significantly enriched glycoproteins of the trypanosomal endocytic pathway. In addition to various lysosomal hydrolases, we found an endosomal C-type lectin-like protein, which displays some structural and topological characteristics of the mammalian lectin receptor superfamily. This lectin encoding a large transmembrane protein of around 375kDa contained three putative extracellular N-terminal C-type lectin domains (CTLD) and located inside the flagellar pocket (FP)/cytostome and endosomal compartments of the insect stage of the parasite and on the surface of the plasma membrane of intracellular amastigote parasites. Noteworthy, this endogenous lectin displayed similar sugar-binding specificity to that of TL and therefore could be important in either the N-glycan mediated endocytosis or parasite adhesion to host cells. We postulated that during the evolution of trypanosomatids, genes encoding lectin harboring 3 CTDLs represent an old acquisition present in free-living, monoxenic and heteroxenic trypanosomatids, which would have been secondarily lost in extracellular parasites from the T. brucei clade.
Collapse
Affiliation(s)
- Sébastien Brosson
- Laboratory of Molecular Parasitology, Institute of Molecular Biology and Medicine, Université Libre de Bruxelles, 12 rue des Professeurs Jeener et Brachet, B-6041 Gosselies, Belgium
| | - Guy Bottu
- VIB BioInformatics Training and Services (BITS), Rijvisschestraat 126 3/R, Ghent B-9052, Belgium
| | - Etienne Pays
- Laboratory of Molecular Parasitology, Institute of Molecular Biology and Medicine, Université Libre de Bruxelles, 12 rue des Professeurs Jeener et Brachet, B-6041 Gosselies, Belgium
| | - Sabrina Bousbata
- Laboratory of Molecular Parasitology, Institute of Molecular Biology and Medicine, Université Libre de Bruxelles, 12 rue des Professeurs Jeener et Brachet, B-6041 Gosselies, Belgium
| | - Didier Salmon
- Institute of Medical Biochemistry Leopoldo de Meis, Centro de Ciências e da Saúde, Federal University of Rio de Janeiro, Av. Brigadeiro Trompowsky, Rio de Janeiro, 21941-590, Brazil.
| |
Collapse
|
22
|
Tanifuji G, Cenci U, Moog D, Dean S, Nakayama T, David V, Fiala I, Curtis BA, Sibbald SJ, Onodera NT, Colp M, Flegontov P, Johnson-MacKinnon J, McPhee M, Inagaki Y, Hashimoto T, Kelly S, Gull K, Lukeš J, Archibald JM. Genome sequencing reveals metabolic and cellular interdependence in an amoeba-kinetoplastid symbiosis. Sci Rep 2017; 7:11688. [PMID: 28916813 PMCID: PMC5601477 DOI: 10.1038/s41598-017-11866-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 08/31/2017] [Indexed: 01/12/2023] Open
Abstract
Endosymbiotic relationships between eukaryotic and prokaryotic cells are common in nature. Endosymbioses between two eukaryotes are also known; cyanobacterium-derived plastids have spread horizontally when one eukaryote assimilated another. A unique instance of a non-photosynthetic, eukaryotic endosymbiont involves members of the genus Paramoeba, amoebozoans that infect marine animals such as farmed fish and sea urchins. Paramoeba species harbor endosymbionts belonging to the Kinetoplastea, a diverse group of flagellate protists including some that cause devastating diseases. To elucidate the nature of this eukaryote-eukaryote association, we sequenced the genomes and transcriptomes of Paramoeba pemaquidensis and its endosymbiont Perkinsela sp. The endosymbiont nuclear genome is ~9.5 Mbp in size, the smallest of a kinetoplastid thus far discovered. Genomic analyses show that Perkinsela sp. has lost the ability to make a flagellum but retains hallmark features of kinetoplastid biology, including polycistronic transcription, trans-splicing, and a glycosome-like organelle. Mosaic biochemical pathways suggest extensive ‘cross-talk’ between the two organisms, and electron microscopy shows that the endosymbiont ingests amoeba cytoplasm, a novel form of endosymbiont-host communication. Our data reveal the cell biological and biochemical basis of the obligate relationship between Perkinsela sp. and its amoeba host, and provide a foundation for understanding pathogenicity determinants in economically important Paramoeba.
Collapse
Affiliation(s)
- Goro Tanifuji
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada.,Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, Nova Scotia, Canada.,Department of Zoology, National Museum of Nature and Science, Tsukuba, Japan
| | - Ugo Cenci
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada.,Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Daniel Moog
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada.,Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, Nova Scotia, Canada.,Laboratory for Cell Biology, Philipps University, Marburg, Germany
| | - Samuel Dean
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Takuro Nakayama
- Center for Computational Sciences, University of Tsukuba, Tsukuba, Japan.,Graduate School of Life Sciences, Tohoku University, Tohoku, Japan
| | - Vojtěch David
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada.,Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, Nova Scotia, Canada.,Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Ivan Fiala
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Bruce A Curtis
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada.,Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Shannon J Sibbald
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada.,Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Naoko T Onodera
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada.,Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, Nova Scotia, Canada.,National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
| | - Morgan Colp
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada.,Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Pavel Flegontov
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic.,Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Jessica Johnson-MacKinnon
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada.,Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, Nova Scotia, Canada.,Institute for Marine and Antarctic Sciences, University of Tasmania, Launceston, Australia
| | - Michael McPhee
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada.,Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Yuji Inagaki
- Center for Computational Sciences, University of Tsukuba, Tsukuba, Japan.,Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Tetsuo Hashimoto
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Steven Kelly
- Department of Plant Sciences, University of Oxford, Oxford, United Kingdom
| | - Keith Gull
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic.,Faculty of Sciences, University of South Bohemia, České Budějovice, Czech Republic.,Canadian Institute for Advanced Research, Program in Integrated Microbial Biodiversity, Toronto, Canada
| | - John M Archibald
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada. .,Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, Nova Scotia, Canada. .,Canadian Institute for Advanced Research, Program in Integrated Microbial Biodiversity, Toronto, Canada.
| |
Collapse
|
23
|
Lysosome-like compartments of Trypanosoma cruzi trypomastigotes may originate directly from epimastigote reservosomes. Parasitology 2017; 144:841-850. [DOI: 10.1017/s0031182016002602] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
SUMMARYTrypanosoma cruzi epimastigote reservosomes store nutrients taken up during the intense endocytic activity exhibited by this developmental form. Reservosomes were classified as pre-lysosomal compartments. In contrast, trypomastigote forms are not able to take up nutrients from the medium. Interestingly, trypomastigotes also have acidic organelles with the same proteases contained in epimastigote reservosomes. Nevertheless, the origin and function of these organelles have not been disclosed so far. Given the similarities between the compartments of epimastigotes and trypomastigotes, the present study aimed to investigate the origin of metacyclic trypomastigote protease-containing organelles by tracking fluorospheres or colloidal gold particles previously stored in epimastigotes’ reservosomes throughout metacyclogenesis. Using three-dimensional reconstruction of serial electron microscopy images, it was possible to find trypomastigote compartments containing the tracer. Our observations demonstrate that the protease-containing compartments from metacyclic trypomastigotes may originate directly from the reservosomes of epimastigotes.
Collapse
|
24
|
Brosson S, Fontaine F, Vermeersch M, Perez-Morga D, Pays E, Bousbata S, Salmon D. Specific Endocytosis Blockade of Trypanosoma cruzi Exposed to a Poly-LAcNAc Binding Lectin Suggests that Lectin-Sugar Interactions Participate to Receptor-Mediated Endocytosis. PLoS One 2016; 11:e0163302. [PMID: 27685262 PMCID: PMC5042520 DOI: 10.1371/journal.pone.0163302] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 09/07/2016] [Indexed: 12/25/2022] Open
Abstract
Trypanosoma cruzi is a protozoan parasite transmitted by a triatomine insect, and causing human Chagas disease in South America. This parasite undergoes a complex life cycle alternating between non-proliferative and dividing forms. Owing to their high energy requirement, replicative epimastigotes of the insect midgut display high endocytic activity. This activity is mainly restricted to the cytostome, by which the cargo is taken up and sorted through the endosomal vesicular network to be delivered to reservosomes, the final lysosomal-like compartments. In African trypanosomes tomato lectin (TL) and ricin, respectively specific to poly-N-acetyllactosamine (poly-LacNAc) and β-D-galactose, allowed the identification of giant chains of poly-LacNAc in N-glycoproteins of the endocytic pathway. We show that in T. cruzi epimastigote forms also, glycoproteins of the endocytic pathway are characterized by the presence of N-linked glycans binding to both ricin and TL. Affinity chromatography using both TL and Griffonia simplicifolia lectin II (GSLII), specific to non-reducing terminal residue of N-acetylglucosamine (GlcNAc), led to an enrichment of glycoproteins of the trypanosomal endocytic pathway. Incubation of live parasites with TL, which selectively bound to the cytostome/cytopharynx, specifically inhibited endocytosis of transferrin (Tf) but not dextran, a marker of fluid endocytosis. Taken together, our data suggest that N-glycan modification of endocytic components plays a crucial role in receptor-mediated endocytosis of T. cruzi.
Collapse
Affiliation(s)
- Sébastien Brosson
- Laboratory of Molecular Parasitology, Institute of Molecular Biology and Medicine, Université Libre de Bruxelles, 12 rue des Professeurs Jeener et Brachet, B-6041 Gosselies, Belgium
| | - Frédéric Fontaine
- Laboratory of Molecular Parasitology, Institute of Molecular Biology and Medicine, Université Libre de Bruxelles, 12 rue des Professeurs Jeener et Brachet, B-6041 Gosselies, Belgium
| | - Marjorie Vermeersch
- Center for Microscopy and Molecular Imaging-CMMI, Université Libre de Bruxelles, 8 rue Adrienne Bolland, B-6041 Gosselies, Belgium
| | - David Perez-Morga
- Laboratory of Molecular Parasitology, Institute of Molecular Biology and Medicine, Université Libre de Bruxelles, 12 rue des Professeurs Jeener et Brachet, B-6041 Gosselies, Belgium
- Center for Microscopy and Molecular Imaging-CMMI, Université Libre de Bruxelles, 8 rue Adrienne Bolland, B-6041 Gosselies, Belgium
| | - Etienne Pays
- Laboratory of Molecular Parasitology, Institute of Molecular Biology and Medicine, Université Libre de Bruxelles, 12 rue des Professeurs Jeener et Brachet, B-6041 Gosselies, Belgium
| | - Sabrina Bousbata
- Laboratory of Molecular Parasitology, Institute of Molecular Biology and Medicine, Université Libre de Bruxelles, 12 rue des Professeurs Jeener et Brachet, B-6041 Gosselies, Belgium
- * E-mail: (DS); (SB)
| | - Didier Salmon
- Laboratory of Molecular Parasitology, Institute of Molecular Biology and Medicine, Université Libre de Bruxelles, 12 rue des Professeurs Jeener et Brachet, B-6041 Gosselies, Belgium
- Institute of Medical Biochemistry Leopoldo de Meis, Centro de Ciências e da Saúde, Federal University of Rio de Janeiro, Av. Brigadeiro Trompowsky, Rio de Janeiro, 21941-590, Brazil
- * E-mail: (DS); (SB)
| |
Collapse
|
25
|
Di Renzo MA, Laverrière M, Schenkman S, Wehrendt DP, Tellez-Iñón MT, Potenza M. Characterization of TcCYC6 from Trypanosoma cruzi, a gene with homology to mitotic cyclins. Parasitol Int 2016; 65:196-204. [DOI: 10.1016/j.parint.2015.12.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 12/14/2015] [Accepted: 12/16/2015] [Indexed: 11/30/2022]
|
26
|
Abstract
Replication of Trypanosoma cruzi, the etiological agent of Chagas disease, displays peculiar features, such as absence of chromosome condensation and closed mitosis. Although previous proteome and subproteome analyses of T. cruzi have been carried out, the nuclear subproteome of this protozoan has not been described. Here, we report, for the first time to the best of our knowledge, the isolation and proteome analysis of T. cruzi nuclear fraction. For that, T. cruzi epimastigote cells were lysed and subjected to cell fractionation using two steps of sucrose density gradient centrifugation. The purity of the nuclear fraction was confirmed by phase contrast and fluorescence microscopy. Liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) allowed the identification of 864 proteins. Among those, 272 proteins were annotated as putative uncharacterized, and 275 had not been previously reported on global T. cruzi proteome analysis. Additionally, to support our enrichment method, bioinformatics analysis in DAVID was carried out. It grouped the nuclear proteins in 65 gene clusters, wherein the clusters with the highest enrichment scores harbor members with chromatin organization and DNA binding functions.
Collapse
|
27
|
Pereira MG, Visbal G, Salgado LT, Vidal JC, Godinho JLP, De Cicco NNT, Atella GC, de Souza W, Cunha-e-Silva N. Trypanosoma cruzi Epimastigotes Are Able to Manage Internal Cholesterol Levels under Nutritional Lipid Stress Conditions. PLoS One 2015; 10:e0128949. [PMID: 26068009 PMCID: PMC4466137 DOI: 10.1371/journal.pone.0128949] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 05/02/2015] [Indexed: 11/19/2022] Open
Abstract
Trypanosoma cruzi epimastigotes store high amounts of cholesterol and cholesteryl esters in reservosomes. These unique organelles are responsible for cellular digestion by providing substrates for homeostasis and parasite differentiation. Here we demonstrate that under nutritional lipid stress, epimastigotes preferentially mobilized reservosome lipid stocks, instead of lipid bodies, leading to the consumption of parasite cholesterol reservoirs and production of ergosterol. Starved epimastigotes acquired more LDL-NBD-cholesterol by endocytosis and distributed the exogenous cholesterol to their membranes faster than control parasites. Moreover, the parasites were able to manage internal cholesterol levels, alternating between consumption and accumulation. With normal lipid availability, parasites esterified cholesterol exhibiting an ACAT-like activity that was sensitive to Avasimibe in a dose-dependent manner. This result also implies that exogenous cholesterol has a role in lipid reservoirs in epimastigotes.
Collapse
Affiliation(s)
- Miria Gomes Pereira
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
- Laboratório de Bioquímica de Lipídios e Lipoproteínas, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Gonzalo Visbal
- Instituto Nacional de Metrologia, Qualidade e Tecnologia—INMETRO, Rio de Janeiro, Brasil
| | - Leonardo T. Salgado
- Instituto de Pesquisas Jardim Botânico do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Juliana Cunha Vidal
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Joseane L. P. Godinho
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Nuccia N. T. De Cicco
- Laboratório de Bioquímica de Lipídios e Lipoproteínas, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Geórgia C. Atella
- Laboratório de Bioquímica de Lipídios e Lipoproteínas, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Wanderley de Souza
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
- Instituto Nacional de Metrologia, Qualidade e Tecnologia—INMETRO, Rio de Janeiro, Brasil
| | - Narcisa Cunha-e-Silva
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
- * E-mail:
| |
Collapse
|
28
|
Brunoro GVF, Caminha MA, Ferreira ATDS, Leprevost FDV, Carvalho PC, Perales J, Valente RH, Menna-Barreto RFS. Reevaluating the Trypanosoma cruzi proteomic map: The shotgun description of bloodstream trypomastigotes. J Proteomics 2015; 115:58-65. [DOI: 10.1016/j.jprot.2014.12.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 12/04/2014] [Accepted: 12/11/2014] [Indexed: 10/24/2022]
|
29
|
Souza LCK, Pinho REGG, Lima CVDP, Fragoso SP, Soares MJ. Actin expression in trypanosomatids (Euglenozoa: Kinetoplastea). Mem Inst Oswaldo Cruz 2014; 108:631-6. [PMID: 23903980 PMCID: PMC3970605 DOI: 10.1590/0074-0276108052013015] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Accepted: 02/26/2013] [Indexed: 11/23/2022] Open
Abstract
Heteroxenic and monoxenic trypanosomatids were screened for the
presence of actin using a mouse polyclonal antibody produced against the entire
sequence of the Trypanosoma cruzi actin gene, encoding a 41.9
kDa protein. Western blot analysis showed that this antibody reacted with a
polypeptide of approximately 42 kDa in the whole-cell lysates of parasites
targeting mammals (T. cruzi, Trypanosoma
brucei and Leishmania major), insects
(Angomonas deanei, Crithidia fasciculata,
Herpetomonas samuelpessoai and Strigomonas
culicis) and plants (Phytomonas serpens). A single
polypeptide of approximately 42 kDa was detected in the whole-cell lysates of
T. cruzi cultured epimastigotes, metacyclic trypomastigotes
and amastigotes at similar protein expression levels. Confocal microscopy showed
that actin was expressed throughout the cytoplasm of all the tested
trypanosomatids. These data demonstrate that actin expression is widespread in
trypanosomatids.
Collapse
|
30
|
Effects of chlorate on the sulfation process of Trypanosoma cruzi glycoconjugates. Implication of parasite sulfates in cellular invasion. Acta Trop 2014; 137:161-73. [PMID: 24879929 DOI: 10.1016/j.actatropica.2014.05.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2014] [Revised: 05/17/2014] [Accepted: 05/20/2014] [Indexed: 02/06/2023]
Abstract
Sulfation, a post-translational modification which plays a key role in various biological processes, is inhibited by competition with chlorate. In Trypanosoma cruzi, the agent of Chagas' disease, sulfated structures have been described as part of glycolipids and we have reported sulfated high-mannose type oligosaccharides in the C-T domain of the cruzipain (Cz) glycoprotein. However, sulfation pathways have not been described yet in this parasite. Herein, we studied the effect of chlorate treatment on T. cruzi with the aim to gain some knowledge about sulfation metabolism and the role of sulfated molecules in this parasite. In chlorate-treated epimastigotes, immunoblotting with anti-sulfates enriched Cz IgGs (AS-enriched IgGs) showed Cz undersulfation. Accordingly, a Cz mobility shift toward higher isoelectric points was observed in 2D-PAGE probed with anti-Cz antibodies. Ultrastructural membrane abnormalities and a significant decrease of dark lipid reservosomes were shown by electron microscopy and a significant decrease in sulfatide levels was confirmed by TLC/UV-MALDI-TOF-MS analysis. Altogether, these results suggest T. cruzi sulfation occurs via PAPS. Sulfated epitopes in trypomastigote and amastigote forms were evidenced using AS-enriched IgGs by immunoblotting. Their presence on trypomastigotes surface was demonstrated by flow cytometry and IF with Cz/dCz specific antibodies. Interestingly, the percentage of infected cardiac HL-1 cells decreased 40% when using chlorate-treated trypomastigotes, suggesting sulfates are involved in the invasion process. The same effect was observed when cells were pre-incubated with dCz, dC-T or an anti-high mannose receptor (HMR) antibody, suggesting Cz sulfates and HMR are also involved in the infection process by T. cruzi.
Collapse
|
31
|
Mariotini-Moura C, Bastos MSE, de Castro FF, Trindade ML, de Souza Vasconcellos R, Neves-do-Valle MAA, Moreira BP, de Freitas Santos R, de Oliveira CM, Cunha LCS, Souto XM, Bressan GC, Silva-Júnior A, Baqui MMA, Bahia MT, de Almeida MR, Meyer-Fernandes JR, Fietto JLR. Trypanosoma cruzi nucleoside triphosphate diphosphohydrolase 1 (TcNTPDase-1) biochemical characterization, immunolocalization and possible role in host cell adhesion. Acta Trop 2014; 130:140-7. [PMID: 24269744 DOI: 10.1016/j.actatropica.2013.11.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Revised: 11/05/2013] [Accepted: 11/11/2013] [Indexed: 12/20/2022]
Abstract
Previous work has suggested that Trypanosoma cruzi diphosphohydrolase 1 (TcNTPDase-1) may be involved in the infection of mammalian cells and serve as a potential target for rational drug design. In this work, we produced recombinant TcNTPDase-1 and evaluated its nucleotidase activity, cellular localization and role in parasite adhesion to mammalian host cells. TcNTPDase-1 was able to utilize a broad range of triphosphate and diphosphate nucleosides. The enzyme's Km for ATP (0.096 mM) suggested a capability to influence the host's ATP-dependent purinergic signaling. The use of specific polyclonal antibodies allowed us to confirm the presence of TcNTPDase-1 at the surface of parasites by confocal and electron microscopy. In addition, electron microscopy revealed that TcNTPDase-1 was also found in the flagellum, flagellum insertion region, kinetoplast, nucleus and intracellular vesicles. The presence of this enzyme in the flagellum insertion region and vesicles suggests that it may have a role in nutrient acquisition, and the widespread distribution of TcNTPDase-1 within the parasite suggests that it may be involved in other biological process. Adhesion assays using anti-TcNTPDase-1 polyclonal antibodies as a blocker or purified recombinant TcNTPDase-1 as a competitor revealed that the enzyme has a role in parasite-host cell adhesion. These data open new frontiers to future studies on this specific parasite-host interaction and other unknown functions of TcNTPDase-1 related to its ubiquitous localization.
Collapse
|
32
|
mAb CZP-315.D9: an antirecombinant cruzipain monoclonal antibody that specifically labels the reservosomes of Trypanosoma cruzi epimastigotes. BIOMED RESEARCH INTERNATIONAL 2014; 2014:714749. [PMID: 24587988 PMCID: PMC3920967 DOI: 10.1155/2014/714749] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Revised: 12/16/2013] [Accepted: 12/20/2013] [Indexed: 11/17/2022]
Abstract
Reservosomes are large round vesicles located at the posterior end of epimastigote forms of the protozoan Trypanosoma cruzi, the etiological agent of Chagas disease. They are the specific end organelles of the endocytosis pathway of T. cruzi, and they play key roles in nutrient uptake and cell differentiation. These lysosome-like organelles accumulate ingested macromolecules and contain large amounts of a major cysteine proteinase (cruzipain or GP57/51 protein). Aim of this study was to produce a monoclonal antibody (mAb) against a recombinant T. cruzi cruzipain (TcCruzipain) that specifically labels the reservosomes. BALB/c mice were immunized with purified recombinant TcCruzipain to obtain the mAb. After fusion of isolated splenocytes with myeloma cells and screening, a mAb was obtained by limiting dilution and characterized by capture ELISA. We report here the production of a kappa-positive monoclonal IgG antibody (mAb CZP-315.D9) that recognizes recombinant TcCruzipain. This mAb binds preferentially to a protein with a molecular weight of about 50 kDa on western blots and specifically labels reservosomes by immunofluorescence and transmission electron microscopy. The monoclonal CZP-315.D9 constitutes a potentially powerful marker for use in studies on the function of reservosomes of T. cruzi.
Collapse
|
33
|
Menna-Barreto RFS, Perales J. The expected outcome of the Trypanosoma cruzi proteomic map: a review of its potential biological applications for drug target discovery. Subcell Biochem 2014; 74:305-322. [PMID: 24264251 DOI: 10.1007/978-94-007-7305-9_13] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Chagas disease is a neglected tropical illness endemic to Latin America, and its treatment remains unsatisfactory. This disease is caused by the hemoflagellate protozoan Trypanosoma cruzi, which has a complex life cycle involving three evolutive forms in both vertebrate and invertebrate hosts. Targeting metabolic pathways in the parasite for rational drug design represents a promising research field. This research area requires high performance techniques and proteomics become a powerful tool in this context. Here, we review advances in the construction of proteomic maps of the different forms of T. cruzi, emphasizing their biological applications towards the identification of alternative candidates for drug intervention.
Collapse
Affiliation(s)
- Rubem F S Menna-Barreto
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, 21040-360, Brazil
| | | |
Collapse
|
34
|
Rodrigues JCF, Godinho JLP, de Souza W. Biology of human pathogenic trypanosomatids: epidemiology, lifecycle and ultrastructure. Subcell Biochem 2014; 74:1-42. [PMID: 24264239 DOI: 10.1007/978-94-007-7305-9_1] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Leishmania and Trypanosoma belong to the Trypanosomatidae family and cause important human infections such as leishmaniasis, Chagas disease, and sleeping sickness. Leishmaniasis, caused by protozoa belonging to Leishmania, affects about 12 million people worldwide and can present different clinical manifestations, i.e., visceral leishmaniasis (VL), cutaneous leishmaniasis (CL), mucocutaneous leishmaniasis (MCL), diffuse cutaneous leishmaniasis (DCL), and post-kala-azar dermal leishmaniasis (PKDL). Chagas disease, also known as American trypanosomiasis, is caused by Trypanosoma cruzi and is mainly prevalent in Latin America but is increasingly occurring in the United States, Canada, and Europe. Sleeping sickness or human African trypanosomiasis (HAT), caused by two sub-species of Trypanosoma brucei (i.e., T. b. rhodesiense and T. b. gambiense), occurs only in sub-Saharan Africa countries. These pathogenic trypanosomatids alternate between invertebrate and vertebrate hosts throughout their lifecycles, and different developmental stages can live inside the host cells and circulate in the bloodstream or in the insect gut. Trypanosomatids have a classical eukaryotic ultrastructural organization with some of the same main organelles found in mammalian host cells, while also containing special structures and organelles that are absent in other eukaryotic organisms. For example, the mitochondrion is ramified and contains a region known as the kinetoplast, which houses the mitochondrial DNA. Also, the glycosomes are specialized peroxisomes containing glycolytic pathway enzymes. Moreover, a layer of subpellicular microtubules confers mechanic rigidity to the cell. Some of these structures have been investigated to determine their function and identify potential enzymes and metabolic pathways that may constitute targets for new chemotherapeutic drugs.
Collapse
Affiliation(s)
- Juliany Cola Fernandes Rodrigues
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil,
| | | | | |
Collapse
|
35
|
Alves LR, Guerra-Slompo EP, de Oliveira AV, Malgarin JS, Goldenberg S, Dallagiovanna B. mRNA localization mechanisms in Trypanosoma cruzi. PLoS One 2013; 8:e81375. [PMID: 24324687 PMCID: PMC3852752 DOI: 10.1371/journal.pone.0081375] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Accepted: 10/13/2013] [Indexed: 01/06/2023] Open
Abstract
Asymmetric mRNA localization is a sophisticated tool for regulating and optimizing protein synthesis and maintaining cell polarity. Molecular mechanisms involved in the regulated localization of transcripts are widespread in higher eukaryotes and fungi, but not in protozoa. Trypanosomes are ancient eukaryotes that branched off early in eukaryote evolution. We hypothesized that these organisms would have basic mechanisms of mRNA localization. FISH assays with probes against transcripts coding for proteins with restricted distributions showed a discrete localization of the mRNAs in the cytoplasm. Moreover, cruzipain mRNA was found inside reservosomes suggesting new unexpected functions for this vacuolar organelle. Individual mRNAs were also mobilized to RNA granules in response to nutritional stress. The cytoplasmic distribution of these transcripts changed with cell differentiation, suggesting that localization mechanisms might be involved in the regulation of stage-specific protein expression. Transfection assays with reporter genes showed that, as in higher eukaryotes, 3'UTRs were responsible for guiding mRNAs to their final location. Our results strongly suggest that Trypanosoma cruzi have a core, basic mechanism of mRNA localization. This kind of controlled mRNA transport is ancient, dating back to early eukaryote evolution.
Collapse
Affiliation(s)
- Lysangela R. Alves
- Laboratório de Regulação da Expressão Gênica, Instituto Carlos Chagas, Fiocruz-Paraná. Curitiba, Paraná, Brasil
| | - Eloise P. Guerra-Slompo
- Laboratório de Regulação da Expressão Gênica, Instituto Carlos Chagas, Fiocruz-Paraná. Curitiba, Paraná, Brasil
| | - Arthur V. de Oliveira
- Laboratório de Regulação da Expressão Gênica, Instituto Carlos Chagas, Fiocruz-Paraná. Curitiba, Paraná, Brasil
| | - Juliane S. Malgarin
- Laboratório de Regulação da Expressão Gênica, Instituto Carlos Chagas, Fiocruz-Paraná. Curitiba, Paraná, Brasil
| | - Samuel Goldenberg
- Laboratório de Regulação da Expressão Gênica, Instituto Carlos Chagas, Fiocruz-Paraná. Curitiba, Paraná, Brasil
| | - Bruno Dallagiovanna
- Laboratório de Regulação da Expressão Gênica, Instituto Carlos Chagas, Fiocruz-Paraná. Curitiba, Paraná, Brasil
- * E-mail:
| |
Collapse
|
36
|
de Almeida Nogueira NP, Morgado-Díaz JA, Menna-Barreto RFS, Paes MC, da Silva-López RE. Effects of a marine serine protease inhibitor on viability and morphology of Trypanosoma cruzi, the agent of Chagas disease. Acta Trop 2013; 128:27-35. [PMID: 23770204 DOI: 10.1016/j.actatropica.2013.05.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Revised: 04/10/2013] [Accepted: 05/21/2013] [Indexed: 01/04/2023]
Abstract
It has been reported that serine peptidase activities of Trypanosoma cruzi play crucial roles in parasite dissemination and host cell invasion and therefore their inhibition could affect the progress of Chagas disease. The present study investigates the interference of the Stichodactyla helianthus Kunitz-type serine protease inhibitor (ShPI-I), a 55-amino acid peptide, in T. cruzi serine peptidase activities, parasite viability, and parasite morphology. The effect of this peptide was also studied in Leishmania amazonensis promastigotes and it was proved to be a powerful inhibitor of serine proteases activities and the parasite viability. The ultrastructural alterations caused by ShPI-I included vesiculation of the flagellar pocket membrane and the appearance of a cytoplasmic vesicle that resembles an autophagic vacuole. ShPI-I, which showed itself to be an important T. cruzi serine peptidase inhibitor, reduced the parasite viability, in a dose and time dependent manner. The maximum effect of peptide on T. cruzi viability was observed when ShPI-I at 1×10(-5)M was incubated for 24 and 48h which killed completely both metacyclic trypomastigote and epimastigote forms. At 1×10(-6)M ShPI-I, in the same periods of time, reduced parasite viability about 91-95% respectively. Ultrastructural analysis demonstrated the formation of concentric membranar structures especially in the cytosol, involving organelles and small vesicles. Profiles of endoplasmic reticulum were also detected, surrounding cytosolic vesicles that resembled autophagic vacuoles. These results suggest that serine peptidases are important in T. cruzi physiology since the inhibition of their activity killed parasites in vitro as well as inducing important morphological alterations. Protease inhibitors thus appear to have a potential role as anti-trypanosomatidal agents.
Collapse
Affiliation(s)
- Natália Pereira de Almeida Nogueira
- Laboratório de Interação de Tripanosomatídeos e Vetores, Departamento de Bioquímica, Instituto de Biologia Roberto Alcântara Gomes, Universidade do Estado do Rio de Janeiro, UERJ, Rio de Janeiro, RJ, Brazil
| | | | | | | | | |
Collapse
|
37
|
Bayer-Santos E, Cunha-e-Silva NL, Yoshida N, Franco da Silveira J. Expression and cellular trafficking of GP82 and GP90 glycoproteins during Trypanosoma cruzi metacyclogenesis. Parasit Vectors 2013; 6:127. [PMID: 23634710 PMCID: PMC3652755 DOI: 10.1186/1756-3305-6-127] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 04/23/2013] [Indexed: 11/25/2022] Open
Abstract
Background The transformation of noninfective epimastigotes into infective metacyclic trypomastigotes (metacyclogenesis) is a fundamental step in the life cycle of Trypanosoma cruzi, comprising several morphological and biochemical changes. GP82 and GP90 are glycoproteins expressed at the surface of metacyclic trypomastigote, with opposite roles in mammalian cell invasion. GP82 is an adhesin that promotes cell invasion, while GP90 acts as a negative regulator of parasite internalization. Our understanding of the synthesis and intracellular trafficking of GP82 and GP90 during metacyclogenesis is still limited. Therefore, we decided to determine whether GP82 and GP90 are expressed only in fully differentiated metacyclic forms or they start to be expressed in intermediate forms undergoing differentiation. Methods Parasite populations enriched in intermediate forms undergoing differentiation were analyzed by quantitative real-time PCR, Western blot, flow cytometry and immunofluorescence to assess GP82 and GP90 expression. Results We found that GP82 and GP90 mRNAs and proteins are expressed in intermediate forms and reach higher levels in fully differentiated metacyclic forms. Surprisingly, GP82 and GP90 presented distinct cellular localizations in intermediate forms compared to metacyclic trypomastigotes. In intermediate forms, GP82 is localized in organelles at the posterior region and colocalizes with cruzipain, while GP90 is localized at the flagellar pocket region. Conclusions This study discloses new aspects of protein expression and trafficking during T. cruzi differentiation by showing that the machinery involved in GP82 and GP90 gene expression starts to operate early in the differentiation process and that different secretion pathways are responsible for delivering these glycoproteins toward the cell surface.
Collapse
Affiliation(s)
- Ethel Bayer-Santos
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo, São Paulo, SP 04023-062, Brazil
| | | | | | | |
Collapse
|
38
|
Wagner G, Eiko Yamanaka L, Moura H, Denardin Lückemeyer D, Schlindwein AD, Hermes Stoco P, Bunselmeyer Ferreira H, Robert Barr J, Steindel M, Grisard EC. The Trypanosoma rangeli trypomastigote surfaceome reveals novel proteins and targets for specific diagnosis. J Proteomics 2013; 82:52-63. [PMID: 23466310 DOI: 10.1016/j.jprot.2013.02.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Revised: 02/10/2013] [Accepted: 02/13/2013] [Indexed: 10/27/2022]
Abstract
UNLABELLED Sympatric distribution and sharing of hosts and antigens by Trypanosoma rangeli and Trypanosoma cruzi, the etiological agent of Chagas' disease, often incur in misdiagnosis and improper epidemiological inferences. Many secreted and surface proteins (SP) have been described as important antigens shared by these species. This work describes the T. rangeli surfaceome obtained by gel-free (LC-ESI-MS/MS) and gel-based (GeLC-ESI-MS/MS) proteomic approaches, and immunoblotting analyses and the comparison of these SP with T. cruzi. A total of 138 T. rangeli proteins and 343 T. cruzi proteins were obtained, among which, 42 and 157 proteins were exclusively identified in T. rangeli or T. cruzi trypomastigotes, respectively. Immunoblotting assays using sera from experimentally infected mice revealed a distinct band pattern for each species. MS/MS analysis of T. rangeli exclusive bands revealed two unique GP63-related proteins and flagellar calcium-binding protein. Also, a ~32kDa band composed of 12 distinct proteins was exclusively recognized by anti-T. cruzi serum. This highly sensitive proteomic assessment of surface proteins characterized the T. rangeli surfaceome, revealing several differences and similarities between these two parasites. The study reports new T. rangeli-specific proteins with promising use in differential diagnosis from T. cruzi. BIOLOGICAL SIGNIFICANCE In this manuscript, we report the first proteomic analysis of the T. rangeli surface (surfaceome), a non-pathogenic parasite occurring in sympatry with T. cruzi, the etiological agent of Chagas disease. This comparative proteomic analysis was performed using high-throughput in-gel and gel-free proteomic approaches combined with immunoblotting, allowing us to identify new T. rangeli-specific proteins with promising use in differential serodiagnosis, among several other protein not previously reported for this taxon. Additionally, cross-recognition assays showed that T. cruzi surface proteins were recognized by heterologous serum (anti-T. rangeli) that strengthens the possibility of misdiagnosis of Chagas disease in humans and other mammals. Thus, this work provides new insights to understand the serological cross-reactivity between T. cruzi and T. rangeli, as well as, the identification of targets for specific T. rangeli diagnosis as revealed by the comparative surfaceome analysis. We strongly believe that this research is of importance to the readers of Journal of Proteomics since it provides new potential markers for diagnosis of both T. cruzi and T. rangeli parasites increasing the spectrum of specific targets for unambiguous diagnosis of T. rangeli and T. cruzi infections, besides describing new approaches to assess the trypanosomatids proteome.
Collapse
Affiliation(s)
- Glauber Wagner
- Laboratórios de Protozoologia e de Bioinformática, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Batista CM, Kalb LC, Moreira CMDN, Batista GTH, Eger I, Soares MJ. Identification and subcellular localization of TcHIP, a putative Golgi zDHHC palmitoyl transferase of Trypanosoma cruzi. Exp Parasitol 2013; 134:52-60. [PMID: 23428831 DOI: 10.1016/j.exppara.2013.01.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Revised: 01/14/2013] [Accepted: 01/30/2013] [Indexed: 12/28/2022]
Abstract
Protein palmitoylation is a post-translational modification that contributes to determining protein localization and function. Palmitoylation has been described in trypanosomatid protozoa, but no zDHHC palmitoyl transferase has been identified in Trypanosoma cruzi, the etiological agent of Chagas disease in Latin America. In this study we identify and show the subcellular localization of TcHIP (Tc00.1047053508199.50), a putative T. cruzi zDHHC palmitoyl transferase. Analysis of the deduced protein sequence indicates that it contains ankyrin repeats (Ank and Ank2) and the zDHHC conserved domain, typical of zDHHC palmitoyl transferases. A TcHIP polyclonal antiserum obtained from mice immunized with the purified recombinant protein was used to study the presence and subcellular localization of the native enzyme. In western blots this antiserum recognized a protein of about 95 kDa, consistent with the predicted molecular mass of TcHIP (95.4 kDa), in whole extracts of T. cruzi epimastigotes, metacyclic trypomastigotes and intracellular amastigotes. Immunolocalization by confocal microscopy showed TcHIP labeling at the Golgi complex, co-localizing with the T. cruzi Golgi marker TcRab7-GFP. Transfectant T. cruzi epimastigotes containing a construct encoding TcHIP fused to proteins A and C (TcHIP/AC) were obtained. In western blotting experiments, the TcHIP polyclonal antiserum recognized both native and TcHIP/AC proteins in extracts of the transfectants. Confocal microscopy showed co-localization of native TcHIP with TcHIP/AC. These findings demonstrate the presence of a putative zDHHC palmitoyl transferase (TcHIP) containing ankyrin and zDHHC domains in different developmental forms of T. cruzi, and its association with the Golgi complex.
Collapse
|
40
|
Kessler RL, Soares MJ, Probst CM, Krieger MA. Trypanosoma cruzi response to sterol biosynthesis inhibitors: morphophysiological alterations leading to cell death. PLoS One 2013; 8:e55497. [PMID: 23383204 PMCID: PMC3561218 DOI: 10.1371/journal.pone.0055497] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Accepted: 12/23/2012] [Indexed: 12/22/2022] Open
Abstract
The protozoan parasite Trypanosoma cruzi displays similarities to fungi in terms of its sterol lipid biosynthesis, as ergosterol and other 24-alkylated sterols are its principal endogenous sterols. The sterol pathway is thus a potential drug target for the treatment of Chagas disease. We describe here a comparative study of the growth inhibition, ultrastructural and physiological changes leading to the death of T. cruzi cells following treatment with the sterol biosynthesis inhibitors (SBIs) ketoconazole and lovastatin. We first calculated the drug concentration inhibiting epimastigote growth by 50% (EC(50)/72 h) or killing all cells within 24 hours (EC(100)/24 h). Incubation with inhibitors at the EC(50)/72 h resulted in interesting morphological changes: intense proliferation of the inner mitochondrial membrane, which was corroborated by flow cytometry and confocal microscopy of the parasites stained with rhodamine 123, and strong swelling of the reservosomes, which was confirmed by acridine orange staining. These changes to the mitochondria and reservosomes may reflect the involvement of these organelles in ergosterol biosynthesis or the progressive autophagic process culminating in cell lysis after 6 to 7 days of treatment with SBIs at the EC(50)/72 h. By contrast, treatment with SBIs at the EC(100)/24 h resulted in rapid cell death with a necrotic phenotype: time-dependent cytosolic calcium overload, mitochondrial depolarization and reservosome membrane permeabilization (RMP), culminating in cell lysis after a few hours of drug exposure. We provide the first demonstration that RMP constitutes the "point of no return" in the cell death cascade, and propose a model for the necrotic cell death of T. cruzi. Thus, SBIs trigger cell death by different mechanisms, depending on the dose used, in T. cruzi. These findings shed new light on ergosterol biosynthesis and the mechanisms of programmed cell death in this ancient protozoan parasite.
Collapse
|
41
|
Bayer-Santos E, Aguilar-Bonavides C, Rodrigues SP, Cordero EM, Marques AF, Varela-Ramirez A, Choi H, Yoshida N, da Silveira JF, Almeida IC. Proteomic Analysis of Trypanosoma cruzi Secretome: Characterization of Two Populations of Extracellular Vesicles and Soluble Proteins. J Proteome Res 2013; 12:883-97. [DOI: 10.1021/pr300947g] [Citation(s) in RCA: 181] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Ethel Bayer-Santos
- Departamento de Microbiologia,
Imunologia e Parasitologia, Universidade Federal de São Paulo, São Paulo, SP 04023-062, Brazil
| | - Clemente Aguilar-Bonavides
- The Border Biomedical Research
Center, Department of Biological Sciences, University of Texas at El Paso, El Paso, Texas 79968, United States
- Computational Science Program,
The Border Biomedical Research Center, University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Silas Pessini Rodrigues
- The Border Biomedical Research
Center, Department of Biological Sciences, University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Esteban Maurício Cordero
- The Border Biomedical Research
Center, Department of Biological Sciences, University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Alexandre Ferreira Marques
- The Border Biomedical Research
Center, Department of Biological Sciences, University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Armando Varela-Ramirez
- The Border Biomedical Research
Center, Department of Biological Sciences, University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Hyungwon Choi
- Saw Swee Hock School of Public
Health, National University of Singapore, Singapore
| | - Nobuko Yoshida
- Departamento de Microbiologia,
Imunologia e Parasitologia, Universidade Federal de São Paulo, São Paulo, SP 04023-062, Brazil
| | - José Franco da Silveira
- Departamento de Microbiologia,
Imunologia e Parasitologia, Universidade Federal de São Paulo, São Paulo, SP 04023-062, Brazil
| | - Igor C. Almeida
- The Border Biomedical Research
Center, Department of Biological Sciences, University of Texas at El Paso, El Paso, Texas 79968, United States
| |
Collapse
|
42
|
Branquinha MH, Marinho FA, Sangenito LS, Oliveira SSC, Goncalves KC, Ennes-Vidal V, d'Avila-Levy CM, Santos ALS. Calpains: potential targets for alternative chemotherapeutic intervention against human pathogenic trypanosomatids. Curr Med Chem 2013; 20:3174-85. [PMID: 23899207 PMCID: PMC4181241 DOI: 10.2174/0929867311320250010] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Revised: 01/29/2013] [Accepted: 02/13/2013] [Indexed: 12/03/2022]
Abstract
The treatment for both leishmaniasis and trypanosomiasis, which are severe human infections caused by trypanosomatids belonging to Leishmania and Trypanosoma genera, respectively, is extremely limited because of concerns of toxicity and efficacy with the available anti-protozoan drugs, as well as the emergence of drug resistance. Consequently, the urgency for the discovery of new trypanosomatid targets and novel bioactive compounds is particularly necessary. In this context, the investigation of changes in parasite gene expression between drug resistant/sensitive strains and in the up-regulation of virulence-related genes in infective forms has brought to the fore the involvement of calpain-like proteins in several crucial pathophysiological processes performed by trypanosomatids. These studies were encouraged by the publication of the complete genome sequences of three human pathogenic trypanosomatids, Trypanosoma brucei, Trypanosoma cruzi and Leishmania major, which allowed in silico analyses that in turn directed the identification of numerous genes with interesting chemotherapeutic characteristics, including a large family of calpain-related proteins, in which to date 23 genes were assigned as calpains in T. brucei, 40 in T. cruzi and 33 in L. braziliensis. In the present review, we intend to add to these biochemical/biological reports the investigations performed upon the inhibitory capability of calpain inhibitors against human pathogenic trypanosomatids.
Collapse
Affiliation(s)
- M H Branquinha
- Laboratório de Investigação de Peptidases, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes-IMPG, Centro de Ciências da Saúde-CCS, Bloco Esubsolo, Sala 05, Universidade Federal do Rio de Janeiro-UFRJ, Rio de Janeiro, Brazil.
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Potenza M, Schenkman S, Laverrière M, Tellez-Iñón MT. Functional characterization of TcCYC2 cyclin from Trypanosoma cruzi. Exp Parasitol 2012; 132:537-45. [DOI: 10.1016/j.exppara.2012.09.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2012] [Revised: 09/03/2012] [Accepted: 09/04/2012] [Indexed: 11/29/2022]
|
44
|
Abstract
The decoding of the Tritryp reference genomes nearly 7 years ago provided a first peek into the biology of pathogenic trypanosomatids and a blueprint that has paved the way for genome-wide studies. Although 60-70% of the predicted protein coding genes in Trypanosoma brucei, Trypanosoma cruzi and Leishmania major remain unannotated, the functional genomics landscape is rapidly changing. Facilitated by the advent of next-generation sequencing technologies, improved structural and functional annotation and genes and their products are emerging. Information is also growing for the interactions between cellular components as transcriptomes, regulatory networks and metabolomes are characterized, ushering in a new era of systems biology. Simultaneously, the launch of comparative sequencing of multiple strains of kinetoplastids will finally lead to the investigation of a vast, yet to be explored, evolutionary and pathogenomic space.
Collapse
Affiliation(s)
- J Choi
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | | |
Collapse
|
45
|
Guerra-Slompo EP, Probst CM, Pavoni DP, Goldenberg S, Krieger MA, Dallagiovanna B. Molecular characterization of the Trypanosoma cruzi specific RNA binding protein TcRBP40 and its associated mRNAs. Biochem Biophys Res Commun 2012; 420:302-7. [PMID: 22425988 DOI: 10.1016/j.bbrc.2012.02.154] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Accepted: 02/29/2012] [Indexed: 01/25/2023]
Abstract
Trypanosoma cruzi is the causative agent of Chagas disease, a neglected disorder that affects millions of people in the Americas. T. cruzi relies mostly upon post-transcriptional regulation to control stage specific gene expression. RNA binding proteins (RBPs) associate with functionally related mRNAs forming ribonucleoprotein complexes that define post-transcriptional operons. The RNA Recognition Motif (RRM) is the most common and ancient family of RBPs. This family of RBPs has been identified in trypanosomatid parasites and only a few of them have been functionally characterized. We describe here the functional characterization of TcRBP40, a T. cruzi specific RBP, and its associated mRNAs. We used a modified version of the recombinant RIP-Chip assay to identify the mRNAs with which it associates and in vivo TAP-tag assays to confirm these results. TcRBP40 binds to an AG-rich sequence in the 3'UTR of the associated mRNAs, which were found to encode mainly putative transmembrane proteins. TcRBP40 is differentially expressed in metacyclogenesis. Surprisingly, in epimastigotes, it is dispersed in the cytoplasm but is concentrated in the reservosomes, a T. cruzi specific organelle, which suggests a putative new function for this parasite organelle.
Collapse
Affiliation(s)
- Eloise P Guerra-Slompo
- Instituto Carlos Chagas, Fiocruz-Paraná, Rua Professor Algacyr Munhoz Mader 3775, 81350-010 CIC Curitiba, Brazil
| | | | | | | | | | | |
Collapse
|
46
|
Cloning, localization and differential expression of the Trypanosoma cruzi TcOGNT-2 glycosyl transferase. Gene 2012; 498:147-54. [PMID: 22387207 DOI: 10.1016/j.gene.2012.02.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Revised: 02/07/2012] [Accepted: 02/14/2012] [Indexed: 01/02/2023]
Abstract
The surface of Trypanosoma cruzi is covered by a dense glycocalix which is characteristic of each stage of the life cycle. Its composition and complexity depend mainly on mucin-like proteins. A remarkable feature of O-glycan biosynthesis in trypanosomes is that it initiates with the addition of a GlcNAc instead of the GalNAc residue that is commonly used in vertebrate mucins. The fact that the interplay between trans-sialidase and mucin is crucial for pathogenesis, and both families have stage-specific members is also remarkable. Recently the enzyme that transfers the first GlcNAc from UDP-GlcNAc to a serine or threonine residue was kinetically characterized. The relevance of this enzyme is evidenced by its role as catalyzer of the first step in O-glycosylation. In this paper we describe how this gene is expressed differentially along the life cycle with a pattern that is very similar to that of trans-sialidases. Its localization was determined, showing that the protein predicted to be in the Golgi apparatus is also present in reservosomes. Finally our results indicate that this enzyme, when overexpressed, enhances T. cruzi infectivity.
Collapse
|
47
|
Bayona JC, Nakayasu ES, Laverrière M, Aguilar C, Sobreira TJP, Choi H, Nesvizhskii AI, Almeida IC, Cazzulo JJ, Alvarez VE. SUMOylation pathway in Trypanosoma cruzi: functional characterization and proteomic analysis of target proteins. Mol Cell Proteomics 2011; 10:M110.007369. [PMID: 21832256 DOI: 10.1074/mcp.m110.007369] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
SUMOylation is a relevant protein post-translational modification in eukaryotes. The C terminus of proteolytically activated small ubiquitin-like modifier (SUMO) is covalently linked to a lysine residue of the target protein by an isopeptide bond, through a mechanism that includes an E1-activating enzyme, an E2-conjugating enzyme, and transfer to the target, sometimes with the assistance of a ligase. The modification is reversed by a protease, also responsible for SUMO maturation. A number of proteins have been identified as SUMO targets, participating in the regulation of cell cycle progression, transcription, translation, ubiquitination, and DNA repair. In this study, we report that orthologous genes corresponding to the SUMOylation pathway are present in the etiological agent of Chagas disease, Trypanosoma cruzi. Furthermore, the SUMOylation system is functionally active in this protozoan parasite, having the requirements for SUMO maturation and conjugation. Immunofluorescence analysis showed that T. cruzi SUMO (TcSUMO) is predominantly found in the nucleus. To identify SUMOylation targets and get an insight into their physiological roles we generated transfectant T. cruzi epimastigote lines expressing a double-tagged T. cruzi SUMO, and SUMOylated proteins were enriched by tandem affinity chromatography. By two-dimensional liquid chromatography-mass spectrometry a total of 236 proteins with diverse biological functions were identified as potential T. cruzi SUMO targets. Of these, metacaspase-3 was biochemically validated as a bona fide SUMOylation substrate. Proteomic studies in other organisms have reported that orthologs of putative T. cruzi SUMOylated proteins are similarly modified, indicating conserved functions for protein SUMOylation in this early divergent eukaryote.
Collapse
|
48
|
Trypanosoma cruzi epimastigotes are able to store and mobilize high amounts of cholesterol in reservosome lipid inclusions. PLoS One 2011; 6:e22359. [PMID: 21818313 PMCID: PMC3144899 DOI: 10.1371/journal.pone.0022359] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2010] [Accepted: 06/26/2011] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Reservosomes are lysosome-related organelles found in Trypanosoma cruzi epimastigotes. They represent the last step in epimastigote endocytic route, accumulating a set of proteins and enzymes related to protein digestion and lipid metabolism. The reservosome matrix contains planar membranes, vesicles and lipid inclusions. Some of the latter may assume rectangular or sword-shaped crystalloid forms surrounded by a phospholipid monolayer, resembling the cholesterol crystals in foam cells. METHODOLOGY/PRINCIPAL FINDINGS Using Nile Red fluorimetry and fluorescence microscopy, as well as electron microscopy, we have established a direct correlation between serum concentration in culture medium and the presence of crystalloid lipid inclusions. Starting from a reservosome purified fraction, we have developed a fractionation protocol to isolate lipid inclusions. Gas-chromatography mass-spectrometry (GC-MS) analysis revealed that lipid inclusions are composed mainly by cholesterol and cholesterol esters. Moreover, when the parasites with crystalloid lipid-loaded reservosomes were maintained in serum free medium for 48 hours the inclusions disappeared almost completely, including the sword shaped ones. CONCLUSIONS/SIGNIFICANCE Taken together, our results suggest that epimastigote forms of T. cruzi store high amounts of neutral lipids from extracellular medium, mostly cholesterol or cholesterol esters inside reservosomes. Interestingly, the parasites are able to disassemble the reservosome cholesterol crystalloid inclusions when submitted to serum starvation.
Collapse
|
49
|
Expresión diferencial entre estadios de Trypanosoma cruzi I en el aislamiento de un paciente con cardiomiopatía chagásica crónica de zona endémica de Santander, Colombia. BIOMEDICA 2011. [DOI: 10.7705/biomedica.v31i4.400] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
50
|
Ennes-Vidal V, Menna-Barreto RFS, Santos ALS, Branquinha MH, d'Avila-Levy CM. MDL28170, a calpain inhibitor, affects Trypanosoma cruzi metacyclogenesis, ultrastructure and attachment to Rhodnius prolixus midgut. PLoS One 2011; 6:e18371. [PMID: 21483751 PMCID: PMC3070728 DOI: 10.1371/journal.pone.0018371] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2010] [Accepted: 03/06/2011] [Indexed: 11/18/2022] Open
Abstract
Background Trypanosoma cruzi is the etiological agent of Chagas' disease. During the parasite life cycle, many molecules are involved in the differentiation process and infectivity. Peptidases are relevant for crucial steps of T. cruzi life cycle; as such, it is conceivable that they may participate in the metacyclogenesis and interaction with the invertebrate host. Methodology/Principal Findings In this paper, we have investigated the effect of the calpain inhibitor MDL28170 on the attachment of T. cruzi epimastigotes to the luminal midgut surface of Rhodnius prolixus, as well as on the metacyclogenesis process and ultrastructure. MDL28170 treatment was capable of significantly reducing the number of bound epimastigotes to the luminal surface midgut of the insect. Once the cross-reactivity of the anti-Dm-calpain was assessed, it was possible to block calpain molecules by the antibody, leading to a significant reduction in the capacity of adhesion to the insect guts by T. cruzi. However, the antibodies were unable to interfere in metacyclogenesis, which was impaired by the calpain inhibitor presenting a significant reduction in the number of metacyclic trypomastigotes. The calpain inhibitor also promoted a direct effect against bloodstream trypomastigotes. Ultrastructural analysis of epimastigotes treated with the calpain inhibitor revealed disorganization in the reservosomes, Golgi and plasma membrane disruption. Conclusions/Significance The presence of calpain and calpain-like molecules in a wide range of organisms suggests that these proteins could be necessary for basic cellular functions. Herein, we demonstrated the effects of MDL28170 in crucial steps of the T. cruzi life cycle, such as attachment to the insect midgut and metacyclogenesis, as well as in parasite viability and morphology. Together with our previous findings, these results help to shed some light on the functions of T. cruzi calpains. Considering the potential roles of these molecules on the interaction with both invertebrate and vertebrate hosts, it is interesting to improve knowledge on these molecules in T. cruzi.
Collapse
Affiliation(s)
- Vítor Ennes-Vidal
- Laboratório de Biologia Molecular e Doenças Endêmicas, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
| | | | | | | | | |
Collapse
|