1
|
Kumawat M, Nabi B, Daswani M, Viquar I, Pal N, Sharma P, Tiwari S, Sarma DK, Shubham S, Kumar M. Role of bacterial efflux pump proteins in antibiotic resistance across microbial species. Microb Pathog 2023:106182. [PMID: 37263448 DOI: 10.1016/j.micpath.2023.106182] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/24/2023] [Accepted: 05/30/2023] [Indexed: 06/03/2023]
Abstract
Efflux proteins are transporter molecules that actively pump out a variety of substrates, including antibiotics, from cells to the environment. They are found in both Gram-positive and Gram-negative bacteria and eukaryotic cells. Based on their protein sequence homology, energy source, and overall structure, efflux proteins can be divided into seven groups. Multidrug efflux pumps are transmembrane proteins produced by microbes to enhance their survival in harsh environments and contribute to antibiotic resistance. These pumps are present in all bacterial genomes studied, indicating their ancestral origins. Many bacterial genes encoding efflux pumps are involved in transport, a significant contributor to antibiotic resistance in microbes. Efflux pumps are widely implicated in the extrusion of clinically relevant antibiotics from cells to the extracellular environment and, as such, represent a significant challenge to antimicrobial therapy. This review aims to provide an overview of the structures and mechanisms of action, substrate profiles, regulation, and possible inhibition of clinically relevant efflux pumps. Additionally, recent advances in research and the pharmacological exploitation of efflux pump inhibitors as a promising intervention for combating drug resistance will be discussed.
Collapse
Affiliation(s)
- Manoj Kumawat
- Department of Microbiology, ICMR- National Institute for Research in Environmental Health, Bhopal, 462030, India
| | - Bilkees Nabi
- Department of Biochemistry & Biochemical Engineering, SHUATS, Allahabad, 211007, India
| | - Muskan Daswani
- Department of Biotechnology, SantHirdaram Girls College, Bhopal, 462030, India
| | - Iqra Viquar
- Department of Biotechnology, SantHirdaram Girls College, Bhopal, 462030, India
| | - Namrata Pal
- Department of Microbiology, ICMR- National Institute for Research in Environmental Health, Bhopal, 462030, India
| | - Poonam Sharma
- Department of Microbiology, ICMR- National Institute for Research in Environmental Health, Bhopal, 462030, India
| | - Shikha Tiwari
- Department of Microbiology, ICMR- National Institute for Research in Environmental Health, Bhopal, 462030, India
| | - Devojit Kumar Sarma
- Department of Microbiology, ICMR- National Institute for Research in Environmental Health, Bhopal, 462030, India
| | - Swasti Shubham
- Department of Microbiology, ICMR- National Institute for Research in Environmental Health, Bhopal, 462030, India
| | - Manoj Kumar
- Department of Microbiology, ICMR- National Institute for Research in Environmental Health, Bhopal, 462030, India.
| |
Collapse
|
2
|
Bajaj A, Abutoama M, Isaacs S, Abuleil MJ, Yaniv K, Kushmaro A, Modic M, Cvelbar U, Abdulhalim I. Biofilm growth monitoring using guided wave ultralong-range Surface Plasmon Resonance: A proof of concept. Biosens Bioelectron 2023; 228:115204. [PMID: 36913883 DOI: 10.1016/j.bios.2023.115204] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 03/01/2023] [Accepted: 03/05/2023] [Indexed: 03/15/2023]
Abstract
Unwelcomed biofilms are problematic in food industries, surgical devices, marine applications, and wastewater treatment plants, essentially everywhere where there is moisture. Very recently, label-free advanced sensors such as localized and extended surface plasmon resonance (SPR) have been explored as tools for monitoring biofilm formation. However, conventional noble metal SPR substrates suffer from low penetration depth (100-300 nm) into the dielectric medium above the surface, preventing the reliable detection of large entities of single or multi-layered cell assemblies like biofilms which can grow up to a few micrometers or more. In this study, we propose using a plasmonic insulator-metal-insulator (IMI) structure (SiO2-Ag-SiO2) with a higher penetration depth based on a diverging beam single wavelength format of Kretschmann configuration in a portable SPR device. An SPR line detection algorithm for locating the reflectance minimum of the device helps to view changes in refractive index and accumulation of the biofilm in real-time down to 10-7 RIU precision. The optimized IMI structure exhibits strong penetration dependence on wavelength and incidence angle. Within the plasmonic resonance, different angles penetrate different depths, showing a maximum near the critical angle. At the wavelength of 635 nm, a high penetration depth of more than 4 μm was obtained. Compared to a thin gold film substrate, for which the penetration depth is only ∼200 nm, the IMI substrate provides more reliable results. The average thickness of the biofilm after 24 h of growth was found to be between 6 and 7 μm with ∼63% live cell volume, as estimated from confocal microscopic images using an image processing tool. To explain this saturation thickness, a graded index biofilm structure is proposed in which the refractive index decreases with the distance from the interface. Furthermore, when plasma-assisted degeneration of biofilms was studied in a semi-real-time format, there was almost no effect on the IMI substrate compared to the gold substrate. The growth rate over the SiO2 surface was higher than on gold, possibly due to differences between surface charge effects. On the gold, the excited plasmon generates an oscillating cloud of electrons, while for the SiO2 case, this does not happen. This methodology can be utilized to detect and characterize biofilms with better signal reliability with respect to concentration and size dependence.
Collapse
Affiliation(s)
- Aabha Bajaj
- Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| | - Mohammad Abutoama
- Department of Electro-optics and Photonics Engineering, ECE School, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| | - Sivan Isaacs
- Department of Electro-optics and Photonics Engineering, ECE School, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| | - Marwan J Abuleil
- Department of Electro-optics and Photonics Engineering, ECE School, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| | - Karin Yaniv
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Faculty of Engineering Sciences, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| | - Ariel Kushmaro
- Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel; Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Faculty of Engineering Sciences, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel; School of Sustainability and Climate Change, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| | - Martina Modic
- Department of Gaseous Electronics (F6), Jožef Stefan Institute, Jamova cesta 39, SI-1000, Ljubljana, Slovenia
| | - Uroš Cvelbar
- Department of Gaseous Electronics (F6), Jožef Stefan Institute, Jamova cesta 39, SI-1000, Ljubljana, Slovenia
| | - Ibrahim Abdulhalim
- Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel; Department of Electro-optics and Photonics Engineering, ECE School, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel.
| |
Collapse
|
3
|
Wei T, Zheng N, Zheng H, Chen Y, Hong P, Liu W, Liu M. Proteomic Perspective of Azole Resistance in Aspergillus fumigatus Biofilm Extracellular Matrix in Response to Itraconazole. Med Mycol 2022; 60:myac084. [PMID: 36243954 DOI: 10.1093/mmy/myac084] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Azole-resistant Aspergillus fumigatus makes a major challenge to the chemotherapy for invasive aspergillosis, whereas cyp51A gene mutation is the most dominant mechanism for azole resistance. Moreover, biofilm contributes to drug resistance for A. fumigatus, and extracellular matrix (ECM) is essential to protect live cells from antifungal drugs. Therefore, we performed a comparative proteomic study on the biofilm ECM of both the wild-type and azole-resistant strains of A. fumigatus under azole pressure. In total, 2377 proteins were identified, of which 480 and 604 proteins with differential expression were obtained from the wild-type and azole-resistant A. fumigatus in exposure to itraconazole respectively (fold change > 2 or < 0.5, P-value < 0.05). We found that a high proportion of regulated proteins were located in cytoplasm, nucleus, and mitochondria. Meanwhile, GO and KEGG analyses revealed that metabolic process and ribosome pathway were significantly enriched. Particularly, differentially expressed proteins in response to azole pressure of both the wild-type and resistant strains were further analyzed. Our results indicated that these changes in biofilm ECM proteins were related to ergosterol synthesis, oxidative stress, efflux pumps, DNA repair, DNA replication, and transcription.
Collapse
Affiliation(s)
- Tianqi Wei
- Institute of Dermatology, Chinese Academy of Medical Science and Peking Union Medical College, Nanjing, China
| | - Nan Zheng
- Medical School, Nanjing University, Nanjing, China
| | - Hailin Zheng
- Institute of Dermatology, Chinese Academy of Medical Science and Peking Union Medical College, Nanjing, China
| | - Yuping Chen
- Institute of Dermatology, Chinese Academy of Medical Science and Peking Union Medical College, Nanjing, China
| | - Pianpian Hong
- Institute of Dermatology, Chinese Academy of Medical Science and Peking Union Medical College, Nanjing, China
| | - Weida Liu
- Institute of Dermatology, Chinese Academy of Medical Science and Peking Union Medical College, Nanjing, China
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, China
| | - Musang Liu
- Institute of Dermatology, Chinese Academy of Medical Science and Peking Union Medical College, Nanjing, China
| |
Collapse
|
4
|
Andrés-Lasheras S, Jelinski M, Zaheer R, McAllister TA. Bovine Respiratory Disease: Conventional to Culture-Independent Approaches to Studying Antimicrobial Resistance in North America. Antibiotics (Basel) 2022; 11:antibiotics11040487. [PMID: 35453238 PMCID: PMC9025279 DOI: 10.3390/antibiotics11040487] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/01/2022] [Accepted: 04/02/2022] [Indexed: 11/16/2022] Open
Abstract
Numerous antimicrobial resistance (AMR) surveillance studies have been conducted in North American feedlot cattle to investigate the major bacterial pathogens of the bovine respiratory disease (BRD) complex, specifically: Mannheimia haemolytica, Pasteurella multocida, Histophilus somni, and Mycoplasma bovis. While most bacterial isolates recovered from healthy cattle are susceptible to a repertoire of antimicrobials, multidrug resistance is common in isolates recovered from cattle suffering from BRD. Integrative and conjugative elements (ICE) have gained increasing notoriety in BRD-Pasteurellaceae as they appear to play a key role in the concentration and dissemination of antimicrobial resistant genes. Likewise, low macrolide susceptibility has been described in feedlot isolates of M. bovis. Horizontal gene transfer has also been implicated in the spread of AMR within mycoplasmas, and in-vitro experiments have shown that exposure to antimicrobials can generate high levels of resistance in mycoplasmas via a single conjugative event. Consequently, antimicrobial use (AMU) could be accelerating AMR horizontal transfer within all members of the bacterial BRD complex. While metagenomics has been applied to the study of AMR in the microbiota of the respiratory tract, the potential role of the respiratory tract microbiome as an AMR reservoir remains uncertain. Current and prospective molecular tools to survey and characterize AMR need to be adapted as point-of-care technologies to enhance prudent AMU in the beef industry.
Collapse
Affiliation(s)
- Sara Andrés-Lasheras
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB T1J 4B1, Canada; (S.A.-L.); (R.Z.)
| | - Murray Jelinski
- Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada;
| | - Rahat Zaheer
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB T1J 4B1, Canada; (S.A.-L.); (R.Z.)
| | - Tim A. McAllister
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB T1J 4B1, Canada; (S.A.-L.); (R.Z.)
- Correspondence: ; Tel.: +1-403-317-2240
| |
Collapse
|
5
|
Tang Y, Bai J, Yang Y, Bai X, Bello-Onaghise G, Xu Y, Li Y. Effect of Syringopicroside Extracted from Syringa oblata Lindl on the Biofilm Formation of Streptococcus suis. Molecules 2021; 26:1295. [PMID: 33673668 PMCID: PMC7957517 DOI: 10.3390/molecules26051295] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/21/2021] [Accepted: 02/24/2021] [Indexed: 11/29/2022] Open
Abstract
Syringopicroside is a natural drug with antibacterial activity, which is the main ingredient of Syringa oblata Lindl (S. oblata). In order to further develop the application of S. oblata and evaluate the ability of syringopicroside against Streptococcus suis (S. suis), this investigation first applied an ultrasonic-assisted method to extract syringopicroside, and then response surface methodology (RSM) was performed to get the optimum condition. Based on RSM analysis, a second-order polynomial equation about the syringopicroside yield and four variables, including ultrasonic power, time, temperature, and liquid-to-solid ratio, was purposed. Through RSM prediction and model verification experiments, the optimum conditions were determined, as follows: ultrasonic time was 63 min, temperature was 60 °C, a liquid-to-solid ratio was set to 63 mL/g, and ultrasonic power was 835 W. Under this condition, a high syringopicroside yield was obtained (3.07 ± 0.13 mg/g), which was not significantly different with a predicated value. After separation and purification by HPD 500 microporous resin, then mass spectrum was applied to identify the main ingredient in aqueous extract. A minimal inhibitory concentration (MIC) assay revealed the value against S. suis of syringopicroside was 2.56 µg/µL and syringopicroside with sub-inhibitory concentrations that could effectively inhibit biofilm formation of S. suis. Besides, scanning electron microscopy analysis indicated syringopicroside could destroy the multi-layered aggregation structure of S. suis. Finally, molecular docking analysis confirmed that syringopicroside was combined with Orfy protein of S. suis through hydrogen bonds, hydrophobic interaction, and π-π stacking.
Collapse
Affiliation(s)
- Yang Tang
- Department of Applied Chemistry, College of Art and Science, Northeast Agricultural University, Harbin 150030, China; (Y.T.); (J.B.); (Y.Y.); (X.B.)
| | - Jingwen Bai
- Department of Applied Chemistry, College of Art and Science, Northeast Agricultural University, Harbin 150030, China; (Y.T.); (J.B.); (Y.Y.); (X.B.)
| | - Yu Yang
- Department of Applied Chemistry, College of Art and Science, Northeast Agricultural University, Harbin 150030, China; (Y.T.); (J.B.); (Y.Y.); (X.B.)
| | - Xuedong Bai
- Department of Applied Chemistry, College of Art and Science, Northeast Agricultural University, Harbin 150030, China; (Y.T.); (J.B.); (Y.Y.); (X.B.)
| | - God’spower Bello-Onaghise
- Department of Veterinary Pharmacy, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China;
| | - Yaqin Xu
- Department of Applied Chemistry, College of Art and Science, Northeast Agricultural University, Harbin 150030, China; (Y.T.); (J.B.); (Y.Y.); (X.B.)
| | - Yanhua Li
- Department of Veterinary Pharmacy, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China;
| |
Collapse
|
6
|
Zhou Y, Kiely PD, Kibbee R, Ormeci B. Effect of polymeric support material on biofilm development, bacterial population, and wastewater treatment performance in anaerobic fixed-film systems. CHEMOSPHERE 2021; 264:128477. [PMID: 33032216 DOI: 10.1016/j.chemosphere.2020.128477] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 09/05/2020] [Accepted: 09/27/2020] [Indexed: 06/11/2023]
Abstract
This study evaluated the performance of high-density polyethylene (HDPE), acrylonitrile butadiene styrene (ABS), polycarbonate (PC), polyvinylchloride (PVC), polypropylene (PP), polyvinylidene fluoride (PVDF) and polymethyl methacrylate (acrylic) when used as a support media in anaerobic attached-growth wastewater treatment systems. A combination of physical and chemical (total solids, protein, phosphorus, ammonia, chemical oxygen demand) methods, environmental scanning electron microscopy (ESEM) and Live/Dead viability assay) and genetic sequencing over a period of 81 days was used to provide an in-depth understanding of the impact of different polymer materials on biofilm formation, bacteria population, and wastewater treatment performance. The results showed that hydrophobic polymeric materials (i.e., PP and PVDF) promoted initial cell adhesion and biofilm formation (<16 days) better than the hydrophilic (i.e., ABS and HDPE) polymeric materials. However, under longer-term and steady-state operation (after 81 days), the hydrophilic materials demonstrated larger mature biofilm quantities and better wastewater treatment performance. The sequencing data showed biofilm bacterial community structures of the ABS and HDPE to be significantly different compared to the other polymeric materials tested. The data showed a positive correlation as well between the phyla present on the ABS and HDPE and COD removal. These results suggest that the type of polymeric material play an important role in biofilm development, bacterial population diversity, and wastewater treatment performance for anaerobic fixed-film systems, and ABS and HDPE performed better than the widely used PVC in the industry.
Collapse
Affiliation(s)
- Yuren Zhou
- Department of Civil and Environmental Engineering, Carleton University, 1125 Colonel By Drive, Ottawa ON, K1S5B6, Canada.
| | - Patrick D Kiely
- Island Water Technologies, B-577, 23 Brook Street, Montague, PEI, C0A1R0, Canada.
| | - Richard Kibbee
- Department of Civil and Environmental Engineering, Carleton University, 1125 Colonel By Drive, Ottawa ON, K1S5B6, Canada.
| | - Banu Ormeci
- Department of Civil and Environmental Engineering, Carleton University, 1125 Colonel By Drive, Ottawa ON, K1S5B6, Canada.
| |
Collapse
|
7
|
The role of biofilm in the development and dissemination of ubiquitous pathogens in drinking water distribution systems: an overview of surveillance, outbreaks, and prevention. World J Microbiol Biotechnol 2021; 37:36. [PMID: 33507414 DOI: 10.1007/s11274-021-03008-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 01/19/2021] [Indexed: 12/30/2022]
Abstract
A variety of pathogenic microorganisms can survive in the drinking water distribution systems (DWDS) by forming stable biofilms and, thus, continually disseminating their population through the system's dynamic water bodies. The ingestion of the pathogen-contaminated water could trigger a broad spectrum of illnesses and well-being-related obstacles. These waterborne diseases are a significant concern for babies, pregnant women, and significantly low-immune individuals. This review highlights the recent advances in understanding the microbiological aspects of drinking water quality, biofilm formation and its dynamics, health issues caused by the emerging microbes in biofilm, and approaches for biofilm investigation its prevention and suppression in DWDS.
Collapse
|
8
|
Truong T, Pang LM, Rajan S, Wong SSW, Fung YME, Samaranayake L, Seneviratne CJ. The Proteome of Community Living Candida albicans Is Differentially Modulated by the Morphologic and Structural Features of the Bacterial Cohabitants. Microorganisms 2020; 8:microorganisms8101541. [PMID: 33036329 PMCID: PMC7601143 DOI: 10.3390/microorganisms8101541] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/02/2020] [Accepted: 10/03/2020] [Indexed: 11/16/2022] Open
Abstract
Candida albicans is a commensal polymorphic and opportunistic fungus, which usually resides as a small community in the oral cavities of a majority of humans. The latter eco-system presents this yeast varied opportunities for mutualistic interactions with other cohabitant oral bacteria, that synergizes its persistence and pathogenicity. Collectively, these communities live within complex plaque biofilms which may adversely affect the oral health and increase the proclivity for oral candidiasis. The proteome of such oral biofilms with myriad interkingdom interactions are largely underexplored. Herein, we employed limma differential expression analysis, and cluster analysis to explore the proteomic interactions of C. albicans biofilms with nine different common oral bacterial species, Aggregatibacter actinomycetemcomitans, Actinomyces naeslundii, Fusobacterium nucleatum, Enterococcus faecalis, Porphyromonas gingivalis, Streptococcus mutants, Streptococcus sanguinis, Streptococcus mitis, and Streptococcus sobrinus. Interestingly, upon exposure of C. albicans biofilms to the foregoing heat-killed bacteria, the proteomes of the fungus associated with cellular respiration, translation, oxidoreductase activity, and ligase activity were significantly altered. Subsequent differential expression and cluster analysis revealed the subtle, yet significant alterations in the C. albicans proteome, particularly on exposure to bacteria with dissimilar cell morphologies, and Gram staining characteristics.
Collapse
Affiliation(s)
- Thuyen Truong
- Oral Sciences, Faculty of Dentistry, National University of Singapore, Singapore 119085, Singapore;
| | - Li Mei Pang
- National Dental Research Institute Singapore (NDRIS), National Dental Centre Singapore, Singapore 168938, Singapore;
| | - Suhasini Rajan
- Walther Straub Institute of Pharmacology and Toxicology, Member of the German Center for Lung Research (DZL), Medical Faculty, LMU-Munich, 80336 Munich, Germany;
| | - Sarah Sze Wah Wong
- Molecular Mycology Unit, Institut Pasteur, CNRS, UMR2000, 10098 Paris, France;
| | - Yi Man Eva Fung
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China;
| | - Lakshman Samaranayake
- College of Dental Medicine, University of Sharjah, Sharjah 27272, UAE;
- Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - Chaminda Jayampath Seneviratne
- National Dental Research Institute Singapore (NDRIS), National Dental Centre Singapore, Singapore 168938, Singapore;
- Oral Health Academic Clinical Programme, Duke-NUS Medical School, Singapore 169857, Singapore
- Correspondence: ; Tel.: +65-65767141
| |
Collapse
|
9
|
Yung YP, McGill SL, Chen H, Park H, Carlson RP, Hanley L. Reverse diauxie phenotype in Pseudomonas aeruginosa biofilm revealed by exometabolomics and label-free proteomics. NPJ Biofilms Microbiomes 2019; 5:31. [PMID: 31666981 PMCID: PMC6814747 DOI: 10.1038/s41522-019-0104-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 09/25/2019] [Indexed: 12/17/2022] Open
Abstract
Microorganisms enhance fitness by prioritizing catabolism of available carbon sources using a process known as carbon catabolite repression (CCR). Planktonically grown Pseudomonas aeruginosa is known to prioritize the consumption of organic acids including lactic acid over catabolism of glucose using a CCR strategy termed "reverse diauxie." P. aeruginosa is an opportunistic pathogen with well-documented biofilm phenotypes that are distinct from its planktonic phenotypes. Reverse diauxie has been described in planktonic cultures, but it has not been documented explicitly in P. aeruginosa biofilms. Here a combination of exometabolomics and label-free proteomics was used to analyze planktonic and biofilm phenotypes for reverse diauxie. P. aeruginosa biofilm cultures preferentially consumed lactic acid over glucose, and in addition, the cultures catabolized the substrates completely and did not exhibit the acetate secreting "overflow" metabolism that is typical of many model microorganisms. The biofilm phenotype was enabled by changes in protein abundances, including lactate dehydrogenase, fumarate hydratase, GTP cyclohydrolase, L-ornithine N(5)-monooxygenase, and superoxide dismutase. These results are noteworthy because reverse diauxie-mediated catabolism of organic acids necessitates a terminal electron acceptor like O2, which is typically in low supply in biofilms due to diffusion limitation. Label-free proteomics identified dozens of proteins associated with biofilm formation including 16 that have not been previously reported, highlighting both the advantages of the methodology utilized here and the complexity of the proteomic adaptation for P. aeruginosa biofilms. Documenting the reverse diauxic phenotype in P. aeruginosa biofilms is foundational for understanding cellular nutrient and energy fluxes, which ultimately control growth and virulence.
Collapse
Affiliation(s)
- Yeni P. Yung
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL 60607 USA
| | - S. Lee McGill
- Center for Biofilm Engineering, Montana State University, Bozeman, MT 59717 USA
| | - Hui Chen
- Research Resources Center, University of Illinois at Chicago, Chicago, IL 60607 USA
| | - Heejoon Park
- Center for Biofilm Engineering, Montana State University, Bozeman, MT 59717 USA
| | - Ross P. Carlson
- Center for Biofilm Engineering, Montana State University, Bozeman, MT 59717 USA
| | - Luke Hanley
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL 60607 USA
| |
Collapse
|
10
|
Yuan L, Sadiq FA, Burmølle M, Wang NI, He G. Insights into Psychrotrophic Bacteria in Raw Milk: A Review. J Food Prot 2019; 82:1148-1159. [PMID: 31225978 DOI: 10.4315/0362-028x.jfp-19-032] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
HIGHLIGHTS Levels of psychrotrophic bacteria in raw milk are affected by to habitats and farm hygiene. Biofilms formed by psychrotrophic bacteria are persistent sources of contamination. Heat-stable enzymes produced by psychrotrophic bacteria compromise product quality. Various strategies are available for controlling dairy spoilage caused by psychrotrophic bacteria.
Collapse
Affiliation(s)
- Lei Yuan
- 1 College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, People's Republic of China.,2 Section of Microbiology, Department of Biology, University of Copenhagen, Copenhagen 2100, Denmark
| | - Faizan A Sadiq
- 3 School of Food Science and Technology, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Mette Burmølle
- 2 Section of Microbiology, Department of Biology, University of Copenhagen, Copenhagen 2100, Denmark
| | - N I Wang
- 1 College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Guoqing He
- 1 College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, People's Republic of China
| |
Collapse
|
11
|
Agarwalla SV, Ellepola K, Costa MCFD, Fechine GJM, Morin JLP, Castro Neto AH, Seneviratne CJ, Rosa V. Hydrophobicity of graphene as a driving force for inhibiting biofilm formation of pathogenic bacteria and fungi. Dent Mater 2019; 35:403-413. [PMID: 30679015 DOI: 10.1016/j.dental.2018.09.016] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 09/18/2018] [Accepted: 09/26/2018] [Indexed: 10/27/2022]
Abstract
OBJECTIVE To evaluate the surface and wettability characteristics and the microbial biofilm interaction of graphene coating on titanium. METHODS Graphene was deposited on titanium (Control) via a liquid-free technique. The transfer was performed once (TiGS), repeated two (TiGD) and five times (TiGV) and characterized by AFM (n=10), Raman spectroscopy (n=10), contact angle and SFE (n=5). Biofilm formation (n=3) to Streptococcus mutans, Enterococcus faecalis, Pseudomonas aeruginosa and Candida albicans was evaluated after 24h by CV assay, CFU, XTT and confocal microscopy. Statistics were performed by one-way Anova, Tukey's tests and Pearson's correlation analysis at a pre-set significance level of 5 %. RESULTS Raman mappings revealed coverage yield of 82 % for TiGS and ≥99 % for TiGD and TiGV. Both TiGD and TiGV presented FWHM>44cm-1 and ID/IG ratio<0.12, indicating multiple graphene layers and occlusion of defects. The contact angle was significantly higher for TiGD and TiGV (110° and 117°) comparing to the Control (70°). The SFE was lower for TiGD (13.8mN/m) and TiGV (12.1mN/m) comparing to Control (38.3mN/m). TiGD was selected for biofilm assays and exhibited significant reduction in biofilm formation for all microorganisms compared to Control. There were statistical correlations between the high contact angle and low SFE of TiGD and decreased biofilm formation. SIGNIFICANCE TiGD presented high quality and coverage and decreased biofilm formation for all species. The increased hydrophobicity of graphene films was correlated with the decreased biofilm formation for various species.
Collapse
Affiliation(s)
| | - Kassapa Ellepola
- Faculty of Dentistry, National University of Singapore, Singapore
| | | | | | - Julien Luc Paul Morin
- Centre for Advanced 2D Materials and Graphene Research Centre, National University of Singapore, Singapore
| | - A H Castro Neto
- Centre for Advanced 2D Materials and Graphene Research Centre, National University of Singapore, Singapore
| | | | - Vinicius Rosa
- Faculty of Dentistry, National University of Singapore, Singapore; Centre for Advanced 2D Materials and Graphene Research Centre, National University of Singapore, Singapore.
| |
Collapse
|
12
|
Igrejas G, Correia S, Silva V, Hébraud M, Caniça M, Torres C, Gomes C, Nogueira F, Poeta P. Planning a One Health Case Study to Evaluate Methicillin Resistant Staphylococcus aureus and Its Economic Burden in Portugal. Front Microbiol 2018; 9:2964. [PMID: 30581421 PMCID: PMC6292916 DOI: 10.3389/fmicb.2018.02964] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 11/16/2018] [Indexed: 12/20/2022] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is one of the most important multidrug-resistant nosocomial pathogens worldwide with infections leading to high rates of morbidity and mortality, a significant burden to human and veterinary clinical practices. The ability of S. aureus colonies to form biofilms on biotic and abiotic surfaces contributes further to its high antimicrobial resistance (AMR) rates and persistence in both host and non-host environments, adding a major ecological dimension to the problem. While there is a lot of information on MRSA prevalence in humans, data about MRSA in animal populations is scarce, incomplete and dispersed. This project is an attempt to evaluate the current epidemiological status of MRSA in Portugal by making a single case study from a One Health perspective. We aim to determine the prevalence of MRSA in anthropogenic sources liable to contaminate different animal habitats. The results obtained will be compiled with existing data on antibiotic resistant staphylococci from Portugal in a user-friendly database, to generate a geographically detailed epidemiological output for surveillance of AMR in MRSA. To achieve this, we will first characterize AMR and genetic lineages of MRSA circulating in northern Portugal in hospital wastewaters, farms near hospitals, farm animals that contact with humans, and wild animals. This will indicate the extent of the AMR problem in the context of local and regional human-animal-environment interactions. MRSA strains will then be tested for their ability to form biofilms. The proteomes of the strains will be compared to better elucidate their AMR mechanisms. Proteomics data will be integrated with the genomic and transcriptomic data obtained. The vast amount of information expected from this omics approach will improve our understanding of AMR in MRSA biofilms, and help us identify new vaccine candidates and biomarkers for early diagnosis and innovative therapeutic strategies to tackle MRSA biofilm-associated infections and potentially other AMR superbugs.
Collapse
Affiliation(s)
- Gilberto Igrejas
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal.,Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal.,LAQV-REQUIMTE, Faculty of Science and Technology, University Nova of Lisbon, Lisbon, Portugal
| | - Susana Correia
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal.,Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal.,LAQV-REQUIMTE, Faculty of Science and Technology, University Nova of Lisbon, Lisbon, Portugal.,Veterinary Science Department, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
| | - Vanessa Silva
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal.,Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal.,LAQV-REQUIMTE, Faculty of Science and Technology, University Nova of Lisbon, Lisbon, Portugal.,Veterinary Science Department, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
| | - Michel Hébraud
- Université Clermont Auvergne, Institut National de la Recherche Agronomique, UMR0454 MEDiS, Centre Auvergne-Rhône-Alpes, Saint-Genès-Champanelle, France.,Institut National de la Recherche Agronomique, Plate-Forme d'Exploration du Métabolisme Composante Protéomique, UR0370 QuaPA, Centre Auvergne-Rhône-Alpes, Saint-Genès-Champanelle, France
| | - Manuela Caniça
- National Reference Laboratory of Antibiotic Resistances and Healthcare Associated Infections, Department of Infectious Diseases, National Institute of Health Dr. Ricardo Jorge, Lisbon, Portugal
| | - Carmen Torres
- Área de Bioquímica y Biología Molecular, Universidad de La Rioja, Logroño, Spain.,Área de Microbiología Molecular, Centro de Investigación Biomédica de La Rioja, Logroño, Spain
| | - Catarina Gomes
- Centro de Administração e Políticas Públicas, Instituto Superior de Ciências Sociais e Políticas, Universidade de Lisboa, Lisbon, Portugal
| | - Fernanda Nogueira
- Centro de Administração e Políticas Públicas, Instituto Superior de Ciências Sociais e Políticas, Universidade de Lisboa, Lisbon, Portugal
| | - Patrícia Poeta
- LAQV-REQUIMTE, Faculty of Science and Technology, University Nova of Lisbon, Lisbon, Portugal.,Veterinary Science Department, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
| |
Collapse
|
13
|
Cold plasma effect on the proteome of Pseudomonas aeruginosa - Role for bacterioferritin. PLoS One 2018; 13:e0206530. [PMID: 30365553 PMCID: PMC6203385 DOI: 10.1371/journal.pone.0206530] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Accepted: 10/15/2018] [Indexed: 11/19/2022] Open
Abstract
Cold atmospheric-pressure plasma (CAP) is a relatively new method used for bacterial inactivation. CAP is ionized gas that can be generated by applying an electric current to air or a feeding gas. It contains reactive species and emits UV radiation, which have antibacterial activity. Previous data suggests that CAP is effective in microbial inactivation and can decontaminate and sterilize surfaces, but its exact mode of action is still under debate. This study demonstrates the effect of CAP on the whole proteome of Pseudomonas aeruginosa PAO1 biofilms, which is a dominant pathogen in cystic fibrosis and medical device-related infections. Liquid chromatography-mass spectrometry (LC-MS) was used to identify differentially regulated proteins of whole cell P. aeruginosa extracts. A total of 16 proteins were identified to be affected by plasma treatment compared to the control. Eight of the identified proteins have functions in transcription and translation and their expression changes are likely to be part of a general physiological response instead of a CAP-specific adaptation. However, CAP also affected bacterioferritin (Bfr), Isocitrate dehydrogenase (Idh), Trigger factor (Tig) and a chemotaxis protein, which may be involved in P. aeruginosa’s specific response to CAP. We confirm that bacterioferritin B plays a role in the bacterial response to CAP because ΔbfrB mutants of both PAO1 and PA14 are more susceptible to plasma-induced cell-death than their corresponding wild-type strains. To our knowledge, this is the first study showing the effect of plasma on the whole proteome of a pathogenic microorganism. It will help our understanding of the mode of action of CAP-mediated bacterial inactivation and thus support a safe and effective routine use of CAP in clinical and industrial settings.
Collapse
|
14
|
Streptococcus suis biofilm: regulation, drug-resistance mechanisms, and disinfection strategies. Appl Microbiol Biotechnol 2018; 102:9121-9129. [PMID: 30209548 DOI: 10.1007/s00253-018-9356-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 08/30/2018] [Indexed: 10/28/2022]
Abstract
Streptococcus suis (S. suis) is a major swine pathogen and an important zoonotic agent. Like most pathogens, the ability of S. suis to form biofilms plays a significant role in its virulence and drug resistance. A better understanding of the mechanisms involved in biofilm formation by S. suis as well as of the methods to efficiently remove and kill biofilm-embedded bacteria can be of high interest for the prevention and treatment of S. suis infections. The aim of this literature review is to update our current knowledge of S. suis biofilm formation, regulatory mechanisms, drug-resistance mechanisms, and disinfection strategies.
Collapse
|
15
|
Magana M, Sereti C, Ioannidis A, Mitchell CA, Ball AR, Magiorkinis E, Chatzipanagiotou S, Hamblin MR, Hadjifrangiskou M, Tegos GP. Options and Limitations in Clinical Investigation of Bacterial Biofilms. Clin Microbiol Rev 2018; 31:e00084-16. [PMID: 29618576 PMCID: PMC6056845 DOI: 10.1128/cmr.00084-16] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Bacteria can form single- and multispecies biofilms exhibiting diverse features based upon the microbial composition of their community and microenvironment. The study of bacterial biofilm development has received great interest in the past 20 years and is motivated by the elegant complexity characteristic of these multicellular communities and their role in infectious diseases. Biofilms can thrive on virtually any surface and can be beneficial or detrimental based upon the community's interplay and the surface. Advances in the understanding of structural and functional variations and the roles that biofilms play in disease and host-pathogen interactions have been addressed through comprehensive literature searches. In this review article, a synopsis of the methodological landscape of biofilm analysis is provided, including an evaluation of the current trends in methodological research. We deem this worthwhile because a keyword-oriented bibliographical search reveals that less than 5% of the biofilm literature is devoted to methodology. In this report, we (i) summarize current methodologies for biofilm characterization, monitoring, and quantification; (ii) discuss advances in the discovery of effective imaging and sensing tools and modalities; (iii) provide an overview of tailored animal models that assess features of biofilm infections; and (iv) make recommendations defining the most appropriate methodological tools for clinical settings.
Collapse
Affiliation(s)
- Maria Magana
- Department of Clinical Microbiology, Athens Medical School, Aeginition Hospital, Athens, Greece
| | - Christina Sereti
- Department of Clinical Microbiology, Athens Medical School, Aeginition Hospital, Athens, Greece
- Department of Microbiology, Thriassio General Hospital, Attiki, Greece
| | - Anastasios Ioannidis
- Department of Clinical Microbiology, Athens Medical School, Aeginition Hospital, Athens, Greece
- Department of Nursing, Faculty of Human Movement and Quality of Life Sciences, University of Peloponnese, Sparta, Greece
| | - Courtney A Mitchell
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee, USA
| | - Anthony R Ball
- Gliese 623b, Mendon, Massachusetts, USA
- GAMA Therapeutics LLC, Pepperell, Massachusetts, USA
| | - Emmanouil Magiorkinis
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, University of Athens, Athens-Goudi, Greece
| | | | - Michael R Hamblin
- Harvard-MIT Division of Health Science and Technology, Cambridge, Massachusetts, USA
- Department of Dermatology, Harvard Medical School, Boston, Massachusetts, USA
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Maria Hadjifrangiskou
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - George P Tegos
- Gliese 623b, Mendon, Massachusetts, USA
- GAMA Therapeutics LLC, Pepperell, Massachusetts, USA
| |
Collapse
|
16
|
Li W, Ali F, Cai Q, Yao Z, Sun L, Lin W, Lin X. Reprint of: Quantitative proteomic analysis reveals that chemotaxis is involved in chlortetracycline resistance of Aeromonas hydrophila. J Proteomics 2018; 180:138-146. [PMID: 29604439 DOI: 10.1016/j.jprot.2018.03.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 09/13/2017] [Accepted: 09/24/2017] [Indexed: 02/05/2023]
Abstract
In recent years, Aeromonas hydrophila, which has been classified as a food borne pathogen, has presented with increased levels of antibiotic resistance, with the mechanisms of this resistance being poorly understood. In this study, iTRAQ coupled mass spectrometry was employed to compare differentially expressed proteins in chlortetracycline (CTC) resistant A. hydrophila relative to a control strain. Result showed that a total of 234 differential proteins including 151 down-regulated and 83 up-regulated were identified in chlortetracycline resistance strain. Bioinformatics analysis showed that chemotaxis related proteins, such as CheA-2, CheR-3, CheW-2, EnvZ, PolA, FliS and FliG were down-regulated in addition to previously reported tricarboxylic acid cycle (TCA) related proteins also being down-regulated. A subset of identified differentially expressed proteins was then further validated via Western blotting. Exogenous metabolite combined with CTC further enhanced the bacterial susceptibilities to CTC in A. hydrophila. Furthermore, a bacterial survival capability assay showed that several chemotaxis related mutants, such as ΔcheR-3 and ΔAHA_0305, may affect the antimicrobial susceptibility of A. hydrophila. Overall, these findings contribute to a further understanding of the mechanism of CTC resistance in A. hydrophila and may contribute to the development of more effective future treatments. BIOLOGICAL SIGNIFICANCE A. hydrophila is a well-known fish pathogenic bacterium and has presented with increasing levels of antibiotic resistance, with the mechanisms of this resistance being poorly understood. Our current study compared the differentially expression proteins between chlortetracycline (CTC) resistant and control stains via an iTARQ-based quantitative proteomics method. Chemotaxis related proteins were down-regulated in CTC resistant strain but exogenous metabolite addition increased bacterial susceptibility in A.hydrophila. Significantly, chemotaxis related genes depletion affected antimicrobial susceptibilities of A.hydrophila indicating the role of chemotaxis process in antibiotics resistance.
Collapse
Affiliation(s)
- Wanxin Li
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 35002, PR China; Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou 35002, PR China
| | - Farman Ali
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 35002, PR China; Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou 35002, PR China
| | - Qilan Cai
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 35002, PR China; Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou 35002, PR China
| | - Zujie Yao
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 35002, PR China; Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou 35002, PR China
| | - Lina Sun
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 35002, PR China; Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou 35002, PR China
| | - Wenxiong Lin
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 35002, PR China; Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou 35002, PR China
| | - Xiangmin Lin
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 35002, PR China; Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou 35002, PR China.
| |
Collapse
|
17
|
Chen S, Hao H, Zhao P, Ji W, Li M, Liu Y, Chu Y. Differential Immunoreactivity to Bovine Convalescent Serum Between Mycoplasma bovis Biofilms and Planktonic Cells Revealed by Comparative Immunoproteomic Analysis. Front Microbiol 2018; 9:379. [PMID: 29556225 PMCID: PMC5844979 DOI: 10.3389/fmicb.2018.00379] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 02/20/2018] [Indexed: 01/17/2023] Open
Abstract
Mycoplasma bovis is a major bovine pathogen that causes considerable economic losses in the cattle industry worldwide. Moreover, M. bovis biofilm can persist in the environment and its host. To date, M. bovis biofilm antigens recognized by bovine convalescent sera and their comparison with planktonic cells have not yet been explored. This study utilized an immunoproteomic approach using two-dimensional electrophoresis, immunoblotting using convalescent bovine serum, and subsequent matrix-assisted laser desorption/ionization time-of-flight tandem mass spectrometry (MALDI-TOF/TOF MS) to identify the immunoreactive proteins expressed in biofilm- and planktonic-grown M. bovis strain 08M. Results showed that M. bovis biofilms and planktonic cells demonstrate differential immunoreactivity to bovine convalescent serum for the first time. A total of 10 and 8 immunoreactive proteins were identified for biofilms and planktonic cells, respectively. To our knowledge, a total of 12 out of 15 had not been reported as immunoreactive proteins in M. bovis, and six were specific to M. bovis biofilms. Three proteins, namely, endoglucanase, thiol peroxidase, and one putative membrane protein, that is, mycoplasma immunogenic lipase A, were identified in planktonic cells and biofilms. Most of the identified proteins were cytoplasmic proteins that were mainly involved in transport and metabolism. Moreover, ATP binding, oxidoreductase activity, and GTP binding were their most representative molecular functions. DnaK and Tuf appeared to be the most interactive immunoreactive agent among the identified proteins. Furthermore, six proteins had potential as serodiagnostic antigens. These data will be helpful to improve our current understanding on the host response to M. bovis biofilms and planktonic cells, which may facilitate the development of novel molecular candidates of improved diagnostics and vaccines to prevent M. bovis infections.
Collapse
Affiliation(s)
- Shengli Chen
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Huafang Hao
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Ping Zhao
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Wenheng Ji
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Mingxia Li
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Yongsheng Liu
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Yuefeng Chu
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| |
Collapse
|
18
|
Quantitative proteomic analysis reveals that chemotaxis is involved in chlortetracycline resistance of Aeromonas hydrophila. J Proteomics 2018; 172:143-151. [DOI: 10.1016/j.jprot.2017.09.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 09/13/2017] [Accepted: 09/24/2017] [Indexed: 12/25/2022]
|
19
|
Skagia A, Vezyri E, Grados K, Venieraki A, Karpusas M, Katinakis P, Dimou M. Structure-Function Analysis of the Periplasmic Escherichia coli Cyclophilin PpiA in Relation to Biofilm Formation. J Mol Microbiol Biotechnol 2017; 27:228-236. [PMID: 28889121 DOI: 10.1159/000478858] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 06/12/2017] [Indexed: 12/30/2022] Open
Abstract
The presence of peptidyl-prolyl cis/trans isomerases (PPIases, EC: 5.2.1.8) in all domains of life indicates their biological importance. Cyclophilin PpiA, present in the periplasm of gram-negative bacteria, possesses PPIase activity but its physiological functions are still not clearly defined. Here, we demonstrate that the ΔppiA deletion strain from Escherichia coli exhibits an increased ability for biofilm formation and enhanced swimming motility compared to the wild-type strain. To identify structural features of PpiA which are necessary for the negative modulation of biofilm formation, we constructed a series of mutant PpiA proteins using a combination of error-prone and site-directed mutagenesis approaches. We show that the negative effect of PpiA on biofilm formation is not dependent on its PPIase activity, since PpiA mutants with a reduced PPIase activity are able to complement the ΔppiA strain during biofilm growth.
Collapse
Affiliation(s)
- Aggeliki Skagia
- Laboratory of General and Agricultural Microbiology, Faculty of Crop Science, Agricultural University of Athens, Athens, Greece
| | | | | | | | | | | | | |
Collapse
|
20
|
Transcriptomics Analysis Reveals Putative Genes Involved in Biofilm Formation and Biofilm-associated Drug Resistance of Enterococcus faecalis. J Endod 2017; 43:949-955. [DOI: 10.1016/j.joen.2017.01.020] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 01/12/2017] [Accepted: 01/13/2017] [Indexed: 11/19/2022]
|
21
|
|
22
|
Proteomics progresses in microbial physiology and clinical antimicrobial therapy. Eur J Clin Microbiol Infect Dis 2016; 36:403-413. [PMID: 27812806 PMCID: PMC5309286 DOI: 10.1007/s10096-016-2816-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 10/16/2016] [Indexed: 02/05/2023]
Abstract
Clinical microbial identification plays an important role in optimizing the management of infectious diseases and provides diagnostic and therapeutic support for clinical management. Microbial proteomic research is aimed at identifying proteins associated with microbial activity, which has facilitated the discovery of microbial physiology changes and host–pathogen interactions during bacterial infection and antimicrobial therapy. Here, we summarize proteomic-driven progresses of host–microbial pathogen interactions at multiple levels, mass spectrometry-based microbial proteome identification for clinical diagnosis, and antimicrobial therapy. Proteomic technique progresses pave new ways towards effective prevention and drug discovery for microbial-induced infectious diseases.
Collapse
|
23
|
Truong T, Zeng G, Qingsong L, Kwang LT, Tong C, Chan FY, Wang Y, Seneviratne CJ. Comparative Ploidy Proteomics of Candida albicans Biofilms Unraveled the Role of the AHP1 Gene in the Biofilm Persistence Against Amphotericin B. Mol Cell Proteomics 2016; 15:3488-3500. [PMID: 27644984 DOI: 10.1074/mcp.m116.061523] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Indexed: 01/23/2023] Open
Abstract
Candida albicans is a major fungal pathogen causing lethal infections in immunocompromised patients. C. albicans forms antifungal tolerant biofilms contributing significantly to therapeutic failure. The recently established haploid C. albicans biofilm model provides a new toolbox to uncover the mechanism governing the higher antifungal tolerance of biofilms. Here, we comprehensively examined the proteomics and antifungal susceptibility of standard diploid (SC5314 and BWP17) and stable haploid (GZY792 and GZY803) strains of C. albicans biofilms. Subsequent downstream analyses identified alkyl hydroperoxide reductase 1 (AHP1) as a critical determinant of C. albicans biofilm's tolerance of amphotericin B. At 32 μg/ml of amphotericin B, GZY803 haploid biofilms showed 0.1% of persister population as compared with 1% of the diploid biofilms. AHP1 expression was found to be lower in GZY803 biofilms, and AHP1 overexpression in GZY803 restored the percentage of persister population. Consistently, deleting AHP1 in the diploid strain BWP17 caused a similar increase in amphotericin B susceptibility. AHP1 expression was also positively correlated with the antioxidant potential. Furthermore, C. albicans ira2Δ/Δ biofilms were susceptible to amphotericin B and had a diminished antioxidant capacity. Interestingly, AHP1 overexpression in the ira2Δ/Δ strain restored the antioxidant potential and enhanced the persister population against amphotericin B, and shutting down the AHP1 expression in ira2Δ/Δ biofilms reversed the effect. In conclusion, we provide evidence that the AHP1 gene critically determines the amphotericin B tolerance of C. albicans biofilms possibly by maintaining the persisters' antioxidant capacity. This finding will open up new avenues for developing therapies targeting the persister population of C. albicans biofilms. The mass spectrometry proteomics data are available via ProteomeXchange with identifier PXD004274.
Collapse
Affiliation(s)
- Thuyen Truong
- From the ‡Oral Sciences, Faculty of Dentistry, National University of Singapore, Singapore 119083
| | - Guisheng Zeng
- the §Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Proteos, Singapore 138673, and
| | - Lin Qingsong
- the ¶Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore 117543
| | - Lim Teck Kwang
- the ¶Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore 117543
| | - Cao Tong
- From the ‡Oral Sciences, Faculty of Dentistry, National University of Singapore, Singapore 119083
| | - Fong Yee Chan
- the §Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Proteos, Singapore 138673, and
| | - Yue Wang
- the §Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Proteos, Singapore 138673, and
| | | |
Collapse
|
24
|
Li W, Yao Z, Sun L, Hu W, Cao J, Lin W, Lin X. Proteomics Analysis Reveals a Potential Antibiotic Cocktail Therapy Strategy for Aeromonas hydrophila Infection in Biofilm. J Proteome Res 2016; 15:1810-20. [DOI: 10.1021/acs.jproteome.5b01127] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
| | | | | | | | - Jijuan Cao
- Liaoning Entry−Exit Inspection and Quarantine Bureau, Dalian 116000, PR China
| | | | | |
Collapse
|
25
|
Pérez-Llarena FJ, Bou G. Proteomics As a Tool for Studying Bacterial Virulence and Antimicrobial Resistance. Front Microbiol 2016; 7:410. [PMID: 27065974 PMCID: PMC4814472 DOI: 10.3389/fmicb.2016.00410] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 03/14/2016] [Indexed: 12/31/2022] Open
Abstract
Proteomic studies have improved our understanding of the microbial world. The most recent advances in this field have helped us to explore aspects beyond genomics. For example, by studying proteins and their regulation, researchers now understand how some pathogenic bacteria have adapted to the lethal actions of antibiotics. Proteomics has also advanced our knowledge of mechanisms of bacterial virulence and some important aspects of how bacteria interact with human cells and, thus, of the pathogenesis of infectious diseases. This review article addresses these issues in some of the most important human pathogens. It also reports some applications of Matrix-Assisted Laser Desorption/Ionization-Time-Of-Flight (MALDI-TOF) mass spectrometry that may be important for the diagnosis of bacterial resistance in clinical laboratories in the future. The reported advances will enable new diagnostic and therapeutic strategies to be developed in the fight against some of the most lethal bacteria affecting humans.
Collapse
Affiliation(s)
| | - Germán Bou
- Servicio de Microbiología-INIBIC, Complejo Hospitalario Universitario A Coruña A Coruña, Spain
| |
Collapse
|
26
|
Sintim HO, Gürsoy UK. Biofilms as "Connectors" for Oral and Systems Medicine: A New Opportunity for Biomarkers, Molecular Targets, and Bacterial Eradication. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2015; 20:3-11. [PMID: 26583256 PMCID: PMC4739346 DOI: 10.1089/omi.2015.0146] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Oral health and systems medicine are intimately related but have remained, sadly, as isolated knowledge communities for decades. Are there veritable connector knowledge domains that can usefully link them together on the critical path to biomarker research and “one health”? In this context, it is noteworthy that bacteria form surface-attached communities on most biological surfaces, including the oral cavity. Biofilm-forming bacteria contribute to periodontal diseases and recent evidences point to roles of these bacteria in systemic diseases as well, with cardiovascular diseases, obesity, and cancer as notable examples. Interestingly, the combined mass of microorganisms such as bacteria are so large that when we combine all plants and animals on earth, the total biomass of bacteria is still bigger. They literally do colonize everywhere, not only soil and water but our skin, digestive tract, and even oral cavity are colonized by bacteria. Hence efforts to delineate biofilm formation mechanisms of oral bacteria and microorganisms and the development of small molecules to inhibit biofilm formation in the oral cavity is very timely for both diagnostics and therapeutics. Research on biofilms can benefit both oral and systems medicine. Here, we examine, review, and synthesize new knowledge on the current understanding of oral biofilm formation, the small molecule targets that can inhibit biofilm formation in the mouth. We suggest new directions for both oral and systems medicine, using various omics technologies such as SILAC and RNAseq, that could yield deeper insights, biomarkers, and molecular targets to design small molecules that selectively aim at eradication of pathogenic oral bacteria. Ultimately, devising new ways to control and eradicate bacteria in biofilms will open up novel diagnostic and therapeutic avenues for oral and systemic diseases alike.
Collapse
Affiliation(s)
- Herman O Sintim
- 1 Department of Chemistry and Biochemistry, University of Maryland , College Park, Maryland.,2 Department of Chemistry, Purdue University , West Lafayette, Indiana
| | - Ulvi Kahraman Gürsoy
- 3 Department of Periodontology, Institute of Dentistry, University of Turku , Turku, Finland
| |
Collapse
|
27
|
Gardiner M, Fernandes ND, Nowakowski D, Raftery M, Kjelleberg S, Zhong L, Thomas T, Egan S. VarR controls colonization and virulence in the marine macroalgal pathogen Nautella italica R11. Front Microbiol 2015; 6:1130. [PMID: 26528274 PMCID: PMC4602140 DOI: 10.3389/fmicb.2015.01130] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 09/28/2015] [Indexed: 01/16/2023] Open
Abstract
There is increasing evidence to suggest that macroalgae (seaweeds) are susceptible to infectious disease. However, to date, little is known about the mechanisms that facilitate the colonization and virulence of microbial seaweed pathogens. One well-described example of a seaweed disease is the bleaching of the red alga Delisea pulchra, which can be caused by the bacterium Nautella italica R11, a member of the Roseobacter clade. This pathogen contains a unique luxR-type gene, varR, which we hypothesize controls its colonization and virulence. We show here that a varR knock-out strain is deficient in its ability to cause disease in D. pulchra and is defective in biofilm formation and attachment to a common algal polysaccharide. Moreover complementation of the varR gene in trans can restore these functions to the wild type levels. Proteomic analysis of bacterial cells in planktonic and biofilm growth highlight the potential importance of nitrogen scavenging, mobilization of energy reserves, and stress resistance in the biofilm lifestyle of N. italica R11. Moreover, we show that VarR regulates the expression of a specific subset of biofilm-associated proteins. Taken together these data suggest that VarR controls colonization and persistence of N. italica R11 on the surface of a macroalgal host and that it is an important regulator of virulence.
Collapse
Affiliation(s)
- Melissa Gardiner
- School of Biotechnology and Biomolecular Sciences, Centre for Marine Bio-Innovation, The University of New South Wales Sydney, NSW, Australia
| | - Neil D Fernandes
- School of Biotechnology and Biomolecular Sciences, Centre for Marine Bio-Innovation, The University of New South Wales Sydney, NSW, Australia
| | - Dennis Nowakowski
- School of Biotechnology and Biomolecular Sciences, Centre for Marine Bio-Innovation, The University of New South Wales Sydney, NSW, Australia
| | - Mark Raftery
- Bioanalytical Mass Spectrometry Facility, Mark Wainwright Analytical Centre, The University of New South Wales Sydney, NSW, Australia
| | - Staffan Kjelleberg
- School of Biotechnology and Biomolecular Sciences, Centre for Marine Bio-Innovation, The University of New South Wales Sydney, NSW, Australia ; Singapore Centre on Environmental Life Sciences Engineering, Nanyang Technological University, Singapore Singapore
| | - Ling Zhong
- Bioanalytical Mass Spectrometry Facility, Mark Wainwright Analytical Centre, The University of New South Wales Sydney, NSW, Australia
| | - Torsten Thomas
- School of Biotechnology and Biomolecular Sciences, Centre for Marine Bio-Innovation, The University of New South Wales Sydney, NSW, Australia
| | - Suhelen Egan
- School of Biotechnology and Biomolecular Sciences, Centre for Marine Bio-Innovation, The University of New South Wales Sydney, NSW, Australia
| |
Collapse
|
28
|
Delicate Metabolic Control and Coordinated Stress Response Critically Determine Antifungal Tolerance of Candida albicans Biofilm Persisters. Antimicrob Agents Chemother 2015. [PMID: 26195524 DOI: 10.1128/aac.00543-15] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Candida infection has emerged as a critical health care burden worldwide, owing to the formation of robust biofilms against common antifungals. Recent evidence shows that multidrug-tolerant persisters critically account for biofilm recalcitrance, but their underlying biological mechanisms are poorly understood. Here, we first investigated the phenotypic characteristics of Candida biofilm persisters under consecutive harsh treatments of amphotericin B. The prolonged treatments effectively killed the majority of the cells of biofilms derived from representative strains of Candida albicans, Candida glabrata, and Candida tropicalis but failed to eradicate a small fraction of persisters. Next, we explored the tolerance mechanisms of the persisters through an investigation of the proteomic profiles of C. albicans biofilm persister fractions by liquid chromatography-tandem mass spectrometry. The C. albicans biofilm persisters displayed a specific proteomic signature, with an array of 205 differentially expressed proteins. The crucial enzymes involved in glycolysis, the tricarboxylic acid cycle, and protein synthesis were markedly downregulated, indicating that major metabolic activities are subdued in the persisters. It is noteworthy that certain metabolic pathways, such as the glyoxylate cycle, were able to be activated with significantly increased levels of isocitrate lyase and malate synthase. Moreover, a number of important proteins responsible for Candida growth, virulence, and the stress response were greatly upregulated. Interestingly, the persisters were tolerant to oxidative stress, despite highly induced intracellular superoxide. The current findings suggest that delicate metabolic control and a coordinated stress response may play a crucial role in mediating the survival and antifungal tolerance of Candida biofilm persisters.
Collapse
|
29
|
Mai-Prochnow A, Bradbury M, Ostrikov K, Murphy AB. Pseudomonas aeruginosa Biofilm Response and Resistance to Cold Atmospheric Pressure Plasma Is Linked to the Redox-Active Molecule Phenazine. PLoS One 2015; 10:e0130373. [PMID: 26114428 PMCID: PMC4483161 DOI: 10.1371/journal.pone.0130373] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 05/20/2015] [Indexed: 11/18/2022] Open
Abstract
Pseudomonas aeruginosa is an important opportunistic pathogen displaying high antibiotic resistance. Its resistance is in part due to its outstanding ability to form biofilms on a range of biotic and abiotic surfaces leading to difficult-to-treat, often long-term infections. Cold atmospheric plasma (CAP) is a new, promising antibacterial treatment to combat antibiotic-resistant bacteria. Plasma is ionized gas that has antibacterial properties through the generation of a mix of reactive oxygen and nitrogen species (RONS), excited molecules, charged particles and UV photons. Our results show the efficient removal of P. aeruginosa biofilms using a plasma jet (kINPen med), with no viable cells detected after 5 min treatment and no attached biofilm cells visible with confocal microscopy after 10 min plasma treatment. Because of its multi-factorial action, it is widely presumed that the development of bacterial resistance to plasma is unlikely. However, our results indicate that a short plasma treatment (3 min) may lead to the emergence of a small number of surviving cells exhibiting enhanced resistance to subsequent plasma exposure. Interestingly, these cells also exhibited a higher degree of resistance to hydrogen peroxide. Whole genome comparison between surviving cells and control cells revealed 10 distinct polymorphic regions, including four belonging to the redox active, antibiotic pigment phenazine. Subsequently, the interaction between phenazine production and CAP resistance was demonstrated in biofilms of transposon mutants disrupted in different phenazine pathway genes which exhibited significantly altered sensitivity to CAP.
Collapse
Affiliation(s)
- Anne Mai-Prochnow
- CSIRO Manufacturing Flagship, P.O. Box 218, Lindfield, NSW 2070, Australia
| | - Mark Bradbury
- CSIRO Food and Nutrition Flagship, 11 Julius Ave, North Ryde, NSW 2113, Australia
| | - Kostya Ostrikov
- CSIRO Manufacturing Flagship, P.O. Box 218, Lindfield, NSW 2070, Australia
- Institute for Health and Biomedical Innovation, School of Chemistry, Physics and Earth Sciences, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Anthony B. Murphy
- CSIRO Manufacturing Flagship, P.O. Box 218, Lindfield, NSW 2070, Australia
| |
Collapse
|
30
|
Dharmaprakash A, Thandavarayan R, Joseph I, Thomas S. Development of broad-spectrum antibiofilm drugs: strategies and challenges. Future Microbiol 2015; 10:1035-48. [DOI: 10.2217/fmb.15.14] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
ABSTRACT The severity of many chronic bacterial infections is mainly due to the biofilm mode of life adapted by pathogenic bacteria. The bacteria in biofilm-stage exhibit high resistance to host immune responses and antimicrobials, which complicates the treatment process and results in life threatening conditions. Most of the chronic infections are polymicrobial in nature. In order to combat the polymicrobial biofilm infections and to increase the efficiency of antimicrobials, there is an urgent need for broad-spectrum antibiofilm drugs. This review discusses the clinical needs and current status of broad-spectrum antibiofilm drugs with special emphasis on prospective strategies and hurdles in the process of new drug discovery.
Collapse
Affiliation(s)
- Akhilandeswarre Dharmaprakash
- Cholera & Biofilm Research Laboratory, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram – 695 014, Kerala, India
| | | | - Iype Joseph
- Pathogen Biology Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram – 695 014, Kerala, India
| | - Sabu Thomas
- Cholera & Biofilm Research Laboratory, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram – 695 014, Kerala, India
| |
Collapse
|
31
|
Gardiner M, Thomas T, Egan S. A glutathione peroxidase (GpoA) plays a role in the pathogenicity of Nautella italica strain R11 towards the red alga Delisea pulchra. FEMS Microbiol Ecol 2015; 91:fiv021. [DOI: 10.1093/femsec/fiv021] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/27/2015] [Indexed: 02/05/2023] Open
|
32
|
Post DMB, Held JM, Ketterer MR, Phillips NJ, Sahu A, Apicella MA, Gibson BW. Comparative analyses of proteins from Haemophilus influenzae biofilm and planktonic populations using metabolic labeling and mass spectrometry. BMC Microbiol 2014; 14:329. [PMID: 25551439 PMCID: PMC4302520 DOI: 10.1186/s12866-014-0329-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 12/16/2014] [Indexed: 11/25/2022] Open
Abstract
Background Non-typeable H. influenzae (NTHi) is a nasopharyngeal commensal that can become an opportunistic pathogen causing infections such as otitis media, pneumonia, and bronchitis. NTHi is known to form biofilms. Resistance of bacterial biofilms to clearance by host defense mechanisms and antibiotic treatments is well-established. In the current study, we used stable isotope labeling by amino acids in cell culture (SILAC) to compare the proteomic profiles of NTHi biofilm and planktonic organisms. Duplicate continuous-flow growth chambers containing defined media with either “light” (L) isoleucine or “heavy” (H) 13C6-labeled isoleucine were used to grow planktonic (L) and biofilm (H) samples, respectively. Bacteria were removed from the chambers, mixed based on weight, and protein extracts were generated. Liquid chromatography-mass spectrometry (LC-MS) was performed on the tryptic peptides and 814 unique proteins were identified with 99% confidence. Results Comparisons of the NTHi biofilm to planktonic samples demonstrated that 127 proteins showed differential expression with p-values ≤0.05. Pathway analysis demonstrated that proteins involved in energy metabolism, protein synthesis, and purine, pyrimidine, nucleoside, and nucleotide processes showed a general trend of downregulation in the biofilm compared to planktonic organisms. Conversely, proteins involved in transcription, DNA metabolism, and fatty acid and phospholipid metabolism showed a general trend of upregulation under biofilm conditions. Selected reaction monitoring (SRM)-MS was used to validate a subset of these proteins; among these were aerobic respiration control protein ArcA, NAD nucleotidase and heme-binding protein A. Conclusions The present proteomic study indicates that the NTHi biofilm exists in a semi-dormant state with decreased energy metabolism and protein synthesis yet is still capable of managing oxidative stress and in acquiring necessary cofactors important for biofilm survival. Electronic supplementary material The online version of this article (doi:10.1186/s12866-014-0329-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Deborah M B Post
- The Buck Institute for Research on Aging, Novato, CA, 94945, USA.
| | - Jason M Held
- Washington University School of Medicine, St. Louis, MO, 63110, USA.
| | | | - Nancy J Phillips
- The University of California San Francisco, San Francisco, CA, 94143, USA.
| | - Alexandria Sahu
- The Buck Institute for Research on Aging, Novato, CA, 94945, USA.
| | | | - Bradford W Gibson
- The Buck Institute for Research on Aging, Novato, CA, 94945, USA. .,The University of California San Francisco, San Francisco, CA, 94143, USA.
| |
Collapse
|
33
|
Crouzet M, Le Senechal C, Brözel VS, Costaglioli P, Barthe C, Bonneu M, Garbay B, Vilain S. Exploring early steps in biofilm formation: set-up of an experimental system for molecular studies. BMC Microbiol 2014; 14:253. [PMID: 25266973 PMCID: PMC4189659 DOI: 10.1186/s12866-014-0253-z] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Accepted: 09/24/2014] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Bacterial biofilms are predominant in natural ecosystems and constitute a public health threat because of their outstanding resistance to antibacterial treatments and especially to antibiotics. To date, several systems have been developed to grow bacterial biofilms in order to study their phenotypes and the physiology of sessile cells. Although relevant, such systems permit analysis of various aspects of the biofilm state but often after several hours of bacterial growth. RESULTS Here we describe a simple and easy-to-use system for growing P. aeruginosa biofilm based on the medium adsorption onto glass wool fibers. This approach which promotes bacterial contact onto the support, makes it possible to obtain in a few minutes a large population of sessile bacteria. Using this growth system, we demonstrated the feasibility of exploring the early stages of biofilm formation by separating by electrophoresis proteins extracted directly from immobilized cells. Moreover, the involvement of protein synthesis in P. aeruginosa attachment is demonstrated. CONCLUSIONS Our system provides sufficient sessile biomass to perform biochemical and proteomic analyses from the early incubation period, thus paving the way for the molecular analysis of the early stages of colonization that were inaccessible to date.
Collapse
Affiliation(s)
- Marc Crouzet
- />University Bordeaux, BPRVS, EA 4135, F-33000 Bordeaux, France
- />Bordeaux INP, BPRVS, EA 4135, F-33000 Bordeaux, France
| | - Caroline Le Senechal
- />University Bordeaux, BPRVS, EA 4135, F-33000 Bordeaux, France
- />Bordeaux INP, BPRVS, EA 4135, F-33000 Bordeaux, France
| | - Volker S Brözel
- />Department of Biology & Microbiology, South Dakota State University, Brookings, SD 57007 USA
- />Department of Microbiology and Plant Pathology, University of Pretoria, Pretoria, 0083 South Africa
| | - Patricia Costaglioli
- />University Bordeaux, BPRVS, EA 4135, F-33000 Bordeaux, France
- />Bordeaux INP, BPRVS, EA 4135, F-33000 Bordeaux, France
- />ENSTBB, 146 rue Léo Saignat, case 87, 33076 Bordeaux cedex, France
| | - Christophe Barthe
- />University Bordeaux, BPRVS, EA 4135, F-33000 Bordeaux, France
- />Bordeaux INP, BPRVS, EA 4135, F-33000 Bordeaux, France
| | - Marc Bonneu
- />University Bordeaux, BPRVS, EA 4135, F-33000 Bordeaux, France
- />Bordeaux INP, BPRVS, EA 4135, F-33000 Bordeaux, France
- />Université de Bordeaux, Centre Génomique Fonctionnelle de Bordeaux, Plateforme Protéome, Bordeaux, F-33000 France
- />ENSTBB, 146 rue Léo Saignat, case 87, 33076 Bordeaux cedex, France
| | - Bertrand Garbay
- />University Bordeaux, BPRVS, EA 4135, F-33000 Bordeaux, France
- />Bordeaux INP, BPRVS, EA 4135, F-33000 Bordeaux, France
- />ENSTBB, 146 rue Léo Saignat, case 87, 33076 Bordeaux cedex, France
| | - Sebastien Vilain
- />University Bordeaux, BPRVS, EA 4135, F-33000 Bordeaux, France
- />Bordeaux INP, BPRVS, EA 4135, F-33000 Bordeaux, France
- />ENSTBB, 146 rue Léo Saignat, case 87, 33076 Bordeaux cedex, France
| |
Collapse
|
34
|
Seneviratne CJ, Leung KCF, Wong CH, Lee SF, Li X, Leung PC, Lau CBS, Wat E, Jin L. Nanoparticle-encapsulated chlorhexidine against oral bacterial biofilms. PLoS One 2014; 9:e103234. [PMID: 25170958 PMCID: PMC4149348 DOI: 10.1371/journal.pone.0103234] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 06/28/2014] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Chlorhexidine (CHX) is a widely used antimicrobial agent in dentistry. Herein, we report the synthesis of a novel mesoporous silica nanoparticle-encapsulated pure CHX (Nano-CHX), and its mechanical profile and antimicrobial properties against oral biofilms. METHODOLOGY/PRINCIPAL FINDINGS The release of CHX from the Nano-CHX was characterized by UV/visible absorption spectroscopy. The antimicrobial properties of Nano-CHX were evaluated in both planktonic and biofilm modes of representative oral pathogenic bacteria. The Nano-CHX demonstrated potent antibacterial effects on planktonic bacteria and mono-species biofilms at the concentrations of 50-200 µg/mL against Streptococcus mutans, Streptococcus sobrinus, Fusobacterium nucleatum, Aggregatibacter actinomycetemcomitans and Enterococccus faecalis. Moreover, Nano-CHX effectively suppressed multi-species biofilms such as S. mutans, F. nucleatum, A. actinomycetemcomitans and Porphyromonas gingivalis up to 72 h. CONCLUSIONS/SIGNIFICANCE This pioneering study demonstrates the potent antibacterial effects of the Nano-CHX on oral biofilms, and it may be developed as a novel and promising anti-biofilm agent for clinical use.
Collapse
Affiliation(s)
- Chaminda Jayampath Seneviratne
- Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
- Faculty of Dentistry, National University of Singapore, Singapore, Singapore
| | - Ken Cham-Fai Leung
- Department of Chemistry, Institute of Creativity, and Partner State Key Laboratory of Environmental & Biological Analysis, The Hong Kong Baptist University, Hong Kong SAR, China
| | - Chi-Hin Wong
- Department of Chemistry, Institute of Creativity, and Partner State Key Laboratory of Environmental & Biological Analysis, The Hong Kong Baptist University, Hong Kong SAR, China
| | - Siu-Fung Lee
- Department of Chemistry, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Xuan Li
- Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| | - Ping Chung Leung
- Institute of Chinese Medicine and Partner State Key Laboratory of Phytochemistry & Plant Resources in West China, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Clara Bik San Lau
- Institute of Chinese Medicine and Partner State Key Laboratory of Phytochemistry & Plant Resources in West China, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Elaine Wat
- Institute of Chinese Medicine and Partner State Key Laboratory of Phytochemistry & Plant Resources in West China, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Lijian Jin
- Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
35
|
Robijns SCA, Roberfroid S, Van Puyvelde S, De Pauw B, Uceda Santamaría E, De Weerdt A, De Coster D, Hermans K, De Keersmaecker SCJ, Vanderleyden J, Steenackers HPL. A GFP promoter fusion library for the study of Salmonella biofilm formation and the mode of action of biofilm inhibitors. BIOFOULING 2014; 30:605-625. [PMID: 24735176 DOI: 10.1080/08927014.2014.907401] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Salmonella, an important foodborne pathogen, forms biofilms in many different environments. The composition of these biofilms differs depending on the growth conditions, and their development is highly coordinated in time. To develop efficient treatments, it is therefore essential that biofilm formation and its inhibition be understood in different environments and in a time-dependent manner. Many currently used techniques, such as transcriptomics or proteomics, are still expensive and thus limited in their application. Therefore, a GFP-promoter fusion library with 79 important Salmonella biofilm genes was developed (covering among other things matrix production, fimbriae and flagella synthesis, and c-di-GMP regulation). This library is a fast, inexpensive, and easy-to-use tool, and can therefore be conducted in different experimental setups in a time-dependent manner. In this paper, four possible applications are highlighted to illustrate and validate the use of this reporter fusion library.
Collapse
Affiliation(s)
- S C A Robijns
- a Department of Microbial and Molecular Systems, Centre of Microbial and Plant Genetics , KU Leuven , Leuven , Belgium
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Mai-Prochnow A, Murphy AB, McLean KM, Kong MG, Ostrikov KK. Atmospheric pressure plasmas: infection control and bacterial responses. Int J Antimicrob Agents 2014; 43:508-17. [PMID: 24637224 DOI: 10.1016/j.ijantimicag.2014.01.025] [Citation(s) in RCA: 136] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 01/25/2014] [Accepted: 01/27/2014] [Indexed: 12/26/2022]
Abstract
Cold atmospheric pressure plasma (APP) is a recent, cutting-edge antimicrobial treatment. It has the potential to be used as an alternative to traditional treatments such as antibiotics and as a promoter of wound healing, making it a promising tool in a range of biomedical applications with particular importance for combating infections. A number of studies show very promising results for APP-mediated killing of bacteria, including removal of biofilms of pathogenic bacteria such as Pseudomonas aeruginosa. However, the mode of action of APP and the resulting bacterial response are not fully understood. Use of a variety of different plasma-generating devices, different types of plasma gases and different treatment modes makes it challenging to show reproducibility and transferability of results. This review considers some important studies in which APP was used as an antibacterial agent, and specifically those that elucidate its mode of action, with the aim of identifying common bacterial responses to APP exposure. The review has a particular emphasis on mechanisms of interactions of bacterial biofilms with APP.
Collapse
Affiliation(s)
- Anne Mai-Prochnow
- CSIRO Materials Science and Engineering, P.O. Box 218, Lindfield, NSW 2070, Australia.
| | - Anthony B Murphy
- CSIRO Materials Science and Engineering, P.O. Box 218, Lindfield, NSW 2070, Australia
| | - Keith M McLean
- CSIRO Materials Science and Engineering, Bayview Avenue, Clayton, VIC 3168, Australia
| | - Michael G Kong
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Suite 422, 4211 Monarch Way, Norfolk, VA 23529, USA
| | - Kostya Ken Ostrikov
- CSIRO Materials Science and Engineering, P.O. Box 218, Lindfield, NSW 2070, Australia
| |
Collapse
|
37
|
Santi L, Beys-da-Silva WO, Berger M, Calzolari D, Guimarães JA, Moresco JJ, Yates JR. Proteomic profile of Cryptococcus neoformans biofilm reveals changes in metabolic processes. J Proteome Res 2014; 13:1545-59. [PMID: 24467693 PMCID: PMC3993910 DOI: 10.1021/pr401075f] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
![]()
Cryptococcus neoformans, a pathogenic yeast, causes
meningoencephalitis, especially in immunocompromised patients, leading
in some cases to death. Microbes in biofilms can cause persistent
infections, which are harder to treat. Cryptococcal biofilms are becoming
common due to the growing use of brain valves and other medical devices.
Using shotgun proteomics we determine the differences in protein abundance
between biofilm and planktonic cells. Applying bioinformatic tools,
we also evaluated the metabolic pathways involved in biofilm maintenance
and protein interactions. Our proteomic data suggest general changes
in metabolism, protein turnover, and global stress responses. Biofilm
cells show an increase in proteins related to oxidation–reduction,
proteolysis, and response to stress and a reduction in proteins related
to metabolic process, transport, and translation. An increase in pyruvate-utilizing
enzymes was detected, suggesting a shift from the TCA cycle to fermentation-derived
energy acquisition. Additionally, we assign putative roles to 33 proteins
previously categorized as hypothetical. Many changes in metabolic
enzymes were identified in studies of bacterial biofilm, potentially
revealing a conserved strategy in biofilm lifestyle.
Collapse
Affiliation(s)
- Lucélia Santi
- Department of Chemical Physiology, The Scripps Research Institute , North Torrey Pines Road, Suite 11, La Jolla, California 92037, United States
| | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
Urinary tract infections (UTIs) are among the most common of bacterial infections in humans. Although a number of Gram-negative bacteria can cause UTIs, most cases are due to infection by uropathogenic E. coli (UPEC). Genomic studies have shown that UPEC encode a number of specialized activities that allow the bacteria to initiate and maintain infections in the environment of the urinary tract. Proteomic analyses have complemented the genomic data and have documented differential patterns of protein synthesis for bacteria growing ex vivo in human urine or recovered directly from the urinary tracts of infected mice. These studies provide valuable insights into the molecular basis of UPEC pathogenesis and have aided the identification of putative vaccine targets. Despite the substantial progress that has been achieved, many future challenges remain in the application of proteomics to provide a comprehensive view of bacterial pathogenesis in both acute and chronic UTIs.
Collapse
Affiliation(s)
- Phillip Cash
- Division of Applied Medicine, University of Aberdeen, Foresterhill, Aberdeen AB32 6QX, Scotland
| |
Collapse
|
39
|
Affiliation(s)
- Dirk Benndorf
- Department of Bioprocess Engineering; Otto von Guericke University Magdeburg; Magdeburg Germany
| | - Udo Reichl
- Department of Bioprocess Engineering; Otto von Guericke University Magdeburg; Magdeburg Germany
- Department of Bioprocess Engineering; Max Planck Institute for Dynamics of Complex Technical Systems; Magdeburg Germany
| |
Collapse
|
40
|
Microbial adhesion and biofilm formation on microfiltration membranes: a detailed characterization using model organisms with increasing complexity. BIOMED RESEARCH INTERNATIONAL 2013; 2013:470867. [PMID: 23986906 PMCID: PMC3748401 DOI: 10.1155/2013/470867] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Accepted: 06/24/2013] [Indexed: 12/16/2022]
Abstract
Since many years, membrane biofouling has been described as the Achilles heel of membrane fouling. In the present study, an ecological assay was performed using model systems with increasing complexity: a monospecies assay using Pseudomonas aeruginosa or Escherichia coli separately, a duospecies assay using both microorganisms, and a multispecies assay using activated sludge with or without spiked P. aeruginosa. The microbial adhesion and biofilm formation were evaluated in terms of bacterial cell densities, species richness, and bacterial community composition on polyvinyldifluoride, polyethylene, and polysulfone membranes. The data show that biofouling formation was strongly influenced by the kind of microorganism, the interactions between the organisms, and the changes in environmental conditions whereas the membrane effect was less important. The findings obtained in this study suggest that more knowledge in species composition and microbial interactions is needed in order to understand the complex biofouling process. This is the first report describing the microbial interactions with a membrane during the biofouling development.
Collapse
|
41
|
Ras signaling gets fine-tuned: regulation of multiple pathogenic traits of Candida albicans. EUKARYOTIC CELL 2013; 12:1316-25. [PMID: 23913542 DOI: 10.1128/ec.00094-13] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Candida albicans is an opportunistic fungal pathogen that can cause disseminated infection in patients with indwelling catheters or other implanted medical devices. A common resident of the human microbiome, C. albicans responds to environmental signals, such as cell contact with catheter materials and exposure to serum or CO2, by triggering the expression of a variety of traits, some of which are known to contribute to its pathogenic lifestyle. Such traits include adhesion, biofilm formation, filamentation, white-to-opaque (W-O) switching, and two recently described phenotypes, finger and tentacle formation. Under distinct sets of environmental conditions and in specific cell types (mating type-like a [MTLa]/alpha cells, MTL homozygotes, or daughter cells), C. albicans utilizes (or reutilizes) a single signal transduction pathway-the Ras pathway-to affect these phenotypes. Ras1, Cyr1, Tpk2, and Pde2, the proteins of the Ras signaling pathway, are the only nontranscriptional regulatory proteins that are known to be essential for regulating all of these processes. How does C. albicans utilize this one pathway to regulate all of these phenotypes? The regulation of distinct and yet related processes by a single, evolutionarily conserved pathway is accomplished through the use of downstream transcription factors that are active under specific environmental conditions and in different cell types. In this minireview, we discuss the role of Ras signaling pathway components and Ras pathway-regulated transcription factors as well as the transcriptional regulatory networks that fine-tune gene expression in diverse biological contexts to generate specific phenotypes that impact the virulence of C. albicans.
Collapse
|
42
|
Abstract
Antibiotic discovery has a storied history. From the discovery of penicillin by Sir Alexander Fleming to the relentless quest for antibiotics by Selman Waksman, the stories have become like folklore used to inspire future generations of scientists. However, recent discovery pipelines have run dry at a time when multidrug-resistant pathogens are on the rise. Nature has proven to be a valuable reservoir of antimicrobial agents, which are primarily produced by modularized biochemical pathways. Such modularization is well suited to remodeling by an interdisciplinary approach that spans science and engineering. Herein, we discuss the biological engineering of small molecules, peptides, and non-traditional antimicrobials and provide an overview of the growing applicability of synthetic biology to antimicrobials discovery.
Collapse
Affiliation(s)
- Bijan Zakeri
- Synthetic Biology Group, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
- Department of Electrical Engineering & Computer Science and Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
- MIT Synthetic Biology Center, 500 Technology Square, Cambridge MA 02139, USA
| | - Timothy K. Lu
- Synthetic Biology Group, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
- Department of Electrical Engineering & Computer Science and Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
- MIT Synthetic Biology Center, 500 Technology Square, Cambridge MA 02139, USA
| |
Collapse
|
43
|
Romero D. Bacterial determinants of the social behavior of Bacillus subtilis. Res Microbiol 2013; 164:788-98. [PMID: 23791621 DOI: 10.1016/j.resmic.2013.06.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Accepted: 05/23/2013] [Indexed: 10/26/2022]
Abstract
Bacteria utilize sophisticated cellular machinery to sense environmental changes and coordinate the most appropriate response. Fine sensors located on cell surfaces recognize a myriad of triggers and initiate genetic cascades leading to activation or repression of certain groups of genes. Structural elements such as pilli, exopolysaccharides and flagella are also exposed at the cell surface and contribute to modulating the intimate interaction with surfaces and host cells. This review will cover the latest advances in our understanding of the biology and functionality of these bacterial determinants within the context of biofilm formation of Bacillus subtilis.
Collapse
Affiliation(s)
- Diego Romero
- Instituto de Hortofruticultura Subtropical y Mediterránea La Mayora (IHSM-UMA-CSIC), Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga, 29071 Málaga, Spain.
| |
Collapse
|
44
|
Vera M, Krok B, Bellenberg S, Sand W, Poetsch A. Shotgun proteomics study of early biofilm formation process of Acidithiobacillus ferrooxidans ATCC 23270 on pyrite. Proteomics 2013; 13:1133-44. [PMID: 23319327 DOI: 10.1002/pmic.201200386] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2012] [Revised: 12/17/2012] [Accepted: 12/18/2012] [Indexed: 12/15/2022]
Abstract
Acidithiobacillus ferrooxidans is a chemolithoautotrophic, mesophilic Gram-negative bacterium able to oxidize ferrous iron, sulfur, and metal sulfides. It forms monolayer biofilms where extracellular polymeric substances are essential for cell attachment and metal sulfide leaching. High-throughput proteomics has been applied to study the early process of biofilm formation on pyrite by At. ferrooxidans ATCC 23270. After 24 h contact with the mineral, planktonic and sessile (biofilm) cell subpopulations were separated and proteins extracted. In total, 1319 proteins were detected in both samples. Sixty-two of these were found to be increased in biofilms. Additionally, 25 proteins were found to be decreased in the biofilm cell subpopulation. Three transcriptional factors were found to be increased or decreased among both cell subpopulations, suggesting their potential involvement in the regulation of these processes. Although no significant differences were observed for the known proteins related to ferrous iron and sulfur oxidation pathways among both cell subpopulations, the results presented here show that the early steps of At. ferrooxidans biofilm formation consist of a set of metabolic adaptations following cell attachment to the mineral surface. Functions such as extracellular polymeric substances biosynthesis seem to be pivotal. This first high-throughput proteomic study may also contribute to the annotation of several unknown At. ferrooxidans proteins found.
Collapse
Affiliation(s)
- Mario Vera
- Biofilm Centre, University of Duisburg-Essen, Duisburg-Essen, Germany
| | | | | | | | | |
Collapse
|
45
|
Giaouris E, Samoilis G, Chorianopoulos N, Ercolini D, Nychas GJ. Differential protein expression patterns between planktonic and biofilm cells of Salmonella enterica serovar Enteritidis PT4 on stainless steel surface. Int J Food Microbiol 2013; 162:105-13. [PMID: 23376784 DOI: 10.1016/j.ijfoodmicro.2012.12.023] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2012] [Revised: 12/27/2012] [Accepted: 12/28/2012] [Indexed: 10/27/2022]
Abstract
In the present study, the proteome of a strain of S. enterica serovar Enteritidis PT4, grown either as biofilm on stainless steel surface or as free-floating (planktonic) in Brain Heart (BH) broth, was investigated in order to detect the strong differences in whole-cell protein expression patterns between the two growth styles. The proteins extracted from both types of cells were subjected to 2-D PAGE, followed by in-gel tryptic digestion, extraction, subsequent MALDI-TOF mass spectrometry (MS) analysis and finally database searches for protein identification. Using this approach, 30 proteins were identified as differentially expressed between the two growth modes on an "on-off" basis, that is, proteins that were detected in one case but not in the other. In particular, 20 and 10 proteins were identified in biofilm and planktonic-grown cells, respectively. The group of proteins whose expression was visible only during biofilm growth included proteins involved in global regulation and stress response (ArcA, BtuE, Dps, OsmY, SspA, TrxA, YbbN and YhbO), nutrient transport (Crr, DppA, Fur and SufC), degradation and energy metabolism (GcvT, GpmA, RibB), detoxification (SseA and YibF), DNA metabolism (SSB), curli production (CsgF), and murein synthesis (MipA). To summarize, this study demonstrates that biofilm growth of S. Enteritidis causes distinct changes in protein expression and offers valuable new data regarding some of the proteins presumably involved in this process. The putative role of these proteins in the maintenance of a biofilm community in Salmonella and other bacteria is discussed.
Collapse
Affiliation(s)
- Efstathios Giaouris
- Department of Food Science and Nutrition, University of the Aegean, Mitropoliti Ioakeim 2, Myrina, 81400 Lemnos, Greece.
| | | | | | | | | |
Collapse
|