1
|
Zhao C, Zhang X, Wang H, Qiang H, Liu S, Zhang C, Huang J, Wang Y, Li P, Chen X, Zhang Z, Ma S. Proteomic Analysis of Differentially Expressed Proteins in A549 Cells Infected with H9N2 Avian Influenza Virus. Int J Mol Sci 2025; 26:657. [PMID: 39859371 PMCID: PMC11765812 DOI: 10.3390/ijms26020657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/09/2025] [Accepted: 01/10/2025] [Indexed: 01/27/2025] Open
Abstract
Influenza A viruses (IAVs) are highly contagious pathogens that cause zoonotic disease with limited availability of antiviral therapies, presenting ongoing challenges to both public health and the livestock industry. Unveiling host proteins that are crucial to the IAV life cycle can help clarify mechanisms of viral replication and identify potential targets for developing alternative host-directed therapies. Using a four-dimensional (4D), label-free methodology coupled with bioinformatics analysis, we analyzed the expression patterns of cellular proteins that changed following H9N2 virus infection. Compared to the control group, the H9N2 infected group displayed 732 differentially expressed proteins (DEPs), with 298 proteins showing upregulation and 434 proteins showing downregulation. Gene Ontology (GO) functional analysis showed that DEPs were catalog in 11 biological processes, three cellular components, and eight molecular functions. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed that DEPs were involved in processes including cytokine signaling pathways induced by virus infection and protein digestion and absorption. Proteins including TP53, DDX58, and STAT3 were among the top hub proteins in the protein-protein interaction (PPI) analysis, suggesting that these signaling cascades could be essential for the propagation of IAVs. Furthermore, the host protein SNAPIN was chosen to ascertain the accuracy of expression changes identified through a proteomic analysis. The results indicated that SNAPIN was downregulated following infection with IAVs both in vitro and in vivo, which is consistent with the proteomics results, suggesting that SNAPIN may serve as a key regulatory factor in the viral life cycle of IAVs. Our research delineates an extensive interaction map of IAV infection within the A549 cells, facilitating the discovery of pivotal proteins that contribute to the virus's propagation, potentially offering target candidates to screen for antiviral therapeutics.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Shujie Ma
- Fujian Province Joint Laboratory of Animal Pathogen Prevention and Control of the “Belt and Road”, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (C.Z.); (X.Z.); (H.W.); (H.Q.); (S.L.); (C.Z.); (J.H.); (Y.W.); (P.L.); (X.C.); (Z.Z.)
| |
Collapse
|
2
|
De Conto F. Avian Influenza A Viruses Modulate the Cellular Cytoskeleton during Infection of Mammalian Hosts. Pathogens 2024; 13:249. [PMID: 38535592 PMCID: PMC10975405 DOI: 10.3390/pathogens13030249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/08/2024] [Accepted: 03/12/2024] [Indexed: 02/11/2025] Open
Abstract
Influenza is one of the most prevalent causes of death worldwide. Influenza A viruses (IAVs) naturally infect various avian and mammalian hosts, causing seasonal epidemics and periodic pandemics with high morbidity and mortality. The recent SARS-CoV-2 pandemic showed how an animal virus strain could unpredictably acquire the ability to infect humans with high infection transmissibility. Importantly, highly pathogenic avian influenza A viruses (AIVs) may cause human infections with exceptionally high mortality. Because these latter infections pose a pandemic potential, analyzing the ecology and evolution features of host expansion helps to identify new broad-range therapeutic strategies. Although IAVs are the prototypic example of molecular strategies that capitalize on their coding potential, the outcome of infection depends strictly on the complex interactions between viral and host cell factors. Most of the studies have focused on the influenza virus, while the contribution of host factors remains largely unknown. Therefore, a comprehensive understanding of mammals' host response to AIV infection is crucial. This review sheds light on the involvement of the cellular cytoskeleton during the highly pathogenic AIV infection of mammalian hosts, allowing a better understanding of its modulatory role, which may be relevant to therapeutic interventions for fatal disease prevention and pandemic management.
Collapse
Affiliation(s)
- Flora De Conto
- Department of Medicine and Surgery, University of Parma, Viale Antonio Gramsci 14, 43126 Parma, Italy
| |
Collapse
|
3
|
Abstract
The influenza A virus (IAV) infection is usually restricted to the respiratory tract and only rarely enters the central nervous system (CNS) and causes neurological symptoms. However, the roles of host factors involved in IAV infection in the CNS remain largely undetermined. Therefore, we aimed to characterize the host responses to IAV infection in the brain. We isolated a strain of IAV H5N6, which is neurotoxic and highly pathogenic to mice. High-throughput RNA sequencing (RNA-seq) revealed 240 differentially expressed genes in IAV-infected brains. Among the significantly downregulated genes, we focused on the gene encoding progesterone receptor membrane component-1 (PGRMC1) and observed that IAV H5N6 infection clearly inhibited PGRMC1 in both neuroblastoma and glioma cells. Furthermore, treatment with AG205, a PGRMC1-specific inhibitor, or PGRMC1 knockout promoted H5N6 multiplication in vitro, while overexpression of PGRMC1 resulted in opposite effects. Furthermore, AG205 treatment or PGRMC1 knockout significantly inhibited the retinoic acid-inducible gene I (RIG-I)-mediated interferon beta (IFN-β) signaling pathway and reduced the levels of several antiviral proteins (Mx1 and ISG15). In addition, PGRMC1-mediated regulation of IFN signaling relied on inhibition of the expression and ubiquitination of RIG-I. The loss of PGRMC1 leads to an increased susceptibility of mice (brain and lung) to influenza A virus infection. Conclusively, our results show for the first time that IAV H5N6 downregulates PGRMC1 expression to contribute to virus proliferation by inhibiting RIG-I-mediated IFN-β production in the brain. These findings may offer new insights regarding the interplay between IAV and host factors that may impact IAV pathogenicity in the brain. IMPORTANCE Central nervous system (CNS) disease is one of the most common extra-respiratory tract complications of influenza A virus (IAV) infections. However, there is still little knowledge about IAV regulating host responses in brain. In this study, we identified progesterone receptor membrane component-1 (PGRMC1) as a novel host factor involved in the replication and propagation of IAV H5N6 in the host brain. We also observed that PGRMC1 antagonism was required for viral evasion from the host immune response during IAV infection via inhibition of the retinoic acid-inducible gene I (RIG-I)-mediated interferon beta (IFN-β) signaling pathway and downstream antiviral gene expression. This study revealed a newly identified regulatory mechanism used by IAV H5N6 to ensure its life cycle in the CNS.
Collapse
|
4
|
Host factors involved in influenza virus infection. Emerg Top Life Sci 2020; 4:389-398. [PMID: 33210707 DOI: 10.1042/etls20200232] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/14/2020] [Accepted: 10/30/2020] [Indexed: 12/17/2022]
Abstract
Influenza virus causes an acute febrile respiratory disease in humans that is commonly known as 'flu'. Influenza virus has been around for centuries and is one of the most successful, and consequently most studied human viruses. This has generated tremendous amount of data and information, thus it is pertinent to summarise these for, particularly interdisciplinary readers. Viruses are acellular organisms and exist at the interface of living and non-living. Due to this unique characteristic, viruses require another organism, i.e. host to survive. Viruses multiply inside the host cell and are obligate intracellular pathogens, because their relationship with the host is almost always harmful to host. In mammalian cells, the life cycle of a virus, including influenza is divided into five main steps: attachment, entry, synthesis, assembly and release. To complete these steps, some viruses, e.g. influenza utilise all three parts - plasma membrane, cytoplasm and nucleus, of the cell; whereas others, e.g. SARS-CoV-2 utilise only plasma membrane and cytoplasm. Hence, viruses interact with numerous host factors to complete their life cycle, and these interactions are either exploitative or antagonistic in nature. The host factors involved in the life cycle of a virus could be divided in two broad categories - proviral and antiviral. This perspective has endeavoured to assimilate the information about the host factors which promote and suppress influenza virus infection. Furthermore, an insight into host factors that play a dual role during infection or contribute to influenza virus-host adaptation and disease severity has also been provided.
Collapse
|
5
|
Soe HJ, Yong YK, Al-Obaidi MMJ, Raju CS, Gudimella R, Manikam R, Sekaran SD. Identifying protein biomarkers in predicting disease severity of dengue virus infection using immune-related protein microarray. Medicine (Baltimore) 2018; 97:e9713. [PMID: 29384851 PMCID: PMC5805423 DOI: 10.1097/md.0000000000009713] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Dengue virus is one of the most widespread flaviviruses that re-emerged throughout recent decades. The progression from mild dengue to severe dengue (SD) with the complications such as vascular leakage and hemorrhage increases the fatality rate of dengue. The pathophysiology of SD is not entirely clear. To investigate potential biomarkers that are suggestive of pathogenesis of SD, a small panel of serum samples selected from 1 healthy individual, 2 dengue patients without warning signs (DWS-), 2 dengue patients with warning signs (DWS+), and 5 patients with SD were subjected to a pilot analysis using Sengenics Immunome protein array. The overall fold changes of protein expressions and clustering heat map revealed that PFKFB4, TPM1, PDCL3, and PTPN20A were elevated among patients with SD. Differential expression analysis identified that 29 proteins were differentially elevated greater than 2-fold in SD groups than DWS- and DWS+. From the 29 candidate proteins, pathways enrichment analysis also identified insulin signaling and cytoskeleton pathways were involved in SD, suggesting that the insulin pathway may play a pivotal role in the pathogenesis of SD.
Collapse
Affiliation(s)
| | - Yean K. Yong
- Laboratory Centre, Xiamen University Malaysia, China-ASEAN College of Marine Biotechnology, Sepang, Selangor
| | | | | | - Ranganath Gudimella
- Sengenics Corporation, HIR Building, University Malaya 50603 Kuala Lumpur, Malaysia
| | - Rishya Manikam
- Department of Trauma and Emergency, Faculty of Medicine, University of Malaya
| | | |
Collapse
|
6
|
Nally JE, Schuller S. Proteomic Analysis of Lung Tissue by DIGE. Methods Mol Biol 2018; 1664:167-183. [PMID: 29019133 DOI: 10.1007/978-1-4939-7268-5_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Lungs perform an essential physiological function, mediated by a complex series of events that involve the coordination of multiple cell types to support not only gaseous exchange, but homeostasis and protection from infection. Guinea pigs are an important animal disease model for a number of infectious and noninfectious pulmonary conditions and the availability of a complete genome facilitates comprehensive analysis of tissues using the tools of proteomics. Here, we describe the application of 2-D Difference Gel Electrophoresis (DIGE) to compare, quantify, and identify differential protein expression of proteins in lung tissue from guinea pigs with leptospiral pulmonary hemorrhage syndrome (LPHS) compared to noninfected controls. 2-D DIGE is a powerful technique that provides novel insights into the dynamics of the complex lung proteome during health and disease.
Collapse
Affiliation(s)
- Jarlath E Nally
- Infectious Bacterial Diseases, National Animal Disease Center-USDA-ARS, 1920 Dayton Avenue, Ames, IA, 50010, USA.
| | - Simone Schuller
- Division of Small Animal Internal Medicine, Department of Clinical Veterinary Medicine, Vetsuisse Faculty, University of Bern, Länggassstr. 128, 3012, Bern, Switzerland
| |
Collapse
|
7
|
Influenza-Omics and the Host Response: Recent Advances and Future Prospects. Pathogens 2017; 6:pathogens6020025. [PMID: 28604586 PMCID: PMC5488659 DOI: 10.3390/pathogens6020025] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 06/07/2017] [Accepted: 06/08/2017] [Indexed: 12/23/2022] Open
Abstract
Influenza A viruses (IAV) continually evolve and have the capacity to cause global pandemics. Because IAV represents an ongoing threat, identifying novel therapies and host innate immune factors that contribute to IAV pathogenesis is of considerable interest. This review summarizes the relevant literature as it relates to global host responses to influenza infection at both the proteome and transcriptome level. The various-omics infection systems that include but are not limited to ferrets, mice, pigs, and even the controlled infection of humans are reviewed. Discussion focuses on recent advances, remaining challenges, and knowledge gaps as it relates to influenza-omics infection outcomes.
Collapse
|
8
|
Vidotto A, Morais ATS, Ribeiro MR, Pacca CC, Terzian ACB, Gil LHVG, Mohana-Borges R, Gallay P, Nogueira ML. Systems Biology Reveals NS4B-Cyclophilin A Interaction: A New Target to Inhibit YFV Replication. J Proteome Res 2017; 16:1542-1555. [PMID: 28317380 DOI: 10.1021/acs.jproteome.6b00933] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Yellow fever virus (YFV) replication is highly dependent on host cell factors. YFV NS4B is reported to be involved in viral replication and immune evasion. Here interactions between NS4B and human proteins were determined using a GST pull-down assay and analyzed using 1-DE and LC-MS/MS. We present a total of 207 proteins confirmed using Scaffold 3 Software. Cyclophilin A (CypA), a protein that has been shown to be necessary for the positive regulation of flavivirus replication, was identified as a possible NS4B partner. 59 proteins were found to be significantly increased when compared with a negative control, and CypA exhibited the greatest difference, with a 22-fold change. Fisher's exact test was significant for 58 proteins, and the p value of CypA was the most significant (0.000000019). The Ingenuity Systems software identified 16 pathways, and this analysis indicated sirolimus, an mTOR pathway inhibitor, as a potential inhibitor of CypA. Immunofluorescence and viral plaque assays showed a significant reduction in YFV replication using sirolimus and cyclosporine A (CsA) as inhibitors. Furthermore, YFV replication was strongly inhibited in cells treated with both inhibitors using reporter BHK-21-rep-YFV17D-LucNeoIres cells. Taken together, these data suggest that CypA-NS4B interaction regulates YFV replication. Finally, we present the first evidence that YFV inhibition may depend on NS4B-CypA interaction.
Collapse
Affiliation(s)
- Alessandra Vidotto
- Laboratório de Virologia, Faculdade de Medicina de José do Rio Preto , São José do Rio Preto, São Paulo 15090-000, Brazil
| | - Ana T S Morais
- Laboratório de Virologia, Faculdade de Medicina de José do Rio Preto , São José do Rio Preto, São Paulo 15090-000, Brazil
| | - Milene R Ribeiro
- Laboratório de Virologia, Faculdade de Medicina de José do Rio Preto , São José do Rio Preto, São Paulo 15090-000, Brazil
| | - Carolina C Pacca
- Laboratório de Virologia, Faculdade de Medicina de José do Rio Preto , São José do Rio Preto, São Paulo 15090-000, Brazil
| | - Ana C B Terzian
- Laboratório de Virologia, Faculdade de Medicina de José do Rio Preto , São José do Rio Preto, São Paulo 15090-000, Brazil
| | - Laura H V G Gil
- Departamento de Virologia, Centro de Pesquisa Aggeu Magalhães , Fundação Oswaldo Cruz (FIOCRUZ) - Recife, Pernambuco 50740-465, Brazil
| | - Ronaldo Mohana-Borges
- Laboratório de Genômica Estrutural, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro - UFRJ , Rio de Janeiro RJ 21941-902, Brazil
| | - Philippe Gallay
- Department of Immunology & Microbial Science, The Scripps Research Institute - La Jolla , San Diego, California 92037, United States
| | - Mauricio L Nogueira
- Laboratório de Virologia, Faculdade de Medicina de José do Rio Preto , São José do Rio Preto, São Paulo 15090-000, Brazil
| |
Collapse
|
9
|
Glycosylation of the Hemagglutinin Protein of H5N1 Influenza Virus Increases Its Virulence in Mice by Exacerbating the Host Immune Response. J Virol 2017; 91:JVI.02215-16. [PMID: 28100622 PMCID: PMC5355609 DOI: 10.1128/jvi.02215-16] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 01/10/2017] [Indexed: 11/20/2022] Open
Abstract
The highly pathogenic avian influenza (HPAI) H5N1 viruses continue to circulate in nature and threaten public health. Although several viral determinants and host factors that influence the virulence of HPAI H5N1 viruses in mammals have been identified, the detailed molecular mechanism remains poorly defined and requires further clarification. In our previous studies, we characterized two naturally isolated HPAI H5N1 viruses that had similar viral genomes but differed substantially in their lethality in mice. In this study, we explored the molecular determinants and potential mechanism for this difference in virulence. By using reverse genetics, we found that a single amino acid at position 158 of the hemagglutinin (HA) protein substantially affected the systemic replication and pathogenicity of these H5N1 influenza viruses in mice. We further found that the G158N mutation introduced an N-linked glycosylation at positions 158 to 160 of the HA protein and that this N-linked glycosylation enhanced viral productivity in infected mammalian cells and induced stronger host immune and inflammatory responses to viral infection. These findings further our understanding of the determinants of pathogenicity of H5N1 viruses in mammals. IMPORTANCE Highly pathogenic avian influenza (HPAI) H5N1 viruses continue to evolve in nature and threaten human health. Key mutations in the virus hemagglutinin (HA) protein or reassortment with other pandemic viruses endow HPAI H5N1 viruses with the potential for aerosol transmissibility in mammals. A thorough understanding of the pathogenic mechanisms of these viruses will help us to develop more effective control strategies; however, such mechanisms and virulent determinants for H5N1 influenza viruses have not been fully elucidated. In this study, we identified glycosylation at positions 158 to 160 of the HA protein of two naturally occurring H5N1 viruses as an important virulence determinant. This glycosylation event enhanced viral productivity, exacerbated the host response, and thereby contributed to the high pathogenicity of H5N1 virus in mice.
Collapse
|
10
|
Li Y, Ming F, Huang H, Guo K, Chen H, Jin M, Zhou H. Proteome Response of Chicken Embryo Fibroblast Cells to Recombinant H5N1 Avian Influenza Viruses with Different Neuraminidase Stalk Lengths. Sci Rep 2017; 7:40698. [PMID: 28079188 PMCID: PMC5227709 DOI: 10.1038/srep40698] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 11/23/2016] [Indexed: 12/12/2022] Open
Abstract
The variation on neuraminidase (NA) stalk region of highly pathogenic avian influenza H5N1 virus results in virulence change in animals. In our previous studies, the special NA stalk-motif of H5N1 viruses has been demonstrated to play a significant role in the high virulence and pathogenicity in chickens. However, the molecular mechanisms underlying the pathogenicity of viruses with different NA stalk remain poorly understood. This study presents a comprehensive characterization of the proteome response of chicken cells to recombinant H5N1 virus with stalk-short NA (rNA-wt) and the stalkless NA mutant virus (rSD20). 208 proteins with differential abundance profiles were identified differentially expressed (DE), and these proteins were mainly related to stress response, transcription regulation, transport, metabolic process, cellular component and cytoskeleton. Through Ingenuity Pathways Analysis (IPA), the significant biological functions of DE proteins represented included Post-Translational Modification, Protein Folding, DNA Replication, Recombination and Repair. It was interesting to find that most DE proteins were involved in the TGF-β mediated functional network. Moreover, the specific DE proteins may play important roles in the innate immune responses and H5N1 virus replication. Our data provide important information regarding the comparable host response to H5N1 influenza virus infection with different NA stalk lengths.
Collapse
Affiliation(s)
- Yongtao Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, P.R. China.,College of Animal Husbandry &Veterinary Science, Henan Agricultural University, Zhengzhou, 450002, P.R. China
| | - Fan Ming
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| | - Huimin Huang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| | - Kelei Guo
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| | - Meilin Jin
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| | - Hongbo Zhou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| |
Collapse
|
11
|
Zhao Y, Yu Z, Liu L, Wang T, Sun W, Wang C, Xia Z, Gao Y, Zhou B, Qian J, Xia X. Adaptive amino acid substitutions enhance the virulence of a novel human H7N9 influenza virus in mice. Vet Microbiol 2016; 187:8-14. [PMID: 27066703 DOI: 10.1016/j.vetmic.2016.02.027] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 02/25/2016] [Accepted: 02/29/2016] [Indexed: 11/28/2022]
Abstract
To identify molecular features that confer enhanced H7N9 virulence in mammals, we independently generated three mouse-adapted variants of A/Shanghai/2/2013 (H7N9) by serial passage in mice. The mouse lethal doses (MLD50) of the mouse-adapted variants were reduced >1000-100000-fold when compared to the parental virus. Adapted variants displayed enhanced replication kinetics in vivo, and were capable of replicating in multiple organs. Analysis of adapted viral genomes revealed a total of 14 amino acid changes among the three variant viruses in the PA (T97I, K328R, P332T, and Q556R), HA (H3 numbering; A107T, R220I, L226Q, and R354K), NP (A284T and M352I), NA (M26I, N142S, and G389D), and M1 (M128R) proteins. Notably, many of these adaptive amino acid changes have been identified in naturally occurring H7 isolates. Our results identify amino acid substitutions that collectively enhance the ability of a human H7N9 virus to replicate and cause severe disease in mice.
Collapse
Affiliation(s)
- Yongkun Zhao
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Military Veterinary Research Institute, Academy of Military Medical Sciences, Changchun 130122, People's Republic of China
| | - Zhijun Yu
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Military Veterinary Research Institute, Academy of Military Medical Sciences, Changchun 130122, People's Republic of China; Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100021, People's Republic of China
| | - Linna Liu
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Military Veterinary Research Institute, Academy of Military Medical Sciences, Changchun 130122, People's Republic of China
| | - Tiecheng Wang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Military Veterinary Research Institute, Academy of Military Medical Sciences, Changchun 130122, People's Republic of China
| | - Weiyang Sun
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Military Veterinary Research Institute, Academy of Military Medical Sciences, Changchun 130122, People's Republic of China
| | - Chengyu Wang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Military Veterinary Research Institute, Academy of Military Medical Sciences, Changchun 130122, People's Republic of China
| | - Zhiping Xia
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Military Veterinary Research Institute, Academy of Military Medical Sciences, Changchun 130122, People's Republic of China
| | - Yuwei Gao
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Military Veterinary Research Institute, Academy of Military Medical Sciences, Changchun 130122, People's Republic of China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, People's Republic of China
| | - Bo Zhou
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Military Veterinary Research Institute, Academy of Military Medical Sciences, Changchun 130122, People's Republic of China
| | - Jun Qian
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Military Veterinary Research Institute, Academy of Military Medical Sciences, Changchun 130122, People's Republic of China.
| | - Xianzhu Xia
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Military Veterinary Research Institute, Academy of Military Medical Sciences, Changchun 130122, People's Republic of China; Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100021, People's Republic of China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, People's Republic of China; Beijing Institute of Biotechnology, Beijing 100071, People's Republic of China.
| |
Collapse
|
12
|
Replication-Competent Influenza A and B Viruses Expressing a Fluorescent Dynamic Timer Protein for In Vitro and In Vivo Studies. PLoS One 2016; 11:e0147723. [PMID: 26809059 PMCID: PMC4725730 DOI: 10.1371/journal.pone.0147723] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 01/07/2016] [Indexed: 01/13/2023] Open
Abstract
Influenza A and B viruses (IAV and IBV, respectively) cause annual seasonal human respiratory disease epidemics. In addition, IAVs have been implicated in occasional pandemics with inordinate health and economic consequences. Studying influenza viruses in vitro or in vivo requires the use of laborious secondary methodologies to identify infected cells. To circumvent this requirement, replication-competent infectious influenza viruses expressing an easily traceable fluorescent reporter protein can be used. Timer is a fluorescent protein that undergoes a time-dependent color emission conversion from green to red. The rate of spectral change is independent of Timer protein concentration and can be used to chronologically measure the duration of its expression. Here, we describe the generation of replication-competent IAV and IBV where the viral non-structural protein 1 (NS1) was fused to the fluorescent dynamic Timer protein. Timer-expressing IAV and IBV displayed similar plaque phenotypes and growth kinetics to wild-type viruses in tissue culture. Within infected cells, Timer’s spectral shift can be used to measure the rate and cell-to-cell spread of infection using fluorescent microscopy, plate readers, or flow cytometry. The progression of Timer-expressing IAV infection was also evaluated in a mouse model, demonstrating the feasibility to characterize IAV cell-to-cell infections in vivo. By providing the ability to chronologically track viral spread, Timer-expressing influenza viruses are an excellent option to evaluate the in vitro and in vivo dynamics of viral infection.
Collapse
|
13
|
Molecular Determinants of Virulence and Stability of a Reporter-Expressing H5N1 Influenza A Virus. J Virol 2015; 89:11337-46. [PMID: 26339046 DOI: 10.1128/jvi.01886-15] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 08/24/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED We previously reported that an H5N1 virus carrying the Venus reporter gene, which was inserted into the NS gene segment from the A/Puerto Rico/8/1934(H1N1) virus (Venus-H5N1 virus), became more lethal to mice, and the reporter gene was stably maintained after mouse adaptation compared with the wild-type Venus-H5N1 (WT-Venus-H5N1) virus. However, the basis for this difference in virulence and Venus stability was unclear. Here, we investigated the molecular determinants behind this virulence and reporter stability by comparing WT-Venus-H5N1 virus with a mouse-adapted Venus-H5N1 (MA-Venus-H5N1) virus. To determine the genetic basis for these differences, we used reverse genetics to generate a series of reassortants of these two viruses. We found that reassortants with PB2 from MA-Venus-H5N1 (MA-PB2), MA-PA, or MA-NS expressed Venus more stably than did WT-Venus-H5N1 virus. We also found that a single mutation in PB2 (V25A) or in PA (R443K) increased the virulence of the WT-Venus-H5N1 virus in mice and that the presence of both of these mutations substantially enhanced the pathogenicity of the virus. Our results suggest roles for PB2 and PA in the stable maintenance of a foreign protein as an NS1 fusion protein in influenza A virus. IMPORTANCE The ability to visualize influenza viruses has far-reaching benefits in influenza virus research. Previously, we reported that an H5N1 virus bearing the Venus reporter gene became more pathogenic to mice and that its reporter gene was more highly expressed and more stably maintained after mouse adaptation. Here, we investigated the molecular determinants behind this enhanced virulence and reporter stability. We found that mutations in PB2 (V25A) and PA (R443K) play crucial roles in the stable maintenance of a foreign protein as an NS1 fusion protein in influenza A virus and in the virulence of influenza virus in mice. Our findings further our knowledge of the pathogenicity of influenza virus in mammals and will help advance influenza virus-related live-imaging studies in vitro and in vivo.
Collapse
|
14
|
Su S, Tian J, Hong M, Zhou P, Lu G, Zhu H, Zhang G, Lai A, Li S. Global and quantitative proteomic analysis of dogs infected by avian-like H3N2 canine influenza virus. Front Microbiol 2015; 6:228. [PMID: 25883591 PMCID: PMC4382988 DOI: 10.3389/fmicb.2015.00228] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 03/08/2015] [Indexed: 12/20/2022] Open
Abstract
Canine influenza virus A (H3N2) is a newly emerged etiological agent for respiratory infections in dogs. The mechanism of interspecies transmission from avian to canine species and the development of diseases in this new host remain to be explored. To investigate this, we conducted a differential proteomics study in 2-month-old beagles inoculated intranasally with 10(6) TCID50 of A/canine/Guangdong/01/2006 (H3N2) virus. Lung sections excised at 12 h post-inoculation (hpi), 4 days, and 7 days post-inoculation (dpi) were processed for global and quantitative analysis of differentially expressed proteins. A total of 17,796 proteins were identified at different time points. About 1.6% was differentially expressed between normal and infected samples. Of these, 23, 27, and 136 polypeptides were up-regulated, and 14, 18, and 123 polypeptides were down-regulated, at 12 hpi, 4 dpi, and 7 dpi, respectively. Vann diagram analysis indicated that 17 proteins were up-regulated and one was down-regulated at all three time points. Selected proteins were validated by real-time PCR and by Western blot. Our results show that apoptosis and cytoskeleton-associated proteins expression was suppressed, whereas interferon-induced proteins plus other innate immunity proteins were induced after the infection. Understanding of the interactions between virus and the host will provide insights into the basis of interspecies transmission, adaptation, and virus pathogenicity.
Collapse
Affiliation(s)
- Shuo Su
- College of Veterinary Medicine, South China Agricultural University Guangzhou, China ; Key Laboratory of Comprehensive Prevention and Control for Severe Clinical Animal Diseases of Guangdong Province Guangzhou, China
| | - Jin Tian
- Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences Harbin, China
| | - Malin Hong
- College of Veterinary Medicine, South China Agricultural University Guangzhou, China ; Key Laboratory of Comprehensive Prevention and Control for Severe Clinical Animal Diseases of Guangdong Province Guangzhou, China
| | - Pei Zhou
- College of Veterinary Medicine, South China Agricultural University Guangzhou, China ; Key Laboratory of Comprehensive Prevention and Control for Severe Clinical Animal Diseases of Guangdong Province Guangzhou, China
| | - Gang Lu
- College of Veterinary Medicine, South China Agricultural University Guangzhou, China ; Key Laboratory of Comprehensive Prevention and Control for Severe Clinical Animal Diseases of Guangdong Province Guangzhou, China
| | - Huachen Zhu
- State Key Laboratory for Emerging Infectious Diseases and Center for Influenza Research, School of Public Health, The University of Hong Kong Hong Kong, China
| | - Guihong Zhang
- College of Veterinary Medicine, South China Agricultural University Guangzhou, China
| | - Alexander Lai
- College of Arts and Sciences, Kentucky State University Frankfort, KY, USA
| | - Shoujun Li
- College of Veterinary Medicine, South China Agricultural University Guangzhou, China ; Key Laboratory of Comprehensive Prevention and Control for Severe Clinical Animal Diseases of Guangdong Province Guangzhou, China
| |
Collapse
|
15
|
Fukuyama S, Katsura H, Zhao D, Ozawa M, Ando T, Shoemaker JE, Ishikawa I, Yamada S, Neumann G, Watanabe S, Kitano H, Kawaoka Y. Multi-spectral fluorescent reporter influenza viruses (Color-flu) as powerful tools for in vivo studies. Nat Commun 2015; 6:6600. [PMID: 25807527 PMCID: PMC4389232 DOI: 10.1038/ncomms7600] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2014] [Accepted: 02/10/2015] [Indexed: 12/31/2022] Open
Abstract
Seasonal influenza A viruses cause annual epidemics of respiratory disease; highly pathogenic avian H5N1 and the recently emerged H7N9 viruses cause severe infections in humans, often with fatal outcomes. Although numerous studies have addressed the pathogenicity of influenza viruses, influenza pathogenesis remains incompletely understood. Here we generate influenza viruses expressing fluorescent proteins of different colours ('Color-flu' viruses) to facilitate the study of viral infection in in vivo models. On adaptation to mice, stable expression of the fluorescent proteins in infected animals allows their detection by different types of microscopy and by flow cytometry. We use this system to analyse the progression of viral spread in mouse lungs, for live imaging of virus-infected cells, and for differential gene expression studies in virus antigen-positive and virus antigen-negative live cells in the lungs of Color-flu-infected mice. Collectively, Color-flu viruses are powerful tools to analyse virus infections at the cellular level in vivo to better understand influenza pathogenesis.
Collapse
Affiliation(s)
- Satoshi Fukuyama
- Exploratory Research for Advanced Technology Infection-Induced Host Responses Project, Japan Science and Technology Agency (JST), Kawaguchi, Saitama 332-0012, Japan
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
| | - Hiroaki Katsura
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
| | - Dongming Zhao
- Exploratory Research for Advanced Technology Infection-Induced Host Responses Project, Japan Science and Technology Agency (JST), Kawaguchi, Saitama 332-0012, Japan
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
| | - Makoto Ozawa
- Laboratory of Animal Hygiene, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima 890-0065, Japan
- Transboundary Animal Distance Center, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima 890-0065, Japan
| | - Tomomi Ando
- Exploratory Research for Advanced Technology Infection-Induced Host Responses Project, Japan Science and Technology Agency (JST), Kawaguchi, Saitama 332-0012, Japan
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
| | - Jason E. Shoemaker
- Exploratory Research for Advanced Technology Infection-Induced Host Responses Project, Japan Science and Technology Agency (JST), Kawaguchi, Saitama 332-0012, Japan
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
| | - Izumi Ishikawa
- Exploratory Research for Advanced Technology Infection-Induced Host Responses Project, Japan Science and Technology Agency (JST), Kawaguchi, Saitama 332-0012, Japan
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
| | - Shinya Yamada
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
| | - Gabriele Neumann
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin 53711, USA
| | - Shinji Watanabe
- Exploratory Research for Advanced Technology Infection-Induced Host Responses Project, Japan Science and Technology Agency (JST), Kawaguchi, Saitama 332-0012, Japan
- Laboratory of Veterinary Microbiology, Department of Veterinary Sciences, University of Miyazaki, Miyazaki 889-2192, Japan
| | - Hiroaki Kitano
- Exploratory Research for Advanced Technology Infection-Induced Host Responses Project, Japan Science and Technology Agency (JST), Kawaguchi, Saitama 332-0012, Japan
- The Systems Biology Institute, Minato-ku, Tokyo 108-0071, Japan
- Sony Computer Science Laboratories, Shinagawa-ku, Tokyo 141-0022, Japan
- Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa 904-0495, Japan
| | - Yoshihiro Kawaoka
- Exploratory Research for Advanced Technology Infection-Induced Host Responses Project, Japan Science and Technology Agency (JST), Kawaguchi, Saitama 332-0012, Japan
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin 53711, USA
- Department of Special Pathogens, International Research Center for Infectious Diseases, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
| |
Collapse
|
16
|
Almeida AM, Bassols A, Bendixen E, Bhide M, Ceciliani F, Cristobal S, Eckersall PD, Hollung K, Lisacek F, Mazzucchelli G, McLaughlin M, Miller I, Nally JE, Plowman J, Renaut J, Rodrigues P, Roncada P, Staric J, Turk R. Animal board invited review: advances in proteomics for animal and food sciences. Animal 2015; 9:1-17. [PMID: 25359324 PMCID: PMC4301196 DOI: 10.1017/s1751731114002602] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 09/27/2014] [Indexed: 01/15/2023] Open
Abstract
Animal production and health (APH) is an important sector in the world economy, representing a large proportion of the budget of all member states in the European Union and in other continents. APH is a highly competitive sector with a strong emphasis on innovation and, albeit with country to country variations, on scientific research. Proteomics (the study of all proteins present in a given tissue or fluid - i.e. the proteome) has an enormous potential when applied to APH. Nevertheless, for a variety of reasons and in contrast to disciplines such as plant sciences or human biomedicine, such potential is only now being tapped. To counter such limited usage, 6 years ago we created a consortium dedicated to the applications of Proteomics to APH, specifically in the form of a Cooperation in Science and Technology (COST) Action, termed FA1002--Proteomics in Farm Animals: www.cost-faproteomics.org. In 4 years, the consortium quickly enlarged to a total of 31 countries in Europe, as well as Israel, Argentina, Australia and New Zealand. This article has a triple purpose. First, we aim to provide clear examples on the applications and benefits of the use of proteomics in all aspects related to APH. Second, we provide insights and possibilities on the new trends and objectives for APH proteomics applications and technologies for the years to come. Finally, we provide an overview and balance of the major activities and accomplishments of the COST Action on Farm Animal Proteomics. These include activities such as the organization of seminars, workshops and major scientific conferences, organization of summer schools, financing Short-Term Scientific Missions (STSMs) and the generation of scientific literature. Overall, the Action has attained all of the proposed objectives and has made considerable difference by putting proteomics on the global map for animal and veterinary researchers in general and by contributing significantly to reduce the East-West and North-South gaps existing in the European farm animal research. Future activities of significance in the field of scientific research, involving members of the action, as well as others, will likely be established in the future.
Collapse
Affiliation(s)
- A. M. Almeida
- Instituto de Investigação Científica Tropical, CVZ – Centro de Veterinária e Zootecnia, Av. Univ. Técnica, 1300-477 Lisboa, Portugal
- CIISA – Centro Interdisciplinar de Investigação em Sanidade Animal, 1300-477 Lisboa, Portugal
- ITQB – Instituto de Tecnologia Química e Biológica da UNL, 2780-157 Oeiras, Portugal
- IBET – Instituto de Biologia Experimental e Tecnológica, 2780-157 Oeiras, Portugal
| | - A. Bassols
- Departament de Bioquímica i Biologia Molecular, Facultat de Veterinària, Universitat Autònoma de Barcelona,08193 Cerdanyola del Vallès, Spain
| | - E. Bendixen
- Institute of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark
| | - M. Bhide
- Laboratory of Biomedical Microbiology and Immunology, University of Veterinary Medicine and Pharmacy, Komenskeho-73 Kosice, Slovakia
| | - F. Ceciliani
- Department of Veterinary Science and Public Health, Università di Milano, Via Celoria 10, 20133 Milano, Italy
| | - S. Cristobal
- Department of Clinical and Experimental Medicine, Division of Cell Biology, Faculty of Health Science, Linköping University, SE-581 85 Linköping, Sweden
- IKERBASQUE, Basque Foundation for Science, Department of Physiology, Faculty of Medicine and Dentistry, University of Basque Country,48940 Leioa, Bizkaia, Spain
| | - P. D. Eckersall
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Garscube Estate, Glasgow G61 1QH, UK
| | - K. Hollung
- Nofima AS, PO Box 210, NO-1431 Aas, Norway
| | - F. Lisacek
- Swiss Institute of Bioinformatics, CMU – Rue Michel-Servet 1, 1211 Geneva 4, Switzerland
| | - G. Mazzucchelli
- Mass Spectrometry Laboratory, GIGA-Research, Department of Chemistry, University of Liège, 4000 Liège, Belgium
| | - M. McLaughlin
- Division of Veterinary Bioscience, School of Veterinary Medicine, University of Glasgow, Garscube Estate, Glasgow G61 1QH, UK
| | - I. Miller
- Institute of Medical Biochemistry, University of Veterinary Medicine, Veterinaerplatz 1, A-1210 Vienna, Austria
| | - J. E. Nally
- National Animal Disease Center, Bacterial Diseases of Livestock Research Unit, Agricultural Research Service, United States Department of Agriculture, Ames, IA 50010, USA
| | - J. Plowman
- Food & Bio-Based Products, AgResearch, Lincoln Research Centre, Christchurch 8140, New Zealand
| | - J. Renaut
- Department of Environment and Agrobiotechnologies, Centre de Recherche Public – Gabriel Lippmann, 41 rue du Brill, L-4422 Belvaux, Luxembourg
| | - P. Rodrigues
- CCMAR – Centre of Marine Sciences of Algarve, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - P. Roncada
- Department of Veterinary Science and Public Health, Istituto Sperimentale Italiano L. Spallanzani Milano, University of Milano, 20133 Milano, Italy
| | - J. Staric
- Clinic for Ruminants with Ambulatory Clinic, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000 Ljubljana, Slovenia
| | - R. Turk
- Department of Pathophysiology, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10000 Zagreb, Croatia
| |
Collapse
|
17
|
Sun J, Han Z, Shao Y, Cao Z, Kong X, Liu S. Comparative proteome analysis of tracheal tissues in response to infectious bronchitis coronavirus, Newcastle disease virus, and avian influenza virus H9 subtype virus infection. Proteomics 2014; 14:1403-23. [PMID: 24610701 PMCID: PMC7167649 DOI: 10.1002/pmic.201300404] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2013] [Revised: 02/16/2014] [Accepted: 03/04/2014] [Indexed: 01/29/2023]
Abstract
Infectious bronchitis coronavirus (IBV), Newcastle disease virus (NDV), and avian influenza virus (AIV) H9 subtype are major pathogens of chickens causing serious respiratory tract disease and heavy economic losses. To better understand the replication features of these viruses in their target organs and molecular pathogenesis of these different viruses, comparative proteomic analysis was performed to investigate the proteome changes of primary target organ during IBV, NDV, and AIV H9 infections, using 2D‐DIGE followed MALDI‐TOF/TOF‐MS. In total, 44, 39, 41, 48, and 38 proteins were identified in the tracheal tissues of the chickens inoculated with IBV (ck/CH/LDL/97I, H120), NDV (La Sota), and AIV H9, and between ck/CH/LDL/97I and H120, respectively. Bioinformatics analysis showed that IBV, NDV, and AIV H9 induced similar core host responses involved in biosynthetic, catabolic, metabolic, signal transduction, transport, cytoskeleton organization, macromolecular complex assembly, cell death, response to stress, and immune system process. Comparative analysis of host response induced by different viruses indicated differences in protein expression changes induced by IBV, NDV, and AIV H9 may be responsible for the specific pathogenesis of these different viruses. Our result reveals specific host response to IBV, NDV, and AIVH9 infections and provides insights into the distinct pathogenic mechanisms of these avian respiratory viruses.
Collapse
Affiliation(s)
- Junfeng Sun
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, P. R. China
| | | | | | | | | | | |
Collapse
|
18
|
Kroeker AL, Coombs KM. Systems biology unravels interferon responses to respiratory virus infections. World J Biol Chem 2014; 5:12-25. [PMID: 24600511 PMCID: PMC3942539 DOI: 10.4331/wjbc.v5.i1.12] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Revised: 12/11/2013] [Accepted: 01/06/2014] [Indexed: 02/05/2023] Open
Abstract
Interferon production is an important defence against viral replication and its activation is an attractive therapeutic target. However, it has long been known that viruses perpetually evolve a multitude of strategies to evade these host immune responses. In recent years there has been an explosion of information on virus-induced alterations of the host immune response that have resulted from data-rich omics technologies. Unravelling how these systems interact and determining the overall outcome of the host response to viral infection will play an important role in future treatment and vaccine development. In this review we focus primarily on the interferon pathway and its regulation as well as mechanisms by which respiratory RNA viruses interfere with its signalling capacity.
Collapse
|
19
|
Zhang J, Hu YH, Xiao ZZ, Sun L. Megalocytivirus-induced proteins of turbot (Scophthalmus maximus): identification and antiviral potential. J Proteomics 2013; 91:430-43. [PMID: 23933595 DOI: 10.1016/j.jprot.2013.07.033] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 07/24/2013] [Accepted: 07/30/2013] [Indexed: 11/19/2022]
Abstract
UNLABELLED Megalocytivirus is an important fish pathogen with a broad host range that includes turbot. In this study, proteomic analysis was conducted to examine turbot proteins modulated in expression by megalocytivirus infection. Thirty five proteins from spleen were identified to be differentially expressed at 2days post-viral infection (dpi) and 7dpi. Three upregulated proteins, i.e. heat shock protein 70 (Hsp70), Mx protein, and natural killer enhancing factor (NKEF), were further analyzed for potential antiviral effect. For this purpose, turbot were administered separately with the plasmids pHsp70, pMx, and pNKEF, which express Hsp70, Mx, and NKEF respectively, before megalocytivirus infection. Viral dissemination and propagation in spleen were subsequently determined. The results showed that the viral loads in fish administered with pNKEF were significantly reduced. To examine the potential of Hsp70, Mx, and NKEF as immunological adjuvant, turbot were immunized with a DNA vaccine in the presence of pHsp70, pMx, or pNKEF. Subsequent analysis showed that the presence of pNKEF and pHsp70, but not pMx, significantly reduced viral infection and enhanced fish survival. Taken together, these results indicate that NKEF exhibits antiviral property against megalocytivirus, and that both NKEF and Hsp70 may be used in DNA vaccine-based control of megalocytivirus infection. BIOLOGICAL SIGNIFICANCE This study provides the first proteomic picture of turbot in response to megalocytivirus infection. We demonstrated that megalocytivirus infection modulates the expression of turbot proteins associated with various cellular functions, and that one of the upregulated proteins, NKEF, exhibits antiviral effect when overexpressed in vivo, while another upregulated protein, Hsp70, exhibits adjuvant effect when co-immunized with a DNA vaccine. These results add molecular insights into turbot immune response induced by megalocytivirus and provide candidate proteins with application potentials in the control of megalocytivirus-associated disease.
Collapse
Affiliation(s)
- Jian Zhang
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Graduate University of Chinese Academy of Sciences, Beijing 100049, China
| | | | | | | |
Collapse
|
20
|
Berard A, Kroeker AL, Coombs KM. Transcriptomics and quantitative proteomics in virology. Future Virol 2012. [DOI: 10.2217/fvl.12.112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|