1
|
Schilling T, Biedendieck R, Moran-Torres R, Saaranen MJ, Ruddock LW, Daniel R, van Dijl JM. Toward Antibody Production in Genome-Minimized Bacillus subtilis Strains. ACS Synth Biol 2025; 14:740-755. [PMID: 40013841 PMCID: PMC11934139 DOI: 10.1021/acssynbio.4c00688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 01/10/2025] [Accepted: 02/13/2025] [Indexed: 02/28/2025]
Abstract
Bacillus subtilis is a bacterial cell factory with outstanding protein secretion capabilities that has been deployed as a workhorse for the production of industrial enzymes for more than a century. Nevertheless, the production of other proteins with B. subtilis, such as antibody formats, has thus far been challenging due to specific requirements that relate to correct protein folding and disulfide bond formation upon export from the cytoplasm. In the present study, we explored the possibility of producing functional antibody formats, such as scFvs and scFabs, using the genome-reduced Midi- and MiniBacillus strain lineage. The applied workflow included selection of optimal chassis strains, appropriate expression vectors, signal peptides, growth media, and analytical methods to verify the functionality of the secreted antibody fragments. The production of scFv fragments was upscaled to the 1 L bioreactor level. As demonstrated for a human C-reactive protein-binding scFv antibody by mass spectrometry, biolayer interferometry, circular dichroism, free thiol cross-linking with N-ethylmaleimide, and nano-differential scanning fluorimetry, MidiBacillus strains can secrete fully functional, natively folded, disulfide-bonded, and thermostable antibody fragments. We therefore conclude that genome-reduced B. subtilis chassis strains are capable of secreting high-quality antibody fragments.
Collapse
Affiliation(s)
- Tobias Schilling
- University
Medical Center Groningen, Department of Medical Microbiology, University of Groningen, Hanzeplein 1, P.O. Box 30001, 9700RB Groningen, The Netherlands
| | - Rebekka Biedendieck
- Braunschweig
Centre of Systems Biology (BRICS) and Institute of Microbiology, Technische Universität Braunschweig, Rebenring 56, 38106 Braunschweig, Germany
| | - Rafael Moran-Torres
- Theoretical
Biophysics, Humboldt-Universität
zu Berlin, 10115 Berlin, Germany
| | - Mirva J. Saaranen
- Faculty
of Biochemistry and Molecular Medicine, Protein and Structural Biology
Research Unit, University of Oulu, Aapistie 7B, 90220 Oulu, Finland
| | - Lloyd W. Ruddock
- Faculty
of Biochemistry and Molecular Medicine, Protein and Structural Biology
Research Unit, University of Oulu, Aapistie 7B, 90220 Oulu, Finland
| | - Rolf Daniel
- Institute
of Microbiology and Genetics, Department of Genomic and Applied Microbiology, Georg-August-Universität Göttingen, Grisebachstr. 8, 37077 Göttingen, Germany
| | - Jan Maarten van Dijl
- University
Medical Center Groningen, Department of Medical Microbiology, University of Groningen, Hanzeplein 1, P.O. Box 30001, 9700RB Groningen, The Netherlands
| |
Collapse
|
2
|
Öktem A, Pranoto DA, van Dijl JM. Post-translational secretion stress regulation in Bacillus subtilis is controlled by intra- and extracellular proteases. N Biotechnol 2024; 79:71-81. [PMID: 38158017 DOI: 10.1016/j.nbt.2023.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/20/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024]
Abstract
The Gram-positive bacterium Bacillus subtilis is a prolific producer of industrial enzymes that are effectively harvested from the fermentation broth. However, the high capacity of B. subtilis for protein secretion has so far not been exploited to the full due to particular bottlenecks, including product degradation by extracellular proteases and counterproductive secretion stress responses. To unlock the Bacillus secretion pathway for difficult-to-produce proteins, various cellular interventions have been explored, including genome engineering. Our previous research has shown a superior performance of genome-reduced B. subtilis strains in the production of staphylococcal antigens compared to the parental strain 168. This was attributed, at least in part, to redirected secretion stress responses, including the presentation of elevated levels of the quality control proteases HtrA and HtrB that also catalyse protein folding. Here we show that this relates to the elimination of two homologous serine proteases, namely the cytosolic protease AprX and the extracellular protease AprE. This unprecedented posttranslational regulation of secretion stress effectors, like HtrA and HtrB, by the concerted action of cytosolic and extracellular proteases has important implications for the biotechnological application of microbial cell factories. In B. subtilis, this conclusion is underscored by extracellular degradation of the staphylococcal antigen IsaA by both AprX and AprE. Extracellular activity of the cytosolic protease AprX is remarkable since it shows that not only extracellular, but also intracellular proteases impact extracellular product levels. We therefore conclude that intracellular proteases represent new targets for improved recombinant protein production in microbial cell factories like B. subtilis.
Collapse
Affiliation(s)
- Ayşegül Öktem
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, the Netherlands
| | - Dicky A Pranoto
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, the Netherlands
| | - Jan Maarten van Dijl
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, the Netherlands.
| |
Collapse
|
3
|
Schilling T, Ferrero-Bordera B, Neef J, Maaβ S, Becher D, van Dijl JM. Let There Be Light: Genome Reduction Enables Bacillus subtilis to Produce Disulfide-Bonded Gaussia Luciferase. ACS Synth Biol 2023; 12:3656-3668. [PMID: 38011677 PMCID: PMC10729301 DOI: 10.1021/acssynbio.3c00444] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 11/09/2023] [Accepted: 11/17/2023] [Indexed: 11/29/2023]
Abstract
Bacillus subtilis is a major workhorse for enzyme production in industrially relevant quantities. Compared to mammalian-based expression systems, B. subtilis presents intrinsic advantages, such as high growth rates, high space-time yield, unique protein secretion capabilities, and low maintenance costs. However, B. subtilis shows clear limitations in the production of biopharmaceuticals, especially proteins from eukaryotic origin that contain multiple disulfide bonds. In the present study, we deployed genome minimization, signal peptide screening, and coexpression of recombinant thiol oxidases as strategies to improve the ability of B. subtilis to secrete proteins with multiple disulfide bonds. Different genome-reduced strains served as the chassis for expressing the model protein Gaussia Luciferase (GLuc), which contains five disulfide bonds. These chassis lack extracellular proteases, prophages, and key sporulation genes. Importantly, compared to the reference strain with a full-size genome, the best-performing genome-minimized strain achieved over 3000-fold increased secretion of active GLuc while growing to lower cell densities. Our results show that high-level GLuc secretion relates, at least in part, to the absence of major extracellular proteases. In addition, we show that the thiol-disulfide oxidoreductase requirements for disulfide bonding have changed upon genome reduction. Altogether, our results highlight genome-engineered Bacillus strains as promising expression platforms for proteins with multiple disulfide bonds.
Collapse
Affiliation(s)
- Tobias Schilling
- Department
of Medical Microbiology, University of Groningen,
University Medical Center Groningen, Hanzeplein 1, P.O. Box 30001, 9700RB Groningen, The Netherlands
| | - Borja Ferrero-Bordera
- Institute
of Microbiology Department of Microbial Proteomics, University of Greifswald, D-17489 Greifswald, Germany
| | - Jolanda Neef
- Department
of Medical Microbiology, University of Groningen,
University Medical Center Groningen, Hanzeplein 1, P.O. Box 30001, 9700RB Groningen, The Netherlands
| | - Sandra Maaβ
- Institute
of Microbiology Department of Microbial Proteomics, University of Greifswald, D-17489 Greifswald, Germany
| | - Dörte Becher
- Institute
of Microbiology Department of Microbial Proteomics, University of Greifswald, D-17489 Greifswald, Germany
| | - Jan Maarten van Dijl
- Department
of Medical Microbiology, University of Groningen,
University Medical Center Groningen, Hanzeplein 1, P.O. Box 30001, 9700RB Groningen, The Netherlands
| |
Collapse
|
4
|
Belcher LJ, Dewar AE, Hao C, Ghoul M, West SA. Signatures of kin selection in a natural population of the bacteria Bacillus subtilis. Evol Lett 2023; 7:315-330. [PMID: 37829498 PMCID: PMC10565896 DOI: 10.1093/evlett/qrad029] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/14/2023] [Accepted: 07/07/2023] [Indexed: 10/14/2023] Open
Abstract
Laboratory experiments have suggested that bacteria perform a range of cooperative behaviors, which are favored because they are directed toward relatives (kin selection). However, there is a lack of evidence for cooperation and kin selection in natural bacterial populations. Molecular population genetics offers a promising method to study natural populations because the theory predicts that kin selection will lead to relaxed selection, which will result in increased polymorphism and divergence at cooperative genes. Examining a natural population of Bacillus subtilis, we found consistent evidence that putatively cooperative traits have higher polymorphism and greater divergence than putatively private traits expressed at the same rate. In addition, we were able to eliminate alternative explanations for these patterns and found more deleterious mutations in genes controlling putatively cooperative traits. Overall, our results suggest that cooperation is favored by kin selection, with an average relatedness of r = .79 between interacting individuals.
Collapse
Affiliation(s)
| | - Anna E Dewar
- Department of Biology, University of Oxford, Oxford, United Kingdom
| | - Chunhui Hao
- Department of Biology, University of Oxford, Oxford, United Kingdom
| | - Melanie Ghoul
- Department of Biology, University of Oxford, Oxford, United Kingdom
| | - Stuart A West
- Department of Biology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
5
|
Li X, Zhang Y, Zhan Y, Tian H, Yan B, Cai J. Utilization of a strong promoter combined with the knockout of protease genes to improve the yield of Vip3Aa in Bacillus thuringiensis BMB171. PEST MANAGEMENT SCIENCE 2023; 79:1713-1720. [PMID: 36622044 DOI: 10.1002/ps.7343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 12/15/2022] [Accepted: 01/09/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Vip3Aa is an insecticidal protein secreted by some Bacillus thuringiensis strains during vegetative growth. It has excellent insecticidal activity, its mechanism of action is different from that of Cry protein, and it can delay the development of pest resistance. To date, Vip3Aa has been widely used in genetically modified Bt crops. However, the secretion of Vip3Aa by industrial production strains is usually very low. Moreover, most of the Vip3Aa in the medium is degraded by proteases, limiting its application as a biopesticide. RESULTS We report a novel constitutive strong promoter from B. thuringiensis, Prsi , which directs the abundant expression of vip3Aa in B. thuringiensis BMB171. Furthermore, to reduce the degradation of Vip3Aa caused by proteases, we constructed B. thuringiensis mutants in which different protease genes were knocked out. We found that the degradation of Vip3Aa was greatly inhibited and its yield was significantly improved in a mutant that lacked all three protease genes. CONCLUSION Our results provide a new strategy to enhance the production of Vip3Aa in B. thuringiensis and have reference value for the research and development of novel bioinsecticides. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xuelian Li
- Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Yanli Zhang
- Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Yunda Zhan
- Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Hongwei Tian
- Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Bing Yan
- Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Jun Cai
- Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, China
- Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin, China
| |
Collapse
|
6
|
Guo T, Cui Y, Zhang L, Xu X, Xu Z, Kong J. Holin-assisted bacterial recombinant protein export. Biotechnol Bioeng 2022; 119:2908-2918. [PMID: 35822237 DOI: 10.1002/bit.28179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 06/22/2022] [Accepted: 07/11/2022] [Indexed: 11/05/2022]
Abstract
A simple generic method for enhancing extracellular protein yields in engineered bacteria is still lacking. Here, we demonstrated that phage-encoded holin can be used to export proteins to the extracellular medium in both Gram-negative Escherichia coli and -positive Lactococcus lactis. When a putative holin gene LLNZ_RS10380 annotated in the genome of L. lactis NZ9000 (hol380) was recombinantly expressed in E. coli BL21(DE3), the Hol380 oligomerized up to hexamer in the cytoplasmic membrane, yielding membrane pore to allow the passage of cytosolic β-galatosidase (116 kDa), whose extracellular production reached 54.59 U/μL, accounting for 76.37% of the total activity. However, the overexpressed Hol380 could not release cytosolic proteins across the membrane in L. lactis NZ9000, but increased the secretory production of staphylococcal nuclease to 2.55-fold and fimbrial adhesin FaeG to 2.40-fold compared with those guided by signal peptide Usp45 alone. By using a combination of proteomics and transcriptional level analysis, we found that overexpression of the Hol380 raised the accumulation of Ffh and YidC involved in the signal recognition particle pathway in L. lactis, suggesting an alternative road participating in protein secretion. This study proposed a new approach by expressing holin in bacterial cell factories to export target proteins of economic or medical interest. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Tingting Guo
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao, 266237, P. R. China
| | - Yue Cui
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao, 266237, P. R. China
| | - Lingwen Zhang
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao, 266237, P. R. China
| | - Xiaoning Xu
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao, 266237, P. R. China
| | - Zhenxiang Xu
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao, 266237, P. R. China
| | - Jian Kong
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao, 266237, P. R. China
| |
Collapse
|
7
|
Zhang J, Zhu B, Li X, Xu X, Li D, Zeng F, Zhou C, Liu Y, Li Y, Lu F. Multiple Modular Engineering of Bacillus Amyloliquefaciens Cell Factories for Enhanced Production of Alkaline Proteases From B. Clausii. Front Bioeng Biotechnol 2022; 10:866066. [PMID: 35497355 PMCID: PMC9046661 DOI: 10.3389/fbioe.2022.866066] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 03/29/2022] [Indexed: 11/13/2022] Open
Abstract
Bacillus amyloliquefaciens is a generally recognized as safe (GRAS) microorganism that presents great potential for the production of heterologous proteins. In this study, we performed genomic and comparative transcriptome to investigate the critical modular in B. amyloliquefaciens on the production of heterologous alkaline proteases (AprE). After investigation, it was concluded that the key modules affecting the production of alkaline protease were the sporulation germination module (Module I), extracellular protease synthesis module (Module II), and extracellular polysaccharide synthesis module (Module III) in B. amyloliquefaciens. In Module I, AprE yield for mutant BA ΔsigF was 25.3% greater than that of BA Δupp. Combining Module I synergistically with mutation of extracellular proteases in Module II significantly increased AprE production by 36.1% compared with production by BA Δupp. In Module III, the mutation of genes controlling extracellular polysaccharides reduced the viscosity and the accumulation of sediment, and increased the rate of dissolved oxygen in fermentation. Moreover, AprE production was 39.6% higher than in BA Δupp when Modules I, II and III were engineered in combination. This study provides modular engineering strategies for the modification of B. amyloliquefaciens for the production of alkaline proteases.
Collapse
Affiliation(s)
- Jinfang Zhang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, the College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Baoyue Zhu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, the College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Xinyue Li
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, the College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Xiaojian Xu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, the College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Dengke Li
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, the College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Fang Zeng
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, the College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Cuixia Zhou
- School of Biology and Brewing Engineering, Taishan University, Taian, China
| | - Yihan Liu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, the College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Yu Li
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, the College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Fuping Lu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, the College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| |
Collapse
|
8
|
Suzuki S, Osada S, Imamura D, Sato T. New Bacillus subtilis vector, pSSβ, as genetic tool for site-specific integration and excision of cloned DNA, and prophage elimination. J GEN APPL MICROBIOL 2022; 68:71-78. [PMID: 35387911 DOI: 10.2323/jgam.2021.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Site-specific recombination (SSR) systems are employed in many genetic mobile elements, including temperate phages, for their integration and excision. Recently, they have also been used as tools for applications in fields ranging from basic to synthetic biology. SPβ is a temperate phage of the Siphoviridae family found in the laboratory standard Bacillus subtilis strain 168. SPβ encodes a serine-type recombinase, SprA, and recombination directionality factor (RDF), SprB. SprA catalyzes recombination between the attachment site of the phage, attP, and that of the host, attB, to integrate phage genome into the attB site of the host genome and generate attL and attR at both ends of the prophage genome. SprB works in conjunction with SprA and switches from attB/attP to attL/R recombination, which leads to excision of the prophage. In the present study, we took advantage of this highly efficient recombination system to develop a site-specific integration and excision plasmid vector, named pSSβ. It was constructed using pUC plasmid and the SSR system components, attP, sprA and sprB of SPβ. pSSβ was integrated into the attB site with a significantly high efficiency, and the resulting pSSβ integrated strain also easily eliminated pSSβ itself from the host genome by the induction of SprB expression with xylose. This report presents two applications using pSSβ that are particularly suitable for gene complementation experiments and for a curing system of SPβ prophage, that may serve as a model system for the removal of prophages in other bacteria.
Collapse
Affiliation(s)
- Shota Suzuki
- Research Center of Micro-Nano Technology, Hosei University.,Department of Life Science, College of Science, Rikkyo University
| | - Sachie Osada
- Department of Frontier Bioscience, Hosei University
| | | | - Tsutomu Sato
- Research Center of Micro-Nano Technology, Hosei University.,Department of Frontier Bioscience, Hosei University
| |
Collapse
|
9
|
Harwood CR, Kikuchi Y. The ins and outs of Bacillus proteases: activities, functions and commercial significance. FEMS Microbiol Rev 2021; 46:6354784. [PMID: 34410368 PMCID: PMC8767453 DOI: 10.1093/femsre/fuab046] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 08/17/2021] [Indexed: 12/23/2022] Open
Abstract
Because the majority of bacterial species divide by binary fission, and do not have distinguishable somatic and germline cells, they could be considered to be immortal. However, bacteria ‘age’ due to damage to vital cell components such as DNA and proteins. DNA damage can often be repaired using efficient DNA repair mechanisms. However, many proteins have a functional ‘shelf life’; some are short lived, while others are relatively stable. Specific degradation processes are built into the life span of proteins whose activities are required to fulfil a specific function during a prescribed period of time (e.g. cell cycle, differentiation process, stress response). In addition, proteins that are irreparably damaged or that have come to the end of their functional life span need to be removed by quality control proteases. Other proteases are involved in performing a variety of specific functions that can be broadly divided into three categories: processing, regulation and feeding. This review presents a systematic account of the proteases of Bacillus subtilis and their activities. It reviews the proteases found in, or associated with, the cytoplasm, the cell membrane, the cell wall and the external milieu. Where known, the impacts of the deletion of particular proteases are discussed, particularly in relation to industrial applications.
Collapse
Affiliation(s)
- Colin R Harwood
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University NE2 4AX, Newcastle upon Tyne, UK
| | - Yoshimi Kikuchi
- Research Institute for Bioscience Products & Fine Chemicals, Ajinomoto Co., Inc., Kawasaki 210-8681, JAPAN
| |
Collapse
|
10
|
Recombinant protein secretion by Bacillus subtilis and Lactococcus lactis: pathways, applications, and innovation potential. Essays Biochem 2021; 65:187-195. [PMID: 33955475 PMCID: PMC8314018 DOI: 10.1042/ebc20200171] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/15/2021] [Accepted: 04/16/2021] [Indexed: 01/01/2023]
Abstract
Secreted recombinant proteins are of great significance for industry, healthcare and a sustainable bio-based economy. Consequently, there is an ever-increasing need for efficient production platforms to deliver such proteins in high amounts and high quality. Gram-positive bacteria, particularly bacilli such as Bacillus subtilis, are favored for the production of secreted industrial enzymes. Nevertheless, recombinant protein production in the B. subtilis cell factory can be very challenging due to bottlenecks in the general (Sec) secretion pathway as well as this bacterium’s intrinsic capability to secrete a cocktail of highly potent proteases. This has placed another Gram-positive bacterium, Lactococcus lactis, in the focus of attention as an alternative, non-proteolytic, cell factory for secreted proteins. Here we review our current understanding of the secretion pathways exploited in B. subtilis and L. lactis to deliver proteins from their site of synthesis, the cytoplasm, into the fermentation broth. An advantage of this cell factory comparison is that it identifies opportunities for protein secretion pathway engineering to remove or bypass current production bottlenecks. Noteworthy new developments in cell factory engineering are the mini-Bacillus concept, highlighting potential advantages of massive genome minimization, and the application of thus far untapped ‘non-classical’ protein secretion routes. Altogether, it is foreseen that engineered lactococci will find future applications in the production of high-quality proteins at the relatively small pilot scale, while engineered bacilli will remain a favored choice for protein production in bulk.
Collapse
|
11
|
Engineering Bacillus subtilis Cells as Factories: Enzyme Secretion and Value-added Chemical Production. BIOTECHNOL BIOPROC E 2020. [DOI: 10.1007/s12257-020-0104-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
12
|
Fragment Exchange Plasmid Tools for CRISPR/Cas9-Mediated Gene Integration and Protease Production in Bacillus subtilis. Appl Environ Microbiol 2020; 87:AEM.02090-20. [PMID: 33097498 PMCID: PMC7755240 DOI: 10.1128/aem.02090-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 10/14/2020] [Indexed: 12/26/2022] Open
Abstract
We complemented a cloning platform with new editing plasmids that allow a quick transition from high-throughput cloning and the expression of new enzymes to the stable integration of genes for the production of enzymes through B. subtilis fermentation. We present two systems for the effective assembly cloning of any genome-editing cassette that shortens the engineering procedure to obtain the final editing constructs. The utility of the customized tools is demonstrated by disrupting Bacillus’ capacity to sporulate and by introducing the stable expression of subtilisin. The tools should be useful to engineer B. subtilis strains by a variety of recombination events to ultimately improve the application range of this industry-relevant host. Since its discovery as part of the bacterial adaptative immune system, CRISPR/Cas has emerged as the most promising tool for targeted genome editing over the past few years. Various tools for genome editing in Bacillus subtilis have recently been developed, expanding and simplifying its potential development as an industrial species. A collection of vectors compatible with high-throughput (HTP) fragment exchange (FX) cloning for heterologous expression in Escherichia coli and Bacillus was previously developed. This vector catalogue was through this work supplemented with editing plasmids for genome engineering in Bacillus by adapting two CRISPR/Cas plasmids to the cloning technology. The customized tools allow versatile editing at any chosen genomic position (single-plasmid strategy) or at a fixed genomic locus (double-plasmid strategy). The single-plasmid strategy was validated by deleting the spoIIAC gene, which has an essential role in sporulation. Using the double-plasmid strategy, we demonstrate the quick transition from plasmid-based subtilisin expression to the stable integration of the gene into the amyE locus of a seven-protease-deficient KO7 strain. The newly engineered B. subtilis strain allowed the successful production of a functional enzyme. The customized tools provide improvements to the cloning procedure, should be useful for versatile genomic engineering, and contribute to a cloning platform for a quick transition from HTP enzyme expression to production through the fermentation of industrially relevant B. subtilis and related strains. IMPORTANCE We complemented a cloning platform with new editing plasmids that allow a quick transition from high-throughput cloning and the expression of new enzymes to the stable integration of genes for the production of enzymes through B. subtilis fermentation. We present two systems for the effective assembly cloning of any genome-editing cassette that shortens the engineering procedure to obtain the final editing constructs. The utility of the customized tools is demonstrated by disrupting Bacillus’ capacity to sporulate and by introducing the stable expression of subtilisin. The tools should be useful to engineer B. subtilis strains by a variety of recombination events to ultimately improve the application range of this industry-relevant host.
Collapse
|
13
|
Zhang K, Su L, Wu J. Recent Advances in Recombinant Protein Production byBacillus subtilis. Annu Rev Food Sci Technol 2020; 11:295-318. [DOI: 10.1146/annurev-food-032519-051750] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Bacillus subtilis has become a widely used microbial cell factory for the production of recombinant proteins, especially those associated with foods and food processing. Recent advances in genetic manipulation and proteomic analysis have been used to greatly improve protein production in B. subtilis. This review begins with a discussion of genome-editing technologies and application of the CRISPR–Cas9 system to B. subtilis. A summary of the characteristics of crucial legacy strains is followed by suggestions regarding the choice of origin strain for genetic manipulation. Finally, the review analyzes the genes and operons of B. subtilis that are important for the production of secretory proteins and provides suggestions and examples of how they can be altered to improve protein production. This review is intended to promote the engineering of this valuable microbial cell factory for better recombinant protein production.
Collapse
Affiliation(s)
- Kang Zhang
- State Key Laboratory of Food Science and Technology, School of Biotechnology, Key Laboratory of Industrial Biotechnology, Ministry of Education, and International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Lingqia Su
- State Key Laboratory of Food Science and Technology, School of Biotechnology, Key Laboratory of Industrial Biotechnology, Ministry of Education, and International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Jing Wu
- State Key Laboratory of Food Science and Technology, School of Biotechnology, Key Laboratory of Industrial Biotechnology, Ministry of Education, and International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
14
|
Bashir Z, Sheng L, Anil A, Lali A, Minton NP, Zhang Y. Engineering Geobacillus thermoglucosidasius for direct utilisation of holocellulose from wheat straw. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:199. [PMID: 31452680 PMCID: PMC6701081 DOI: 10.1186/s13068-019-1540-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 08/06/2019] [Indexed: 05/29/2023]
Abstract
BACKGROUND A consolidated bioprocessing (CBP), where lignocellulose is converted into the desired product(s) in a single fermentative step without the addition of expensive degradative enzymes, represents the ideal solution of renewable routes to chemicals and fuels. Members of the genus Geobacillus are able to grow at elevated temperatures and are able to utilise a wide range of oligosaccharides derived from lignocellulose. This makes them ideally suited to the development of CBP. RESULTS In this study, we engineered Geobacillus thermoglucosidasius NCIMB 11955 to utilise lignocellulosic biomass, in the form of nitric acid/ammonia treated wheat straw to which expensive hydrolytic enzymes had not been added. Two different strains, BZ9 and BZ10, were generated by integrating the cglT (β-1,4-glucosidase) gene from Thermoanaerobacter brockii into the genome, and localising genes encoding different cellulolytic enzymes on autonomous plasmids. The plasmid of strain BZ10 carried a synthetic cellulosomal operon comprising the celA (Endoglucanase A) gene from Clostridium thermocellum and cel6B (Exoglucanase) from Thermobifida fusca; whereas, strain BZ9 contained a plasmid encoding the celA (multidomain cellulase) gene from Caldicellulosiruptor bescii. All of the genes were successfully expressed, and their encoded products secreted in a functionally active form, as evidenced by their detection in culture supernatants by Western blotting and enzymatic assay. In the case of the C. bescii CelA enzyme, this is one of the first times that the heterologous production of this multi-functional enzyme has been achieved in a heterologous host. Both strains (BZ9 and BZ10) exhibited improved growth on pre-treated wheat straw, achieving a higher final OD600 and producing greater numbers of viable cells. To demonstrate that cellulosic ethanol can be produced directly from lignocellulosic biomass by a single organism, we established our consortium of hydrolytic enzymes in a previously engineered ethanologenic G. thermoglucosidasius strain, LS242. We observed approximately twofold and 1.6-fold increase in ethanol production in the recombinant G. thermoglucosidasius equivalent to BZ9 and BZ10, respectively, compared to G. thermoglucosidasius LS242 strain at 24 h of growth. CONCLUSION We engineered G. thermoglucosidasius to utilise a real-world lignocellulosic biomass substrate and demonstrated that cellulosic ethanol can be produced directly from lignocellulosic biomass in one step. Direct conversion of biomass into desired products represents a new paradigm for CBP, offering the potential for carbon neutral, cost-effective production of sustainable chemicals and fuels.
Collapse
Affiliation(s)
- Zeenat Bashir
- Clostridia Research Group, BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), School of Life Sciences, University of Nottingham, University Park, Nottingham, NG7 2RD UK
| | - Lili Sheng
- Clostridia Research Group, BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), School of Life Sciences, University of Nottingham, University Park, Nottingham, NG7 2RD UK
| | - Annamma Anil
- DBT-ICT Centre for Energy Biosciences, Institute of Chemical Technology, Nathalal Parikh Marg, Mumbai, 400019 India
| | - Arvind Lali
- DBT-ICT Centre for Energy Biosciences, Institute of Chemical Technology, Nathalal Parikh Marg, Mumbai, 400019 India
| | - Nigel P. Minton
- Clostridia Research Group, BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), School of Life Sciences, University of Nottingham, University Park, Nottingham, NG7 2RD UK
| | - Ying Zhang
- Clostridia Research Group, BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), School of Life Sciences, University of Nottingham, University Park, Nottingham, NG7 2RD UK
| |
Collapse
|
15
|
Kondakova OA, Nikitin NA, Evtushenko EA, Ryabchevskaya EM, Atabekov JG, Karpova OV. Vaccines against anthrax based on recombinant protective antigen: problems and solutions. Expert Rev Vaccines 2019; 18:813-828. [PMID: 31298973 DOI: 10.1080/14760584.2019.1643242] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Introduction: Anthrax is a dangerous bio-terror agent because Bacillus anthracis spores are highly resilient and can be easily aerosolized and disseminated. There is a threat of deliberate use of anthrax spores aerosol that could lead to serious fatal diseases outbreaks. Existing control measures against inhalation form of the disease are limited. All of this has provided an impetus to the development of new generation vaccines. Areas сovered: This review is devoted to challenges and achievements in the design of vaccines based on the anthrax recombinant protective antigen (rPA). Scientific databases have been searched, focusing on causes of PA instability and solutions to this problem, including new approaches of rPA expression, novel rPA-based vaccines formulations as well as the simultaneous usage of PA with other anthrax antigens. Expert opinion: PA is a central anthrax toxin component, playing a key role in the defense against encapsulated and unencapsulated strains. Subunit rPA-based vaccines have a good safety and protective profile. However, there are problems of PA instability that are greatly enhanced when using aluminum adjuvants. New adjuvant compositions, dry formulations and resistant to proteolysis and deamidation mutant PA forms can help to handle this issue. Devising a modern anthrax vaccine requires huge efforts.
Collapse
Affiliation(s)
- Olga A Kondakova
- a Department of Virology, Faculty of Biology, Lomonosov Moscow State University , Moscow , Russian Federation
| | - Nikolai A Nikitin
- a Department of Virology, Faculty of Biology, Lomonosov Moscow State University , Moscow , Russian Federation
| | - Ekaterina A Evtushenko
- a Department of Virology, Faculty of Biology, Lomonosov Moscow State University , Moscow , Russian Federation
| | - Ekaterina M Ryabchevskaya
- a Department of Virology, Faculty of Biology, Lomonosov Moscow State University , Moscow , Russian Federation
| | - Joseph G Atabekov
- a Department of Virology, Faculty of Biology, Lomonosov Moscow State University , Moscow , Russian Federation
| | - Olga V Karpova
- a Department of Virology, Faculty of Biology, Lomonosov Moscow State University , Moscow , Russian Federation
| |
Collapse
|
16
|
Zhao L, Ye B, Zhang Q, Cheng D, Zhou C, Cheng S, Yan X. Construction of second generation protease-deficient hosts of Bacillus subtilis for secretion of foreign proteins. Biotechnol Bioeng 2019; 116:2052-2060. [PMID: 30989640 DOI: 10.1002/bit.26992] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 03/18/2019] [Accepted: 04/11/2019] [Indexed: 12/23/2022]
Abstract
Although one of the major factors limiting the application of Bacillus subtilis as an expression host has been its production of at least eight extracellular proteases, researchers have also noticed that some proteases benefited the secretion of foreign proteins at times. Therefore, to maximize the yield of a foreign protein, the proteases should be selectively inactivated. This raises a new question that how to identify the favorable and unfavorable proteases for a target protein. Here, an evaluation system containing nine mutant strains of B. subtilis 168 was developed to address this question. The mutant strain PD8 has all the eight proteases inactivated whereas each of the other eight mutant strains expresses only one kind of these eight proteases. The target protein is secreted in these nine mutant strains; if the production of target protein in a mutant strain is higher than that in strain PD8, the corresponding protease is regarded as favorable. Accordingly, the optimal protease-deficient host is constructed through inactivating the unfavorable proteases. The effectiveness of this system was confirmed by expressing three foreign proteins. This study provides a strategy for improving the secretion of a foreign protein in B. subtilis through tailoring a personalized protease-deficient host.
Collapse
Affiliation(s)
- Leizhen Zhao
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, People's Republic of China
| | - Bin Ye
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, People's Republic of China
| | - Qi Zhang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, People's Republic of China
| | - Dan Cheng
- Laboratory Center of Life Sciences, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, People's Republic of China
| | - Chaoyang Zhou
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, People's Republic of China
| | - Shan Cheng
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, People's Republic of China
| | - Xin Yan
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, People's Republic of China.,Provincial Key Laboratory of Agrobiology, Institute of Agro-biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, People's Republic of China
| |
Collapse
|
17
|
Holland ATN, Danson MJ, Bolhuis A. Inhibition of extracellular proteases improves the production of a xylanase in Parageobacillus thermoglucosidasius. BMC Biotechnol 2019; 19:17. [PMID: 30894163 PMCID: PMC6425571 DOI: 10.1186/s12896-019-0511-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 03/13/2019] [Indexed: 11/10/2022] Open
Abstract
Background Parageobacillus thermoglucosidasius is a thermophilic and ethanol-producing bacterium capable of utilising both hexose and pentose sugars for fermentation. The organism has been proposed to be a suitable organism for the production of bioethanol from lignocellulosic feedstocks. These feedstocks may be difficult to degrade, and a potential strategy to optimise this process is to engineer strains that secrete hydrolases that liberate increased amounts of sugars from those feedstocks. However, very little is known about protein transport in P. thermoglucosidasius and the limitations of that process, and as a first step we investigated whether there were bottlenecks in the secretion of a model protein. Results A secretory enzyme, xylanase (XynA1), was produced with and without its signal peptide. Cell cultures were fractionated into cytoplasm, membrane, cell wall, and extracellular milieu protein extracts, which were analysed using immunoblotting and enzyme activity assays. The main bottleneck identified was proteolytic degradation of XynA1 during or after its translocation. A combination of mass spectrometry and bioinformatics indicated the presence of several proteases that might be involved in this process. Conclusion The creation of protease-deficient strains may be beneficial towards the development of P. thermoglucosidasius as a platform organism for industrial processes. Electronic supplementary material The online version of this article (10.1186/s12896-019-0511-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Alexandria T N Holland
- Department of Pharmacy and Pharmacology, University of Bath, Claverton Down, Bath, BA2 7AY, UK.,Present address: Centre for Biomolecular Sciences, University of Nottingham, Nottingham, UK
| | - Michael J Danson
- Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - Albert Bolhuis
- Department of Pharmacy and Pharmacology, University of Bath, Claverton Down, Bath, BA2 7AY, UK.
| |
Collapse
|
18
|
Heinrich J, Drewniok C, Neugebauer E, Kellner H, Wiegert T. The YoaW signal peptide directs efficient secretion of different heterologous proteins fused to a StrepII-SUMO tag in Bacillus subtilis. Microb Cell Fact 2019; 18:31. [PMID: 30732606 PMCID: PMC6366066 DOI: 10.1186/s12934-019-1078-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 01/29/2019] [Indexed: 01/05/2023] Open
Abstract
Background Heterologous gene expression is well established for various prokaryotic model systems. However, low yield, incorrect folding and instability still impede the production of soluble, bioactive proteins. To improve protein production with the Gram-positive host Bacillus subtilis, a secretory expression system was designed that enhances translocation, folding and stability of heterologous proteins, and simplifies purification. Based on the theta-replication plasmid pHT01, a B. subtilis secretory expression vector was constructed that encodes a fusion protein consisting of a signal peptide and a StrepII-tag linked to a SUMO-tag serving as a folding catalyst. The gene of a protein of interest can be translationally fused to the SUMO cassette and an additional 6xHis-tag encoding region. In order to maximize secretory expression of the construct by fitting the signal peptide to the StrepII-SUMO part of the fusion protein, a B. subtilis signal-peptide library was screened with the Escherichia coli alkaline phosphatase PhoA as a reporter. Results The YoaW signal peptide-encoding region (SPyoaW) was identified with highest secretory expression capacity in context with the StrepII-SUMO-tag fusion in a B. subtilis eightfold extracellular protease deletion strain. PhoA activity and fusion protein production was elevated by a factor of approximately five when compared to an α-amylase (AmyQ) signal peptide construct. Replacement of PhoA with a single-chain variable fragment antibody specific for GFP or the B. amyloliquefaciens RNase barnase, respectively, resulted in a similar enhancement of secretory expression, demonstrating universality of the YoaW signal peptide-StrepII-SUMO encoding cassette for secretory expression in B. subtilis. Optimisation of codon usage and culture conditions further increased GFP-specific scFv fusion-protein production, and a simple affinity purification strategy from culture supernatant with removal of the StrepII-SUMO-tag by SenP-processing yielded 4 mg of pure, soluble and active GFP-specific scFv from 1 l of culture under standard laboratory conditions. Conclusions The new expression system employing a YoaW signal peptide-StrepII-SUMO fusion will simplify secretory protein production and purification with B. subtilis. It can obviate the need for time consuming individual signal-peptide fitting to maximize yield for many different heterologous proteins of interest. Electronic supplementary material The online version of this article (10.1186/s12934-019-1078-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Janine Heinrich
- Department of Microbiology, Faculty of Natural and Environmental Sciences, University of Applied Sciences Zittau/Görlitz, Theodor-Körner-Allee 16, 02763, Zittau, Germany
| | - Chris Drewniok
- Department of Microbiology, Faculty of Natural and Environmental Sciences, University of Applied Sciences Zittau/Görlitz, Theodor-Körner-Allee 16, 02763, Zittau, Germany
| | - Eva Neugebauer
- EUROIMMUN AG, Im Kreppel 1, 02747, Herrnhut/Rennersdorf, Germany
| | - Harald Kellner
- Department of Bio- and Environmental Sciences, International Institute Zittau, Technical University of Dresden, Markt 23, 02763, Zittau, Germany
| | - Thomas Wiegert
- Department of Microbiology, Faculty of Natural and Environmental Sciences, University of Applied Sciences Zittau/Görlitz, Theodor-Körner-Allee 16, 02763, Zittau, Germany.
| |
Collapse
|
19
|
Aguilar Suárez R, Stülke J, van Dijl JM. Less Is More: Toward a Genome-Reduced Bacillus Cell Factory for "Difficult Proteins". ACS Synth Biol 2019; 8:99-108. [PMID: 30540431 PMCID: PMC6343112 DOI: 10.1021/acssynbio.8b00342] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
![]()
The availability of complete genome
sequences and the definition
of essential gene sets were fundamental in the start of the genome
engineering era. In a recent study, redundant and unnecessary genes
were systematically deleted from the Gram-positive bacterium Bacillus subtilis, an industrial production host of high-value
secreted proteins. This culminated in strain PG10, which lacks about
36% of the genome, thus representing the most minimal Bacillus chassis currently available. Here, we show that this “miniBacillus” strain has synthetic traits that are favorable
for producing “difficult-to-produce proteins”. As exemplified
with different staphylococcal antigens, PG10 overcomes several bottlenecks
in protein production related to the secretion process and instability
of the secreted product. These findings show for the first time that
massive genome reduction can substantially improve secretory protein
production by a bacterial expression host, and underpin the high potential
of genome-engineered strains as future cell factories.
Collapse
Affiliation(s)
- Rocío Aguilar Suárez
- University Medical Center Groningen, University of Groningen, 9712 CP Groningen, The Netherlands
| | - Jörg Stülke
- Institute of Microbiology and Genetics, Georg-August University Göttingen, 37077 Göttingen, Germany
| | - Jan Maarten van Dijl
- University Medical Center Groningen, University of Groningen, 9712 CP Groningen, The Netherlands
| |
Collapse
|
20
|
Advances and prospects of Bacillus subtilis cellular factories: From rational design to industrial applications. Metab Eng 2018; 50:109-121. [DOI: 10.1016/j.ymben.2018.05.006] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 05/02/2018] [Accepted: 05/10/2018] [Indexed: 01/29/2023]
|
21
|
Huang GL, Gosschalk JE, Kim YS, Ogorzalek Loo RR, Clubb RT. Stabilizing displayed proteins on vegetative Bacillus subtilis cells. Appl Microbiol Biotechnol 2018; 102:6547-6565. [PMID: 29796970 PMCID: PMC6289300 DOI: 10.1007/s00253-018-9062-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 04/26/2018] [Accepted: 04/27/2018] [Indexed: 10/16/2022]
Abstract
Microbes engineered to display heterologous proteins could be useful biotechnological tools for protein engineering, lignocellulose degradation, biocatalysis, bioremediation, and biosensing. Bacillus subtilis is a promising host to display proteins, as this model Gram-positive bacterium is genetically tractable and already used industrially to produce enzymes. To gain insight into the factors that affect displayed protein stability and copy number, we systematically compared the ability of different protease-deficient B. subtilis strains (WB800, BRB07, BRB08, and BRB14) to display a Cel8A-LysM reporter protein in which the Clostridium thermocellum Cel8A endoglucanase is fused to LysM cell wall binding modules. Whole-cell cellulase measurements and fractionation experiments demonstrate that genetically eliminating extracytoplasmic bacterial proteases improves Cel8A-LysM display levels. However, upon entering stationary phase, for all protease-deficient strains, the amount of displayed reporter dramatically decreases, presumably as a result of cellular autolysis. This problem can be partially overcome by adding chemical protease inhibitors, which significantly increase protein display levels. We conclude that strain BRB08 is well suited for stably displaying our reporter protein, as genetic removal of its extracellular and cell wall-associated proteases leads to the highest levels of surface-accumulated Cel8A-LysM without causing secretion stress or impairing growth. A two-step procedure is presented that enables the construction of enzyme-coated vegetative B. subtilis cells that retain stable cell-associated enzyme activity for nearly 3 days. The results of this work could aid the development of whole-cell display systems that have useful biotechnological applications.
Collapse
Affiliation(s)
- Grace L Huang
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 611 Charles Young Drive East, Los Angeles, CA, 90095, USA
- UCLA-DOE Institute of Genomics and Proteomics, University of California, Los Angeles, 611 Charles Young Drive East, Los Angeles, CA, 90095, USA
| | - Jason E Gosschalk
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 611 Charles Young Drive East, Los Angeles, CA, 90095, USA
| | - Ye Seong Kim
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 611 Charles Young Drive East, Los Angeles, CA, 90095, USA
| | - Rachel R Ogorzalek Loo
- UCLA-DOE Institute of Genomics and Proteomics, University of California, Los Angeles, 611 Charles Young Drive East, Los Angeles, CA, 90095, USA
- Department of Biological Chemistry, University of California, Los Angeles, 611 Charles Young Drive East, Los Angeles, CA, 90095, USA
| | - Robert T Clubb
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 611 Charles Young Drive East, Los Angeles, CA, 90095, USA.
- Molecular Biology Institute, University of California, Los Angeles, 611 Charles Young Drive East, Los Angeles, CA, 90095, USA.
| |
Collapse
|
22
|
Busche T, Tsolis KC, Koepff J, Rebets Y, Rückert C, Hamed MB, Bleidt A, Wiechert W, Lopatniuk M, Yousra A, Anné J, Karamanou S, Oldiges M, Kalinowski J, Luzhetskyy A, Economou A. Multi-Omics and Targeted Approaches to Determine the Role of Cellular Proteases in Streptomyces Protein Secretion. Front Microbiol 2018; 9:1174. [PMID: 29915569 PMCID: PMC5994538 DOI: 10.3389/fmicb.2018.01174] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 05/15/2018] [Indexed: 01/29/2023] Open
Abstract
Gram-positive Streptomyces bacteria are profuse secretors of polypeptides using complex, yet unknown mechanisms. Many of their secretory proteins are proteases that play important roles in the acquisition of amino acids from the environment. Other proteases regulate cellular proteostasis. To begin dissecting the possible role of proteases in Streptomyces secretion, we applied a multi-omics approach. We probed the role of the 190 proteases of Streptomyces lividans strain TK24 in protein secretion in defined media at different stages of growth. Transcriptomics analysis revealed transcripts for 93% of these proteases and identified that 41 of them showed high abundance. Proteomics analysis identified 57 membrane-embedded or secreted proteases with variations in their abundance. We focused on 17 of these proteases and putative inhibitors and generated strains deleted of their genes. These were characterized in terms of their fitness, transcriptome and secretome changes. In addition, we performed a targeted analysis in deletion strains that also carried a secretion competent mRFP. One strain, carrying a deletion of the gene for the regulatory protease FtsH, showed significant global changes in overall transcription and enhanced secretome and secreted mRFP levels. These data provide a first multi-omics effort to characterize the complex regulatory mechanisms of protein secretion in Streptomyces lividans and lay the foundations for future rational manipulation of this process.
Collapse
Affiliation(s)
- Tobias Busche
- Center for Biotechnology, Bielefeld University, Bielefeld, Germany.,Institute for Biology-Microbiology, Freie Universität Berlin, Berlin, Germany
| | - Konstantinos C Tsolis
- Department of Microbiology and Immunology, Rega Institute, KU Leuven, Leuven, Belgium
| | - Joachim Koepff
- IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Institute of Bio- and Geosciences, Jülich, Germany
| | - Yuriy Rebets
- Helmholtz-Zentrum für Infektionsforschung GmbH, Braunschweig, Germany.,Pharmazeutische Biotechnologie, Universität des Saarlandes, Saarbrücken, Germany
| | | | - Mohamed B Hamed
- Department of Microbiology and Immunology, Rega Institute, KU Leuven, Leuven, Belgium.,Department of Molecular Biology, National Research Centre, Giza, Egypt
| | - Arne Bleidt
- IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Institute of Bio- and Geosciences, Jülich, Germany
| | - Wolfgang Wiechert
- IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Institute of Bio- and Geosciences, Jülich, Germany
| | - Mariia Lopatniuk
- Pharmazeutische Biotechnologie, Universität des Saarlandes, Saarbrücken, Germany
| | - Ahmed Yousra
- Pharmazeutische Biotechnologie, Universität des Saarlandes, Saarbrücken, Germany
| | - Jozef Anné
- Department of Microbiology and Immunology, Rega Institute, KU Leuven, Leuven, Belgium
| | - Spyridoula Karamanou
- Department of Microbiology and Immunology, Rega Institute, KU Leuven, Leuven, Belgium
| | - Marco Oldiges
- IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Institute of Bio- and Geosciences, Jülich, Germany.,Institute of Biotechnology, RWTH Aachen University, Aachen, Germany
| | - Jörn Kalinowski
- Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Andriy Luzhetskyy
- Helmholtz-Zentrum für Infektionsforschung GmbH, Braunschweig, Germany
| | - Anastassios Economou
- Department of Microbiology and Immunology, Rega Institute, KU Leuven, Leuven, Belgium
| |
Collapse
|
23
|
Drejer EB, Hakvåg S, Irla M, Brautaset T. Genetic Tools and Techniques for Recombinant Expression in Thermophilic Bacillaceae. Microorganisms 2018; 6:microorganisms6020042. [PMID: 29748477 PMCID: PMC6027425 DOI: 10.3390/microorganisms6020042] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 05/02/2018] [Accepted: 05/03/2018] [Indexed: 01/17/2023] Open
Abstract
Although Escherichia coli and Bacillus subtilis are the most prominent bacterial hosts for recombinant protein production by far, additional species are being explored as alternatives for production of difficult-to-express proteins. In particular, for thermostable proteins, there is a need for hosts able to properly synthesize, fold, and excrete these in high yields, and thermophilic Bacillaceae represent one potentially interesting group of microorganisms for such purposes. A number of thermophilic Bacillaceae including B.methanolicus, B.coagulans, B.smithii, B.licheniformis, Geobacillus thermoglucosidasius, G. kaustophilus, and G. stearothermophilus are investigated concerning physiology, genomics, genetic tools, and technologies, altogether paving the way for their utilization as hosts for recombinant production of thermostable and other difficult-to-express proteins. Moreover, recent successful deployments of CRISPR/Cas9 in several of these species have accelerated the progress in their metabolic engineering, which should increase their attractiveness for future industrial-scale production of proteins. This review describes the biology of thermophilic Bacillaceae and in particular focuses on genetic tools and methods enabling use of these organisms as hosts for recombinant protein production.
Collapse
Affiliation(s)
- Eivind B Drejer
- Department of Biotechnology and Food Science, NTNU: Norwegian University of Science and Technology, 7491 Trondheim, Norway.
| | - Sigrid Hakvåg
- Department of Biotechnology and Food Science, NTNU: Norwegian University of Science and Technology, 7491 Trondheim, Norway.
| | - Marta Irla
- Department of Biotechnology and Food Science, NTNU: Norwegian University of Science and Technology, 7491 Trondheim, Norway.
| | - Trygve Brautaset
- Department of Biotechnology and Food Science, NTNU: Norwegian University of Science and Technology, 7491 Trondheim, Norway.
| |
Collapse
|
24
|
Zhang K, Su L, Wu J. Enhanced extracellular pullulanase production in Bacillus subtilis using protease-deficient strains and optimal feeding. Appl Microbiol Biotechnol 2018; 102:5089-5103. [DOI: 10.1007/s00253-018-8965-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Revised: 03/20/2018] [Accepted: 03/23/2018] [Indexed: 12/20/2022]
|
25
|
Lakowitz A, Godard T, Biedendieck R, Krull R. Mini review: Recombinant production of tailored bio-pharmaceuticals in different Bacillus strains and future perspectives. Eur J Pharm Biopharm 2017; 126:27-39. [PMID: 28606596 DOI: 10.1016/j.ejpb.2017.06.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 05/30/2017] [Accepted: 06/07/2017] [Indexed: 01/06/2023]
Abstract
Bio-pharmaceuticals like antibodies, hormones and growth factors represent about one-fifth of commercial pharmaceuticals. Host candidates of growing interest for recombinant production of these proteins are strains of the genus Bacillus, long being established for biotechnological production of homologous and heterologous proteins. Bacillus strains benefit from development of efficient expression systems in the last decades and emerge as major industrial workhorses for recombinant proteins due to easy cultivation, non-pathogenicity and their ability to secrete recombinant proteins directly into extracellular medium allowing cost-effective downstream processing. Their broad product portfolio of pharmaceutically relevant recombinant proteins described in research include antibody fragments, growth factors, interferons and interleukins, insulin, penicillin G acylase, streptavidin and different kinases produced in various cultivation systems like microtiter plates, shake flasks and bioreactor systems in batch, fed-batch and continuous mode. To further improve production and secretion performance of Bacillus, bottlenecks and limiting factors concerning proteases, chaperones, secretion machinery or feedback mechanisms can be identified on different cell levels from genomics and transcriptomics via proteomics to metabolomics and fluxomics. For systematical identification of recurring patterns characteristic of given regulatory systems and key genetic targets, systems biology and omics-technology provide suitable and promising approaches, pushing Bacillus further towards industrial application for recombinant pharmaceutical protein production.
Collapse
Affiliation(s)
- Antonia Lakowitz
- Institute of Biochemical Engineering, Technische Universität Braunschweig, Rebenring 56, 38106 Braunschweig, Germany; Center of Pharmaceutical Engineering (PVZ), Technische Universität Braunschweig, Franz-List-Straβe 35a, 38106 Braunschweig, Germany; Braunschweig Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Rebenring 56, 38106 Braunschweig, Germany
| | - Thibault Godard
- Institute of Biochemical Engineering, Technische Universität Braunschweig, Rebenring 56, 38106 Braunschweig, Germany; Center of Pharmaceutical Engineering (PVZ), Technische Universität Braunschweig, Franz-List-Straβe 35a, 38106 Braunschweig, Germany; Braunschweig Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Rebenring 56, 38106 Braunschweig, Germany
| | - Rebekka Biedendieck
- Braunschweig Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Rebenring 56, 38106 Braunschweig, Germany; Institute of Microbiology, Technische Universität Braunschweig, Rebenring 56, 38106 Braunschweig, Germany
| | - Rainer Krull
- Institute of Biochemical Engineering, Technische Universität Braunschweig, Rebenring 56, 38106 Braunschweig, Germany; Center of Pharmaceutical Engineering (PVZ), Technische Universität Braunschweig, Franz-List-Straβe 35a, 38106 Braunschweig, Germany; Braunschweig Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Rebenring 56, 38106 Braunschweig, Germany.
| |
Collapse
|
26
|
Neef J, Bongiorni C, Goosens VJ, Schmidt B, van Dijl JM. Intramembrane protease RasP boosts protein production in Bacillus. Microb Cell Fact 2017; 16:57. [PMID: 28376795 PMCID: PMC5381017 DOI: 10.1186/s12934-017-0673-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 03/31/2017] [Indexed: 11/10/2022] Open
Abstract
Background The microbial cell factory Bacillus subtilis is a popular industrial platform for high-level production of secreted technical enzymes. Nonetheless, the effective secretion of particular heterologous enzymes remains challenging. Over the past decades various studies have tackled this problem, and major improvements were achieved by optimizing signal peptides or removing proteases involved in product degradation. On the other hand, serious bottlenecks in the protein export process per se remained enigmatic, especially for protein secretion at commercially significant levels by cells grown to high density. The aim of our present study was to assess the relevance of the intramembrane protease RasP for high-level protein production in B. subtilis. Results Deletion of the rasP gene resulted in reduced precursor processing and extracellular levels of the overproduced α-amylases AmyE from B. subtilis and AmyL from Bacillus licheniformis. Further, secretion of the overproduced serine protease BPN’ from Bacillus amyloliquefaciens was severely impaired in the absence of RasP. Importantly, overexpression of rasP resulted in threefold increased production of a serine protease from Bacillus clausii, and 2.5- to 10-fold increased production of an AmyAc α-amylase from Paenibacillus curdlanolyticus, depending on the culture conditions. Of note, growth defects due to overproduction of the two latter enzymes were suppressed by rasP-overexpression. Conclusion Here we show that an intramembrane protease, RasP, sets a limit to high-level production of two secreted heterologous enzymes that are difficult to produce in the B. subtilis cell factory. This finding was unexpected and suggests that proteolytic membrane sanitation is key to effective enzyme production in Bacillus.
Collapse
Affiliation(s)
- Jolanda Neef
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, P.O. Box 30001, 9700 RB, Groningen, The Netherlands
| | - Cristina Bongiorni
- DuPont Industrial Biosciences, 925 Page Mill Road, Palo Alto, CA, 94304, USA
| | - Vivianne J Goosens
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, P.O. Box 30001, 9700 RB, Groningen, The Netherlands.,Department of Bioengineering, Centre for Synthetic Biology, Imperial College London, London, SW7 2AZ, UK
| | - Brian Schmidt
- DuPont Industrial Biosciences, 925 Page Mill Road, Palo Alto, CA, 94304, USA
| | - Jan Maarten van Dijl
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, P.O. Box 30001, 9700 RB, Groningen, The Netherlands.
| |
Collapse
|
27
|
Hohmann HP, van Dijl JM, Krishnappa L, Prágai Z. Host Organisms:Bacillus subtilis. Ind Biotechnol (New Rochelle N Y) 2016. [DOI: 10.1002/9783527807796.ch7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Affiliation(s)
- Hans-Peter Hohmann
- Nutrition Innovation Center R&D Biotechnology; DSM Nutritional Products Ltd; Wurmisweg 576 CH-4303 Kaiseraugst Switzerland
| | - Jan M. van Dijl
- University of Groningen, University Medical Center Groningen; Department of Medical Microbiology; Hanzeplein 1 9700 RB Groningen The Netherlands
| | - Laxmi Krishnappa
- University of Groningen, University Medical Center Groningen; Department of Medical Microbiology; Hanzeplein 1 9700 RB Groningen The Netherlands
| | - Zoltán Prágai
- Nutrition Innovation Center R&D Biotechnology; DSM Nutritional Products Ltd; Wurmisweg 576 CH-4303 Kaiseraugst Switzerland
| |
Collapse
|
28
|
Kelwick R, Webb AJ, MacDonald JT, Freemont PS. Development of a Bacillus subtilis cell-free transcription-translation system for prototyping regulatory elements. Metab Eng 2016; 38:370-381. [DOI: 10.1016/j.ymben.2016.09.008] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 09/08/2016] [Accepted: 09/29/2016] [Indexed: 10/20/2022]
|
29
|
Abstract
Bacillus subtilis is one of the best-studied organisms. Due to the broad knowledge and annotation and the well-developed genetic system, this bacterium is an excellent starting point for genome minimization with the aim of constructing a minimal cell. We have analyzed the genome of B. subtilis and selected all genes that are required to allow life in complex medium at 37°C. This selection is based on the known information on essential genes and functions as well as on gene and protein expression data and gene conservation. The list presented here includes 523 and 119 genes coding for proteins and RNAs, respectively. These proteins and RNAs are required for the basic functions of life in information processing (replication and chromosome maintenance, transcription, translation, protein folding, and secretion), metabolism, cell division, and the integrity of the minimal cell. The completeness of the selected metabolic pathways, reactions, and enzymes was verified by the development of a model of metabolism of the minimal cell. A comparison of the MiniBacillus genome to the recently reported designed minimal genome of Mycoplasma mycoides JCVI-syn3.0 indicates excellent agreement in the information-processing pathways, whereas each species has a metabolism that reflects specific evolution and adaptation. The blueprint of MiniBacillus presented here serves as the starting point for a successive reduction of the B. subtilis genome.
Collapse
|
30
|
Secretory expression of a heterologous protein, Aiio-AIO6BS, in Bacillus subtilis via a non-classical secretion pathway. Biochem Biophys Res Commun 2016; 478:881-6. [DOI: 10.1016/j.bbrc.2016.08.045] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 08/08/2016] [Indexed: 12/27/2022]
|
31
|
Neef J, Milder FJ, Koedijk DGAM, Klaassens M, Heezius EC, van Strijp JAG, Otto A, Becher D, van Dijl JM, Buist G. Versatile vector suite for the extracytoplasmic production and purification of heterologous His-tagged proteins in Lactococcus lactis. Appl Microbiol Biotechnol 2015; 99:9037-48. [PMID: 26160391 PMCID: PMC4619460 DOI: 10.1007/s00253-015-6778-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Revised: 06/05/2015] [Accepted: 06/17/2015] [Indexed: 11/25/2022]
Abstract
Recent studies have shown that the Gram-positive bacterium Lactococcus lactis can be exploited for the expression of heterologous proteins; however, a versatile set of vectors suitable for inducible extracellular protein production and subsequent purification of the expressed proteins by immobilized metal affinity chromatography was so far lacking. Here we describe three novel vectors that, respectively, facilitate the nisin-inducible production of N- or C-terminally hexa-histidine (His6)-tagged proteins in L. lactis. One of these vectors also encodes a tobacco etch virus (TEV) protease cleavage site allowing removal of the N-terminal His6-tag from expressed proteins. Successful application of the developed vectors for protein expression, purification and/or functional studies is exemplified with six different cell wall-bound or secreted proteins from Staphylococcus aureus. The results show that secretory production of S. aureus proteins is affected by the position, N- or C-terminal, of the His6-tag. This seems to be due to an influence of the His6-tag on protein stability. Intriguingly, the S. aureus IsdB protein, which is phosphorylated in S. aureus, was also found to be phosphorylated when heterologously produced in L. lactis, albeit not on the same Tyr residue. This implies that this particular post-translational protein modification is to some extent conserved in S. aureus and L. lactis. Altogether, we are confident that the present vector set combined with the L. lactis expression host has the potential to become a very useful tool in optimization of the expression, purification and functional analysis of extracytoplasmic bacterial proteins.
Collapse
Affiliation(s)
- Jolanda Neef
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, P.O. Box 30001, 9700 RB, Groningen, The Netherlands
| | - Fin J Milder
- Department of Medical Microbiology, University Medical Center Utrecht, PO G04.614, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | - Danny G A M Koedijk
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, P.O. Box 30001, 9700 RB, Groningen, The Netherlands
| | - Marindy Klaassens
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, P.O. Box 30001, 9700 RB, Groningen, The Netherlands
| | - Erik C Heezius
- Department of Medical Microbiology, University Medical Center Utrecht, PO G04.614, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | - Jos A G van Strijp
- Department of Medical Microbiology, University Medical Center Utrecht, PO G04.614, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | - Andreas Otto
- Institut für Mikrobiologie, Ernst-Moritz-Arndt Universität Greifswald, Friedrich-Ludwig-Jahn-Str. 15, D-17489, Greifswald, Germany
| | - Dörte Becher
- Institut für Mikrobiologie, Ernst-Moritz-Arndt Universität Greifswald, Friedrich-Ludwig-Jahn-Str. 15, D-17489, Greifswald, Germany
| | - Jan Maarten van Dijl
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, P.O. Box 30001, 9700 RB, Groningen, The Netherlands
| | - Girbe Buist
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, P.O. Box 30001, 9700 RB, Groningen, The Netherlands.
| |
Collapse
|
32
|
Optimization of the secretion pathway for heterologous proteins in Bacillus subtilis. BIOTECHNOL BIOPROC E 2015. [DOI: 10.1007/s12257-014-0843-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
33
|
Molecular engineering of secretory machinery components for high-level secretion of proteins in Bacillus species. ACTA ACUST UNITED AC 2014; 41:1599-607. [DOI: 10.1007/s10295-014-1506-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2014] [Accepted: 08/27/2014] [Indexed: 12/19/2022]
Abstract
Abstract
Secretory expression of valuable enzymes by Bacillus subtilis and its related species has attracted intensive work over the past three decades. Although many proteins have been expressed and secreted, the titers of some recombinant enzymes are still low to meet the needs of practical applications. Signal peptides that located at the N-terminal of nascent peptide chains play crucial roles in the secretion process. In this mini-review, we summarize recent progress in secretory expression of recombinant proteins in Bacillus species. In particular, we highlighted and discussed the advances in molecular engineering of secretory machinery components, construction of signal sequence libraries and identification of functional signal peptides with high-throughput screening strategy. The prospects of future research are also proposed.
Collapse
|
34
|
Dong H, Zhang D. Current development in genetic engineering strategies of Bacillus species. Microb Cell Fact 2014; 13:63. [PMID: 24885003 PMCID: PMC4030025 DOI: 10.1186/1475-2859-13-63] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Accepted: 04/28/2014] [Indexed: 11/28/2022] Open
Abstract
The complete sequencing and annotation of the genomes of industrially-important Bacillus species has enhanced our understanding of their properties, and allowed advances in genetic manipulations in other Bacillus species. Post-genomic studies require simple and highly efficient tools to enable genetic manipulation. Here, we summarize the recent progress in genetic engineering strategies for Bacillus species. We review the available genetic tools that have been developed in Bacillus species, as well as methods developed in other species that may also be applicable in Bacillus. Furthermore, we address the limitations and challenges of the existing methods, and discuss the future research prospects in developing novel and useful tools for genetic modification of Bacillus species.
Collapse
Affiliation(s)
| | - Dawei Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.
| |
Collapse
|
35
|
Degradation of extracytoplasmic catalysts for protein folding in Bacillus subtilis. Appl Environ Microbiol 2013; 80:1463-8. [PMID: 24362423 DOI: 10.1128/aem.02799-13] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The general protein secretion pathway of Bacillus subtilis has a high capacity for protein export from the cytoplasm, which is exploited in the biotechnological production of a wide range of enzymes. These exported proteins pass the membrane in an unfolded state, and accordingly, they have to fold into their active and protease-resistant conformations once membrane passage is completed. The lipoprotein PrsA and the membrane proteins HtrA and HtrB facilitate the extracytoplasmic folding and quality control of exported proteins. Among the native exported proteins of B. subtilis are at least 10 proteases that have previously been implicated in the degradation of heterologous secreted proteins. Recently, we have shown that these proteases also degrade many native membrane proteins, lipoproteins, and secreted proteins. The present studies were therefore aimed at assessing to what extent these proteases also degrade extracytoplasmic catalysts for protein folding. To this end, we employed a collection of markerless protease mutant strains that lack up to 10 different extracytoplasmic proteases. The results show that PrsA, HtrA, and HtrB are indeed substrates of multiple extracytoplasmic proteases. Thus, improved protein secretion by multiple-protease-mutant strains may be related to both reduced proteolysis and improved posttranslocational protein folding and quality control.
Collapse
|