1
|
Xu J, Wang G, Hou Y, Sun K, Zheng Z, Guo Z, Hou L, Zhang X, Ruan Z, Ye Y, Guo F. RICTOR-mediated activation of AKT/mTOR signaling and autophagy inhibition promote osteoarthritis. Int Immunopharmacol 2025; 144:113681. [PMID: 39591826 DOI: 10.1016/j.intimp.2024.113681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 11/10/2024] [Accepted: 11/18/2024] [Indexed: 11/28/2024]
Abstract
The most common joint disease in the elderly is osteoarthritis (OA), which is characterized by synovitis, cartilage degeneration, and osteophytes, for which there are currently no effective therapies. Chondrocytes, responsible for extracellular matrix (ECM) synthesis and degradation, undergo changes in OA, leading to ECM disruption and disease progression. There is no clear role for the Mechanistic target of rapamycin complex 2 (mTORC2) in OA, but it is known to regulate cellular functions, such as proliferation, metabolism, motility, and apoptosis. The purpose of this study was to determine the molecular mechanism by which Rapamycin-insensitive companion of mTOR (RICTOR), a component of mTORC2, contributes to OA progression. The results demonstrate that IL-1β induces high expression of RICTOR in chondrocytes, promoting downregulation of collagen II expression and impairing autophagy. Silencing RICTOR reverses IL-1β-induced downregulating of collagen II expression and mitochondrial dysfunction. RICTOR inhibits chondrocyte autophagy by inhibiting autophagosome formation and preventing autophagosome-lysosome fusion. Additionally, RICTOR promotes oxidative stress in chondrocytes, leading to disruption of normal mitochondrial structure and disturbance of the articular cartilage microenvironment. This study reveals the potential of RICTOR to treat OA. Specifically, blocking mTORC2 might be an effective treatment strategy.
Collapse
Affiliation(s)
- Jingting Xu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Genchun Wang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Orthopedic Medical Center, Union Hospital, Fujian Medical University, Fuzhou, Fujian 350000, China
| | - Yanjun Hou
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Kai Sun
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Zehang Zheng
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Zhou Guo
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Liangcai Hou
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Xiong Zhang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Zhaoxuan Ruan
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Yaping Ye
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| | - Fengjing Guo
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| |
Collapse
|
2
|
Orsini F, Pascente R, Martucci A, Palacino S, Fraser P, Arancio O, Fioriti L. SUMO2 rescues neuronal and glial cells from the toxicity of P301L Tau mutant. Front Cell Neurosci 2024; 18:1437995. [PMID: 39726633 PMCID: PMC11669524 DOI: 10.3389/fncel.2024.1437995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 11/20/2024] [Indexed: 12/28/2024] Open
Abstract
Introduction Abnormal intracellular accumulation of Tau aggregates is a hallmark of Alzheimer's disease (AD) and other Tauopathies, such as Frontotemporal dementia (FTD). Tau deposits primarily affect neurons, but evidence indicates that glial cells may also be affected and contribute distinctively to disease progression. Cells can respond to toxic insults by orchestrating global changes in posttranslational modifications of their proteome. Previous studies suggest that SUMOylation, a posttranslational modification consisting of conjugation of SUMO (Small ubiquitin-like modifier) to target proteins, was decreased in the hippocampus of AD patients and in animal model of AD compared with controls. This decrease in SUMOylation was correlated with increased Tau pathology and cognitive decline. Other studies have reported increased levels of SUMO in AD brains. The goal of our study was to evaluate whether SUMO conjugation modifies the neurodegenerative disease pathology associated with the aggregation-prone mutant TauP301L, in neurons and in glial cells. Methods We used viral approaches to express mutant TauP301L and SUMO2 in the hippocampus of wild-type mice. We assessed Tau distribution by immunostaining and Tau aggregation by insolubility assays followed by western blotting. We assessed neuronal toxicity and performed cell count and shape descriptor analyses on astrocytes and microglial cells. Results We found that mutant TauP301L, when expressed exclusively in neurons, is toxic not only to neurons but also to glial cells, and that SUMO2 counteracts TauP301L toxicity in neurons as well as in glia. Discussion Our results uncover an endogenous neuroprotective mechanism, whereby SUMO2 conjugation reduces Tau neuropathology and protects against toxic effects of Tau in glial cells.
Collapse
Affiliation(s)
- Franca Orsini
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Rosaria Pascente
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Annacarla Martucci
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Sara Palacino
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Paul Fraser
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Ottavio Arancio
- Department of Pathology and Cell Biology, Taub Institute for Research of Alzheimer’s Disease and the Aging Brain, Columbia University, New York, NY, United States
| | - Luana Fioriti
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
- Department of Pathology and Cell Biology, Taub Institute for Research of Alzheimer’s Disease and the Aging Brain, Columbia University, New York, NY, United States
| |
Collapse
|
3
|
Li MM, Shi MJ, Feng CC, Yu ZY, Bai XF, Lu-Lu. LncRNA KCNQ1OT1 promotes NLRP3 inflammasome activation in Parkinson's disease by regulating pri-miR-186/mature miR-186/NLRP3 axis. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167454. [PMID: 39122224 DOI: 10.1016/j.bbadis.2024.167454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 06/07/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024]
Abstract
Increasing evidence indicated that neuroinflammation was involved in progression of Parkinson's disease (PD). Long noncoding RNAs (lncRNAs) played important roles in regulating inflammatory processes in multiple kinds of human diseases such as cancer diabetes, cardiomyopathy, and neurodegenerative disorders. The mechanisms by which lncRNAs regulated PD related inflammation and dopaminergic neuronal loss have not yet been fully elucidated. In current study, we intended to explore the function and potential mechanism of lncRNA KCNQ1 opposite strand/antisense transcript 1 (KCNQ1OT1) in regulating inflammasome activation in PD. Functional assays confirmed that knockdown of KCNQ1OT1 suppress microglial NLR family pyrin domain containing 3 (NLRP3) inflammasome activation and attenuated dopaminergic neuronal loss in PD model mice. As KCNQ1OT1 located in both cytoplasm and nucleus of microglia, we demonstrated that KCNQ1OT1 promoted microglial NLRP3 inflammasome activation by competitive binding with miR-186 in cytoplasm and inhibited pri-miR-186 mediated NLRP3 silencing through recruitment of DiGeorge syndrome critical region gene 8 (DGCR8) in nucleus, respectively. Our study found a novel lncRNA-pri-miRNA/mature miRNA-mRNA regulatory network in microglia mediated NLRP3 inflammasome activation and dopaminergic neuronal loss, provided further insights for the treatment of Parkinson's disease.
Collapse
Affiliation(s)
- Meng-Meng Li
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai 200040, China.
| | - Mei-Juan Shi
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Chen-Chen Feng
- Department of Geriatrics, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Zhong-Yu Yu
- Sijing Community Health Service Center of Songjiang District, Shanghai 201600, China
| | - Xiao-Fei Bai
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao 266071, China
| | - Lu-Lu
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
4
|
Soon HR, Gaunt JR, Bansal VA, Lenherr C, Sze SK, Ch’ng TH. Seizure enhances SUMOylation and zinc-finger transcriptional repression in neuronal nuclei. iScience 2023; 26:107707. [PMID: 37694138 PMCID: PMC10483055 DOI: 10.1016/j.isci.2023.107707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/29/2023] [Accepted: 08/21/2023] [Indexed: 09/12/2023] Open
Abstract
A single episode of pilocarpine-induced status epilepticus can trigger the development of spontaneous recurrent seizures in a rodent model for epilepsy. The initial seizure-induced events in neuronal nuclei that lead to long-term changes in gene expression and cellular responses likely contribute toward epileptogenesis. Using a transgenic mouse model to specifically isolate excitatory neuronal nuclei, we profiled the seizure-induced nuclear proteome via tandem mass tag mass spectrometry and observed robust enrichment of nuclear proteins associated with the SUMOylation pathway. In parallel with nuclear proteome, we characterized nuclear gene expression by RNA sequencing which provided insights into seizure-driven transcriptional regulation and dynamics. Strikingly, we saw widespread downregulation of zinc-finger transcription factors, specifically proteins that harbor Krüppel-associated box (KRAB) domains. Our results provide a detailed snapshot of nuclear events induced by seizure activity and demonstrate a robust method for cell-type-specific nuclear profiling that can be applied to other cell types and models.
Collapse
Affiliation(s)
- Hui Rong Soon
- School of Biological Science, Nanyang Technological University, Singapore 636551, Singapore
| | - Jessica Ruth Gaunt
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
| | - Vibhavari Aysha Bansal
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
| | - Clara Lenherr
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
- Centre for Discovery Brain Science, The University of Edinburgh, Edinburgh, UK
| | - Siu Kwan Sze
- Faculty of Applied Health Sciences, Brock University, St. Catherines, ON, Canada
| | - Toh Hean Ch’ng
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
- School of Biological Science, Nanyang Technological University, Singapore 636551, Singapore
| |
Collapse
|
5
|
Cao Y, Huang C, Zhao X, Yu J. Regulation of SUMOylation on RNA metabolism in cancers. Front Mol Biosci 2023; 10:1137215. [PMID: 36911524 PMCID: PMC9998694 DOI: 10.3389/fmolb.2023.1137215] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 02/15/2023] [Indexed: 03/14/2023] Open
Abstract
Post-translational modifications of proteins play very important roles in regulating RNA metabolism and affect many biological pathways. Here we mainly summarize the crucial functions of small ubiquitin-like modifier (SUMO) modification in RNA metabolism including transcription, splicing, tailing, stability and modification, as well as its impact on the biogenesis and function of microRNA (miRNA) in particular. This review also highlights the current knowledge about SUMOylation regulation in RNA metabolism involved in many cellular processes such as cell proliferation and apoptosis, which is closely related to tumorigenesis and cancer progression.
Collapse
Affiliation(s)
- Yingting Cao
- Department of Biochemistry and Molecular Cell Biology and Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Caihu Huang
- Department of Biochemistry and Molecular Cell Biology and Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xian Zhao
- Department of Biochemistry and Molecular Cell Biology and Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianxiu Yu
- Department of Biochemistry and Molecular Cell Biology and Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
6
|
Ilic D, Magnussen HM, Tirard M. Stress - Regulation of SUMO conjugation and of other Ubiquitin-Like Modifiers. Semin Cell Dev Biol 2022; 132:38-50. [PMID: 34996712 DOI: 10.1016/j.semcdb.2021.12.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 12/14/2022]
Abstract
Stress is unavoidable and essential to cellular and organismal evolution and failure to adapt or restore homeostasis can lead to severe diseases or even death. At the cellular level, stress drives a plethora of molecular changes, of which variations in the profile of protein post-translational modifications plays a key role in mediating the adaptative response of the genome and proteome to stress. In this context, post-translational modification of proteins by ubiquitin-like modifiers, (Ubl), notably SUMO, is an essential stress response mechanism. In this review, aiming to draw universal concepts of the Ubls stress response, we will decipher how stress alters the expression level, activity, specificity and/or localization of the proteins involved in the conjugation pathways of the various type-I Ubls, and how this result in the modification of particular Ubl targets that will translate an adaptive physiological stress response and allow cells to restore homeostasis.
Collapse
Affiliation(s)
- Dragana Ilic
- Department of Epigenetics, Max Planck Institute of Immunobiology and Epigenetics, D-79108 Freiburg; Faculty of Biology, University of Freiburg, D-79104 Freiburg; Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, D-37075 Göttingen
| | - Helge M Magnussen
- MRC Protein Phosphorylation and Ubiquitination Unit, Sir James Black Center, School of Life Sciences, University of Dundee, Dundee, Scotland, UK
| | - Marilyn Tirard
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, D-37075 Göttingen.
| |
Collapse
|
7
|
Karhausen J, Ulloa L, Yang W. SUMOylation Connects Cell Stress Responses and Inflammatory Control: Lessons From the Gut as a Model Organ. Front Immunol 2021; 12:646633. [PMID: 33679811 PMCID: PMC7933481 DOI: 10.3389/fimmu.2021.646633] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 02/01/2021] [Indexed: 12/18/2022] Open
Abstract
Conjugation with the small ubiquitin-like modifier (SUMO) constitutes a key post-translational modification regulating the stability, activity, and subcellular localization of its target proteins. However, the vast numbers of identified SUMO substrates obscure a clear view on the function of SUMOylation in health and disease. This article presents a comprehensive review on the physiological relevance of SUMOylation by discussing how global SUMOylation levels—rather than specific protein SUMOylation—shapes the immune response. In particular, we highlight the growing body of work on SUMOylation in intestinal pathologies, because of the unique metabolic, infectious, and inflammatory challenges of this organ. Recent studies show that global SUMOylation can help restrain detrimental inflammation while maintaining immune defenses and tissue integrity. These results warrant further efforts to develop new therapeutic tools and strategies to control SUMOylation in infectious and inflammatory disorders.
Collapse
Affiliation(s)
- Jörn Karhausen
- Department of Anesthesiology, Center for Perioperative Organ Protection, Duke University Medical Center, Durham, NC, United States.,Department of Pathology, Duke University Medical Center, Durham, NC, United States
| | - Luis Ulloa
- Department of Anesthesiology, Center for Perioperative Organ Protection, Duke University Medical Center, Durham, NC, United States
| | - Wei Yang
- Department of Anesthesiology, Center for Perioperative Organ Protection, Duke University Medical Center, Durham, NC, United States
| |
Collapse
|
8
|
The E3 ubiquitin ligase HectD3 attenuates cardiac hypertrophy and inflammation in mice. Commun Biol 2020; 3:562. [PMID: 33037313 PMCID: PMC7547098 DOI: 10.1038/s42003-020-01289-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 09/14/2020] [Indexed: 01/26/2023] Open
Abstract
Myocardial inflammation has recently been recognized as a distinct feature of cardiac hypertrophy and heart failure. HectD3, a HECT domain containing E3 ubiquitin ligase has previously been investigated in the host defense against infections as well as neuroinflammation; its cardiac function however is still unknown. Here we show that HectD3 simultaneously attenuates Calcineurin-NFAT driven cardiomyocyte hypertrophy and the pro-inflammatory actions of LPS/interferon-γ via its cardiac substrates SUMO2 and Stat1, respectively. AAV9-mediated overexpression of HectD3 in mice in vivo not only reduced cardiac SUMO2/Stat1 levels and pathological hypertrophy but also largely abolished macrophage infiltration and fibrosis induced by pressure overload. Taken together, we describe a novel cardioprotective mechanism involving the ubiquitin ligase HectD3, which links anti-hypertrophic and anti-inflammatory effects via dual regulation of SUMO2 and Stat1. In a broader perspective, these findings support the notion that cardiomyocyte growth and inflammation are more intertwined than previously anticipated. Rangrez et al. show that overexpression of the HECT domain E3 ubiquitin protein ligase 3 (HectD3) reduces cardiac hypertrophy while reducing macrophage infiltration in mice. This study provides a cardioprotective mechanism, where HectD3 targets SUMO2 and Stat1 to exert its anti-hypertrophic and anti-inflammatory effects.
Collapse
|
9
|
Dexamethasone Upregulates the Expression of Aquaporin4 by Increasing SUMOylation in A549 Cells. Inflammation 2020; 43:1925-1935. [PMID: 32495129 DOI: 10.1007/s10753-020-01267-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Dexamethasone can alleviate the severity of bronchial and alveolar edema and therefore is widely applied in the treatment of various exudative diseases including pulmonary edema. However, the effectiveness of dexamethasone is still being questioned and its mechanism is not fully understood. Aquaporins (AQPs) are mainly responsible for the transmembrane transport of water, which is tightly associated with pulmonary edema. Small ubiquitin-like modifiers (SUMOs) are considered to play a protective role in some pathological conditions. In this study, we demonstrated that dexamethasone can upregulate the expression of AQPs in A549 cells by inducing SUMOylation. We found that a low dose of dexamethasone significantly upregulated the levels of SUMOylation and AQP expression in A549 cells, accompanied by a translocation of SUMOs from the cytoplasm to the nucleus. We also explored the possible relation between SUMOylation and AQPs. Knockdown of SUMO2/3 by RNA interference decreased the level of AQP4 in A549 cells after dexamethasone stimulation. Together, our findings demonstrated that AQP4 expression was upregulated in A549 cells exposed to dexamethasone, and SUMOylation may participate in the regulation of AQP4.
Collapse
|
10
|
Li J, Johnson JA, Su H. Ubiquitin and Ubiquitin-like proteins in cardiac disease and protection. Curr Drug Targets 2019; 19:989-1002. [PMID: 26648080 DOI: 10.2174/1389450117666151209114608] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 11/01/2015] [Indexed: 01/10/2023]
Abstract
Post-translational modification represents an important mechanism to regulate protein function in cardiac cells. Ubiquitin (Ub) and ubiquitin-like proteins (UBLs) are a family of protein modifiers that share a certain extent of sequence and structure similarity. Conjugation of Ub or UBLs to target proteins is dynamically regulated by a set of UBL-specific enzymes and modulates the physical and physiological properties of protein substrates. Ub and UBLs control a strikingly wide spectrum of cellular processes and not surprisingly are involved in the development of multiple human diseases including cardiac diseases. Further identification of novel UBL targets will expand our understanding of the functional diversity of UBL pathways in physiology and pathology. Here we review recent findings on the mechanisms, proteome and functions of a subset of UBLs and highlight their potential impacts on the development and progression of various forms of cardiac diseases.
Collapse
Affiliation(s)
- Jie Li
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - John A Johnson
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Huabo Su
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, United States.,Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| |
Collapse
|
11
|
Liu F, Li L, Li Y, Ma X, Bian X, Liu X, Wang G, Zhang D. Overexpression of SENP1 reduces the stemness capacity of osteosarcoma stem cells and increases their sensitivity to HSVtk/GCV. Int J Oncol 2018; 53:2010-2020. [PMID: 30226577 PMCID: PMC6192779 DOI: 10.3892/ijo.2018.4537] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 07/17/2018] [Indexed: 12/14/2022] Open
Abstract
Osteosarcoma stem cells are able to escape treatment with conventional chemotherapeutic drugs, as the majority of them are in a quiescent state. Recent reports have suggested that small ubiquitin-like modifiers (SUMOs) serve important roles in the maintenance of cancer stem cell stemness. Therefore, a potential strategy to increase the effectiveness of chemotherapeutic agents is to interfere with SUMO modification of proteins associated with the maintenance of stemness in osteosarcoma stem cells. The present study revealed a significant decrease in the expression of SUMO1 specific peptidase 1 (SENP1) in osteosarcoma tissues and osteosarcoma cell lines, and SENP1 expression was much lower in osteosarcoma stem cells than in non-cancer stem cells. Further experiments indicated that the low levels of SENP1 were essential for maintenance of stemness in osteosarcoma stem cells. Overexpression of SENP1 resulted in a marked decrease in the maintenance of stemness, but only slightly induced apoptosis of osteosarcoma cells, which is crucial to reduce the side effects of drugs on normal precursor cells. Finally, SENP1 overexpression led to a significant increase in the sensitivity of osteosarcoma stem cells to the herpes simplex virus 1 thymidine kinase gene in combination with ganciclovir in vitro and in vivo. In conclusion, the present study described a novel method to increase the sensitivity of osteosarcoma stem cells to chemotherapeutic drugs. Notably, this approach may significantly reduce the required dose of conventional chemotherapeutic drugs and reduce side effects.
Collapse
Affiliation(s)
- Fengting Liu
- Department of Bone and Soft Tissue Tumors, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, P.R. China
| | - Lili Li
- Department of Bone and Soft Tissue Tumors, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, P.R. China
| | - Yanxia Li
- Central Laboratory, The Fifth Central Hospital of Tianjin, Tianjin 300450, P.R. China
| | - Xiaofang Ma
- Central Laboratory, The Fifth Central Hospital of Tianjin, Tianjin 300450, P.R. China
| | - Xiyun Bian
- Central Laboratory, The Fifth Central Hospital of Tianjin, Tianjin 300450, P.R. China
| | - Xiaozhi Liu
- Central Laboratory, The Fifth Central Hospital of Tianjin, Tianjin 300450, P.R. China
| | - Guowen Wang
- Department of Bone and Soft Tissue Tumors, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, P.R. China
| | - Dianying Zhang
- Department of Trauma and Orthopedics, Peking University People's Hospital, Beijing 100044, P.R. China
| |
Collapse
|
12
|
Stankova T, Piepkorn L, Bayer TA, Jahn O, Tirard M. SUMO1-conjugation is altered during normal aging but not by increased amyloid burden. Aging Cell 2018; 17:e12760. [PMID: 29633471 PMCID: PMC6052395 DOI: 10.1111/acel.12760] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/05/2018] [Indexed: 01/09/2023] Open
Abstract
A proper equilibrium of post-translational protein modifications is essential for normal cell physiology, and alteration in these processes is key in neurodegenerative disorders such as Alzheimer's disease. Recently, for instance, alteration in protein SUMOylation has been linked to amyloid pathology. In this work, we aimed to elucidate the role of protein SUMOylation during aging and increased amyloid burden in vivo using a His6 -HA-SUMO1 knock-in mouse in the 5XFAD model of Alzheimer's disease. Interestingly, we did not observe any alteration in the levels of SUMO1-conjugation related to Alzheimer's disease. SUMO1 conjugates remained localized to neuronal nuclei upon increased amyloid burden and during aging and were not detected in amyloid plaques. Surprisingly however, we observed age-related alterations in global levels of SUMO1 conjugation and at the level of individual substrates using quantitative proteomic analysis. The identified SUMO1 candidate substrates are dominantly nuclear proteins, mainly involved in RNA processing. Our findings open novel directions of research for studying a functional link between SUMOylation and its role in guarding nuclear functions during aging.
Collapse
Affiliation(s)
- Trayana Stankova
- Department of Molecular Neurobiology; Max Planck Institute of Experimental Medicine; Göttingen Germany
| | - Lars Piepkorn
- Max Planck Institute of Experimental Medicine; Proteomics Group; Göttingen Germany
| | - Thomas A. Bayer
- Division of Molecular Psychiatry; Department of Psychiatry and Psychotherapy; University Medical Center Göttingen (UMG); Göttingen Germany
| | - Olaf Jahn
- Max Planck Institute of Experimental Medicine; Proteomics Group; Göttingen Germany
| | - Marilyn Tirard
- Department of Molecular Neurobiology; Max Planck Institute of Experimental Medicine; Göttingen Germany
| |
Collapse
|
13
|
Site-specific characterization of endogenous SUMOylation across species and organs. Nat Commun 2018; 9:2456. [PMID: 29942033 PMCID: PMC6018634 DOI: 10.1038/s41467-018-04957-4] [Citation(s) in RCA: 152] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 06/05/2018] [Indexed: 12/30/2022] Open
Abstract
Small ubiquitin-like modifiers (SUMOs) are post-translational modifications that play crucial roles in most cellular processes. While methods exist to study exogenous SUMOylation, large-scale characterization of endogenous SUMO2/3 has remained technically daunting. Here, we describe a proteomics approach facilitating system-wide and in vivo identification of lysines modified by endogenous and native SUMO2. Using a peptide-level immunoprecipitation enrichment strategy, we identify 14,869 endogenous SUMO2/3 sites in human cells during heat stress and proteasomal inhibition, and quantitatively map 1963 SUMO sites across eight mouse tissues. Characterization of the SUMO equilibrium highlights striking differences in SUMO metabolism between cultured cancer cells and normal tissues. Targeting preferences of SUMO2/3 vary across different organ types, coinciding with markedly differential SUMOylation states of all enzymes involved in the SUMO conjugation cascade. Collectively, our systemic investigation details the SUMOylation architecture across species and organs and provides a resource of endogenous SUMOylation sites on factors important in organ-specific functions. Proteomics is a powerful method to study protein SUMOylation, but system-wide insights into endogenous SUMO2/3 modification events are still sparse. Here, the authors develop a more sensitive SUMO proteomics approach, providing detailed maps of endogenous SUMO2/3 sites in human cells and mouse tissues.
Collapse
|
14
|
Romero O, de las Rivas B, Lopez-Tejedor D, Palomo JM. Effect of Site-Specific Peptide-Tag Labeling on the Biocatalytic Properties of Thermoalkalophilic Lipase from Geobacillus thermocatenulatus. Chembiochem 2018; 19:369-378. [DOI: 10.1002/cbic.201700466] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Indexed: 12/19/2022]
Affiliation(s)
- Oscar Romero
- Department of Biocatalysis; Institute of Catalysis (CSIC); Marie Curie 2 Cantoblanco CampusUAM 28049 Madrid Spain
| | - Blanca de las Rivas
- Laboratorio de Biotecnología Microbiana; Instituto de Ciencia y Tecnología de alimentos y Nutrición (ICTAN-CSIC); José Antonio Novais, 10 28040 Madrid Spain
| | - David Lopez-Tejedor
- Department of Biocatalysis; Institute of Catalysis (CSIC); Marie Curie 2 Cantoblanco CampusUAM 28049 Madrid Spain
| | - Jose M. Palomo
- Department of Biocatalysis; Institute of Catalysis (CSIC); Marie Curie 2 Cantoblanco CampusUAM 28049 Madrid Spain
| |
Collapse
|
15
|
Tan F, Dong W, Lei X, Liu X, Li Q, Kang L, Zhao S, Zhang C. Attenuated SUMOylation of sirtuin 1 in premature neonates with bronchopulmonary dysplasia. Mol Med Rep 2017; 17:1283-1288. [PMID: 29115559 DOI: 10.3892/mmr.2017.8012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 09/09/2017] [Indexed: 11/06/2022] Open
Abstract
A prospective study was performed to investigate the effects of hyperoxia on the expression of small ubiquitin‑related modifier (SUMO) and sirtuin 1 (SIRT1) proteins, and to examine interactions between these proteins in premature neonates with bronchopulmonary dysplasia (BPD). Peripheral blood mononuclear cells (PBMCs) were isolated from residual venous blood samples of 20 premature infants with BPD and 20 gender‑matched premature infants without BPD (non‑BPD group). Expression levels of SUMO and SIRT1 proteins in PBMCs were assessed by western blot analysis, and their interactions in PBMCs were detected using the immunoprecipitation assay. Based on the fraction of inspired oxygen (FiO2) administered, neonates were divided into normoxia, low‑(21%<FiO2<30%), medium‑(30%≤FiO2<40%) and high‑oxygen (FiO2≥40%) groups. Expression levels of SUMO1 and SUMO2/3 proteins in the normoxia group were significantly lower than those in the medium‑ or high‑oxygen groups (P<0.01), but were comparable to those in the low‑oxygen group. SIRT1 expression levels in both the medium‑ and high‑oxygen groups were significantly lower than those in the normoxia group (P<0.01). In the BPD group, the expression of SIRT1 protein was significantly lower (P<0.01), and its interaction with SUMO1 and SUMO2/3 was significantly attenuated compared with that in the non‑BPD group (P<0.01). Supplemental oxygen with FiO2≥30% was associated with upregulation of SUMO1 and SUMO2/3 expression and downregulation of SIRT1 expression. The present findings suggest that decreased SIRT1 expression and its SUMOylation by SUMO1 and SUMO2/3 may be associated with the development of BPD.
Collapse
Affiliation(s)
- Fengmei Tan
- Department of Neonatology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Wenbin Dong
- Department of Neonatology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Xiaoping Lei
- Department of Neonatology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Xingling Liu
- Department of Neonatology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Qingping Li
- Department of Neonatology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Lan Kang
- Department of Neonatology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Shuai Zhao
- Department of Neonatology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Chan Zhang
- Department of Neonatology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| |
Collapse
|
16
|
Zhou Y, Ji C, Cao M, Guo M, Huang W, Ni W, Meng L, Yang H, Wei JF. Inhibitors targeting the SUMOylation pathway: A patent review 2012‑2015 (Review). Int J Mol Med 2017; 41:3-12. [PMID: 29115401 DOI: 10.3892/ijmm.2017.3231] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 10/27/2017] [Indexed: 11/06/2022] Open
Abstract
Small ubiquitin‑related modifier (SUMO) proteins bind to the lysine residue of target proteins to produce functionally mature proteins. The abnormal SUMOylation of certain target proteins is associated with diseases including cancer, heart disease, diabetes, arthritis, degenerative diseases and brain ischemia/stroke. Thus, there has been growing appreciation for the potential importance of the SUMO conjugation pathway as a target for treating these diseases. This review introduces the important steps in the reversible SUMOylation pathway. The SUMO inhibitors disclosed in the patents between 2012 and 2015 are divided into different categories according to their mechanisms of action. Certain compounds disclosed in this review have also been reported in other articles for their inhibition of the SUMOylation pathway following screening in cell lines. Although there are few studies using animal models or clinical trials that have used these compounds, the application of bortezomin, a ubiquitylation inhibitor, for treating cancer indicates that SUMO inhibitors may be clinically successful.
Collapse
Affiliation(s)
- Yanjun Zhou
- Research Division of Clinical Pharmacology, Jiangsu Province People's Hospital, Nanjing, Jiangsu 210029, P.R. China
| | - Chunmei Ji
- Research Division of Clinical Pharmacology, Jiangsu Province People's Hospital, Nanjing, Jiangsu 210029, P.R. China
| | - Mengda Cao
- Research Division of Clinical Pharmacology, Jiangsu Province People's Hospital, Nanjing, Jiangsu 210029, P.R. China
| | - Miao Guo
- Research Division of Clinical Pharmacology, Jiangsu Province People's Hospital, Nanjing, Jiangsu 210029, P.R. China
| | - Wen Huang
- Research Division of Clinical Pharmacology, Jiangsu Province People's Hospital, Nanjing, Jiangsu 210029, P.R. China
| | - Weiwei Ni
- Research Division of Clinical Pharmacology, Jiangsu Province People's Hospital, Nanjing, Jiangsu 210029, P.R. China
| | - Ling Meng
- Research Division of Clinical Pharmacology, Jiangsu Province People's Hospital, Nanjing, Jiangsu 210029, P.R. China
| | - Haiwei Yang
- Department of Urology, Jiangsu Province People's Hospital, Nanjing, Jiangsu 210029, P.R. China
| | - Ji-Fu Wei
- Research Division of Clinical Pharmacology, Jiangsu Province People's Hospital, Nanjing, Jiangsu 210029, P.R. China
| |
Collapse
|
17
|
Recent progress in mass spectrometry proteomics for biomedical research. SCIENCE CHINA-LIFE SCIENCES 2017; 60:1093-1113. [DOI: 10.1007/s11427-017-9175-2] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 09/15/2017] [Indexed: 12/30/2022]
|
18
|
Liu X, Ren W, Jiang Z, Su Z, Ma X, Li Y, Jiang R, Zhang J, Yang X. Hypothermia inhibits the proliferation of bone marrow-derived mesenchymal stem cells and increases tolerance to hypoxia by enhancing SUMOylation. Int J Mol Med 2017; 40:1631-1638. [PMID: 29039464 PMCID: PMC5716456 DOI: 10.3892/ijmm.2017.3167] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Accepted: 09/05/2017] [Indexed: 11/23/2022] Open
Abstract
Hypothermia therapy has a positive effect on patients with severe brain injury. Recent studies have shown that mild hypothermia increases the survival of bone marrow-derived mesenchymal stem cells (BMSCs) in a hypoxic environment; however, the underlying mechanisms are not yet fully understood. Small ubiquitin-like modifiers (SUMOs) are sensitive to temperature stress reactions and are considered to exert a protective effect. In this study, we examined the protective effects of hypothermia on BMSCs in terms of SUMO protein modification. First, we found that mild hypothermia inhibited the proliferation and differentiation of BMSCs and increased cell tolerance to a hypoxic environment. Second, hypothermia significantly increased the levels of SUMO modification of multiple proteins in BMSCs. The knockdown of SUMO1/2/3 induced the rapid aging of the BMSCs, while the inhibition of the SUMO-conjugating enzyme, Ubc9, reduced cell proliferation and increased the proportion of BMSCs differentiating into nerve cells. Moreover, the tolerance of BMSCs to the hypoxic environment was significantly decreased. Lastly, we investigated 4 reported SUMO target proteins, anti-proliferating cell nuclear antigen, octamer-binding transcription factor 4, p53 and hypoxia-inducible factor-1α, to confirm that SUMO modification was indeed involved in maintaining the proliferation, inhibiting differentiation and enhancing the resistance of BMSCs against adverse conditions. Taken together, our results indicate that the SUMO pathway is involved in the response to hypothermic stress, and that SUMOylation may be an important protective mechanism against hypothermia for the survival of BMSCs under unfavorable conditions.
Collapse
Affiliation(s)
- Xiaozhi Liu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Wenbo Ren
- Department of Neurology, The Fifth Central Hospital of Tianjin, Tianjin 300450, P.R. China
| | - Zhongmin Jiang
- Department of Pathology, The Fifth Central Hospital of Tianjin, Tianjin 300450, P.R. China
| | - Zhiguo Su
- Department of Neurosurgery, The Fifth Central Hospital of Tianjin, Tianjin 300450, P.R. China
| | - Xiaofang Ma
- Central Laboratory, The Fifth Central Hospital of Tianjin, Tianjin 300450, P.R. China
| | - Yanxia Li
- Central Laboratory, The Fifth Central Hospital of Tianjin, Tianjin 300450, P.R. China
| | - Rongcai Jiang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Jianning Zhang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Xinyu Yang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| |
Collapse
|
19
|
Klimova N, Long A, Kristian T. Significance of Mitochondrial Protein Post-translational Modifications in Pathophysiology of Brain Injury. Transl Stroke Res 2017; 9:223-237. [DOI: 10.1007/s12975-017-0569-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 09/11/2017] [Accepted: 09/13/2017] [Indexed: 01/13/2023]
|
20
|
Abstract
Protein modification with the small ubiquitin-related modifier (SUMO) can affect protein function, enzyme activity, protein-protein interactions, protein stability, protein targeting and cellular localization. SUMO influences the function and regulation of metabolic enzymes within pathways, and in some cases targets entire metabolic pathways by affecting the activity of transcription factors or by facilitating the translocation of entire metabolic pathways to subcellular compartments. SUMO modification is also a key component of nutrient- and metabolic-sensing mechanisms that regulate cellular metabolism. In addition to its established roles in maintaining metabolic homeostasis, there is increasing evidence that SUMO is a key factor in facilitating cellular stress responses through the regulation and/or adaptation of the most fundamental metabolic processes, including energy and nucleotide metabolism. This review focuses on the role of SUMO in cellular metabolism and metabolic disease.
Collapse
|
21
|
Daniel JA, Cooper BH, Palvimo JJ, Zhang FP, Brose N, Tirard M. Analysis of SUMO1-conjugation at synapses. eLife 2017; 6. [PMID: 28598330 PMCID: PMC5493437 DOI: 10.7554/elife.26338] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 06/07/2017] [Indexed: 12/14/2022] Open
Abstract
SUMO1-conjugation of proteins at neuronal synapses is considered to be a major post-translational regulatory process in nerve cell and synapse function, but the published evidence for SUMO1-conjugation at synapses is contradictory. We employed multiple genetic mouse models for stringently controlled biochemical and immunostaining analyses of synaptic SUMO1-conjugation. By using a knock-in reporter mouse line expressing tagged SUMO1, we could not detect SUMO1-conjugation of seven previously proposed synaptic SUMO1-targets in the brain. Further, immunostaining of cultured neurons from wild-type and SUMO1 knock-out mice showed that anti-SUMO1 immunolabelling at synapses is non-specific. Our findings indicate that SUMO1-conjugation of synaptic proteins does not occur or is extremely rare and hence not detectable using current methodology. Based on our data, we discuss a set of experimental strategies and minimal consensus criteria for the validation of SUMOylation that can be applied to any SUMOylation substrate and SUMO isoform. DOI:http://dx.doi.org/10.7554/eLife.26338.001
Collapse
Affiliation(s)
- James A Daniel
- Max Planck Institute of Experimental Medicine, Molecular Neurobiology, Göttingen, Germany
| | - Benjamin H Cooper
- Max Planck Institute of Experimental Medicine, Molecular Neurobiology, Göttingen, Germany
| | - Jorma J Palvimo
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Fu-Ping Zhang
- Institute of Biomedicine and Turku Center for Disease Modeling, University of Turku, Turku, Finland
| | - Nils Brose
- Max Planck Institute of Experimental Medicine, Molecular Neurobiology, Göttingen, Germany
| | - Marilyn Tirard
- Max Planck Institute of Experimental Medicine, Molecular Neurobiology, Göttingen, Germany
| |
Collapse
|
22
|
Jung HY, Kim DW, Kwon HJ, Yoo DY, Hwang IK, Won MH, Cho TG, Choi SY, Moon SM. SUMO-1 delays neuronal damage in the spinal cord following ischemia/reperfusion. Mol Med Rep 2017; 15:4312-4318. [PMID: 28487986 DOI: 10.3892/mmr.2017.6527] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Accepted: 02/15/2017] [Indexed: 11/06/2022] Open
Abstract
The present study investigated the protective effects of small ubiquitin-like modifier 1 (SUMO-1) on spinal cord ischemic damage in rabbits. A trans‑activator of transcription (Tat)‑SUMO‑1 fusion protein was prepared, and transient spinal cord ischemia was induced by occlusion of the abdominal aorta for 15 min. Vehicle (glycerol) or 1 mg/kg Tat-1-SUMO‑1 was administered intraperitoneally to the rabbits immediately following ischemia/reperfusion. Administration of Tat-SUMO-1 did not lead to significant alterations in arterial blood gases [partial pressure (Pa)CO2 and PaO2], pH, or blood glucose levels prior to ischemia, 10 min after occlusion or 10 min after reperfusion. Mean arterial pressure was significantly decreased only during occlusion. Motor behaviors were assessed at 24, 48 and 72 h after ischemia/reperfusion using Tarlov's criteria. Administration of Tat‑SUMO‑1 significantly improved Tarlov scores 24 h after ischemia/reperfusion and the number of cresyl violet positive neurons was significantly increased in the ventral horn of the spinal cord compared with the vehicle‑treated group. However, Tarlov scores were consistently decreased at 48 and 72 h after ischemia/reperfusion in the Tat‑SUMO‑1‑treated group, and Tarlov scores and the number of cresyl violet positive neurons were not significantly different between the vehicle‑ and Tat‑SUMO‑1‑treated groups after 72 h. Tat-SUMO‑1 administration significantly ameliorated a reduction in Cu, Zn‑superoxide dismutase activity and an increase in lipid peroxidation 24 h after ischemia/reperfusion; however, these effects were not present at 72 h. These results suggested that Tat‑SUMO‑1 may delay, although not protect against, neuronal death by regulating oxidative stress in the ventral horn of the spinal cord and that combination therapy using Tat‑SUMO‑1 with other compounds may provide a therapeutic approach to decrease neuronal damage.
Collapse
Affiliation(s)
- Hyo Young Jung
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea
| | - Dae Won Kim
- Department of Biochemistry and Molecular Biology, Research Institute of Oral Sciences, College of Dentistry, Gangneung‑Wonju National University, Gangneung, Gangwon 25457, Republic of Korea
| | - Hyun Jung Kwon
- Department of Biochemistry and Molecular Biology, Research Institute of Oral Sciences, College of Dentistry, Gangneung‑Wonju National University, Gangneung, Gangwon 25457, Republic of Korea
| | - Dae Young Yoo
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea
| | - In Koo Hwang
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea
| | - Moo-Ho Won
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Tack-Geun Cho
- Department of Neurosurgery, Kangnam Sacred Heart Hospital, College of Medicine, Hallym University, Seoul 07441, Republic of Korea
| | - Soo Young Choi
- Department of Biomedical Sciences, Research Institute for Bioscience and Biotechnology, Hallym University, Chuncheon, Gangwon 24252, Republic of Korea
| | - Seung Myung Moon
- Department of Neurosurgery, Dongtan Sacred Heart Hospital, College of Medicine, Hallym University, Hwaseong, Gyeonggi 18450, Republic of Korea
| |
Collapse
|
23
|
Abstract
Reversible post-translational modification is a rapid and efficient system to control the activity of pre-existing proteins. Modifiers range from small chemical moieties, such as phosphate groups, to proteins themselves as the modifier. The patriarch of the protein modifiers is ubiquitin which plays a central role in protein degradation and protein targeting. Over the last 20 years, the ubiquitin family has expanded to include a variety of ubiquitin-related small modifier proteins that are all covalently attached to a lysine residue on target proteins via series of enzymatic reactions. Of these more recently discovered ubiquitin-like proteins, the SUMO family has gained prominence as a major regulatory component that impacts numerous aspects of cell growth, differentiation, and response to stress. Unlike ubiquitinylation which often leads to proteins turn over, sumoylation performs a variety of function such as altering protein stability, modulating protein trafficking, directing protein-protein interactions, and regulating protein activity. This chapter will introduce the basic properties of SUMO proteins and the general tenets of sumoylation.
Collapse
Affiliation(s)
- Van G Wilson
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M Health Science Center, 8447 HWY 47, Bryan, TX, 77807-1359, USA.
| |
Collapse
|
24
|
Lam MPY, Ping P, Murphy E. Proteomics Research in Cardiovascular Medicine and Biomarker Discovery. J Am Coll Cardiol 2016; 68:2819-2830. [PMID: 28007144 PMCID: PMC5189682 DOI: 10.1016/j.jacc.2016.10.031] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 10/20/2016] [Accepted: 10/21/2016] [Indexed: 11/21/2022]
Abstract
Proteomics is a systems physiology discipline to address the large-scale characterization of protein species within a biological system, be it a cell, a tissue, a body biofluid, an organism, or a cohort population. Building on advances from chemical analytical platforms (e.g., mass spectrometry and other technologies), proteomics approaches have contributed powerful applications in cardiovascular biomedicine, most notably in: 1) the discovery of circulating protein biomarkers of heart diseases from plasma samples; and 2) the identification of disease mechanisms and potential therapeutic targets in cardiovascular tissues, in both preclinical models and translational studies. Contemporary proteomics investigations offer powerful means to simultaneously examine tens of thousands of proteins in various samples, and understand their molecular phenotypes in health and disease. This concise review introduces study design considerations, example applications and use cases, as well as interpretation and analysis of proteomics data in cardiovascular biomedicine.
Collapse
Affiliation(s)
- Maggie P Y Lam
- NIH BD2K Center of Excellence and Department of Physiology, Medicine and Bioinformatics, University of California, Los Angeles, California.
| | - Peipei Ping
- NIH BD2K Center of Excellence and Department of Physiology, Medicine and Bioinformatics, University of California, Los Angeles, California
| | - Elizabeth Murphy
- Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland.
| |
Collapse
|
25
|
Yang W, Sheng H, Wang H. Targeting the SUMO pathway for neuroprotection in brain ischaemia. Stroke Vasc Neurol 2016; 1:101-107. [PMID: 28959470 PMCID: PMC5435206 DOI: 10.1136/svn-2016-000031] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Revised: 08/05/2016] [Accepted: 08/06/2016] [Indexed: 12/20/2022] Open
Abstract
Small ubiquitin-like modifier (SUMO) conjugation (SUMOylation) is a post-translational protein modification that modulates almost all major cellular processes, and has been implicated in many human diseases. A growing body of evidence from in vitro and in vivo studies demonstrates that increasing global levels of SUMO conjugated proteins (global SUMOylation) protects cells against ischaemia-induced damage, while suppressing global SUMOylation promotes cell injury after ischaemia. Indeed, SUMOylation has emerged as a potential therapeutic target for neuroprotection in brain ischaemia, including global brain ischaemia and focal brain ischaemia (ischaemic stroke). Here, we summarise findings on the role of SUMOylation in human diseases, brain ischaemia in particular, and review recent developments in drug discovery targeting SUMOylation with a major focus on its neuroprotective applications.
Collapse
Affiliation(s)
- Wei Yang
- Multidisciplinary Neuroprotection Laboratories, Department of Anesthesiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Huaxin Sheng
- Multidisciplinary Neuroprotection Laboratories, Department of Anesthesiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Haichen Wang
- Multidisciplinary Neuroprotection Laboratories, Department of Neurology, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|
26
|
Wang X, Yu Q, Huang L, Yu P. Lentivirus-mediated inhibition of USP39 suppresses the growth of gastric cancer cells via PARP activation. Mol Med Rep 2016; 14:301-306. [PMID: 27175747 DOI: 10.3892/mmr.2016.5252] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 03/10/2016] [Indexed: 11/06/2022] Open
Abstract
Gastric cancer (GC) is the second most common cause of cancer-associated mortality worldwide. Ubiquitin-specific peptidase 39 (USP39) has important roles in mRNA processing and has been reported to be involved in the growth of breast cancer cells. However, the roles of USP39 in GC have remained to be investigated, which was the aim of the present study. A lentivirus expressing short hairpin RNA targeting USP39 was constructed and transfected into MGC80‑3 cells. Suppression of USP39 expression significantly decreased the proliferation and colony forming ability of MGC80‑3 cells as indicated by an MTT and a clonogenic assay, respectively. In addition, flow cytometric cell cycle analysis revealed that depression of USP39 induced G2/M‑phase arrest, while an intracellular signaling array showed that the cleavage of PARP at Asp214 was increased following USP39 knockdown. These results suggested that USP39 is involved in the proliferation of GCs and may be utilized as a molecular target for GC therapy.
Collapse
Affiliation(s)
- Xinbao Wang
- Department of Abdominal Tumor Surgery, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, P.R. China
| | - Qiming Yu
- Department of Abdominal Tumor Surgery, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, P.R. China
| | - Ling Huang
- Department of Abdominal Tumor Surgery, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, P.R. China
| | - Pengfei Yu
- Department of Abdominal Tumor Surgery, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, P.R. China
| |
Collapse
|
27
|
Schmidt-Kastner R. Genomic approach to selective vulnerability of the hippocampus in brain ischemia–hypoxia. Neuroscience 2015; 309:259-79. [DOI: 10.1016/j.neuroscience.2015.08.034] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2015] [Revised: 08/12/2015] [Accepted: 08/17/2015] [Indexed: 01/06/2023]
|