1
|
Martínez-Botía P, Tassi Yunga S, Szklanna P, Babur O, Emili A, Wilmarth PA, Heemskerk JWM, Maguire PB, Iding AFJ, Ramström S, García Á, Aslan JE, Gutiérrez L. Toward standardization and a concerted vision for platelet proteomics research: communication from the SSC of the ISTH. J Thromb Haemost 2025; 23:1704-1716. [PMID: 39952361 DOI: 10.1016/j.jtha.2025.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 12/23/2024] [Accepted: 02/03/2025] [Indexed: 02/17/2025]
Abstract
Over the past 3 decades, omics technologies have revolutionized our understanding of platelet molecular content and organization, enabling the systematic analyses of platelet physiology. Among these approaches, proteomics has been especially significant in discovering as well as validating molecular mechanisms of platelet function in health and disease. However, several conceptual and practical challenges continue to limit the full utility of platelet proteomics tools and data. Methodological and analytical inconsistencies remain a key concern, with biological and technical variables exerting substantial influence on study outcomes and interpretation. These issues are compounded by the rapid pace of proteomics tool development and dataset collection, outstripping efforts to standardize best practices and ensure consensus, as platelet proteomics consolidates itself as a tool for research even outside the thrombosis and hemostasis field. In this communication from the International Society on Thrombosis and Haemostasis Scientific and Standardization Committee, we highlight recent advances in platelet proteomics studies, and we identify where collective efforts can strengthen experimental design, execution, and analysis. As a practical recommendation, we encourage platelet biologists to recognize current discrepancies and advance efforts to standardize and customize methods and reporting practices, including blood collection, platelet isolation, data acquisition, and data interpretation. By aligning protocols and ensuring detailed reporting, the field can more effectively integrate proteomics findings and accelerate our understanding of platelet biology.
Collapse
Affiliation(s)
- Patricia Martínez-Botía
- Platelet Research Lab, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Samuel Tassi Yunga
- Cancer Early Detection Advanced Research Center (CEDAR), Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA; Department of Biomedical Engineering, School of Medicine, Oregon Health & Science University, Portland, Oregon, USA
| | - Paulina Szklanna
- UCD Conway SPHERE research group, UCD Institute for Discovery, University College Dublin (Ireland)
| | - Ozgun Babur
- Department of Computer Science, University of Massachusetts, Boston, Boston, Massachusetts, USA
| | - Andrew Emili
- Cancer Early Detection Advanced Research Center (CEDAR), Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA; Department of Biomedical Engineering, School of Medicine, Oregon Health & Science University, Portland, Oregon, USA
| | - Phillip A Wilmarth
- Proteomics Shared Resource, Oregon Health & Science University, Portland, Oregon, USA
| | | | - Patricia B Maguire
- UCD Conway SPHERE research group, UCD Institute for Discovery, University College Dublin (Ireland)
| | - Aaron F J Iding
- Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, the Netherlands
| | - Sofia Ramström
- Cardiovascular Research Centre, School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Ángel García
- Platelet Proteomics Group, Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela, and Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Joseph E Aslan
- Department of Biomedical Engineering, School of Medicine, Oregon Health & Science University, Portland, Oregon, USA; Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon, USA; Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, Oregon, USA
| | - Laura Gutiérrez
- Platelet Research Lab, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain; Department of Medicine, University of Oviedo, Oviedo, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain.
| |
Collapse
|
2
|
Berryhill C, Evans TN, Doud EH, Smith-Kinnaman WR, Hanquier JN, Mosley AL, Cornett EM. Quantitative Analysis of Nonhistone Lysine Methylation Sites and Lysine Demethylases in Breast Cancer Cell Lines. J Proteome Res 2025; 24:550-561. [PMID: 39778878 PMCID: PMC11812601 DOI: 10.1021/acs.jproteome.4c00685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 11/04/2024] [Accepted: 12/12/2024] [Indexed: 01/11/2025]
Abstract
Growing evidence shows that lysine methylation is a widespread protein post-translational modification (PTM) that regulates protein function on histone and nonhistone proteins. Numerous studies have demonstrated that the dysregulation of lysine methylation mediators contributes to cancer growth and chemotherapeutic resistance. While changes in histone methylation are well-documented with extensive analytical techniques available, there is a lack of high-throughput methods to reproducibly quantify changes in the abundances of the mediators of lysine methylation and nonhistone lysine methylation (Kme) simultaneously across multiple samples. Recent studies by our group and others have demonstrated that antibody enrichment is not required to detect lysine methylation, prompting us to investigate the use of tandem mass tag (TMT) labeling for global Kme quantification without antibody enrichment in four different breast cancer cell lines (MCF-7, MDA-MB-231, HCC1806, and MCF10A). To improve the quantification of KDMs, we incorporated a lysine demethylase (KDM) isobaric trigger channel, which enabled 96% of all KDMs to be quantified while simultaneously quantifying 326 Kme sites. Overall, 142 differentially abundant Kme sites and eight differentially abundant KDMs were identified among the four cell lines, revealing cell line-specific patterning.
Collapse
Affiliation(s)
- Christine
A. Berryhill
- Biochemistry
and Molecular BiologyCenter for Proteome AnalysisCenter for Computational Biology
and BioinformaticsIndiana University Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine (IUSM), 635 Barnhill Drive, Medical Science
Building, Indianapolis, Indiana 46202-5122, United
States
| | - Taylor N. Evans
- Biochemistry
and Molecular BiologyCenter for Proteome AnalysisCenter for Computational Biology
and BioinformaticsIndiana University Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine (IUSM), 635 Barnhill Drive, Medical Science
Building, Indianapolis, Indiana 46202-5122, United
States
| | - Emma H. Doud
- Biochemistry
and Molecular BiologyCenter for Proteome AnalysisCenter for Computational Biology
and BioinformaticsIndiana University Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine (IUSM), 635 Barnhill Drive, Medical Science
Building, Indianapolis, Indiana 46202-5122, United
States
| | - Whitney R. Smith-Kinnaman
- Biochemistry
and Molecular BiologyCenter for Proteome AnalysisCenter for Computational Biology
and BioinformaticsIndiana University Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine (IUSM), 635 Barnhill Drive, Medical Science
Building, Indianapolis, Indiana 46202-5122, United
States
| | - Jocelyne N. Hanquier
- Biochemistry
and Molecular BiologyCenter for Proteome AnalysisCenter for Computational Biology
and BioinformaticsIndiana University Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine (IUSM), 635 Barnhill Drive, Medical Science
Building, Indianapolis, Indiana 46202-5122, United
States
| | - Amber L. Mosley
- Biochemistry
and Molecular BiologyCenter for Proteome AnalysisCenter for Computational Biology
and BioinformaticsIndiana University Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine (IUSM), 635 Barnhill Drive, Medical Science
Building, Indianapolis, Indiana 46202-5122, United
States
| | - Evan M. Cornett
- Biochemistry
and Molecular BiologyCenter for Proteome AnalysisCenter for Computational Biology
and BioinformaticsIndiana University Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine (IUSM), 635 Barnhill Drive, Medical Science
Building, Indianapolis, Indiana 46202-5122, United
States
| |
Collapse
|
3
|
Berryhill CA, Evans TN, Doud EH, Smith-Kinnaman WR, Hanquier JN, Mosley AL, Cornett EM. Quantitative analysis of non-histone lysine methylation sites and lysine demethylases in breast cancer cell lines. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.18.613658. [PMID: 39345446 PMCID: PMC11429713 DOI: 10.1101/2024.09.18.613658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Growing evidence shows that lysine methylation is a widespread protein post-translational modification that regulates protein function on histone and non-histone proteins. Numerous studies have demonstrated that dysregulation of lysine methylation mediators contributes to cancer growth and chemotherapeutic resistance. While changes in histone methylation are well documented with extensive analytical techniques available, there is a lack of high-throughput methods to reproducibly quantify changes in the abundances of the mediators of lysine methylation and non-histone lysine methylation (Kme) simultaneously across multiple samples. Recent studies by our group and others have demonstrated that antibody enrichment is not required to detect lysine methylation, prompting us to investigate the use of Tandem Mass Tag (TMT) labeling for global Kme quantification sans antibody enrichment in four different breast cancer cell lines (MCF-7, MDA-MB-231, HCC1806, and MCF10A). To improve the quantification of KDMs, we incorporated a lysine demethylase (KDM) isobaric trigger channel, which enabled 96% of all KDMs to be quantified while simultaneously quantifying 326 Kme sites. Overall, 142 differentially abundant Kme sites and eight differentially abundant KDMs were identified between the four cell lines, revealing cell line-specific patterning.
Collapse
Affiliation(s)
- Christine A Berryhill
- Biochemistry and Molecular Biology, Indiana University School of Medicine (IUSM), 635 Barnhill Drive, Medical Science Building, Indianapolis, IN 46202-5122, U.S.A
| | - Taylor N Evans
- Biochemistry and Molecular Biology, Indiana University School of Medicine (IUSM), 635 Barnhill Drive, Medical Science Building, Indianapolis, IN 46202-5122, U.S.A
| | - Emma H Doud
- Biochemistry and Molecular Biology, Indiana University School of Medicine (IUSM), 635 Barnhill Drive, Medical Science Building, Indianapolis, IN 46202-5122, U.S.A
- Center for Proteome Analysis, Indiana University School of Medicine (IUSM), 635 Barnhill Drive, Medical Science Building, Indianapolis, IN 46202-5122, U.S.A
| | - Whitney R Smith-Kinnaman
- Biochemistry and Molecular Biology, Indiana University School of Medicine (IUSM), 635 Barnhill Drive, Medical Science Building, Indianapolis, IN 46202-5122, U.S.A
- Center for Proteome Analysis, Indiana University School of Medicine (IUSM), 635 Barnhill Drive, Medical Science Building, Indianapolis, IN 46202-5122, U.S.A
| | - Jocelyne N Hanquier
- Biochemistry and Molecular Biology, Indiana University School of Medicine (IUSM), 635 Barnhill Drive, Medical Science Building, Indianapolis, IN 46202-5122, U.S.A
| | - Amber L Mosley
- Biochemistry and Molecular Biology, Indiana University School of Medicine (IUSM), 635 Barnhill Drive, Medical Science Building, Indianapolis, IN 46202-5122, U.S.A
- Center for Proteome Analysis, Indiana University School of Medicine (IUSM), 635 Barnhill Drive, Medical Science Building, Indianapolis, IN 46202-5122, U.S.A
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine (IUSM), 635 Barnhill Drive, Medical Science Building, Indianapolis, IN 46202-5122, U.S.A
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine (IUSM), 635 Barnhill Drive, Medical Science Building, Indianapolis, IN 46202-5122, U.S.A
| | - Evan M Cornett
- Biochemistry and Molecular Biology, Indiana University School of Medicine (IUSM), 635 Barnhill Drive, Medical Science Building, Indianapolis, IN 46202-5122, U.S.A
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine (IUSM), 635 Barnhill Drive, Medical Science Building, Indianapolis, IN 46202-5122, U.S.A
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine (IUSM), 635 Barnhill Drive, Medical Science Building, Indianapolis, IN 46202-5122, U.S.A
| |
Collapse
|
4
|
Abstract
Proteomics tools provide a powerful means to identify, detect, and quantify protein-related details in studies of platelet phenotype and function. Here, we consider how historical and recent advances in proteomics approaches have informed our understanding of platelet biology, and, how proteomics tools can be used going forward to advance studies of platelets. It is now apparent that the platelet proteome is comprised of thousands of different proteins, where specific changes in platelet protein systems can accompany alterations in platelet function in health and disease. Going forward, many challenges remain in how to best carry out, validate and interpret platelet proteomics experiments. Future studies of platelet protein post-translational modifications such as glycosylation, or studies that take advantage of single cell proteomics and top-down proteomics methods all represent areas of interest to profiling and more richly understanding platelets in human wellness and disease.
Collapse
Affiliation(s)
- Joseph E. Aslan
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon, USA
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, Oregon, USA
- Department of Biomedical Engineering, School of Medicine, Oregon Health & Science University, Portland, Oregon, USA
| |
Collapse
|
5
|
Soslau G. Platelet protein synthesis, regulation, and post-translational modifications: mechanics and function. Crit Rev Biochem Mol Biol 2023; 58:99-117. [PMID: 37347996 DOI: 10.1080/10409238.2023.2224532] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 06/08/2023] [Indexed: 06/24/2023]
Abstract
Dogma had been firmly entrenched in the minds of the scientific community that the anucleate mammalian platelet was incapable of protein biosynthesis since their identification in the late 1880s. These beliefs were not challenged until the 1960s when several reports demonstrated that platelets possessed the capacity to biosynthesize proteins. Even then, many still dismissed the synthesis as trivial and unimportant for at least another two decades. Research in the field expanded after the 1980s and numerous reports have since been published that now clearly demonstrate the potential significance of platelet protein synthesis under normal, pathological, and activating conditions. It is now clear that the platelet proteome is not a static entity but can be altered slowly or rapidly in response to external signals to support physiological requirements to maintain hemostasis and other biological processes. All the necessary biological components to support protein synthesis have been identified in platelets along with post-transcriptional processing of mRNAs, regulators of translation, and post-translational modifications such as glycosylation. The last comprehensive review of the subject appeared in 2009 and much work has been conducted since that time. The current review of the field will briefly incorporate the information covered in earlier reviews and then bring the reader up to date with more recent findings.
Collapse
Affiliation(s)
- Gerald Soslau
- Department of Biochemistry and Molecular Biology Drexel University College of Medicine, Philadelphia, PA, United States
| |
Collapse
|
6
|
Xu M, Du R, Xing W, Chen X, Wan J, Wang S, Xiong L, Nandakumar KS, Holmdahl R, Geng H. Platelets derived citrullinated proteins and microparticles are potential autoantibodies ACPA targets in RA patients. Front Immunol 2023; 14:1084283. [PMID: 36761728 PMCID: PMC9902922 DOI: 10.3389/fimmu.2023.1084283] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 01/12/2023] [Indexed: 01/25/2023] Open
Abstract
Citrullinated neoepitopes have emerged as key triggers of autoantibodies anti-citrullinated protein antibodies (ACPA) synthesis in rheumatoid arthritis (RA) patients. Apart from their critical role in homeostasis and thrombosis, platelets have a significant contribution to inflammation as well. Although anuclear in nature, platelets have an intricate post-translational modification machinery. Till now, citrullination in platelets and its contribution to trigger autoantibodies ACPA production in RA is an unexplored research direction. Herein, we investigated the expression of peptidylarginine deiminase (PAD) enzymes and citrullinated proteins/peptides in the human platelets and platelet derived microparticles (PDP). Both PAD4 mRNA and protein, but not the other PAD isoforms, are detectable in the human platelets. With a strict filtering criterion,108 citrullination sites present on 76 proteins were identified in the human platelets, and 55 citrullinated modifications present on 37 different proteins were detected in the PDPs. Among them, some are well-known citrullinated autoantigens associated with RA. Citrullinated forms of thrombospondin-1, β-actin, and platelet factor-4 (also known as CXCL4) are highly immunogenic and bound by autoantibodies ACPA. Furthermore, ACPA from RA sera and synovial fluids recognized citrullinated proteins from platelets and significantly activated them as evidenced by P-selectin upregulation and sCD40 L secretion. These results clearly demonstrate the presence of citrullinated autoantigens in platelets and PDPs, thus could serve as potential targets of ACPA in RA.
Collapse
Affiliation(s)
- Minjie Xu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Rong Du
- Department of Rheumatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenping Xing
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Xueting Chen
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Jian Wan
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Shengqing Wang
- Department of Dermatology, Hospital affiliated to Central China Normal University, Wuhan, China
| | - Li Xiong
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Kutty Selva Nandakumar
- Department of Environmental and Biosciences, School of Business, Innovation and Sustainability, Halmstad University, Halmstad, Sweden
| | - Rikard Holmdahl
- Division of Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Hui Geng
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| |
Collapse
|
7
|
Molecular Proteomics and Signalling of Human Platelets in Health and Disease. Int J Mol Sci 2021; 22:ijms22189860. [PMID: 34576024 PMCID: PMC8468031 DOI: 10.3390/ijms22189860] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/31/2021] [Accepted: 09/02/2021] [Indexed: 12/21/2022] Open
Abstract
Platelets are small anucleate blood cells that play vital roles in haemostasis and thrombosis, besides other physiological and pathophysiological processes. These roles are tightly regulated by a complex network of signalling pathways. Mass spectrometry-based proteomic techniques are contributing not only to the identification and quantification of new platelet proteins, but also reveal post-translational modifications of these molecules, such as acetylation, glycosylation and phosphorylation. Moreover, target proteomic analysis of platelets can provide molecular biomarkers for genetic aberrations with established or non-established links to platelet dysfunctions. In this report, we review 67 reports regarding platelet proteomic analysis and signalling on a molecular base. Collectively, these provide detailed insight into the: (i) technical developments and limitations of the assessment of platelet (sub)proteomes; (ii) molecular protein changes upon ageing of platelets; (iii) complexity of platelet signalling pathways and functions in response to collagen, rhodocytin, thrombin, thromboxane A2 and ADP; (iv) proteomic effects of endothelial-derived mediators such as prostacyclin and the anti-platelet drug aspirin; and (v) molecular protein changes in platelets from patients with congenital disorders or cardiovascular disease. However, sample sizes are still low and the roles of differentially expressed proteins are often unknown. Based on the practical and technical possibilities and limitations, we provide a perspective for further improvements of the platelet proteomic field.
Collapse
|
8
|
Aslan JE. Platelet Proteomes, Pathways, and Phenotypes as Informants of Vascular Wellness and Disease. Arterioscler Thromb Vasc Biol 2021; 41:999-1011. [PMID: 33441027 PMCID: PMC7980774 DOI: 10.1161/atvbaha.120.314647] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Platelets rapidly undergo responsive transitions in form and function to repair vascular endothelium and mediate hemostasis. In contrast, heterogeneous platelet subpopulations with a range of primed or refractory phenotypes gradually arise in chronic inflammatory and other conditions in a manner that may indicate or support disease. Qualitatively distinguishable platelet phenotypes are increasingly associated with a variety of physiological and pathological circumstances; however, the origins and significance of platelet phenotypic variation remain unclear and conceptually vague. As changes in platelet function in disease exhibit many similarities to platelets following the activation of platelet agonist receptors, the intracellular responses of platelets common to hemostasis and inflammation may provide insights to the molecular basis of platelet phenotype. Here, we review concepts around how protein-level relations-from platelet receptors through intracellular signaling events-may help to define platelet phenotypes in inflammation, immune responses, aging, and other conditions. We further discuss how representing systems-wide platelet proteomics data profiles as circuit-like networks of causally related intracellular events, or, pathway maps, may inform molecular definitions of platelet phenotype. In addition to offering insights into platelets as druggable targets, maps of causally arranged intracellular relations underlying platelet function can also advance precision and interceptive medicine efforts by leveraging platelets as accessible, dynamic, endogenous, circulating biomarkers of vascular wellness and disease. Graphic Abstract: A graphic abstract is available for this article.
Collapse
Affiliation(s)
- Joseph E. Aslan
- Knight Cardiovascular Institute, School of Medicine, Oregon Health & Science University, Portland, Oregon, USA
- Department of Chemical Physiology and Biochemistry and School of Medicine, Oregon Health & Science University, Portland, Oregon, USA
- Department of Biomedical Engineering, School of Medicine, Oregon Health & Science University, Portland, Oregon, USA
| |
Collapse
|
9
|
Fu Q, Liu Z, Bhawal R, Anderson ET, Sherwood RW, Yang Y, Thannhauser T, Schroyen M, Tang X, Zhang H, Zhang S. Comparison of MS 2, synchronous precursor selection MS 3, and real-time search MS 3 methodologies for lung proteomes of hydrogen sulfide treated swine. Anal Bioanal Chem 2020; 413:419-429. [PMID: 33099676 DOI: 10.1007/s00216-020-03009-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 10/13/2020] [Indexed: 01/02/2023]
Abstract
Tandem mass tags (TMTs) have increasingly become an attractive technique for global proteomics. However, its effectiveness for multiplexed quantitation by traditional tandem mass spectrometry (MS2) suffers from ratio distortion. Synchronous precursor selection (SPS) MS3 has been widely accepted for improved quantitation accuracy, but concurrently decreased proteome coverage. Recently, a Real-Time Search algorithm has been integrated with the SPS MS3 pipeline (RTS MS3) to provide accurate quantitation and improved depth of coverage. In this mechanistic study of the impact of exposure to hydrogen sulfide (H2S) on the respiration of swine, we used TMT-based comparative proteomics of lung tissues from control and H2S-treated subjects as a test case to evaluate traditional MS2, SPS MS3, and RTS MS3 acquisition methods on both the Orbitrap Fusion and Orbitrap Eclipse platforms. Comparison of the results obtained by the MS2 with those of SPS MS3 and RTS MS3 methods suggests that the MS3-driven quantitative strategies provided a more accurate global-scale quantitation; however, only RTS MS3 provided proteomic coverage that rivaled that of traditional MS2 analysis. RTS MS3 not only yields more productive MS3 spectra than SPS MS3 but also appears to focus the analysis more effectively on unique peptides. Furthermore, pathway enrichment analyses of the H2S-altered proteins demonstrated that an additional apoptosis pathway was discovered exclusively by RTS MS3. This finding was verified by RT-qPCR, western blotting, and TUNEL staining experiments. We conclude that RTS MS3 workflow enables simultaneous improvement of quantitative accuracy and proteome coverage over alternative approaches (MS2 and SPS MS3). Graphical abstract.
Collapse
Affiliation(s)
- Qin Fu
- Proteomics and Metabolomics Facility, Institute of Biotechnology, Cornell University, 526 Campus Road, Ithaca, NY, 14853, USA
| | - Zhen Liu
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, 2 West Yuanmingyuan Road, Beijing, 100193, China.,Precision Livestock and Nutrition Unit, Gembloux Agro-Bio Tech, Teaching and Research Centre, University of Liège, Passage des Déportés 2, 5030, Gembloux, Belgium
| | - Ruchika Bhawal
- Proteomics and Metabolomics Facility, Institute of Biotechnology, Cornell University, 526 Campus Road, Ithaca, NY, 14853, USA
| | - Elizabeth T Anderson
- Proteomics and Metabolomics Facility, Institute of Biotechnology, Cornell University, 526 Campus Road, Ithaca, NY, 14853, USA
| | - Robert W Sherwood
- Proteomics and Metabolomics Facility, Institute of Biotechnology, Cornell University, 526 Campus Road, Ithaca, NY, 14853, USA
| | - Yong Yang
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, 538 Tower Road, Ithaca, NY, 14853, USA
| | - Theodore Thannhauser
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, 538 Tower Road, Ithaca, NY, 14853, USA
| | - Martine Schroyen
- Precision Livestock and Nutrition Unit, Gembloux Agro-Bio Tech, Teaching and Research Centre, University of Liège, Passage des Déportés 2, 5030, Gembloux, Belgium
| | - Xiangfang Tang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, 2 West Yuanmingyuan Road, Beijing, 100193, China.
| | - Hongfu Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, 2 West Yuanmingyuan Road, Beijing, 100193, China
| | - Sheng Zhang
- Proteomics and Metabolomics Facility, Institute of Biotechnology, Cornell University, 526 Campus Road, Ithaca, NY, 14853, USA.
| |
Collapse
|
10
|
Platelets in Healthy and Disease States: From Biomarkers Discovery to Drug Targets Identification by Proteomics. Int J Mol Sci 2020; 21:ijms21124541. [PMID: 32630608 PMCID: PMC7352998 DOI: 10.3390/ijms21124541] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/15/2020] [Accepted: 06/24/2020] [Indexed: 12/16/2022] Open
Abstract
Platelets are a heterogeneous small anucleate blood cell population with a central role both in physiological haemostasis and in pathological states, spanning from thrombosis to inflammation, and cancer. Recent advances in proteomic studies provided additional important information concerning the platelet biology and the response of platelets to several pathophysiological pathways. Platelets circulate systemically and can be easily isolated from human samples, making proteomic application very interesting for characterizing the complexity of platelet functions in health and disease as well as for identifying and quantifying potential platelet proteins as biomarkers and novel antiplatelet therapeutic targets. To date, the highly dynamic protein content of platelets has been studied in resting and activated platelets, and several subproteomes have been characterized including platelet-derived microparticles, platelet granules, platelet releasates, platelet membrane proteins, and specific platelet post-translational modifications. In this review, a critical overview is provided on principal platelet proteomic studies focused on platelet biology from signaling to granules content, platelet proteome changes in several diseases, and the impact of drugs on platelet functions. Moreover, recent advances in quantitative platelet proteomics are discussed, emphasizing the importance of targeted quantification methods for more precise, robust and accurate quantification of selected proteins, which might be used as biomarkers for disease diagnosis, prognosis and therapy, and their strong clinical impact in the near future.
Collapse
|