1
|
Lord S, Johnston H, Samant R, Lai Y. Ubiquitylomics: An Emerging Approach for Profiling Protein Ubiquitylation in Skeletal Muscle. J Cachexia Sarcopenia Muscle 2024; 15:2281-2294. [PMID: 39279720 PMCID: PMC11634490 DOI: 10.1002/jcsm.13601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 07/18/2024] [Accepted: 08/12/2024] [Indexed: 09/18/2024] Open
Abstract
Skeletal muscle is a highly adaptable tissue, finely tuned by various physiological and pathological factors. Whilst the pivotal role of skeletal muscle in overall health is widely acknowledged, unravelling the underlying molecular mechanisms poses ongoing challenges. Protein ubiquitylation, a crucial post-translational modification, is involved in regulating most biological processes. This widespread impact is achieved through a diverse set of enzymes capable of generating structurally and functionally distinct ubiquitin modifications on proteins. The complexity of protein ubiquitylation has presented significant challenges in not only identifying ubiquitylated proteins but also characterising their functional significance. Mass spectrometry enables in-depth analysis of proteins and their post-translational modification status, offering a powerful tool for studying protein ubiquitylation and its biological diversity: an approach termed ubiquitylomics. Ubiquitylomics has been employed to tackle different perspectives of ubiquitylation, including but not limited to global quantification of substrates and ubiquitin linkages, ubiquitin site recognition and crosstalk with other post-translational modifications. As the field of mass spectrometry continues to evolve, the usage of ubiquitylomics has unravelled novel insights into the regulatory mechanisms of protein ubiquitylation governing biology. However, ubiquitylomics research has predominantly been conducted in cellular models, limiting our understanding of ubiquitin signalling events driving skeletal muscle biology. By integrating the intricate landscape of protein ubiquitylation with dynamic shifts in muscle physiology, ubiquitylomics promises to not only deepen our understanding of skeletal muscle biology but also lay the foundation for developing transformative muscle-related therapeutics. This review aims to articulate how ubiquitylomics can be utilised by researchers to address different aspects of ubiquitylation signalling in skeletal muscle. We explore methods used in ubiquitylomics experiments, highlight relevant literature employing ubiquitylomics in the context of skeletal muscle and outline considerations for experimental design.
Collapse
Affiliation(s)
- Samuel O. Lord
- School of Sport, Exercise and Rehabilitation SciencesUniversity of BirminghamBirminghamUK
| | | | | | - Yu‐Chiang Lai
- School of Sport, Exercise and Rehabilitation SciencesUniversity of BirminghamBirminghamUK
- MRC Versus Arthritis Centre for Musculoskeletal Ageing ResearchUniversity of BirminghamBirminghamUK
- NIHR Birmingham Biomedical Research Centre Sarcopenia and MultimorbidityUniversity of BirminghamBirminghamUK
| |
Collapse
|
2
|
Kar A, Mukherjee S, Mukherjee S, Biswas A. Ubiquitin: A double-edged sword in hepatitis B virus-induced hepatocellular carcinoma. Virology 2024; 599:110199. [PMID: 39116646 DOI: 10.1016/j.virol.2024.110199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/26/2024] [Accepted: 07/31/2024] [Indexed: 08/10/2024]
Abstract
Hepatitis B virus is one of the leading causes behind the neoplastic transformation of liver tissue and associated mortality. Despite the availability of many therapies and vaccines, the pathogenic landscape of the virus remains elusive; urging the development of novel strategies based on the fundamental infectious and transformative modalities of the virus-host interactome. Ubiquitination is a widely observed post-translational modification of several proteins, which either regulates the proteins' turnover or impacts their functionalities. In recent years, ample amount of literature has accumulated regarding the ubiquitination dynamics of the HBV proteins as well as the host proteins during HBV infection and carcinogenesis; with direct and detailed characterization of the involvement of HBV in these processes. Interestingly, while many of these ubiquitination events restrict HBV life cycle and carcinogenesis, several others promote the emergence of hepatocarcinoma by putting the virus in an advantageous position. This review sums up the snowballing literature on ubiquitination-mediated regulation of the host-HBV crosstalk, with special emphasis on its influence on the establishment and progression of hepatocellular carcinoma on a molecular level. With the advent of cutting-edge ubiquitination-targeted therapeutic approaches, the findings emanating from this review may potentiate the identification of novel anti-HBV targets for the formulation of novel anticancer strategies to control the HBV-induced hepato-carcinogenic process on a global scale.
Collapse
Affiliation(s)
- Arpita Kar
- Department of Signal Transduction & Biogenic Amines, Chittaranjan National Cancer Institute, Kolkata, India
| | - Sandipan Mukherjee
- Department of Signal Transduction & Biogenic Amines, Chittaranjan National Cancer Institute, Kolkata, India
| | - Soumyadeep Mukherjee
- Department of in Vitro Carcinogenesis and Cellular Chemotherapy, Chittaranjan National Cancer Institute, Kolkata, India
| | - Avik Biswas
- Department of Signal Transduction & Biogenic Amines, Chittaranjan National Cancer Institute, Kolkata, India.
| |
Collapse
|
3
|
Su Y, Ngea GLN, Wang K, Lu Y, Godana EA, Ackah M, Yang Q, Zhang H. Deciphering the mechanism of E3 ubiquitin ligases in plant responses to abiotic and biotic stresses and perspectives on PROTACs for crop resistance. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:2811-2843. [PMID: 38864414 PMCID: PMC11536463 DOI: 10.1111/pbi.14407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 05/12/2024] [Accepted: 05/27/2024] [Indexed: 06/13/2024]
Abstract
With global climate change, it is essential to find strategies to make crops more resistant to different stresses and guarantee food security worldwide. E3 ubiquitin ligases are critical regulatory elements that are gaining importance due to their role in selecting proteins for degradation in the ubiquitin-proteasome proteolysis pathway. The role of E3 Ub ligases has been demonstrated in numerous cellular processes in plants responding to biotic and abiotic stresses. E3 Ub ligases are considered a class of proteins that are difficult to control by conventional inhibitors, as they lack a standard active site with pocket, and their biological activity is mainly due to protein-protein interactions with transient conformational changes. Proteolysis-targeted chimeras (PROTACs) are a new class of heterobifunctional molecules that have emerged in recent years as relevant alternatives for incurable human diseases like cancer because they can target recalcitrant proteins for destruction. PROTACs interact with the ubiquitin-proteasome system, principally the E3 Ub ligase in the cell, and facilitate proteasome turnover of the proteins of interest. PROTAC strategies harness the essential functions of E3 Ub ligases for proteasomal degradation of proteins involved in dysfunction. This review examines critical advances in E3 Ub ligase research in plant responses to biotic and abiotic stresses. It highlights how PROTACs can be applied to target proteins involved in plant stress response to mitigate pathogenic agents and environmental adversities.
Collapse
Affiliation(s)
- Yingying Su
- School of Food and Biological EngineeringJiangsu UniversityZhenjiangChina
| | - Guillaume Legrand Ngolong Ngea
- School of Food and Biological EngineeringJiangsu UniversityZhenjiangChina
- Institute of Fisheries Sciences, University of DoualaDoualaCameroon
| | - Kaili Wang
- School of Food and Biological EngineeringJiangsu UniversityZhenjiangChina
| | - Yuchun Lu
- School of Food and Biological EngineeringJiangsu UniversityZhenjiangChina
| | - Esa Abiso Godana
- School of Food and Biological EngineeringJiangsu UniversityZhenjiangChina
| | - Michael Ackah
- School of Food and Biological EngineeringJiangsu UniversityZhenjiangChina
| | - Qiya Yang
- School of Food and Biological EngineeringJiangsu UniversityZhenjiangChina
| | - Hongyin Zhang
- School of Food and Biological EngineeringJiangsu UniversityZhenjiangChina
| |
Collapse
|
4
|
Liao M, Yao D, Wu L, Luo C, Wang Z, Zhang J, Liu B. Targeting the Warburg effect: A revisited perspective from molecular mechanisms to traditional and innovative therapeutic strategies in cancer. Acta Pharm Sin B 2024; 14:953-1008. [PMID: 38487001 PMCID: PMC10935242 DOI: 10.1016/j.apsb.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 11/09/2023] [Accepted: 11/14/2023] [Indexed: 03/17/2024] Open
Abstract
Cancer reprogramming is an important facilitator of cancer development and survival, with tumor cells exhibiting a preference for aerobic glycolysis beyond oxidative phosphorylation, even under sufficient oxygen supply condition. This metabolic alteration, known as the Warburg effect, serves as a significant indicator of malignant tumor transformation. The Warburg effect primarily impacts cancer occurrence by influencing the aerobic glycolysis pathway in cancer cells. Key enzymes involved in this process include glucose transporters (GLUTs), HKs, PFKs, LDHs, and PKM2. Moreover, the expression of transcriptional regulatory factors and proteins, such as FOXM1, p53, NF-κB, HIF1α, and c-Myc, can also influence cancer progression. Furthermore, lncRNAs, miRNAs, and circular RNAs play a vital role in directly regulating the Warburg effect. Additionally, gene mutations, tumor microenvironment remodeling, and immune system interactions are closely associated with the Warburg effect. Notably, the development of drugs targeting the Warburg effect has exhibited promising potential in tumor treatment. This comprehensive review presents novel directions and approaches for the early diagnosis and treatment of cancer patients by conducting in-depth research and summarizing the bright prospects of targeting the Warburg effect in cancer.
Collapse
Affiliation(s)
- Minru Liao
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Dahong Yao
- School of Pharmaceutical Sciences, Shenzhen Technology University, Shenzhen 518118, China
| | - Lifeng Wu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Chaodan Luo
- Department of Psychology, University of Southern California, Los Angeles, CA 90089, USA
| | - Zhiwen Wang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
- School of Pharmaceutical Sciences, Shenzhen Technology University, Shenzhen 518118, China
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Jin Zhang
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Bo Liu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
5
|
Schneider T, Sawade K, Berner F, Peter C, Kovermann M. Specifying conformational heterogeneity of multi-domain proteins at atomic resolution. Structure 2023; 31:1259-1274.e10. [PMID: 37557171 DOI: 10.1016/j.str.2023.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 06/02/2023] [Accepted: 07/14/2023] [Indexed: 08/11/2023]
Abstract
The conformational landscape of multi-domain proteins is inherently linked to their specific functions. This also holds for polyubiquitin chains that are assembled by two or more ubiquitin domains connected by a flexible linker thus showing a large interdomain mobility. However, molecular recognition and signal transduction are associated with particular conformational substates that are populated in solution. Here, we apply high-resolution NMR spectroscopy in combination with dual-scale MD simulations to explore the conformational space of K6-, K29-, and K33-linked diubiquitin molecules. The conformational ensembles are evaluated utilizing a paramagnetic cosolute reporting on solvent exposure plus a set of complementary NMR parameters. This approach unravels a conformational heterogeneity of diubiquitins and explains the diversity of structural models that have been determined for K6-, K29-, and K33-linked diubiquitins in free and ligand-bound states so far. We propose a general application of the approach developed here to demystify multi-domain proteins occurring in nature.
Collapse
Affiliation(s)
- Tobias Schneider
- Department of Chemistry, University of Konstanz, 78457 Konstanz, Germany; Konstanz Research School Chemical Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Kevin Sawade
- Department of Chemistry, University of Konstanz, 78457 Konstanz, Germany; Graduate School Chemistry, University of Konstanz, 78457 Konstanz, Germany
| | - Frederic Berner
- Department of Chemistry, University of Konstanz, 78457 Konstanz, Germany; Konstanz Research School Chemical Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Christine Peter
- Department of Chemistry, University of Konstanz, 78457 Konstanz, Germany; Konstanz Research School Chemical Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Michael Kovermann
- Department of Chemistry, University of Konstanz, 78457 Konstanz, Germany; Konstanz Research School Chemical Biology, University of Konstanz, 78457 Konstanz, Germany.
| |
Collapse
|
6
|
Park SS, Baek KH. Synergistic effect of YOD1 and USP21 on the Hippo signaling pathway. Cancer Cell Int 2023; 23:209. [PMID: 37743467 PMCID: PMC10518088 DOI: 10.1186/s12935-023-03078-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 09/20/2023] [Indexed: 09/26/2023] Open
Abstract
BACKGROUND Deubiquitinating enzymes (DUBs) comprise a family of proteases responsible for cleaving the peptide or isopeptide bond between ubiquitin and its substrate proteins. Ubiquitin is essential for regulating diverse cellular functions by attaching to target proteins. The Hippo signaling pathway plays a crucial role in controlling tissue size, cell proliferation, and apoptosis. In a previous study, we discovered that YOD1 regulates the Hippo signaling pathway by deubiquitinating the neural precursor cell expressed developmentally down-regulated protein 4 (NEDD4), an E3 ligase of large tumor suppressor kinase 1 (LATS1). Here, our aim was to investigate potential substrates of YOD1 implicated in the Hippo signaling pathway. METHODS We employed various bioinformatics tools (BioGRID, STRING, and Cytoscape) to identify novel potential substrates of YOD1. Furthermore, we used western blotting, co-immunoprecipitation (co-IP), glutathione S-transferase (GST) pull-down, immunocytochemistry (ICC) assays to investigate cellular interactions. To evaluate cell proliferation, we performed cell counting kit-8 (CCK-8), wound healing, colony forming, and flow cytometry assays using A549, HEK293T, and HeLa cells. Additionally, we assessed the expression levels of YAP and p-YAP in A549, HEK293T, and HeLa cells through western blotting. RESULTS Our investigations revealed that YOD1 interacts with ubiquitin-specific proteases 21 (USP21), a DUB involved in the Hippo signaling pathway, and deubiquitinates the microtubule-affinity regulating kinase (MARK). Intriguingly, YOD1 and USP21 mutually deubiquitinate each other; while YOD1 regulates the protein stability of USP21, USP21 does not exert a regulatory effect on YOD1. Moreover, we observed the synergistic effect of YOD1 and USP21 on cell proliferation through the modulation of the Hippo signaling pathway. CONCLUSIONS Our study revealed multiple cellular interactions between YOD1 and USP21. Moreover, our findings suggest that the combined activities of YOD1 and USP21 synergistically influence cell proliferation in A549 cells by regulating the Hippo signaling pathway.
Collapse
Affiliation(s)
- Sang-Soo Park
- Department of Biomedical Science, CHA University, 335 Pangyo-Ro, Bundang-Gu, Seongnam-Si, Gyeonggi-Do, 13488, Republic of Korea
| | - Kwang-Hyun Baek
- Department of Biomedical Science, CHA University, 335 Pangyo-Ro, Bundang-Gu, Seongnam-Si, Gyeonggi-Do, 13488, Republic of Korea.
- Department of Bioconvergence, CHA University, 335 Pangyo-Ro, Bundang-Gu, Seoungnam-Si, Gyeonggi-Do, 13488, Republic of Korea.
| |
Collapse
|
7
|
Bashyal A, Dunham SD, Brodbelt JS. Characterization of Unbranched Ubiquitin Tetramers by Combining Ultraviolet Photodissociation with Proton Transfer Charge Reduction Reactions. Anal Chem 2023; 95:14001-14008. [PMID: 37677053 DOI: 10.1021/acs.analchem.3c02618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
Polyubiquitination is an important post-translational modification (PTM) that regulates various biological functions. The linkage sites and topologies of polyubiquitination chains are important factors in determining the fate of polyubiquitinated proteins. Characterization of polyubiquitin chains is the first step in understanding the biological functions of protein ubiquitination, but it is challenging owing to the repeating nature of the ubiquitin chains and the difficulty in deciphering linkage positions. Here, we combine ultraviolet photodissociation (UVPD) mass spectrometry and gas-phase proton transfer charge reduction (PTCR) to facilitate the assignment of product ions generated from Lys6-, Lys11-, Lys29-, Lys33-, Lys48-, and Lys63-linked ubiquitin tetramers. UVPD results in extensive fragmentation of intact proteins in a manner that allows the localization of PTMs. However, UVPD mass spectra of large proteins (>30 kDa) are often congested due to the overlapping isotopic distribution of highly charged fragment ions. UVPD + PTCR improved the identification of PTM-containing fragment ions, allowing the localization of linkage sites in all six tetramers analyzed. UVPD + PTCR also increased the sequence coverage obtained from the PTM-containing fragment ions in each of the four chains of each tetramer by 7 to 44% when compared to UVPD alone.
Collapse
Affiliation(s)
- Aarti Bashyal
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Sean D Dunham
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Jennifer S Brodbelt
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
8
|
Long D, Zhang R, Du C, Tong J, Ni Y, Zhou Y, Zuo Y, Liao M. Integrated analysis of the ubiquitination mechanism reveals the specific signatures of tissue and cancer. BMC Genomics 2023; 24:523. [PMID: 37667177 PMCID: PMC10478310 DOI: 10.1186/s12864-023-09583-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 08/13/2023] [Indexed: 09/06/2023] Open
Abstract
BACKGROUND Ubiquitination controls almost all cellular processes. The dysregulation of ubiquitination signals is closely associated with the initiation and progression of multiple diseases. However, there is little comprehensive research on the interaction and potential function of ubiquitination regulators (UBRs) in spermatogenesis and cancer. METHODS We systematically characterized the mRNA and protein expression of UBRs across tissues and further evaluated their roles in testicular development and spermatogenesis. Subsequently, we explored the genetic alterations, expression perturbations, cancer hallmark-related pathways, and clinical relevance of UBRs in pan-cancer. RESULTS This work reveals heterogeneity in the expression patterns of UBRs across tissues, and the expression pattern in testis is the most distinct. UBRs are dynamically expressed during testis development, which are critical for normal spermatogenesis. Furthermore, UBRs have widespread genetic alterations and expression perturbations in pan-cancer. The expression of 79 UBRs was identified to be closely correlated with the activity of 32 cancer hallmark-related pathways, and ten hub genes were screened for further clinical relevance analysis by a network-based method. More than 90% of UBRs can affect the survival of cancer patients, and hub genes have an excellent prognostic classification for specific cancer types. CONCLUSIONS Our study provides a comprehensive analysis of UBRs in spermatogenesis and pan-cancer, which can build a foundation for understanding male infertility and developing cancer drugs in the aspect of ubiquitination.
Collapse
Affiliation(s)
- Deyu Long
- Center of Bioinformatics, College of Life Sciences, Northwest A&F University, 712100, Yangling, Shaanxi, China
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, 010070, Hohhot, China
| | - Ruiqi Zhang
- Center of Bioinformatics, College of Life Sciences, Northwest A&F University, 712100, Yangling, Shaanxi, China
| | - Changjian Du
- Center of Bioinformatics, College of Life Sciences, Northwest A&F University, 712100, Yangling, Shaanxi, China
| | - Jiapei Tong
- College of Information Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Yu Ni
- Center of Bioinformatics, College of Life Sciences, Northwest A&F University, 712100, Yangling, Shaanxi, China
| | - Yaqi Zhou
- Center of Bioinformatics, College of Life Sciences, Northwest A&F University, 712100, Yangling, Shaanxi, China
| | - Yongchun Zuo
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, 010070, Hohhot, China.
| | - Mingzhi Liao
- Center of Bioinformatics, College of Life Sciences, Northwest A&F University, 712100, Yangling, Shaanxi, China.
| |
Collapse
|
9
|
Visintin R, Ray SK. Intersections of Ubiquitin-Proteosome System and Autophagy in Promoting Growth of Glioblastoma Multiforme: Challenges and Opportunities. Cells 2022; 11:cells11244063. [PMID: 36552827 PMCID: PMC9776575 DOI: 10.3390/cells11244063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/09/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022] Open
Abstract
Glioblastoma multiforme (GBM) is a brain tumor notorious for its propensity to recur after the standard treatments of surgical resection, ionizing radiation (IR), and temozolomide (TMZ). Combined with the acquired resistance to standard treatments and recurrence, GBM is an especially deadly malignancy with hardly any worthwhile treatment options. The treatment resistance of GBM is influenced, in large part, by the contributions from two main degradative pathways in eukaryotic cells: ubiquitin-proteasome system (UPS) and autophagy. These two systems influence GBM cell survival by removing and recycling cellular components that have been damaged by treatments, as well as by modulating metabolism and selective degradation of components of cell survival or cell death pathways. There has recently been a large amount of interest in potential cancer therapies involving modulation of UPS or autophagy pathways. There is significant crosstalk between the two systems that pose therapeutic challenges, including utilization of ubiquitin signaling, the degradation of components of one system by the other, and compensatory activation of autophagy in the case of proteasome inhibition for GBM cell survival and proliferation. There are several important regulatory nodes which have functions affecting both systems. There are various molecular components at the intersections of UPS and autophagy pathways that pose challenges but also show some new therapeutic opportunities for GBM. This review article aims to provide an overview of the recent advancements in research regarding the intersections of UPS and autophagy with relevance to finding novel GBM treatment opportunities, especially for combating GBM treatment resistance.
Collapse
Affiliation(s)
- Rhett Visintin
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| | - Swapan K. Ray
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC 29209, USA
- Correspondence: ; Tel.: +1-803-216-3420; Fax: +1-803-216-3428
| |
Collapse
|
10
|
Tsoi H, Tsang WC, Man EPS, Leung MH, You CP, Chan SY, Chan WL, Khoo US. Checkpoint Kinase 2 Inhibition Can Reverse Tamoxifen Resistance in ER-Positive Breast Cancer. Int J Mol Sci 2022; 23:ijms232012290. [PMID: 36293165 PMCID: PMC9604393 DOI: 10.3390/ijms232012290] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/11/2022] [Accepted: 10/13/2022] [Indexed: 11/06/2022] Open
Abstract
Breast cancer is a heterogeneous disease. Tamoxifen is frequently used to treat ER-positive breast cancer. Our team has identified a novel splice variant of NCOR2, BQ323636.1 (BQ), that mediates tamoxifen resistance. However, the upstream factors that modulate BQ expression are not apparent. This study reveals that tamoxifen treatment causes induction of DNA damage which can enhance BQ expression. We show that DNA damage can activate the ATM/CHK2 and ATR/CHK1 signalling cascades and confirm that ATM/CHK2 signalling is responsible for enhancing the protein stability of BQ. siRNA or a small inhibitor targeting CHK2 resulted in the reduction in BQ expression through reduced phosphorylation and enhanced poly-ubiquitination of BQ. Inhibition of CHK2 by CCT241533 could reverse tamoxifen resistance in vitro and in vivo. Using clinical samples in the tissue microarray, we confirmed that high p-CHK2 expression was significantly associated with high nuclear BQ expression, tamoxifen resistance and poorer overall and disease-specific survival. In conclusion, tamoxifen treatment can enhance BQ expression in ER-positive breast cancer by activating the ATM/CHK2 axis. Targeting CHK2 is a promising approach to overcoming tamoxifen resistance in ER-positive breast cancer.
Collapse
Affiliation(s)
- Ho Tsoi
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Wai-Chung Tsang
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Ellen P. S. Man
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Man-Hong Leung
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Chan-Ping You
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Sum-Yin Chan
- Department of Clinical Oncology, Queen Mary Hospital, Hong Kong SAR, China
| | - Wing-Lok Chan
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Ui-Soon Khoo
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Correspondence: ; Tel.: +852-2255-2664; Fax: +852-2218-5205
| |
Collapse
|
11
|
Sun M, Zhang X. Current methodologies in protein ubiquitination characterization: from ubiquitinated protein to ubiquitin chain architecture. Cell Biosci 2022; 12:126. [PMID: 35962460 PMCID: PMC9373315 DOI: 10.1186/s13578-022-00870-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 08/02/2022] [Indexed: 11/18/2022] Open
Abstract
Ubiquitination is a versatile post-translational modification (PTM), which regulates diverse fundamental features of protein substrates, including stability, activity, and localization. Unsurprisingly, dysregulation of the complex interaction between ubiquitination and deubiquitination leads to many pathologies, such as cancer and neurodegenerative diseases. The versatility of ubiquitination is a result of the complexity of ubiquitin (Ub) conjugates, ranging from a single Ub monomer to Ub polymers with different length and linkage types. To further understand the molecular mechanism of ubiquitination signaling, innovative strategies are needed to characterize the ubiquitination sites, the linkage type, and the length of Ub chain. With advances in chemical biology tools, computational methodologies, and mass spectrometry, protein ubiquitination sites and their Ub chain architecture have been extensively revealed. The obtained information on protein ubiquitination helps to crack the molecular mechanism of ubiquitination in numerous pathologies. In this review, we summarize the recent advances in protein ubiquitination analysis to gain updated knowledge in this field. In addition, the current and future challenges and barriers are also reviewed and discussed.
Collapse
|
12
|
Atypical Ubiquitination and Parkinson's Disease. Int J Mol Sci 2022; 23:ijms23073705. [PMID: 35409068 PMCID: PMC8998352 DOI: 10.3390/ijms23073705] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 02/04/2023] Open
Abstract
Ubiquitination (the covalent attachment of ubiquitin molecules to target proteins) is one of the main post-translational modifications of proteins. Historically, the type of polyubiquitination, which involves K48 lysine residues of the monomeric ubiquitin, was the first studied type of ubiquitination. It usually targets proteins for their subsequent proteasomal degradation. All the other types of ubiquitination, including monoubiquitination; multi-monoubiquitination; and polyubiquitination involving lysine residues K6, K11, K27, K29, K33, and K63 and N-terminal methionine, were defined as atypical ubiquitination (AU). Good evidence now exists that AUs, participating in the regulation of various cellular processes, are crucial for the development of Parkinson's disease (PD). These AUs target various proteins involved in PD pathogenesis. The K6-, K27-, K29-, and K33-linked polyubiquitination of alpha-synuclein, the main component of Lewy bodies, and DJ-1 (another PD-associated protein) is involved in the formation of insoluble aggregates. Multifunctional protein kinase LRRK2 essential for PD is subjected to K63- and K27-linked ubiquitination. Mitophagy mediated by the ubiquitin ligase parkin is accompanied by K63-linked autoubiquitination of parkin itself and monoubiquitination and polyubiquitination of mitochondrial proteins with the formation of both classical K48-linked ubiquitin chains and atypical K6-, K11-, K27-, and K63-linked polyubiquitin chains. The ubiquitin-specific proteases USP30, USP33, USP8, and USP15, removing predominantly K6-, K11-, and K63-linked ubiquitin conjugates, antagonize parkin-mediated mitophagy.
Collapse
|
13
|
Huang Q, Qin D, Pei D, Vermeulen M, Zhang X. UBE2O and USP7 co-regulate RECQL4 ubiquitinylation and homologous recombination-mediated DNA repair. FASEB J 2021; 36:e22112. [PMID: 34921745 DOI: 10.1096/fj.202100974rrr] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 11/26/2021] [Accepted: 12/06/2021] [Indexed: 01/27/2023]
Abstract
The human RecQ DNA helicase, RECQL4, plays a pivotal role in maintaining genomic stability by regulating the DNA double-strand breaks (DSBs) repair pathway, and is, thus, involved in the regulation of aging and cancer onset. However, the regulatory mechanisms of RECQL4, especially its post-translational modifications, have not been fully illustrated. Here, we report that the E2/E3 hybrid ubiquitin-conjugating enzyme, UBE2O, physically interacts with RECQL4, and mediates the multi-monoubiquitinylation of RECQL4, subsequently leading to its proteasomal degradation. Functionally, we showed that UBE2O inhibits homologous recombination (HR)-mediated DSBs repair, and this inhibition depends on its E2 catalytic activity and RECQL4 expression. Mechanistically, we showed that UBE2O attenuates the interaction of RECQL4 and DNA damage repair proteins, the MRE11-RAD50-NBS1 complex and CtIP. Furthermore, we show that deubiquitinylase USP7 interacts with both UBE2O and RECQL4, and in that it antagonizes UBE2O-mediated regulation of RECQL4 stability and function. Collectively, we found a novel regulatory mechanism of ubiquitin-mediated regulation of RECQL4 in HR-mediated DSBs repair process.
Collapse
Affiliation(s)
- Qiuling Huang
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Center for Cell Lineage and Atlas, BioLand Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
| | - Dajiang Qin
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Duanqing Pei
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Laboratory of Cell fate Control, School of Life Sciences, Westlake University, Hangzhou, China
| | - Michiel Vermeulen
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Oncode Institute, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - Xiaofei Zhang
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Center for Cell Lineage and Atlas, BioLand Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
| |
Collapse
|
14
|
New Look of EBV LMP1 Signaling Landscape. Cancers (Basel) 2021; 13:cancers13215451. [PMID: 34771613 PMCID: PMC8582580 DOI: 10.3390/cancers13215451] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/01/2021] [Accepted: 10/26/2021] [Indexed: 01/18/2023] Open
Abstract
Simple Summary Epstein-Barr Virus (EBV) infection is associated with various lymphomas and carcinomas as well as other diseases in humans. The transmembrane protein LMP1 plays versatile roles in EBV life cycle and pathogenesis, by perturbing, reprograming, and regulating a large range of host cellular mechanisms and functions, which have been increasingly disclosed but not fully understood so far. We summarize recent research progress on LMP1 signaling, including the novel components LIMD1, p62, and LUBAC in LMP1 signalosome and LMP1 novel functions, such as its induction of p62-mediated selective autophagy, regulation of metabolism, induction of extracellular vehicles, and activation of NRF2-mediated antioxidative defense. A comprehensive understanding of LMP1 signal transduction and functions may allow us to leverage these LMP1-regulated cellular mechanisms for clinical purposes. Abstract The Epstein–Barr Virus (EBV) principal oncoprotein Latent Membrane Protein 1 (LMP1) is a member of the Tumor Necrosis Factor Receptor (TNFR) superfamily with constitutive activity. LMP1 shares many features with Pathogen Recognition Receptors (PRRs), including the use of TRAFs, adaptors, and kinase cascades, for signal transduction leading to the activation of NFκB, AP1, and Akt, as well as a subset of IRFs and likely the master antioxidative transcription factor NRF2, which we have gradually added to the list. In recent years, we have discovered the Linear UBiquitin Assembly Complex (LUBAC), the adaptor protein LIMD1, and the ubiquitin sensor and signaling hub p62, as novel components of LMP1 signalosome. Functionally, LMP1 is a pleiotropic factor that reprograms, balances, and perturbs a large spectrum of cellular mechanisms, including the ubiquitin machinery, metabolism, epigenetics, DNA damage response, extracellular vehicles, immune defenses, and telomere elongation, to promote oncogenic transformation, cell proliferation and survival, anchorage-independent cell growth, angiogenesis, and metastasis and invasion, as well as the development of the tumor microenvironment. We have recently shown that LMP1 induces p62-mediated selective autophagy in EBV latency, at least by contributing to the induction of p62 expression, and Reactive Oxygen Species (ROS) production. We have also been collecting evidence supporting the hypothesis that LMP1 activates the Keap1-NRF2 pathway, which serves as the key antioxidative defense mechanism. Last but not least, our preliminary data shows that LMP1 is associated with the deregulation of cGAS-STING DNA sensing pathway in EBV latency. A comprehensive understanding of the LMP1 signaling landscape is essential for identifying potential targets for the development of novel strategies towards targeted therapeutic applications.
Collapse
|
15
|
Shorkey SA, Du J, Pham R, Strieter ER, Chen M. Real-Time and Label-Free Measurement of Deubiquitinase Activity with a MspA Nanopore. Chembiochem 2021; 22:2688-2692. [PMID: 34060221 PMCID: PMC8416795 DOI: 10.1002/cbic.202100092] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 05/10/2021] [Indexed: 02/06/2023]
Abstract
Covalently attaching ubiquitin (Ub) to cellular proteins as a post-translational modification can result in altered function of modified proteins. Enzymes regulating Ub as a post-translational modification, such as ligases and deubiquitinases, are challenging to characterize in part due to the low throughput of in-vitro assays. Single-molecule nanopore based assays have the advantage of detecting proteins with high specificity and resolution, and in a label-free, real-time fashion. Here we demonstrate the use of a MspA nanopore for discriminating and quantifying Ub proteins. We further applied the MspA pore to measure the Ub-chain disassembly activity of UCH37, a proteasome associated deubiquitinase. The implementation of this MspA system into nanopore arrays could enable high throughput characterizations of unknown deubiquitinases as well as drug screening against disease related enzymes.
Collapse
Affiliation(s)
- Spencer A Shorkey
- Molecular and Cellular Biology Graduate Program, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Jiale Du
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Ryan Pham
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Eric R Strieter
- Molecular and Cellular Biology Graduate Program, University of Massachusetts Amherst, Amherst, MA 01003, USA
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Min Chen
- Molecular and Cellular Biology Graduate Program, University of Massachusetts Amherst, Amherst, MA 01003, USA
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA 01003, USA
| |
Collapse
|
16
|
Ichimura E, Ojima K, Muroya S, Suzuki T, Kobayashi K, Nishimura T. The ubiquitin ligase Ozz decreases the replacement rate of embryonic myosin in myofibrils. Physiol Rep 2021; 9:e15003. [PMID: 34435451 PMCID: PMC8387782 DOI: 10.14814/phy2.15003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 02/17/2021] [Indexed: 01/26/2023] Open
Abstract
Myosin, the most abundant myofibrillar protein in skeletal muscle, functions as a motor protein in muscle contraction. Myosin polymerizes into the thick filaments in the sarcomere where approximately 50% of embryonic myosin (Myh3) are replaced within 3 h (Ojima K, Ichimura E, Yasukawa Y, Wakamatsu J, Nishimura T, Am J Physiol Cell Physiol 309: C669-C679, 2015). The sarcomere structure including the thick filament is maintained by a balance between protein biosynthesis and degradation. However, the involvement of a protein degradation system in the myosin replacement process remains unclear. Here, we show that the muscle-specific ubiquitin ligase Ozz regulates replacement rate of Myh3. To examine the direct effect of Ozz on myosin replacement, eGFP-Myh3 replacement rate was measured in myotubes overexpressing Ozz by fluorescence recovery after photobleaching. Ozz overexpression significantly decreased the replacement rate of eGFP-Myh3 in the myofibrils, whereas it had no effect on other myosin isoforms. It is likely that ectopic Ozz promoted myosin degradation through increment of ubiquitinated myosin, and decreased myosin supply for replacement, thereby reducing myosin replacement rate. Intriguingly, treatment with a proteasome inhibitor MG132 also decreased myosin replacement rate, although MG132 enhanced the accumulation of ubiquitinated myosin in the cytosol where replaceable myosin is pooled, suggesting that ubiquitinated myosin is not replaced by myosin in the myofibril. Collectively, our findings showed that Myh3 replacement rate was reduced in the presence of overexpressed Ozz probably through enhanced ubiquitination and degradation of Myh3 by Ozz.
Collapse
Affiliation(s)
- Emi Ichimura
- Research Faculty of AgricultureGraduate School of AgricultureHokkaido UniversitySapporoJapan
| | - Koichi Ojima
- Muscle Biology Research UnitDivision of Animal Products ResearchInstitute of Livestock and Grassland ScienceNAROTsukubaJapan
| | - Susumu Muroya
- Muscle Biology Research UnitDivision of Animal Products ResearchInstitute of Livestock and Grassland ScienceNAROTsukubaJapan
| | - Takahiro Suzuki
- Research Faculty of AgricultureGraduate School of AgricultureHokkaido UniversitySapporoJapan
- Department of Bioresource SciencesFaculty of AgricultureKyushu UniversityFukuokaJapan
| | - Ken Kobayashi
- Research Faculty of AgricultureGraduate School of AgricultureHokkaido UniversitySapporoJapan
| | - Takanori Nishimura
- Research Faculty of AgricultureGraduate School of AgricultureHokkaido UniversitySapporoJapan
| |
Collapse
|
17
|
Zhao D, Zhong G, Li J, Pan J, Zhao Y, Song H, Sun W, Jin X, Li Y, Du R, Nie J, Liu T, Zheng J, Jia Y, Liu Z, Liu W, Yuan X, Liu Z, Song J, Kan G, Li Y, Liu C, Gao X, Xing W, Chang YZ, Li Y, Ling S. Targeting E3 Ubiquitin Ligase WWP1 Prevents Cardiac Hypertrophy Through Destabilizing DVL2 via Inhibition of K27-Linked Ubiquitination. Circulation 2021; 144:694-711. [PMID: 34139860 DOI: 10.1161/circulationaha.121.054827] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 06/01/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND Without adequate treatment, pathological cardiac hypertrophy induced by sustained pressure overload eventually leads to heart failure. WWP1 (WW domain-containing E3 ubiquitin protein ligase 1) is an important regulator of aging-related pathologies, including cancer and cardiovascular diseases. However, the role of WWP1 in pressure overload-induced cardiac remodeling and heart failure is yet to be determined. METHODS To examine the correlation of WWP1 with hypertrophy, we analyzed WWP1 expression in patients with heart failure and mice subjected to transverse aortic constriction (TAC) by Western blotting and immunohistochemical staining. TAC surgery was performed on WWP1 knockout mice to assess the role of WWP1 in cardiac hypertrophy, heart function was examined by echocardiography, and related cellular and molecular markers were examined. Mass spectrometry and coimmunoprecipitation assays were conducted to identify the proteins that interacted with WWP1. Pulse-chase assay, ubiquitination assay, reporter gene assay, and an in vivo mouse model via AAV9 (adeno-associated virus serotype 9) were used to explore the mechanisms by which WWP1 regulates cardiac remodeling. AAV9 carrying cardiac troponin T (cTnT) promoter-driven small hairpin RNA targeting WWP1 (AAV9-cTnT-shWWP1) was administered to investigate its rescue role in TAC-induced cardiac dysfunction. RESULTS The WWP1 level was significantly increased in the hypertrophic hearts from patients with heart failure and mice subjected to TAC. The results of echocardiography and histology demonstrated that WWP1 knockout protected the heart from TAC-induced hypertrophy. There was a direct interaction between WWP1 and DVL2 (disheveled segment polarity protein 2). DVL2 was stabilized by WWP1-mediated K27-linked polyubiquitination. The role of WWP1 in pressure overload-induced cardiac hypertrophy was mediated by the DVL2/CaMKII/HDAC4/MEF2C signaling pathway. Therapeutic targeting WWP1 almost abolished TAC induced heart dysfunction, suggesting WWP1 as a potential target for treating cardiac hypertrophy and failure. CONCLUSIONS We identified WWP1 as a key therapeutic target for pressure overload induced cardiac remodeling. We also found a novel mechanism regulated by WWP1. WWP1 promotes atypical K27-linked ubiquitin multichain assembly on DVL2 and exacerbates cardiac hypertrophy by the DVL2/CaMKII/HDAC4/MEF2C pathway.
Collapse
Affiliation(s)
- Dingsheng Zhao
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing (D.Z., G.Z., J.L., W.S., X.J., Yuheng Li, R.D., J.N., X.Y., Zizhong Liu, J.S., G.K., Youyou Li, C.L., X.G., W.X., Yingxian Li, S.L.)
| | - Guohui Zhong
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing (D.Z., G.Z., J.L., W.S., X.J., Yuheng Li, R.D., J.N., X.Y., Zizhong Liu, J.S., G.K., Youyou Li, C.L., X.G., W.X., Yingxian Li, S.L.)
- The Key Laboratory of Aerospace Medicine, Ministry of Education, Air Force Medical University, Xi'an, China (G.Z.)
| | - Jianwei Li
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing (D.Z., G.Z., J.L., W.S., X.J., Yuheng Li, R.D., J.N., X.Y., Zizhong Liu, J.S., G.K., Youyou Li, C.L., X.G., W.X., Yingxian Li, S.L.)
| | - Junjie Pan
- Medical College of Soochow University, Suzhou, China (J.P.)
| | - Yinlong Zhao
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, College of Life Science, Hebei Normal University, Shijiazhuang, China (Y.Z., H.S., Y.-Z.C.)
| | - Hailin Song
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, College of Life Science, Hebei Normal University, Shijiazhuang, China (Y.Z., H.S., Y.-Z.C.)
| | - Weijia Sun
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing (D.Z., G.Z., J.L., W.S., X.J., Yuheng Li, R.D., J.N., X.Y., Zizhong Liu, J.S., G.K., Youyou Li, C.L., X.G., W.X., Yingxian Li, S.L.)
| | - Xiaoyan Jin
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing (D.Z., G.Z., J.L., W.S., X.J., Yuheng Li, R.D., J.N., X.Y., Zizhong Liu, J.S., G.K., Youyou Li, C.L., X.G., W.X., Yingxian Li, S.L.)
| | - Yuheng Li
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing (D.Z., G.Z., J.L., W.S., X.J., Yuheng Li, R.D., J.N., X.Y., Zizhong Liu, J.S., G.K., Youyou Li, C.L., X.G., W.X., Yingxian Li, S.L.)
| | - Ruikai Du
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing (D.Z., G.Z., J.L., W.S., X.J., Yuheng Li, R.D., J.N., X.Y., Zizhong Liu, J.S., G.K., Youyou Li, C.L., X.G., W.X., Yingxian Li, S.L.)
| | - Jielin Nie
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing (D.Z., G.Z., J.L., W.S., X.J., Yuheng Li, R.D., J.N., X.Y., Zizhong Liu, J.S., G.K., Youyou Li, C.L., X.G., W.X., Yingxian Li, S.L.)
| | - Tong Liu
- Department of Cardiology (T.L., W.L.), Beijing AnZhen Hospital, Capital Medical University, China
| | - Junmeng Zheng
- Department of Cardiovascular Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China (J.Z.)
| | - Yixin Jia
- Heart Transplantation and Valve Surgery Center (Y.J.), Beijing AnZhen Hospital, Capital Medical University, China
| | - Zifan Liu
- Department of Cardiovascular Medicine, Chinese People's Liberation Army (PLA) General Hospital & Chinese PLA Medical School, Beijing (Z.L.)
| | - Wei Liu
- Department of Cardiology (T.L., W.L.), Beijing AnZhen Hospital, Capital Medical University, China
| | - Xinxin Yuan
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing (D.Z., G.Z., J.L., W.S., X.J., Yuheng Li, R.D., J.N., X.Y., Zizhong Liu, J.S., G.K., Youyou Li, C.L., X.G., W.X., Yingxian Li, S.L.)
| | - Zizhong Liu
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing (D.Z., G.Z., J.L., W.S., X.J., Yuheng Li, R.D., J.N., X.Y., Zizhong Liu, J.S., G.K., Youyou Li, C.L., X.G., W.X., Yingxian Li, S.L.)
| | - Jinping Song
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing (D.Z., G.Z., J.L., W.S., X.J., Yuheng Li, R.D., J.N., X.Y., Zizhong Liu, J.S., G.K., Youyou Li, C.L., X.G., W.X., Yingxian Li, S.L.)
| | - Guanghan Kan
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing (D.Z., G.Z., J.L., W.S., X.J., Yuheng Li, R.D., J.N., X.Y., Zizhong Liu, J.S., G.K., Youyou Li, C.L., X.G., W.X., Yingxian Li, S.L.)
| | - Youyou Li
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing (D.Z., G.Z., J.L., W.S., X.J., Yuheng Li, R.D., J.N., X.Y., Zizhong Liu, J.S., G.K., Youyou Li, C.L., X.G., W.X., Yingxian Li, S.L.)
| | - Caizhi Liu
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing (D.Z., G.Z., J.L., W.S., X.J., Yuheng Li, R.D., J.N., X.Y., Zizhong Liu, J.S., G.K., Youyou Li, C.L., X.G., W.X., Yingxian Li, S.L.)
| | - Xingcheng Gao
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing (D.Z., G.Z., J.L., W.S., X.J., Yuheng Li, R.D., J.N., X.Y., Zizhong Liu, J.S., G.K., Youyou Li, C.L., X.G., W.X., Yingxian Li, S.L.)
| | - Wenjuan Xing
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing (D.Z., G.Z., J.L., W.S., X.J., Yuheng Li, R.D., J.N., X.Y., Zizhong Liu, J.S., G.K., Youyou Li, C.L., X.G., W.X., Yingxian Li, S.L.)
| | - Yan-Zhong Chang
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, College of Life Science, Hebei Normal University, Shijiazhuang, China (Y.Z., H.S., Y.-Z.C.)
| | - Yingxian Li
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing (D.Z., G.Z., J.L., W.S., X.J., Yuheng Li, R.D., J.N., X.Y., Zizhong Liu, J.S., G.K., Youyou Li, C.L., X.G., W.X., Yingxian Li, S.L.)
| | - Shukuan Ling
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing (D.Z., G.Z., J.L., W.S., X.J., Yuheng Li, R.D., J.N., X.Y., Zizhong Liu, J.S., G.K., Youyou Li, C.L., X.G., W.X., Yingxian Li, S.L.)
| |
Collapse
|
18
|
Shi R, Shi X, Qin D, Tang S, Vermeulen M, Zhang X. SNX27-driven membrane localisation of OTULIN antagonises linear ubiquitination and NF-κB signalling activation. Cell Biosci 2021; 11:146. [PMID: 34315543 PMCID: PMC8314547 DOI: 10.1186/s13578-021-00659-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 07/15/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Linear ubiquitination is a novel type of ubiquitination that plays important physiological roles in signalling pathways such as tumour necrosis factor (TNF) signalling. However, little is known about the regulatory mechanisms of linear ubiquitination, except the well-described enzymatic regulators E3 ligase linear ubiquitin chain assembly complex (LUBAC) and deubiquitinase OTULIN. RESULTS Previously, we identified SNX27, a member of the sorting nexin family protein, as a selective linear ubiquitin chain interactor in mass spectrometry-based ubiquitin interaction screening. Here, we demonstrated that the interaction between the linear ubiquitin chain and SNX27 is mediated by the OTULIN. Furthermore, we found that SNX27 inhibits LUBAC-mediated linear ubiquitin chain formation and TNFα-induced signalling activation. Mechanistic studies showed that, upon TNFα stimulation, OTULIN-SNX27 is localised to membrane-associated TNF receptor complex, where OTULIN deubiquitinates the linear polyubiquitin chain that formed by the LUBAC complex. Significantly, chemical inhibition of SNX27-retromer translocation by cholera toxin inhibits OTULIN membrane localization. CONCLUSIONS In conclusion, our study demonstrated that SNX27 inhibits TNFα induced NF-κB signalling activation via facilitating OTULIN to localize to TNF receptor complex.
Collapse
Affiliation(s)
- Ruona Shi
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Hefei Institute of Stem Cell and Regenerative Medicine, Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xue Shi
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Hefei Institute of Stem Cell and Regenerative Medicine, Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dajiang Qin
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Hefei Institute of Stem Cell and Regenerative Medicine, Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Shibing Tang
- Center for Chemical Biology and Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Michiel Vermeulen
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Oncode Institute, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - Xiaofei Zhang
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Hefei Institute of Stem Cell and Regenerative Medicine, Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China. .,Center for Cell Lineage and Atlas (CCLA), Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, 510530, China.
| |
Collapse
|
19
|
Kim SH, Baek KH. Regulation of Cancer Metabolism by Deubiquitinating Enzymes: The Warburg Effect. Int J Mol Sci 2021; 22:ijms22126173. [PMID: 34201062 PMCID: PMC8226939 DOI: 10.3390/ijms22126173] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 05/31/2021] [Accepted: 06/05/2021] [Indexed: 12/21/2022] Open
Abstract
Cancer is a disorder of cell growth and proliferation, characterized by different metabolic pathways within normal cells. The Warburg effect is a major metabolic process in cancer cells that affects the cellular responses, such as proliferation and apoptosis. Various signaling factors down/upregulate factors of the glycolysis pathway in cancer cells, and these signaling factors are ubiquitinated/deubiquitinated via the ubiquitin-proteasome system (UPS). Depending on the target protein, DUBs act as both an oncoprotein and a tumor suppressor. Since the degradation of tumor suppressors and stabilization of oncoproteins by either negative regulation by E3 ligases or positive regulation of DUBs, respectively, promote tumorigenesis, it is necessary to suppress these DUBs by applying appropriate inhibitors or small molecules. Therefore, we propose that the DUBs and their inhibitors related to the Warburg effect are potential anticancer targets.
Collapse
|
20
|
Zhou Q, Zhang J. K27-linked noncanonic ubiquitination in immune regulation. J Leukoc Biol 2021; 111:223-235. [PMID: 33857334 DOI: 10.1002/jlb.4ru0620-397rr] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 03/05/2021] [Accepted: 03/10/2021] [Indexed: 12/16/2022] Open
Abstract
Ubiquitination is a common form of posttranslational modification that has been implicated in regulating considerable immune signaling pathways. The functions of canonic K48- and K63-linked ubiquitination have been well studied. However, the roles of noncanonic ubiquitination remain largely unexplored and require further investigations. There is increasing evidence suggesting that K27-linked noncanonic ubiquitination turns out to be indispensable to both innate immune signaling and T cell signaling. In this review, we provide an overview of the latest findings related to K27-linked ubiquitination, and highlight the crucial roles of K27-linked ubiquitination in regulating antimicrobial response, cytokine signaling and response, as well as T cell activation and differentiation. We also propose interesting areas for better understanding how K27-linked ubiquitination regulates immunity.
Collapse
Affiliation(s)
- Qingqing Zhou
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology (Peking University), Peking University Health Science Center, Beijing, China
| | - Jun Zhang
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology (Peking University), Peking University Health Science Center, Beijing, China
| |
Collapse
|
21
|
Wang L, Ning S. TRIMming Type I Interferon-Mediated Innate Immune Response in Antiviral and Antitumor Defense. Viruses 2021; 13:279. [PMID: 33670221 PMCID: PMC7916971 DOI: 10.3390/v13020279] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/04/2021] [Accepted: 02/09/2021] [Indexed: 12/17/2022] Open
Abstract
The tripartite motif (TRIM) family comprises at least 80 members in humans, with most having ubiquitin or SUMO E3 ligase activity conferred by their N-terminal RING domain. TRIMs regulate a wide range of processes in ubiquitination- or sumoylation-dependent manners in most cases, and fewer as adaptors. Their roles in the regulation of viral infections, autophagy, cell cycle progression, DNA damage and other stress responses, and carcinogenesis are being increasingly appreciated, and their E3 ligase activities are attractive targets for developing specific immunotherapeutic strategies for immune diseases and cancers. Given their importance in antiviral immune response, viruses have evolved sophisticated immune escape strategies to subvert TRIM-mediated mechanisms. In this review, we focus on their regulation of IFN-I-mediated innate immune response, which plays key roles in antiviral and antitumor defense.
Collapse
Affiliation(s)
- Ling Wang
- Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA;
- Center of Excellence for Inflammation, Infectious Diseases and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| | - Shunbin Ning
- Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA;
- Center of Excellence for Inflammation, Infectious Diseases and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| |
Collapse
|
22
|
Shiromizu T, Yuge M, Kasahara K, Yamakawa D, Matsui T, Bessho Y, Inagaki M, Nishimura Y. Targeting E3 Ubiquitin Ligases and Deubiquitinases in Ciliopathy and Cancer. Int J Mol Sci 2020; 21:E5962. [PMID: 32825105 PMCID: PMC7504095 DOI: 10.3390/ijms21175962] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/16/2020] [Accepted: 08/17/2020] [Indexed: 12/17/2022] Open
Abstract
Cilia are antenna-like structures present in many vertebrate cells. These organelles detect extracellular cues, transduce signals into the cell, and play an essential role in ensuring correct cell proliferation, migration, and differentiation in a spatiotemporal manner. Not surprisingly, dysregulation of cilia can cause various diseases, including cancer and ciliopathies, which are complex disorders caused by mutations in genes regulating ciliary function. The structure and function of cilia are dynamically regulated through various mechanisms, among which E3 ubiquitin ligases and deubiquitinases play crucial roles. These enzymes regulate the degradation and stabilization of ciliary proteins through the ubiquitin-proteasome system. In this review, we briefly highlight the role of cilia in ciliopathy and cancer; describe the roles of E3 ubiquitin ligases and deubiquitinases in ciliogenesis, ciliopathy, and cancer; and highlight some of the E3 ubiquitin ligases and deubiquitinases that are potential therapeutic targets for these disorders.
Collapse
Affiliation(s)
- Takashi Shiromizu
- Department of Integrative Pharmacology, Graduate School of Medicine, Mie University, Tsu, Mie 514-8507, Japan; (T.S.); (M.Y.)
| | - Mizuki Yuge
- Department of Integrative Pharmacology, Graduate School of Medicine, Mie University, Tsu, Mie 514-8507, Japan; (T.S.); (M.Y.)
| | - Kousuke Kasahara
- Department of Physiology, Graduate School of Medicine, Mie University, Tsu, Mie 514-5807, Japan; (K.K.); (D.Y.); (M.I.)
| | - Daishi Yamakawa
- Department of Physiology, Graduate School of Medicine, Mie University, Tsu, Mie 514-5807, Japan; (K.K.); (D.Y.); (M.I.)
| | - Takaaki Matsui
- Gene Regulation Research, Division of Biological Sciences, Nara Institute of Science and Technology, Takayama, Nara 630-0192, Japan; (T.M.); (Y.B.)
| | - Yasumasa Bessho
- Gene Regulation Research, Division of Biological Sciences, Nara Institute of Science and Technology, Takayama, Nara 630-0192, Japan; (T.M.); (Y.B.)
| | - Masaki Inagaki
- Department of Physiology, Graduate School of Medicine, Mie University, Tsu, Mie 514-5807, Japan; (K.K.); (D.Y.); (M.I.)
| | - Yuhei Nishimura
- Department of Integrative Pharmacology, Graduate School of Medicine, Mie University, Tsu, Mie 514-8507, Japan; (T.S.); (M.Y.)
| |
Collapse
|
23
|
Baldini R, Mascaro M, Meroni G. The MID1 gene product in physiology and disease. Gene 2020; 747:144655. [PMID: 32283114 PMCID: PMC8011326 DOI: 10.1016/j.gene.2020.144655] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 02/22/2020] [Accepted: 04/06/2020] [Indexed: 12/23/2022]
Abstract
MID1 is an E3 ubiquitin ligase of the Tripartite Motif (TRIM) subfamily of RING-containing proteins, hence also known as TRIM18. MID1 is a microtubule-binding protein found in complex with the catalytic subunit of PP2A (PP2Ac) and its regulatory subunit alpha 4 (α4). To date, several substrates and interactors of MID1 have been described, providing evidence for the involvement of MID1 in a plethora of essential biological processes, especially during embryonic development. Mutations in the MID1 gene are responsible of the X-linked form of Opitz syndrome (XLOS), a multiple congenital disease characterised by defects in the development of midline structures during embryogenesis. Here, we review MID1-related physiological mechanisms as well as the pathological implication of the MID1 gene in XLOS and in other clinical conditions.
Collapse
Affiliation(s)
- Rossella Baldini
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Martina Mascaro
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Germana Meroni
- Department of Life Sciences, University of Trieste, Trieste, Italy.
| |
Collapse
|