1
|
Ling KM, Stick SM, Kicic A. Pulmonary bacteriophage and cystic fibrosis airway mucus: friends or foes? Front Med (Lausanne) 2023; 10:1088494. [PMID: 37265479 PMCID: PMC10230084 DOI: 10.3389/fmed.2023.1088494] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 04/11/2023] [Indexed: 06/03/2023] Open
Abstract
For those born with cystic fibrosis (CF), hyper-concentrated mucus with a dysfunctional structure significantly impacts CF airways, providing a perfect environment for bacterial colonization and subsequent chronic infection. Early treatment with antibiotics limits the prevalence of bacterial pathogens but permanently alters the CF airway microenvironment, resulting in antibiotic resistance and other long-term consequences. With little investment into new traditional antibiotics, safe and effective alternative therapeutic options are urgently needed. One gathering significant traction is bacteriophage (phage) therapy. However, little is known about which phages are effective for respiratory infections, the dynamics involved between phage(s) and the host airway, and associated by-products, including mucus. Work utilizing gut cell models suggest that phages adhere to mucus components, reducing microbial colonization and providing non-host-derived immune protection. Thus, phages retained in the CF mucus layer result from the positive selection that enables them to remain in the mucus layer. Phages bind weakly to mucus components, slowing down the diffusion motion and increasing their chance of encountering bacterial species for subsequent infection. Adherence of phage to mucus could also facilitate phage enrichment and persistence within the microenvironment, resulting in a potent phage phenotype or vice versa. However, how the CF microenvironment responds to phage and impacts phage functionality remains unknown. This review discusses CF associated lung diseases, the impact of CF mucus, and chronic bacterial infection. It then discusses the therapeutic potential of phages, their dynamic relationship with mucus and whether this may enhance or hinder airway bacterial infections in CF.
Collapse
Affiliation(s)
- Kak-Ming Ling
- Wal-Yan Respiratory Research Centre, Telethon Kids Institute, The University of Western Australia, Perth, WA, Australia
- Occupation, Environment and Safety, School of Population Health, Curtin University, Perth, WA, Australia
| | - Stephen Michael Stick
- Wal-Yan Respiratory Research Centre, Telethon Kids Institute, The University of Western Australia, Perth, WA, Australia
- Division of Paediatrics, Medical School, The University of Western Australia, Perth, WA, Australia
- Department of Respiratory and Sleep Medicine, Perth Children's Hospital, Nedlands, WA, Australia
- Centre for Cell Therapy and Regenerative Medicine, School of Medicine and Pharmacology, The University of Western Australia and Harry Perkins Institute of Medical Research, Perth, WA, Australia
| | - Anthony Kicic
- Wal-Yan Respiratory Research Centre, Telethon Kids Institute, The University of Western Australia, Perth, WA, Australia
- Occupation, Environment and Safety, School of Population Health, Curtin University, Perth, WA, Australia
- Department of Respiratory and Sleep Medicine, Perth Children's Hospital, Nedlands, WA, Australia
- Centre for Cell Therapy and Regenerative Medicine, School of Medicine and Pharmacology, The University of Western Australia and Harry Perkins Institute of Medical Research, Perth, WA, Australia
| |
Collapse
|
2
|
Pseudomonas aeruginosa in the Cystic Fibrosis Lung. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1386:347-369. [DOI: 10.1007/978-3-031-08491-1_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
3
|
Cystic Fibrosis: Recent Insights into Inhaled Antibiotic Treatment and Future Perspectives. Antibiotics (Basel) 2021; 10:antibiotics10030338. [PMID: 33810116 PMCID: PMC8004710 DOI: 10.3390/antibiotics10030338] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 02/08/2023] Open
Abstract
Although new inhaled antibiotics have profoundly improved respiratory diseases in cystic fibrosis (CF) patients, lung infections are still the leading cause of death. Inhaled antibiotics, i.e., colistin, tobramycin, aztreonam lysine and levofloxacin, are used as maintenance treatment for CF patients after the development of chronic Pseudomonas aeruginosa (P. aeruginosa) infection. Their use offers advantages over systemic therapy since a relatively high concentration of the drug is delivered directly to the lung, thus, enhancing the pharmacokinetic/pharmacodynamic parameters and decreasing toxicity. Notably, alternating treatment with inhaled antibiotics represents an important strategy for improving patient outcomes. The prevalence of CF patients receiving continuous inhaled antibiotic regimens with different combinations of the anti-P. aeruginosa antibiotic class has been increasing over time. Moreover, these antimicrobial agents are also used for preventing acute pulmonary exacerbations in CF. In this review, the efficacy and safety of the currently available inhaled antibiotics for lung infection treatment in CF patients are discussed, with a particular focus on strategies for eradicating P. aeruginosa and other pathogens. Moreover, the effects of long-term inhaled antibiotic therapy for chronic P. aeruginosa infection and for the prevention of pulmonary exacerbations is reviewed. Finally, how the mucus environment and microbial community richness can influence the efficacy of aerosolized antimicrobial agents is discussed.
Collapse
|
4
|
Abstract
Objective: To assess the effect of osmotic stress on various bacteria in a planktonic milieu and the effect of exposure to sodium hypochlorite (NaOCl) on the microbial cells previously subjected to osmotic stress. Methods: Enterococcus faecalis, Streptococcus sanguinis, Fusobacterium nucleatum, Porphyromonas gingivalis and Prevotella intermedia were suspended as follows: Iso-osmotic group 0.9% NaCl; Hypo-osmotic group “ultrapure water”; Hyper-osmotic group 9% NaCl solution for 120 hours before exposure to 0.0001% NaOCl for 10 minutes. Quantitative analyses of viable cells were performed at 0 and 120 hours and after exposure to NaOCl to obtain colony forming units (CFU/mL). A linear mixed-effects model was used to find the association between mean CFU/mL (logarithmic transformation) and the interaction of solution Group and Time (P<0.001). Results: F. nucleatum, P. gingivalis and P. intermedia did not survive after 24 hours in any of the solutions and were excluded from further testing. For S. sanguinis there were significant differences at each time interval, when holding solution group constant. After 120 hours, the Hyper-osmotic group presented with the highest CFU/mL and was significantly different to the Iso-osmotic group (P<0.001). For E. Faecalis, there was a significant difference for each pairwise comparison of time (P<0.001) in mean CFU/mL between 0 hours and 120 hours for the Iso-osmotic and Hyper-osmotic groups. At 120 hours, no significant differences were found between the three groups. Significant differences were also found between 0 hours and Post-NaOCl administration, and between 120 hours and Post-NaOCl administration for all three groups (P<0.001). Exposure to NaOCl after hypo-osmotic stress was associated with significantly less CFU/mL for S. sanguinis compared to hyperosmosis and iso-osmosis (P<0.001) and for E. Faecalis only compared to hyperosmosis (P<0.001). Conclusion: S. sanguinis and E. faecalis were able to withstand osmotic stress for 120 hours. Hypo-osmotic stress before contact with NaOCl was associated with lower viable bacterial numbers, when compared to the other media for the above species. Hyper-osmotic stress was associated with higher viable bacterial numbers after NaOCl exposure for E. faecalis.
Collapse
|
5
|
Waters VJ, Kidd TJ, Canton R, Ekkelenkamp MB, Johansen HK, LiPuma JJ, Bell SC, Elborn JS, Flume PA, VanDevanter DR, Gilligan P. Reconciling Antimicrobial Susceptibility Testing and Clinical Response in Antimicrobial Treatment of Chronic Cystic Fibrosis Lung Infections. Clin Infect Dis 2020; 69:1812-1816. [PMID: 31056660 DOI: 10.1093/cid/ciz364] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 04/29/2019] [Indexed: 01/28/2023] Open
Abstract
Median cystic fibrosis (CF) survival has increased dramatically over time due to several factors, including greater availability and use of antimicrobial therapies. During the progression of CF lung disease, however, the emergence of multidrug antimicrobial resistance can limit treatment effectiveness, threatening patient longevity. Current planktonic-based antimicrobial susceptibility testing lacks the ability to predict clinical response to antimicrobial treatment of chronic CF lung infections. There are numerous reasons for these limitations including bacterial phenotypic and genotypic diversity, polymicrobial interactions, and impaired antibiotic efficacy within the CF lung environment. The parallels to other chronic diseases such as non-CF bronchiectasis are discussed as well as research priorities for moving forward.
Collapse
Affiliation(s)
- Valerie J Waters
- Division of Infectious Diseases, Department of Pediatrics, Hospital for Sick Children, University of Toronto, Canada
| | - Timothy J Kidd
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Australia
| | - Rafael Canton
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain
| | - Miquel B Ekkelenkamp
- Department of Medical Microbiology, University Medical Center Utrecht, The Netherlands
| | - Helle Krogh Johansen
- Department of Clinical Microbiology, Rigshospitalet, Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - John J LiPuma
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor
| | - Scott C Bell
- Department of Thoracic Medicine, Prince Charles Hospital and QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - J Stuart Elborn
- Imperial College Hospital, Queen's University Belfast, Northern Ireland
| | - Patrick A Flume
- Departments of Medicine and Pediatrics, Medical University of South Carolina, Charleston
| | - Donald R VanDevanter
- Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Peter Gilligan
- Department of Pathology-Laboratory Medicine, University of North Carolina School of Medicine, Chapel Hill
| | | |
Collapse
|
6
|
The Iron-chelator, N,N'-bis (2-hydroxybenzyl) Ethylenediamine-N,N'-Diacetic acid is an Effective Colistin Adjunct against Clinical Strains of Biofilm-Dwelling Pseudomonas aeruginosa. Antibiotics (Basel) 2020; 9:antibiotics9040144. [PMID: 32230813 PMCID: PMC7235823 DOI: 10.3390/antibiotics9040144] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/23/2020] [Accepted: 03/25/2020] [Indexed: 02/07/2023] Open
Abstract
Targeting the iron requirement of Pseudomonas aeruginosa may be an effective adjunctive for conventional antibiotic treatment against biofilm-dwelling P. aeruginosa. We, therefore, assessed the anti-biofilm activity of N,N’-bis (2-hydroxybenzyl) ethylenediamine-N,N’-diacetic acid (HBED), which is a synthetic hexadentate iron chelator. The effect of HBED was studied using short-term (microtitre plate) and longer-term (flow-cell) biofilm models, under aerobic, anaerobic, and microaerobic (flow-cell) conditions and in combination with the polymyxin antibiotic colistimethate sodium (colistin). HBED was assessed against strains of P. aeruginosa from patients with cystic fibrosis and the reference strain PAO1. HBED inhibited growth and biofilm formation of all clinical strains under aerobic and anaerobic conditions, but inhibitory effects against PAO1 were predominantly exerted under anaerobic conditions. PA605, which is a clinical strain with a robust biofilm-forming phenotype, was selected for flow-cell studies. HBED significantly reduced biomass and surface coverage of PA605, and, combined with colistin, HBED significantly enhanced the microcolony killing effects of colistin to result in almost complete removal of the biofilm. HBED combined with colistin is highly effective in vitro against biofilms formed by clinical strains of P. aeruginosa.
Collapse
|
7
|
Sharma P, Garg N, Sharma A, Capalash N, Singh R. Nucleases of bacterial pathogens as virulence factors, therapeutic targets and diagnostic markers. Int J Med Microbiol 2019; 309:151354. [PMID: 31495663 DOI: 10.1016/j.ijmm.2019.151354] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 08/12/2019] [Accepted: 08/29/2019] [Indexed: 12/25/2022] Open
Abstract
New frontiers of therapy are being explored against the upcoming bacterial diseases rendered untreatable due to multiple, extreme and pan- antibiotic resistance. Nucleases are ubiquitous in bacterial pathogens performing various functions like acquiring nucleotide nutrients, allowing or preventing uptake of foreign DNA, controlling biofilm formation/dispersal/architecture, invading host by tissue damage, evading immune defence by degrading DNA matrix of neutrophil extracellular traps (NETs) and immunomodulating the host immune response. Secretory nucleases also provide means of survival to other bacteria like iron-reducing Shewanella and such functions help them adapt and survive proficiently. Other than their pro-pathogen roles in survival, nucleases can be used directly as therapeutics. One of the powerful armours of pathogens is the formation of biofilms, thus helping them resist and persist in the harshest of environments. As eDNA forms the structural and binding component of biofilm, nucleases can be used against the adhering component, thus increasing the permeability of antimicrobial agents. Nucleases have recently become a model system of intense study for their biological functions and medical applications in diagnosis, immunoprophylaxis and therapy. Rational implications of these enzymes can impact human medicine positively in future by opening new ways for therapeutics which have otherwise reached saturation due to multi drug resistance.
Collapse
Affiliation(s)
- Prince Sharma
- Department of Microbiology, Panjab University, Chandigarh, India.
| | - Nisha Garg
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Anshul Sharma
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Neena Capalash
- Department of Biotechnology, Panjab University, Chandigarh, India
| | - Ravinder Singh
- Department of Microbiology, Panjab University, Chandigarh, India
| |
Collapse
|
8
|
How can the cystic fibrosis respiratory microbiome influence our clinical decision-making? Curr Opin Pulm Med 2018; 23:536-543. [PMID: 28786882 DOI: 10.1097/mcp.0000000000000419] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
PURPOSE OF REVIEW Almost 15 years have now passed since bacterial community profiling techniques were first used to analyse respiratory samples from people with cystic fibrosis. Since then, many different analytical approaches have been used to try to better understand the contribution of the cystic fibrosis lung microbiota to disease, with varying degrees of success. We examine the extent to which cystic fibrosis respiratory microbiome research has been successful in informing clinical decision-making, and highlight areas that we believe have the potential to yield important insight. RECENT FINDINGS Recent research on the cystic fibrosis lung microbiome can be broadly divided into efforts to better characterize microbiota composition, particularly relative to key clinical events, and attempts to understand the cystic fibrosis lung microbiology as an interactive microbial system. The latter, in particular, has led to the development of a number of models in which microbiome-mediated processes precipitate clinical events. SUMMARY Growing technological sophistication is enabling increasingly detailed microbiological data to be generated from cystic fibrosis respiratory samples. However, translating these data into clinically useful measures that accurately predict outcomes and guide treatments remains a formidable challenge. The development of systems biology approaches that enable the integration of complex microbiome and host-derived data provide an exciting opportunity to address this goal.
Collapse
|
9
|
Justicia JL, Solé A, Quintana-Gallego E, Gartner S, de Gracia J, Prados C, Máiz L. Management of pulmonary exacerbations in cystic fibrosis: still an unmet medical need in clinical practice. Expert Rev Respir Med 2015; 9:183-94. [PMID: 25692532 DOI: 10.1586/17476348.2015.1016504] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Pulmonary exacerbation (PEx) is a hallmark of cystic fibrosis. Although several criteria have been proposed for the definition of PEx, no consensus has yet been reached. Very often, many PEx cases go unreported. A standardized and validated definition is needed to reduce variability in clinical practice. The pathophysiology of recurrent episodes remains unclear, and both onset and risk are multifactorial. PEx leads to increased healthcare costs, impaired quality of life and a cycle in which PEx causes loss of lung function, which predisposes to further episodes. The number of episodes affects survival. Although early diagnosis and aggressive treatment are highly recommended, measures to prevent the emergence of new PEx are even more important. In particular, inhaled antibiotics administered under new treatment schedules could play a key role in preventing exacerbations and thus delay decline in lung function and reduce mortality. The primary objective is zero exacerbations.
Collapse
|
10
|
Acute effects of viral respiratory tract infections on sputum bacterial density during CF pulmonary exacerbations. J Cyst Fibros 2014; 14:482-9. [PMID: 25544473 PMCID: PMC7105172 DOI: 10.1016/j.jcf.2014.11.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2014] [Revised: 11/17/2014] [Accepted: 11/22/2014] [Indexed: 01/01/2023]
Abstract
Background Airway proliferation of Pseudomonas aeruginosa bacteria is thought to trigger CF exacerbations and may be affected by the presence of viral infections. Methods A 2-year prospective study was conducted on 35 adults with CF. P. aeruginosa sputum density was analyzed during stable, exacerbation and post exacerbation assessments. Upon exacerbation, samples were sent for PCR detection of respiratory viruses and the sputum density of P. aeruginosa in patients with a viral infection versus those without was compared. Results Twenty-two patients experienced 30 exacerbations during the study period; 50% were associated with a viral infection. There was no change in sputum density of P. aeruginosa from the stable to exacerbation state when measured by quantitative culture or by PCR. Virus-associated exacerbations did not result in significant increases in P. aeruginosa sputum density compared to non-viral exacerbations. Conclusion Sputum density of P. aeruginosa was not increased at the time of CF exacerbation and was not influenced by the presence of viral infection.
Collapse
|
11
|
Bowler LL, Ball TB, Saward LL. A novel in vitro co-culture system allows the concurrent analysis of mature biofilm and planktonic bacteria with human lung epithelia. J Microbiol Methods 2014; 101:49-55. [PMID: 24726869 DOI: 10.1016/j.mimet.2014.03.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Revised: 03/28/2014] [Accepted: 03/31/2014] [Indexed: 11/19/2022]
Abstract
Pseudomonas aeruginosa establishes chronic infections by forming biofilms; however studies of the virulence have focused on the planktonic form. Few in vitro co-culture models exist to study biofilm infections. We present a novel in vitro co-culture method examining the interactions between mature P. aeruginosa biofilms and human lung epithelial cells.
Collapse
Affiliation(s)
- Laura L Bowler
- University of Manitoba, Winnipeg, Manitoba, Canada; Cangene Corporation, Winnipeg, Manitoba, Canada.
| | - T Blake Ball
- University of Manitoba, Winnipeg, Manitoba, Canada; National HIV and Retrovirology Laboratories, Public Health Agency of Canada, Canada
| | - Laura L Saward
- University of Manitoba, Winnipeg, Manitoba, Canada; Cangene Corporation, Winnipeg, Manitoba, Canada
| |
Collapse
|
12
|
Investigation of Cultivable Bacteria Isolated from Longstanding Retreatment-resistant Lesions of Teeth with Apical Periodontitis. J Endod 2013; 39:1240-4. [DOI: 10.1016/j.joen.2013.06.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2012] [Revised: 06/07/2013] [Accepted: 06/24/2013] [Indexed: 11/20/2022]
|
13
|
Elabed H, Maatallah M, Hamza R, Chakroun I, Bakhrouf A, Gaddour K. Effect of long-term starvation in salty microcosm on biofilm formation and motility in Pseudomonas aeruginosa. World J Microbiol Biotechnol 2012. [PMID: 23208601 DOI: 10.1007/s11274-012-1221-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The development of antibiotic resistance in the opportunistic pathogen Pseudomonas aeruginosa is a major cause of the pathogen's morbidity and is strongly correlated with the biofilm formation. Motility and adherence capacity in long-term stressed cells have not been extensively analyzed even though P. aeruginosa considered a model organism for the study of biofilm formation. In this investigation, P. aeruginosa ATCC 27853 strain has been stored for 12 months in LB broth with 0.5 M NaCl. Several experiments demonstrated that the strain recovery from the salty microcosm had the ability to increase the biofilm formation and to reduce motility comparing with that of the original strain. To identify genes involved in the regulation of biofilm and/or in stress response by the recovered P. aeruginosa, differential display "DDRT-PCR" technique was used. The genes speD and ccoN2, coding, respectively, for an S-adenosylmethionine decarboxylase and Cbb3-type cytochrome oxidase, were identified in recovered strain of P. aeruginosa ATCC 27853 as two differentially expressed gene fragments. A comparison of the biofilm produced by the wild-type strain PA14 and the transposon insertion mutant for speD gene suggested that spermidine has a potential role in the adaptive response in P. aeruginosa incubated in long-term stress conditions.
Collapse
Affiliation(s)
- Hamouda Elabed
- Laboratory of Analysis, Treatment and Valorization of Environment Polluants and Products, Faculty of Pharmacy, University of Monastir, 5000 Monastir, Tunisia.
| | | | | | | | | | | |
Collapse
|
14
|
Beaudoin T, LaFayette S, Nguyen D, Rousseau S. Mucoid Pseudomonas aeruginosa caused by mucA mutations result in activation of TLR2 in addition to TLR5 in airway epithelial cells. Biochem Biophys Res Commun 2012; 428:150-4. [DOI: 10.1016/j.bbrc.2012.10.030] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Accepted: 10/05/2012] [Indexed: 10/27/2022]
|
15
|
Mature Pseudomonas aeruginosa biofilms prevail compared to young biofilms in the presence of ceftazidime. Antimicrob Agents Chemother 2012; 56:4976-9. [PMID: 22777043 DOI: 10.1128/aac.00650-12] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Phenotypic tolerances to antibiotics of mature and young Pseudomonas aeruginosa PAO1 biofilms and released planktonic bacteria were compared for four antibiotics. Resistance levels were similar for gentamicin and ciprofloxacin but differed for ceftazidime and meropenem. β-Lactamase mapping showed that, after 5 h of ceftazidime exposure, mature biofilms produced more β-lactamase than young biofilms, facilitating the growth of released planktonic bacteria. This shows the importance of early treatment and choice of antibiotics for P. aeruginosa biofilm infections.
Collapse
|
16
|
Rogers GB, Hoffman LR, Döring G. Novel concepts in evaluating antimicrobial therapy for bacterial lung infections in patients with cystic fibrosis. J Cyst Fibros 2011; 10:387-400. [PMID: 21775220 DOI: 10.1016/j.jcf.2011.06.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2011] [Revised: 06/04/2011] [Accepted: 06/17/2011] [Indexed: 10/17/2022]
Abstract
Cystic fibrosis (CF) patients suffer typically from bacterial infections of their airways. Whilst current antibiotic-based treatment of these infections has brought much benefit to patients, it has been difficult to make either direct or indirect assessments of the in vivo efficacy of any specific treatment used. Traditional culture-based assessment has for example been rarely used to determine the direct impact of therapy on the bacteria in the airways. Instead, the "success" of a treatment is most often gauged through measures of respiratory and general health. New culture-independent approaches though are emerging that offer much promise here however in allowing a more comprehensive evaluation of antimicrobial efficacy. These new methods offer an opportunity to examine bacterial outcomes rather than host outcomes alone. Application of these novel techniques in a systematic way will lead to the rationalisation and, likely greater still individualisation, of therapy for CF patients. This review discusses host and microbiological factors that may influence antibiotic efficacy. Moreover, the degree to which the inherent complexity of CF respiratory infections complicates the process of determining treatment impact and the need to identify more robust microbiological outcome measures will also be reviewed.
Collapse
Affiliation(s)
- Geraint B Rogers
- Molecular Microbiology Research Laboratory, King's College London, United Kingdom.
| | | | | |
Collapse
|
17
|
Stressmann FA, Rogers GB, Marsh P, Lilley AK, Daniels TWV, Carroll MP, Hoffman LR, Jones G, Allen CE, Patel N, Forbes B, Tuck A, Bruce KD. Does bacterial density in cystic fibrosis sputum increase prior to pulmonary exacerbation? J Cyst Fibros 2011; 10:357-65. [PMID: 21664196 DOI: 10.1016/j.jcf.2011.05.002] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2011] [Revised: 05/13/2011] [Accepted: 05/15/2011] [Indexed: 01/17/2023]
Abstract
BACKGROUND Cystic Fibrosis (CF) lung disease is characterised by an inexorable decline in lung function, punctuated by periods of symptomatic worsening known as pulmonary exacerbations (referred to here as CFPE). Despite their clinical significance, the cause of CFPE remains undetermined. It has been suggested that an increase in bacterial density may be a trigger, although this has not been shown empirically. METHODS Here, a previously validated quantitative PCR-based approach was used to assess numbers of Pseudomonas aeruginosa and of total bacteria in respiratory secretions from patients during the period leading up to CFPE. Sputum samples collected from 12 adult CF patients were selected retrospectively to fall approximately 21, 14, 7 and 0 days prior to CFPE diagnosis. In addition, the relationships between clinical parameters (FEV(1), temperature and patient reported outcome measures) and microbiological data were investigated. RESULTS No significant changes either in total bacterial or P. aeruginosa numbers were identified prior to CFPE. Of all the correlations tested, only temperature showed a significant correlation with total bacterial numbers in the period leading to CFPE. CONCLUSIONS These findings strongly suggest that CFPE do not generally result from increased bacterial density within the airways. Instead, data presented here are consistent with alternative models of pulmonary exacerbation.
Collapse
Affiliation(s)
- Franziska A Stressmann
- Molecular Microbiology Research Laboratory, Institute of Pharmaceutical Sciences, 150 Stamford Street, Franklin-Wilkins Building, King's College London, London, SE1 9NH, UK
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Rogers GB, Hoffman LR, Johnson MW, Mayer-Hamblett N, Schwarze J, Carroll MP, Bruce KD. Using bacterial biomarkers to identify early indicators of cystic fibrosis pulmonary exacerbation onset. Expert Rev Mol Diagn 2011; 11:197-206. [PMID: 21405970 PMCID: PMC3148893 DOI: 10.1586/erm.10.117] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Acute periods of pulmonary exacerbation are the single most important cause of morbidity in cystic fibrosis patients, and may be associated with a loss of lung function. Intervening prior to the onset of a substantially increased inflammatory response may limit the associated damage to the airways. While a number of biomarker assays based on inflammatory markers have been developed, providing useful and important measures of disease during these periods, such factors are typically only elevated once the process of exacerbation has been initiated. Identifying biomarkers that can predict the onset of pulmonary exacerbation at an early stage would provide an opportunity to intervene before the establishment of a substantial immune response, with major implications for the advancement of cystic fibrosis care. The precise triggers of pulmonary exacerbation remain to be determined; however, the majority of models relate to the activity of microbes present in the patient's lower airways of cystic fibrosis. Advances in diagnostic microbiology now allow for the examination of these complex systems at a level likely to identify factors on which biomarker assays can be based. In this article, we discuss key considerations in the design and testing of assays that could predict pulmonary exacerbations.
Collapse
Affiliation(s)
- Geraint B Rogers
- Molecular Microbiology Research Laboratory, Pharmaceutical Science Division, 150 Stamford Street, Franklin-Wilkins Building, King's College London, London, SE1 9NH, UK
| | - Lucas R Hoffman
- Department of Pediatrics, University of Washington, Box 356320, HSB RR338, Seattle, WA 98105, USA
| | - Matt W Johnson
- Gastroenterology Surgical Department, St Mark's Hospital, Harrow, Middlesex, UK
| | - Nicole Mayer-Hamblett
- Department of Pediatrics, University of Washington, Box 356320, HSB RR338, Seattle, WA 98105, USA
- Cystic Fibrosis Foundation, Therapeutics Development Network Coordinating Center, Children's Hospital and Regional Medical Center, Seattle, WA, USA
| | - Jürgen Schwarze
- Child Life and Health and Centre for Inflammation Research, the University of Edinburgh, Queen's Medical Research Institute, Edinburgh EH16 4TJ, UK
| | - Mary P Carroll
- Cystic Fibrosis Unit, Southampton University Hospital NHS Trust, Tremona Road, Southampton, SO16 6YD, UK
| | - Kenneth D Bruce
- Molecular Microbiology Research Laboratory, Pharmaceutical Science Division, 150 Stamford Street, Franklin-Wilkins Building, King's College London, London, SE1 9NH, UK
| |
Collapse
|
19
|
Williams HD, Behrends V, Bundy JG, Ryall B, Zlosnik JEA. Hypertonic Saline Therapy in Cystic Fibrosis: Do Population Shifts Caused by the Osmotic Sensitivity of Infecting Bacteria Explain the Effectiveness of this Treatment? Front Microbiol 2010; 1:120. [PMID: 21687721 PMCID: PMC3109665 DOI: 10.3389/fmicb.2010.00120] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2010] [Accepted: 10/11/2010] [Indexed: 01/22/2023] Open
Abstract
Cystic fibrosis (CF) is caused by a defect in the CF transmembrane regulator that leads to depletion and dehydration of the airway surface liquid (ASL) of the lung epithelium, providing an environment that can be infected by bacteria leading to increased morbidity and mortality. Pseudomonas aeruginosa chronically infects more than 80% of CF patients and one hallmark of infection is the emergence of a mucoid phenotype associated with a worsening prognosis and more rapid decline in lung function. Hypertonic saline (HS) is a clinically proven treatment that improves mucociliary clearance through partial rehydration of the ASL of the lung. Strikingly, while HS therapy does not alter the prevalence of P. aeruginosa in the CF lung it does decrease the frequency of episodes of acute, severe illness known as infective exacerbations among CF patients. In this article, we propose a hypothesis whereby the positive clinical effects of HS treatment are explained by the osmotic sensitivity of the mucoid sub-population of P. aeruginosa in the CF lung leading to selection against this group in favor of the osmotically resistant non-mucoid variants.
Collapse
Affiliation(s)
- Huw D. Williams
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College LondonLondon, UK
| | - Volker Behrends
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College LondonLondon, UK
- Section of Biomolecular Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College LondonLondon, UK
| | - Jacob G. Bundy
- Section of Biomolecular Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College LondonLondon, UK
| | - Ben Ryall
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College LondonLondon, UK
| | - James E. A. Zlosnik
- Centre for the Understanding and Prevention of Infection in Children/Division of Infectious and Immunological Diseases, Department of Pediatrics, University of British ColumbiaVancouver, BC, Canada
| |
Collapse
|
20
|
Kaplan JB. Biofilm dispersal: mechanisms, clinical implications, and potential therapeutic uses. J Dent Res 2010; 89:205-18. [PMID: 20139339 DOI: 10.1177/0022034509359403] [Citation(s) in RCA: 520] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Like all sessile organisms, surface-attached communities of bacteria known as biofilms must release and disperse cells into the environment to colonize new sites. For many pathogenic bacteria, biofilm dispersal plays an important role in the transmission of bacteria from environmental reservoirs to human hosts, in horizontal and vertical cross-host transmission, and in the exacerbation and spread of infection within a host. The molecular mechanisms of bacterial biofilm dispersal are only beginning to be elucidated. Biofilm dispersal is a promising area of research that may lead to the development of novel agents that inhibit biofilm formation or promote biofilm cell detachment. Such agents may be useful for the prevention and treatment of biofilms in a variety of industrial and clinical settings. This review describes the current status of research on biofilm dispersal, with an emphasis on studies aimed to characterize dispersal mechanisms, and to identify environmental cues and inter- and intracellular signals that regulate the dispersal process. The clinical implications of biofilm dispersal and the potential therapeutic applications of some of the most recent findings will also be discussed.
Collapse
Affiliation(s)
- J B Kaplan
- Department of Oral Biology, New Jersey Dental School, Newark, NJ 07103, USA.
| |
Collapse
|
21
|
Penaloza-Vazquez A, Sreedharan A, Bender CL. Transcriptional studies of the hrpM/opgH gene in Pseudomonas syringae during biofilm formation and in response to different environmental challenges. Environ Microbiol 2010; 12:1452-67. [PMID: 20132277 DOI: 10.1111/j.1462-2920.2010.02160.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Pseudomonas syringae pv. syringae strain FF5 is a phytopathogen that causes a rapid dieback on ornamental pear trees. In the present study, the transcriptional expression of hrpM/opgH, algD, hrpR and rpoD was evaluated in P. syringae FF5 and FF5.M2 (hrpM/opgH mutant). The temporal expression of these genes was evaluated during biofilm formation, the hypersensitive reaction (HR) on tobacco plants, and when the bacteria were subjected to different environmental stresses. The results indicate that mutations in hrpM negatively impair several traits including biofilm formation, the ability to cause disease in host plants and the HR in non-host plants, and the expression of hrpR, a regulatory gene modulating the latter two traits. Furthermore, FF5.M2 was decreased in swarming motility and unable to respond to different environmental challenges. Interestingly, FF5.M2 showed an exponential increase in the expression of algD, which is the first gene to be transcribed during the biosynthesis of the alginate, a virulence factor in P. syringae. The expression of both hrpM and algD were required for biofilm formation, and hrpM was expressed earlier than algD during biofilm development. These findings indicate that hrpM expression is required for several traits in P. syringae and plays an important role in how this bacterium responds to environmental challenges.
Collapse
Affiliation(s)
- Alejandro Penaloza-Vazquez
- 127 Noble Research Center, Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078, USA
| | | | | |
Collapse
|
22
|
Reid DW, Anderson GJ, Lamont IL. Role of lung iron in determining the bacterial and host struggle in cystic fibrosis. Am J Physiol Lung Cell Mol Physiol 2009; 297:L795-802. [DOI: 10.1152/ajplung.00132.2009] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Cystic fibrosis (CF) is the most common lethal genetic disorder in Caucasian populations. It is a multiorgan system disease that affects the lungs, gastrointestinal tract, liver, and pancreas. The majority of morbidity and mortality in CF relates to chronic airway infection with a variety of bacterial species, commencing in very early infancy, which results in lung destruction and ultimately organ failure ( 41 , 43 ). This review focuses on iron homeostasis in the CF lung and its role in determining the success and chronicity of Pseudomonas aeruginosa infection. There have been previous excellent reviews regarding iron metabolism in the lower respiratory tract and mechanisms of P. aeruginosa iron acquisition, and we direct readers to these articles for further background reading ( 31 , 53 , 58 , 77 , 96 ). In this review, we have brought the “two sides of the coin” together to provide a holistic overview of the relationship between host and bacterial iron homeostasis and put this information into the context of current understanding on infection in the CF lung.
Collapse
Affiliation(s)
- D. W. Reid
- Menzies Research Institute, Hobart, Tasmania
| | - G. J. Anderson
- Iron Metabolism Unit, Queensland Institute of Medical Research, Brisbane, Australia; and
| | - I. L. Lamont
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| |
Collapse
|
23
|
Noreddin AM, Elkhatib WF. Novel in vitro pharmacodynamic model simulating ofloxacin pharmacokinetics in the treatment of Pseudomonas aeruginosa biofilm-associated infections. J Infect Public Health 2009; 2:120-8. [PMID: 20701871 DOI: 10.1016/j.jiph.2009.07.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2009] [Revised: 07/26/2009] [Accepted: 07/30/2009] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVES The conventional in vitro models simulate pharmacodynamics of antibiotics in the treatment of planktonic Pseudomonas aeruginosa. In this study, we propose a novel pharmacodynamic model of ofloxacin activity in the treatment of P. aeruginosa biofilm. METHODS P. aeruginosa biofilm carrying coupons were suspended in a continuous flow central compartment bioreactor (CCB). In the CCB, the pharmacokinetics of different ofloxacin dosing regimens were simulated. Samples from the coupons and the CCB were assessed for viability of the biofilm and the shedding planktonic cells, respectively, over 24h. In addition, ofloxacin concentrations were assessed in each sample withdrawn for the CCB using bioassay method. RESULTS The microbiological outcomes on P. aeruginosa biofilm and the shedding planktonic cells in response to different ofloxacin dosing regimens were not parallel and this may explain the non-coincidence of microbiological and clinical outcomes with biofilm associated infections. CONCLUSION The current study has introduced unprecedented novel dynamic model for the assessment of the microbiological outcome on both biofilm and shedding planktonic cells of P. aeruginosa in response to different dosing regimens of ofloxacin which in turn can simulate the clinical outcomes in biofilm associated infections of P. aeruginosa, e.g. cystic fibrosis. Furthermore, different scenarios of antibiotic dosing regimens against biofilm related infections can be mimicked using such model.
Collapse
|
24
|
Molecular Analysis of Persistent Periradicular Lesions and Root Ends Reveals a Diverse Microbial Profile. J Endod 2009; 35:950-7. [DOI: 10.1016/j.joen.2009.04.010] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2009] [Revised: 04/07/2009] [Accepted: 04/10/2009] [Indexed: 11/22/2022]
|
25
|
Kobayashi H, Kobayashi O, Kawai S. Pathogenesis and clinical manifestations of chronic colonization by Pseudomonas aeruginosa and its biofilms in the airway tract. J Infect Chemother 2009; 15:125-42. [PMID: 19554398 DOI: 10.1007/s10156-008-0691-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2008] [Indexed: 10/20/2022]
Affiliation(s)
- Hiroyuki Kobayashi
- First Department of Internal Medicine, Kyorin University, School of Medicine, 6-20-2 Shinkawa, Mitaka, Tokyo, 181-8611, Japan
| | | | | |
Collapse
|
26
|
Iron acquisition by Pseudomonas aeruginosa in the lungs of patients with cystic fibrosis. Biometals 2009; 22:53-60. [PMID: 19130260 DOI: 10.1007/s10534-008-9197-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2008] [Accepted: 12/07/2008] [Indexed: 12/30/2022]
Abstract
The bacterium Pseudomonas aeruginosa is commonly isolated from the general environment and also infects the lungs of patients with cystic fibrosis (CF). Iron in mammals is not freely available to infecting pathogens although significant amounts of extracellular iron are available in the sputum that occurs in the lungs of CF patients. P. aeruginosa has a large number of systems to acquire this essential nutrient and many of these systems have been characterised in the laboratory. However, which iron acquisition systems are active in CF is not well understood. Here we review recent research that sheds light on how P. aeruginosa obtains iron in the lungs of CF patients.
Collapse
|
27
|
Balke B, Schmoldt S, Häussler S, Suerbaum S, Heesemann J, Hogardt M. A German external quality survey of diagnostic microbiology of respiratory tract infections in patients with cystic fibrosis. J Cyst Fibros 2008; 7:7-14. [PMID: 17658302 DOI: 10.1016/j.jcf.2007.02.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2006] [Revised: 01/19/2007] [Accepted: 02/26/2007] [Indexed: 10/23/2022]
Abstract
BACKGROUND The goal of this pilot study was to design an external quality assessment (EQA) scheme for German cystic fibrosis (CF) clinical microbiology laboratories. Therefore, a multicentre study of 18 German CF laboratories was performed to evaluate their proficiency in analyzing CF respiratory secretions. METHODS Simulated clinical specimens containing a set of four frequent CF pathogens, namely two Pseudomonas aeruginosa strains differing in morphotype (mucoid versus non-mucoid) and resistotype, one Staphylococcus aureus strain and one Burkholderia multivorans strain, were distributed to each laboratory. Isolation, identification and antimicrobial susceptibility testing (AST) of any bacterial pathogen present and completion of a questionnaire about applied microbiological protocols were requested. RESULTS Three of four strains were isolated and identified correctly by almost all laboratories. B. multivorans was once misidentified as Burkholderia cenocepacia. Fourteen laboratories failed to detect the second multidrug resistant P. aeruginosa isolate. AST errors occurred most often for P. aeruginosa 2 followed by B. multivorans, P. aeruginosa 1 and S. aureus. Evaluation of the questionnaires revealed major differences in cultivation and identification techniques applied by the participating laboratories. CONCLUSIONS A periodical EQA programme for German CF laboratories and standardized microbiological procedures seem to be necessary to advance diagnostic microbiology employed on CF respiratory tract specimens and may help to improve anti-infective treatment and infection control practices for CF patients.
Collapse
Affiliation(s)
- Beate Balke
- Institut für Medizinische Mikrobiologie und Krankenhaushygiene, Medizinische Hochschule Hannover, Carl-Neuberg-Strasse 1, 30625 Hanover, Germany
| | | | | | | | | | | |
Collapse
|
28
|
Kirov SM, Webb JS, O'May CY, Reid DW, Woo JKK, Rice SA, Kjelleberg S. Biofilm differentiation and dispersal in mucoid Pseudomonas aeruginosa isolates from patients with cystic fibrosis. MICROBIOLOGY-SGM 2007; 153:3264-3274. [PMID: 17906126 DOI: 10.1099/mic.0.2007/009092-0] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Intractable biofilm infections with Pseudomonas aeruginosa are the major cause of premature death associated with cystic fibrosis (CF). Few studies have explored the biofilm developmental cycle of P. aeruginosa isolates from chronically infected individuals. This study shows that such clinical isolates exhibit biofilm differentiation and dispersal processes similar to those of the better-studied laboratory P. aeruginosa strain PAO1 in the glass flow-cell (continuous-culture) biofilm model, albeit they are initially less adherent and their microcolonies are slower to develop and show heterogeneous, strain-specific variations in architecture. Confocal scanning laser microscopy combined with LIVE/DEAD viability staining revealed that in all CF biofilms bacterial cell death occurred in maturing biofilms, extending from the substratum to the central regions of mature microcolonies to varying degrees, depending on the strain. Bacteriophage activity was detected in the maturing biofilms of all CF strains examined and the amount of phage produced paralleled the degree of cell death seen in the biofilm. Some CF strains exhibited 'seeding dispersal' associated with the above phenomena, producing 'hollowing' as motile cells evacuated from the microcolony interiors as has been described for strain PAO1. Moreover, morphotypic cell variants were seen in the biofilm effluents of all CF strains. For those CF strains where marked cell death and seeding dispersal occurred in the microcolonies, variants were more diverse (up to five morphotypes) compared to those of strain PAO1 (two morphotypes). Given that variants of strain PAO1 have enhanced colonization traits, it seems likely that the similar biofilm dispersal events described here for CF strains contribute to the variability seen in clinical isolates and the overall persistence of the P. aeruginosa in the CF airway.
Collapse
Affiliation(s)
- Sylvia M Kirov
- School of Medicine, University of Tasmania Clinical School, 43 Collins St, Hobart, Tasmania 7001, Australia
| | - Jeremy S Webb
- School of Biotechnology and Biomolecular Sciences and Centre for Marine Biofouling and Bio-innovation, University of New South Wales, Sydney, NSW 2052, Australia
| | - Che Y O'May
- School of Medicine, University of Tasmania Clinical School, 43 Collins St, Hobart, Tasmania 7001, Australia
| | - David W Reid
- School of Medicine, University of Tasmania Clinical School, 43 Collins St, Hobart, Tasmania 7001, Australia
| | - Jerry K K Woo
- School of Biotechnology and Biomolecular Sciences and Centre for Marine Biofouling and Bio-innovation, University of New South Wales, Sydney, NSW 2052, Australia
| | - Scott A Rice
- School of Biotechnology and Biomolecular Sciences and Centre for Marine Biofouling and Bio-innovation, University of New South Wales, Sydney, NSW 2052, Australia
| | - Staffan Kjelleberg
- School of Biotechnology and Biomolecular Sciences and Centre for Marine Biofouling and Bio-innovation, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
29
|
Rejman J, Di Gioia S, Bragonzi A, Conese M. Pseudomonas aeruginosaInfection Destroys the Barrier Function of Lung Epithelium and Enhances Polyplex-Mediated Transfection. Hum Gene Ther 2007; 18:642-52. [PMID: 17638571 DOI: 10.1089/hum.2006.192] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Challenged by the lack of success of experimental gene therapy of cystic fibrosis, we set out to investigate one of the potential causes of this failure, the barrier function of the airway epithelium and the way this is affected by bacterial infection. In an in vitro model of the airway epithelium we determined the effect of Pseudomonas aeruginosa or Escherichia coli on the transfection efficiency of polyethylenimine (PEI)-plasmid DNA complexes, carrying a luciferase gene, as well as on the barrier function of the epithelial cell layer, using transepithelial resistance (TER), cytotoxicity, bacterial transmigration, and morphological appearance as parameters. The level of luciferase expression was more than one order of magnitude higher in the cells which, before transfection, were incubated with P. aeruginosa. TER was strongly reduced by P. aeruginosa, whereas E. coli had no effect. Pseudomonas aeruginosa also effectively destroyed the structure of the tight junctions, as visualized by immunostaining of the zonula occludens. By the same token, small but significant numbers of P. aeruginosa cells were found to migrate through the epithelial layer, whereas no E. coli cells were observed at the transcompartment of the wells. Release of lactate dehydrogenase from the epithelial cells, a parameter of cell damage, occurred in a dose-dependent manner on incubation with P. aeruginosa, but not with E. coli. To evaluate the relevance of these results for the in vivo situation, we infected C57BL/6 mice with P. aeruginosa or E. coli 48 hr before transfecting them intratracheally with PEI-DNA polyplexes. Infection with P. aeruginosa caused a 5-fold increase in luciferase expression whereas infection with E. coli had no effect. Fluorescence microscopy of lung sections, after administration of fluorescein isothiocyanate-labeled polyplexes, showed that prior treatment with P. aeruginosa effectuated penetration of the complexes deeper into the epithelium than in untreated animals. In P. aeruginosa-treated animals fluorescence was detected not only in the airway epithelium itself but also in the parenchyma. We conclude that infection with P. aeruginosa causes disruption of the tight junctions between the cells and thus of the barrier function of the epithelium. As a consequence, PEI-DNA complexes injected intratracheally into infected animals gain access to the basolateral side of the cells and to spaces across the epithelial lining, giving rise to substantially increased transfection efficiency.
Collapse
Affiliation(s)
- Joanna Rejman
- Institute for Experimental Treatment of Cystic Fibrosis, San Raffaele Scientific Institute, 20132 Milan, Italy
| | | | | | | |
Collapse
|
30
|
Lahiri T. Approaches to the Treatment of Initial Pseudomonas aeruginosa Infection in Children Who Have Cystic Fibrosis. Clin Chest Med 2007; 28:307-18. [PMID: 17467550 DOI: 10.1016/j.ccm.2007.02.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Pseudomonas aeruginosa remains an important cause of pulmonary disease in patients who have cystic fibrosis. The development of antimicrobial therapy directed against this organism has resulted in the preservation of lung function and improved longevity. Efficacy has been demonstrated with agents administered via parenteral, inhaled, and oral routes. The optimal antibiotic regimen remains unclear. There is an active effort to use randomized, controlled clinical trials to rigorously test effective antibiotic for the eradication of P aeruginosa in young children or at least to delay the establishment of chronic infection.
Collapse
Affiliation(s)
- Thomas Lahiri
- University of Vermont College of Medicine, Burlington, VT 05401, USA.
| |
Collapse
|
31
|
Clifton IJ, Kastelik JA, Peckham DG, Hale A, Denton M, Etherington C, Conway SP. Ten years of viral and non-bacterial serology in adults with cystic fibrosis. Epidemiol Infect 2007; 136:128-34. [PMID: 17352838 PMCID: PMC2870771 DOI: 10.1017/s0950268807008278] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Viral infections are associated with pulmonary exacerbations in children with cystic fibrosis (CF), but few studies have addressed the frequency in adults. This paper investigates the frequency and impact of viral infections in adults with CF receiving intravenous antibiotics. Pre- and post-treatment spirometry, inflammatory markers and antibody titres against influenza A, influenza B, adenovirus, respiratory syncytial virus, Mycoplasma pneumoniae, Chlamydia psittaci, and Coxiella burnetti were analysed over a 10-year period. Non-bacterial infections were identified in 5.1% of 3156 courses of treatment. The annual incidence of admissions per patient associated with viral infection was 4.9%. The presence of viral infection in association with a pulmonary exacerbation did not adversely affect lung function or inflammatory markers in the short term. Adults with CF have a lower incidence of respiratory viral infections associated with pulmonary exacerbations requiring intravenous antibiotics compared to children and infants with CF.
Collapse
Affiliation(s)
- I J Clifton
- Regional Cystic Fibrosis Unit, Seacroft Hospital, Leeds, UK.
| | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
PURPOSE OF REVIEW Chronic infection with Pseudomonas aeruginosa is a leading cause of morbidity and mortality in individuals with cystic fibrosis despite the aggressive use of antibiotics. P. aeruginosa employs a number of strategies that promote chronic pulmonary colonization instead of acute infection. These include biofilm formation, evasion of the host immune system, and conversion to a mucoid phenotype. This review discusses recent advances regarding P. aeruginosa pathogenesis and biofilm behavior in the setting of chronic pulmonary disease. RECENT FINDINGS Biofilm formation in the cystic fibrosis lung likely occurs under anaerobic conditions, is controlled by bacterial quorum-sensing mechanisms, and is enhanced by environmental components in the cystic fibrosis airway. P. aeruginosa possesses regulatory pathways that recognize environmental cues to favor either acute infection or chronic colonization. P. aeruginosa that inhabit the respiratory tract accumulate mutations favoring chronic colonization. Azithromycin, a macrolide with clinical benefit in cystic fibrosis, alters P. aeruginosa biofilm formation. Promising new therapies that target biofilm formation include molecules that disrupt quorum sensing. SUMMARY Eradication of P. aeruginosa in cystic fibrosis patients remains problematic. As more information emerges about P. aeruginosa behavior in vivo, potential therapeutics directed against biofilms and mucoid P. aeruginosa are being developed.
Collapse
Affiliation(s)
- Thomas S Murray
- Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut 06520-8022, USA.
| | | | | |
Collapse
|
33
|
Reid DW, Kirov SM, Webb JS, Carroll V, Kjelleberg S, Champion A, Sanderson K. Biofilm dispersal and exacerbations of cystic fibrosis lung disease. Pediatr Pulmonol 2006; 41:1254; author reply 1255. [PMID: 17068827 DOI: 10.1002/ppul.20420] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
34
|
Abstract
PURPOSE OF REVIEW This review will define pulmonary exacerbations in cystic fibrosis and explain their importance in the pathophysiology and progression of this condition. I will stress the importance of prevention, where this is possible, and prompt treatment, where prevention has failed. The management of chronic pulmonary infection with Pseudomonas aeruginosa will be discussed, together with other, less tenacious organisms. RECENT FINDINGS Developments in the treatment of chronic pulmonary infection with P. aeruginosa include new data on antibiotic selection through sensitivity testing and alternative antibiotic dosing regimens. Therapies which target the P. aeruginosa biofilm will be discussed, including those which are currently in use (such as azithromycin) as well as those being evaluated in preclinical studies. Supportive care and the role of noninvasive ventilation are discussed. SUMMARY The prevention and prompt treatment of pulmonary exacerbations is a central component of cystic fibrosis care.
Collapse
Affiliation(s)
- Alan Smyth
- Division of Respiratory Medicine, Nottingham City Hospital, Nottingham, UK.
| |
Collapse
|
35
|
Affiliation(s)
- Ricardo P Teles
- Department of Periodontology, The Forsyth Institute, Boston, Massachusetts, USA
| | | | | |
Collapse
|
36
|
Ferkol T, Rosenfeld M, Milla CE. Cystic fibrosis pulmonary exacerbations. J Pediatr 2006; 148:259-64. [PMID: 16492439 DOI: 10.1016/j.jpeds.2005.10.019] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2005] [Revised: 09/15/2005] [Accepted: 10/10/2005] [Indexed: 11/24/2022]
Affiliation(s)
- Thomas Ferkol
- Department of Pediatrics, Cell Biology and Physiology, Washington University School of Medicine, St. Louis Children's Hospital, 660 South Euclid Avenue, St. Louis, MO 63110, USA.
| | | | | |
Collapse
|
37
|
Moskowitz SM, Foster JM, Emerson JC, Gibson RL, Burns JL. Use of Pseudomonas biofilm susceptibilities to assign simulated antibiotic regimens for cystic fibrosis airway infection. J Antimicrob Chemother 2005; 56:879-86. [PMID: 16188918 DOI: 10.1093/jac/dki338] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
OBJECTIVES Increasing evidence indicates that Pseudomonas aeruginosa grows as a biofilm in the lungs of cystic fibrosis (CF) patients. In contrast, the bacterial inoculum used in conventional susceptibility testing is composed of planktonic cells. As a prelude to a clinical trial of biofilm susceptibility testing in CF, simulated antibiotic regimens based on either biofilm or conventional susceptibility testing of CF patient isolates were compared. PATIENTS AND METHODS Biofilm and conventional susceptibilities were determined for P. aeruginosa isolate sets from 40 CF patients. An algorithm was used to assign simulated regimens of two anti-pseudomonal antibiotics for each patient/susceptibility method dataset. For agents with equivalent activity, the algorithm included a drug selection hierarchy, the rationale for which was suppression of chronic infection. Substitution of an alternative hierarchy, based on treatment of acute exacerbation, was used to evaluate the robustness of the regimen assignments. RESULTS For both drug-ranking schemes, all 40 simulated regimens based on conventional susceptibilities included a beta-lactam antibiotic. In contrast, based on biofilm testing, only 43% of chronic regimens and 65% of acute regimens included a beta-lactam. Moreover, the conventional and biofilm regimens assigned to individual patients were discordant, with only 20% and 40% of chronic and acute regimens, respectively, consisting of drugs in the same two mechanistic classes by both methods. CONCLUSIONS Biofilm susceptibility testing of CF P. aeruginosa isolate sets leads to different antibiotic assignments than conventional testing, with no single two-drug regimen predicted to provide optimal anti-biofilm activity against the majority of isolate sets.
Collapse
Affiliation(s)
- Samuel M Moskowitz
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, USA.
| | | | | | | | | |
Collapse
|
38
|
Affiliation(s)
- Alan Smyth
- Division of Child Health, University of Nottingham and Department of Paediatrics, Nottingham City Hospital, Nottingham NG5 1PB, UK.
| |
Collapse
|
39
|
Moskowitz SM, Gibson RL, Effmann EL. Cystic fibrosis lung disease: genetic influences, microbial interactions, and radiological assessment. Pediatr Radiol 2005; 35:739-57. [PMID: 15868140 DOI: 10.1007/s00247-005-1445-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2004] [Revised: 01/20/2005] [Accepted: 01/27/2005] [Indexed: 10/25/2022]
Abstract
Cystic fibrosis (CF) is a multiorgan disease caused by mutation of the CF transmembrane conductance regulator (CFTR) gene. Obstructive lung disease is the predominant cause of morbidity and mortality; thus, most efforts to improve outcomes are directed toward slowing or halting lung-disease progression. Current therapies, such as mucolytics, airway clearance techniques, bronchodilators, and antibiotics, aim to suppress airway inflammation and the processes that stimulate it, namely, retention and infection of mucus plaques at the airway surface. New approaches to therapy that aim to ameliorate specific CFTR mutations or mutational classes by restoring normal expression or function are being investigated. Because of its sensitivity in detecting changes associated with early airway obstruction and regional lung disease, high-resolution CT (HRCT) complements pulmonary function testing in defining disease natural history and measuring response to both conventional and experimental therapies. In this review, perspectives on the genetics and microbiology of CF provide a context for understanding the increasing importance of HRCT and other imaging techniques in assessing CF therapies.
Collapse
Affiliation(s)
- Samuel M Moskowitz
- Department of Pediatrics, University of Washington School of Medicine and Children's Hospital and Regional Medical Center, Seattle, WA 98105, USA
| | | | | |
Collapse
|