1
|
Villella VR, Castaldo A, Scialò F, Castaldo G. How Effectively Can Oxidative Stress and Inflammation Be Reversed When CFTR Function Is Pharmacologically Improved? Antioxidants (Basel) 2025; 14:310. [PMID: 40227282 PMCID: PMC11939277 DOI: 10.3390/antiox14030310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 02/25/2025] [Accepted: 03/03/2025] [Indexed: 04/15/2025] Open
Abstract
A critical challenge in the age of advanced modulator therapies is to understand and determine how effectively chronic oxidative stress and oxidative stress-induced inflammation can be reversed and physiological balance restored when CFTR function is pharmacologically improved. The triple therapy with elexacaftor-tezacaftor-ivacaftor (ETI) suggests that CFTR activity in individuals with at least one F508del mutation can be partially restored to about 50% of normal levels. Although incomplete, the partial recovery of CFTR function has been shown to drastically lower sputum pathogen content, enhance microbiome diversity, and lower inflammation markers within the first year of treatment in adolescents and adults with cystic fibrosis. However, despite these advancements, residual airway infection, oxidative stress and inflammation persist, with levels similar to other chronic lung conditions, like non-CF bronchiectasis. This persistence highlights the necessity for innovative antioxidant and anti-inflammatory treatments, in particular for individuals with advanced lung disease. To address this issue, emerging multi-omics technologies offer valuable tools to investigate the impact of modulator therapies on various molecular pathways. By analyzing changes in gene expression, epigenetic modifications, protein profiles and metabolic processes in airway-derived samples, it could be possible to uncover the mechanisms driving persistent oxidative stress and inflammation. These insights could pave the way for identifying new therapeutic targets to fully restore airway health and overall physiological balance.
Collapse
Affiliation(s)
| | - Alice Castaldo
- SC di Pneumologia e UTSIR, AORN Santobono-Pausilipon, 80122 Naples, Italy;
- Dipartimento di Scienze Mediche Traslazionali, Sezione di Pediatria, Università di Napoli Federico II, 80131 Naples, Italy
| | - Filippo Scialò
- CEINGE-Biotecnologie Avanzate Franco Salvatore, 80145 Naples, Italy; (V.R.V.); (G.C.)
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, 80131 Naples, Italy
| | - Giuseppe Castaldo
- CEINGE-Biotecnologie Avanzate Franco Salvatore, 80145 Naples, Italy; (V.R.V.); (G.C.)
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, 80131 Naples, Italy
| |
Collapse
|
2
|
Escobar NS, Ratjen F. An update on multiple breath washout in children with cystic fibrosis. Expert Rev Respir Med 2024; 18:1061-1071. [PMID: 39709582 DOI: 10.1080/17476348.2024.2445683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 12/18/2024] [Indexed: 12/23/2024]
Abstract
INTRODUCTION Cystic fibrosis (CF) is an autosomal recessive disorder caused by mutations in the CF transmembrane regulator (CFTR) gene, leading to progressive lung disease and systemic complications. Lung disease remains the primary cause of morbidity and mortality, making early detection of lung function decline crucial. The Lung Clearance Index (LCI), derived from the multiple breath washout (MBW) test, has emerged as a sensitive measure for identifying early airway disease. AREAS COVERED This review examines the technical aspects and clinical relevance of LCI, its advantages over traditional lung function tests, and its application in CF clinical trials. A focused literature review highlights LCI's utility in evaluating treatment efficacy and its potential integration into routine CF care. EXPERT OPINION LCI is more sensitive than spirometry for detecting early lung function decline and is predominantly used in pediatric settings. Its use is expanding in adult CF populations as advances in treatment allow adults to maintain stable lung function. In clinical trials, LCI is widely recognized as an outcome measure. While implemented into clinical care in many centers in Europe, this is not yet the case in North America. Faster testing protocols and point-of-care interpretation tools will support LCI's integration into routine CF monitoring.
Collapse
Affiliation(s)
- Natalia S Escobar
- Division of Respiratory Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Felix Ratjen
- Division of Respiratory Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Pediatrics, University of Toronto, Toronto, Ontario, Canada
- Translational Medicine, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
| |
Collapse
|
3
|
Murphree-Terry M, Keith JD, Oden AM, Birket SE. Normalization of Muc5b ameliorates airway mucus plugging during persistent Pseudomonas aeruginosa infection in the CFTR -/- rat. Am J Physiol Lung Cell Mol Physiol 2024; 327:L672-L683. [PMID: 39316674 PMCID: PMC11563644 DOI: 10.1152/ajplung.00381.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 07/19/2024] [Accepted: 09/02/2024] [Indexed: 09/26/2024] Open
Abstract
In cystic fibrosis, the airway gel-forming mucin MUC5B accumulates in the airways, preventing clearance of pathogens like Pseudomonas aeruginosa (PA). The cystic fibrosis transmembrane conductance regulator (CFTR)-/- (KO) rat model exhibits a similar accumulation of Muc5b. Our lab has shown that increased Muc5b precipitates the development of chronic PA infection. We hypothesized that reducing Muc5b in the KO rat airway would prevent occlusive mucus plugs and development of persistent PA infection. Six-month-old KO rats received Muc5b or scramble siRNA via intratracheal instillation. Rats were then inoculated with 106 colony-forming units of mucoid P. aeruginosa isolate PAM57-15 and euthanized at 3- or 14-days post infection (dpi) to assess acute and persistent infection. At 14 dpi, Muc5b siRNA-treated KO rats had increased weight, decreased neutrophilic inflammation, and reduced mucus plugging in the small airways compared with scramble-treated KO and WT rats. These results indicate that pharmacological intervention of Muc5b reduces mucus plugging during persistent PA infection.NEW & NOTEWORTHY Although highly effective modulator therapies for cystic fibrosis (CF) have improved mucus-related outcomes of disease for people with CF, eradication of Pseudomonas aeruginosa (PA) infection has not been achieved in this population. In addition, current therapies for CF do not target mucin hypersecretion directly. Here, we show that a novel approach of normalizing airway Muc5b hypersecretion ameliorates infection-induced mucus plugging and neutrophilic inflammation during persistent PA infection in CFTR-/- rats.
Collapse
Affiliation(s)
- Mikayla Murphree-Terry
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Johnathan D Keith
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Ashley M Oden
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Susan E Birket
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama, United States
| |
Collapse
|
4
|
Crispino AA, Musolino AM, Buonsenso D, Caloiero M, Concolino D. Point of care lung ultrasound in preschool children with cystic fibrosis: a case-controlled, prospective, pilot study. J Ultrasound 2024; 27:303-314. [PMID: 38240960 PMCID: PMC11178747 DOI: 10.1007/s40477-023-00841-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 10/26/2023] [Indexed: 06/15/2024] Open
Abstract
AIMS Respiratory complications in Cystic Fibrosis (CF) are still the leading cause of death nowadays in these patients. High-Resolution Computed Tomography is the gold standard method for staging lung disease in CF. In this study we assessed lung ultrasound findings in asymptomatic preschool patients affected by CF. METHODS This is a case-control study with a total of 70 enrolled patients (20 patients affected by CF, 50 healthy controls) aged from 31 to 6 years. All included patients were without intercurrent lung problems and without antibiotic therapy in the last 30 days. For each patient a lung Point of Care Ultrasound (POCUS) of lung was performed. RESULTS B lines < 3 and sub-pleural consolidations < 1 cm were statistically more frequent in CF patients, both in terms of number of affected patients (p 0.02 and p 0.0001 respectively) and frequency (p 0.0181 and p 0.0001 respectively); the prevalence of B lines < 3 in control group was high (47.73%) however the prevalence of sub-pleural consolidations was very low (2.27%). In both groups coalescent B lines affected a greater number of infants and were in higher number of findings than patients aged between 2 and 6 years. CONCLUSIONS The presence of multiple subpleural pulmonary consolidations < 1 cm in asymptomatic preschool children could be a ultrasound markers of subclinical pulmonary disease such as CF. POCUS of lung is confirmed as a useful tool for the clinician as confirmation of a clinical suspicion, help reduce the use of ionizing radiation.
Collapse
Affiliation(s)
- Antonio Alessandro Crispino
- Department of Emergency, Acceptance and General Pediatrics, Bambino Gesù Children's Hospital, IRCCS, 00165, Rome, Italy.
| | - Anna Maria Musolino
- Department of Emergency, Acceptance and General Pediatrics, Bambino Gesù Children's Hospital, IRCCS, 00165, Rome, Italy
| | - Danilo Buonsenso
- Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Centro Di Salute Globale, Università Cattolica del Sacro Cuore, Rome, Italia
| | - Mimma Caloiero
- Unità Operativa Di Pediatria, Presidio Ospedaliero "Giovanni Paolo II" Lamezia Terme, Azienda Sanitaria Provinciale Di Catanzaro, Lamezia Terme, Italy
| | - Daniela Concolino
- Pediatric Unit, Department of Medical and Surgical Sciences, University "Magna Graecia" of Catanzaro, Catanzaro, Italy
| |
Collapse
|
5
|
McGarry ME, Huang CY, Ly NP. Ethnic differences in staphylococcus aureus acquisition in cystic fibrosis. J Cyst Fibros 2023; 22:909-915. [PMID: 37460380 PMCID: PMC10802839 DOI: 10.1016/j.jcf.2023.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 07/06/2023] [Accepted: 07/08/2023] [Indexed: 08/31/2023]
Abstract
BACKGROUND Hispanic people with CF (pwCF) have increased morbidity than non-Hispanic White pwCF, including increased risk of Pseudomonas aeruginosa. We aimed to determine if Staphylococcus aureus (S. aureus) acquisition varies between Hispanic and non-Hispanic White pwCF. METHODS This longitudinal cohort study of pwCF ages 0-25 years in the CF Foundation Patient Registry compared acquisition of methicillin-sensitive S. aureus (MSSA), methicillin-resistant S. aureus (MRSA), persistent MRSA between Hispanic and non-Hispanic White pwCF. Risk of acquisition was assessed by Kaplan-Meier survival curves and its association with ethnicity was evaluated using Cox regressions. Adjusted associations were evaluated using multivariate Cox models adjusting for sex, age of entry into CFFPR, CFTR variant severity, pancreatic insufficiency, CF-related diabetes, maternal education, insurance status. RESULTS Of 10,640 pwCF, 7.5% were Hispanic and 92.5% were non-Hispanic White. Hispanic pwCF had a 19% higher risk of acquiring MSSA (HR 1.19, 95% CI 1.10-1.28, p<0.001) and 13% higher risk of acquiring MRSA (HR 1.13, 95% CI 1.02-1.26, p = 0.02) than non-Hispanic White pwCF. The difference in persistent MRSA between ethnicities did not reach statistical significance. After adjusting for confounding variables, only the risk of MSSA was significantly associated with ethnicity. Compared to non-Hispanic White pwCF, Hispanic pwCF acquired MSSA and MRSA at younger median ages (4.9 vs. 3.8 years (p<0.001), 22.4 vs. 20.8 years (p = 0.02). CONCLUSION Hispanic pwCF <25 years of age have an increased risk of acquiring MSSA and acquired MSSA and MRSA at an earlier age. Differences in S. aureus acquisition may contribute to increased morbidity in Hispanic pwCF.
Collapse
Affiliation(s)
- Meghan E McGarry
- Division of Pediatric Pulmonology, Department of Pediatrics, University of California, 550 16th Ave, Box 0632, San Francisco, CA 94158, United States.
| | - Chiung-Yu Huang
- Department of Epidemiology and Biostatistics, University of California, San Francisco, United States
| | - Ngoc P Ly
- Division of Pediatric Pulmonology, Department of Pediatrics, University of California, 550 16th Ave, Box 0632, San Francisco, CA 94158, United States
| |
Collapse
|
6
|
Harris JK, Wagner BD, Robertson CE, Stevens MJ, Lingard C, Borowitz D, Leung DH, Heltshe SL, Ramsey BW, Zemanick ET. Upper airway microbiota development in infants with cystic fibrosis diagnosed by newborn screen. J Cyst Fibros 2023; 22:644-651. [PMID: 37137746 PMCID: PMC10524365 DOI: 10.1016/j.jcf.2023.04.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 04/03/2023] [Accepted: 04/21/2023] [Indexed: 05/05/2023]
Abstract
BACKGROUND Changes in upper airway microbiota may impact early disease manifestations in infants with cystic fibrosis (CF). To investigate early airway microbiota, the microbiota present in the oropharynx of CF infants over the first year of life was assessed along with the relationships between microbiota and growth, antibiotic use and other clinical variables. METHODS Oropharyngeal (OP) swabs were collected longitudinally between 1 and 12 months of age from infants diagnosed with CF by newborn screen and enrolled in the Baby Observational and Nutrition Study (BONUS). DNA extraction was performed after enzymatic digestion of OP swabs. Total bacterial load was determined by qPCR and community composition assessed using 16S rRNA gene analysis (V1/V2 region). Changes in diversity with age were evaluated using mixed models with cubic B-splines. Associations between clinical variables and bacterial taxa were determined using a canonical correlation analysis. RESULTS 1,052 OP swabs collected from 205 infants with CF were analyzed. Most infants (77%) received at least one course of antibiotics during the study and 131 OP swabs were collected while the infant was prescribed an antibiotic. Alpha diversity increased with age and was only marginally impacted by antibiotic use. Community composition was most highly correlated with age and was only moderately correlated with antibiotic exposure, feeding method and weight z-scores. Relative abundance of Streptococcus decreased while Neisseria and other taxa increased over the first year. CONCLUSIONS Age was more influential on the oropharyngeal microbiota of infants with CF than clinical variables including antibiotics in the first year of life.
Collapse
Affiliation(s)
- J Kirk Harris
- Department of Pediatrics, University of Colorado Anschutz Medical Campus and Children's Hospital Colorado, 13123 E. 16th Ave, B-395, Aurora, CO 80045, USA.
| | - Brandie D Wagner
- Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Charles E Robertson
- Department of Infectious Diseases, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Mark J Stevens
- Department of Pediatrics, University of Colorado Anschutz Medical Campus and Children's Hospital Colorado, 13123 E. 16th Ave, B-395, Aurora, CO 80045, USA
| | - Conor Lingard
- Spartanburg Regional Healthcare Systems, Spartanburg, SC, USA
| | - Drucy Borowitz
- Department of Pediatrics, Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY, USA
| | - Daniel H Leung
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Sonya L Heltshe
- Cystic Fibrosis Foundation Therapeutic Development Network Coordinating Center, Seattle Children's Research Institute, Seattle, WA, USA; Division of Pulmonary and Sleep Medicine, Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Bonnie W Ramsey
- Cystic Fibrosis Foundation Therapeutic Development Network Coordinating Center, Seattle Children's Research Institute, Seattle, WA, USA; Division of Pulmonary and Sleep Medicine, Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Edith T Zemanick
- Department of Pediatrics, University of Colorado Anschutz Medical Campus and Children's Hospital Colorado, 13123 E. 16th Ave, B-395, Aurora, CO 80045, USA
| |
Collapse
|
7
|
Millette G, Séguin DL, Isabelle C, Chamberland S, Lucier JF, Rodrigue S, Cantin AM, Malouin F. Staphylococcus aureus Small-Colony Variants from Airways of Adult Cystic Fibrosis Patients as Precursors of Adaptive Antibiotic-Resistant Mutations. Antibiotics (Basel) 2023; 12:1069. [PMID: 37370388 PMCID: PMC10294822 DOI: 10.3390/antibiotics12061069] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
Prototypic Staphylococcus aureus and their small-colony variants (SCVs) are predominant in cystic fibrosis (CF), but the interdependence of these phenotypes is poorly understood. We characterized S. aureus isolates from adult CF patients over several years. Of 18 S. aureus-positive patients (58%), 13 (72%) were positive for SCVs. Characterization included genotyping, SCCmec types, auxotrophy, biofilm production, antibiotic susceptibilities and tolerance, and resistance acquisition rates. Whole-genome sequencing revealed that several patients were colonized with prototypical and SCV-related clones. Some clonal pairs showed acquisition of aminoglycoside resistance that was not explained by aminoglycoside-modifying enzymes, suggesting a mutation-based process. The characteristics of SCVs that could play a role in resistance acquisition were thus investigated further. For instance, SCV isolates produced more biofilm (p < 0.05) and showed a higher survival rate upon exposure to ciprofloxacin and vancomycin compared to their prototypic associated clones. SCVs also developed spontaneous rifampicin resistance mutations at a higher frequency. Accordingly, a laboratory-derived SCV (ΔhemB) acquired resistance to ciprofloxacin and gentamicin faster than its parent counterpart after serial passages in the presence of sub-inhibitory concentrations of antibiotics. These results suggest a role for SCVs in the establishment of persistent antibiotic-resistant clones in adult CF patients.
Collapse
Affiliation(s)
- Guillaume Millette
- Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada; (G.M.); (D.L.S.); (C.I.); (S.C.); (J.-F.L.); (S.R.)
| | - David Lalonde Séguin
- Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada; (G.M.); (D.L.S.); (C.I.); (S.C.); (J.-F.L.); (S.R.)
| | - Charles Isabelle
- Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada; (G.M.); (D.L.S.); (C.I.); (S.C.); (J.-F.L.); (S.R.)
| | - Suzanne Chamberland
- Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada; (G.M.); (D.L.S.); (C.I.); (S.C.); (J.-F.L.); (S.R.)
| | - Jean-François Lucier
- Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada; (G.M.); (D.L.S.); (C.I.); (S.C.); (J.-F.L.); (S.R.)
| | - Sébastien Rodrigue
- Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada; (G.M.); (D.L.S.); (C.I.); (S.C.); (J.-F.L.); (S.R.)
| | - André M. Cantin
- Service de Pneumologie, Département de Médecine, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada;
| | - François Malouin
- Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada; (G.M.); (D.L.S.); (C.I.); (S.C.); (J.-F.L.); (S.R.)
| |
Collapse
|
8
|
Zhang S, Shrestha CL, Robledo-Avila F, Jaganathan D, Wisniewski BL, Brown N, Pham H, Carey K, Amer AO, Hall-Stoodley L, McCoy KS, Bai S, Partida-Sanchez S, Kopp BT. Cystic fibrosis macrophage function and clinical outcomes after elexacaftor/tezacaftor/ivacaftor. Eur Respir J 2023; 61:2102861. [PMID: 36265882 PMCID: PMC10066828 DOI: 10.1183/13993003.02861-2021] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 09/16/2022] [Indexed: 11/05/2022]
Abstract
BACKGROUND Abnormal macrophage function caused by dysfunctional cystic fibrosis transmembrane conductance regulator (CFTR) is a critical contributor to chronic airway infections and inflammation in people with cystic fibrosis (PWCF). Elexacaftor/tezacaftor/ivacaftor (ETI) is a new CFTR modulator therapy for PWCF. Host-pathogen and clinical responses to CFTR modulators are poorly described. We sought to determine how ETI impacts macrophage CFTR function, resulting effector functions and relationships to clinical outcome changes. METHODS Clinical information and/or biospecimens were obtained at ETI initiation and 3, 6, 9 and 12 months post-ETI in 56 PWCF and compared with non-CF controls. Peripheral blood monocyte-derived macrophages (MDMs) were isolated and functional assays performed. RESULTS ETI treatment was associated with increased CF MDM CFTR expression, function and localisation to the plasma membrane. CF MDM phagocytosis, intracellular killing of CF pathogens and efferocytosis of apoptotic neutrophils were partially restored by ETI, but inflammatory cytokine production remained unchanged. Clinical outcomes including increased forced expiratory volume in 1 s (+10%) and body mass index (+1.0 kg·m-2) showed fluctuations over time and were highly individualised. Significant correlations between post-ETI MDM CFTR function and sweat chloride levels were observed. However, MDM CFTR function correlated with clinical outcomes better than sweat chloride. CONCLUSION ETI is associated with unique changes in innate immune function and clinical outcomes.
Collapse
Affiliation(s)
- Shuzhong Zhang
- Center for Microbial Pathogenesis, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Chandra L Shrestha
- Center for Microbial Pathogenesis, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Frank Robledo-Avila
- Center for Microbial Pathogenesis, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Devi Jaganathan
- Center for Microbial Pathogenesis, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Benjamin L Wisniewski
- Center for Microbial Pathogenesis, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
- Division of Pulmonary Medicine, Nationwide Children's Hospital, Columbus, OH, USA
| | - Nevian Brown
- Center for Microbial Pathogenesis, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Hanh Pham
- Division of Pulmonary Medicine, Nationwide Children's Hospital, Columbus, OH, USA
| | - Katherine Carey
- Center for Microbial Pathogenesis, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Amal O Amer
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, USA
- Infectious Disease Institute, The Ohio State University, Columbus, OH, USA
| | - Luanne Hall-Stoodley
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, USA
- Infectious Disease Institute, The Ohio State University, Columbus, OH, USA
| | - Karen S McCoy
- Division of Pulmonary Medicine, Nationwide Children's Hospital, Columbus, OH, USA
| | - Shasha Bai
- Pediatric Biostatistics Core, Emory University School of Medicine, Atlanta, GA, USA
| | - Santiago Partida-Sanchez
- Center for Microbial Pathogenesis, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
- Infectious Disease Institute, The Ohio State University, Columbus, OH, USA
| | - Benjamin T Kopp
- Center for Microbial Pathogenesis, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
- Division of Pulmonary Medicine, Nationwide Children's Hospital, Columbus, OH, USA
- Infectious Disease Institute, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
9
|
Jordan KD, Zemanick ET, Taylor-Cousar JL, Hoppe JE. Managing cystic fibrosis in children aged 6-11yrs: a critical review of elexacaftor/tezacaftor/ivacaftor combination therapy. Expert Rev Respir Med 2023; 17:97-108. [PMID: 36803356 DOI: 10.1080/17476348.2023.2179989] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
INTRODUCTION Cystic fibrosis is a life-limiting, autosomal recessive genetic disorder resulting in multi-organ disease due to CF transmembrane conductance regulator (CFTR) protein dysfunction. CF treatment previously focused on mitigation of disease signs and symptoms. The recent introduction of highly effective CFTR modulators, for which ~90% of people with CF are CFTR variant-eligible, has resulted in substantial health improvements. AREAS COVERED In this review, we will describe the clinical trials leading to approval of the highly effective CFTR modulator, elexacaftor-tezacaftor-ivacaftor (ETI), with a focus on the safety and efficacy of this treatment in children aged 6-11 years. EXPERT OPINION The use of ETI in variant-eligible children aged 6-11 is associated with marked clinical improvements with a favorable safety profile. We anticipate that introduction of ETI in early childhood may result in the prevention of pulmonary, gastrointestinal, and endocrine complications from CF, consequently leading to previously unimaginable gains in the quality and quantity of life. However, there is an urgent need to develop effective treatments for the remaining 10% of people with CF who are not eligible or unable to tolerate ETI treatment, and to increase access of ETI to more pwCF across the world.
Collapse
Affiliation(s)
- Kamyron D Jordan
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.,Breathing Institute, Children's Hospital Colorado, Aurora, CO, USA
| | - Edith T Zemanick
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.,Breathing Institute, Children's Hospital Colorado, Aurora, CO, USA
| | | | - Jordana E Hoppe
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.,Breathing Institute, Children's Hospital Colorado, Aurora, CO, USA
| |
Collapse
|
10
|
Erdmann N, Schilling T, Hentschel J, Lehmann T, von Bismarck P, Ankermann T, Duckstein F, Baier M, Zagoya C, Mainz JG. Divergent dynamics of inflammatory mediators and multiplex PCRs during airway infection in cystic fibrosis patients and healthy controls: Serial upper airway sampling by nasal lavage. Front Immunol 2022; 13:947359. [PMID: 36466839 PMCID: PMC9716083 DOI: 10.3389/fimmu.2022.947359] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 10/27/2022] [Indexed: 11/19/2023] Open
Abstract
Background In cystic fibrosis (CF), acute respiratory exacerbations critically enhance pulmonary destruction. Since these mainly occur outside regular appointments, they remain unexplored. We previously elaborated a protocol for home-based upper airway (UAW) sampling obtaining nasal-lavage fluid (NLF), which, in contrast to sputum, does not require immediate processing. The aim of this study was to compare UAW inflammation and pathogen colonization during stable phases and exacerbations in CF patients and healthy controls. Methods Initially, we obtained NLF by rinsing 10 ml of isotonic saline/nostril during stable phases. During exacerbations, subjects regularly collected NLF at home. CF patients directly submitted one aliquot for microbiological cultures. The remaining samples were immediately frozen until transfer on ice to our clinic, where PCR analyses were performed and interleukin (IL)-1β/IL-6/IL-8, neutrophil elastase (NE), matrix metalloproteinase (MMP)-9, and tissue inhibitor of metalloproteinase (TIMP)-1 were assessed. Results Altogether, 49 CF patients and 38 healthy controls (HCs) completed the study, and 214 NLF samples were analyzed. Of the 49 CF patients, 20 were at least intermittently colonized with P. aeruginosa and received azithromycin and/or inhaled antibiotics as standard therapy. At baseline, IL-6 and IL-8 tended to be elevated in CF compared to controls. During infection, inflammatory mediators increased in both cohorts, reaching significance only for IL-6 in controls (p=0.047). Inflammatory responses tended to be higher in controls [1.6-fold (NE) to 4.4-fold (MMP-9)], while in CF, mediators increased only moderately [1.2-1.5-fold (IL-6/IL-8/NE/TIMP-1/MMP-9)]. Patients receiving inhalative antibiotics or azithromycin (n=20 and n=15, respectively) revealed lower levels of IL-1β/IL-6/IL-8 and NE during exacerbation compared to CF patients not receiving those antibiotics. In addition, CF patients receiving azithromycin showed MMP-9 levels significantly lower than CF patients not receiving azithromycin at stable phase and exacerbation. Altogether, rhinoviruses were the most frequently detected virus, detected at least once in n=24 (49.0%) of the 49 included pwCF and in n=26 (68.4%) of the 38 healthy controls over the 13-month duration of the study. Remarkably, during exacerbation, rhinovirus detection rates were significantly higher in the HC group compared to those in CF patients (65.8% vs. 22.4%; p<0.0001). Conclusion Non-invasive and partially home-based UAW sampling opens new windows for the assessment of inflammation and pathogen colonization in the unified airway system.
Collapse
Affiliation(s)
- Nina Erdmann
- Cystic Fibrosis Centre, Brandenburg Medical School (MHB) University, Klinikum Westbrandenburg, Brandenburg an der Havel, Germany
| | | | - Julia Hentschel
- Institute of Human Genetics, Leipzig University Hospital, Leipzig, Germany
| | - Thomas Lehmann
- Jena University Hospital, Center for Clinical Studies (Biometrics), Jena, Germany
| | - Philipp von Bismarck
- Klinik für Kinder- und Jugendmedizin I, Universitätsklinikum Schleswig-Holstein (UKSH), Kiel, Germany
| | - Tobias Ankermann
- Klinik für Kinder- und Jugendmedizin I, Universitätsklinikum Schleswig-Holstein (UKSH), Kiel, Germany
| | - Franziska Duckstein
- Cystic Fibrosis Centre, Brandenburg Medical School (MHB) University, Klinikum Westbrandenburg, Brandenburg an der Havel, Germany
| | - Michael Baier
- Jena University Hospital, Department of Medical Microbiology, Jena, Germany
| | - Carlos Zagoya
- Cystic Fibrosis Centre, Brandenburg Medical School (MHB) University, Klinikum Westbrandenburg, Brandenburg an der Havel, Germany
| | - Jochen G. Mainz
- Cystic Fibrosis Centre, Brandenburg Medical School (MHB) University, Klinikum Westbrandenburg, Brandenburg an der Havel, Germany
- Jena University Hospital, CF-Center, Jena, Germany
- Faculty of Health Sciences, joint Faculty of the Brandenburg University of Technology Cottbus-Senftenberg, the Brandenburg Medical School Theodor Fontane and the University of Potsdam, Cottbus, Brandenburg an der Havel and Potsdam, Germany
| |
Collapse
|
11
|
Weber R, Perkins N, Bruderer T, Micic S, Moeller A. Identification of Exhaled Metabolites in Children with Cystic Fibrosis. Metabolites 2022; 12:980. [PMID: 36295881 PMCID: PMC9611656 DOI: 10.3390/metabo12100980] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/10/2022] [Accepted: 10/13/2022] [Indexed: 11/17/2022] Open
Abstract
The early detection of inflammation and infection is important to prevent irreversible lung damage in cystic fibrosis. Novel and non-invasive monitoring tools would be of high benefit for the quality of life of patients. Our group previously detected over 100 exhaled mass-to-charge (m/z) features, using on-line secondary electrospray ionization high-resolution mass spectrometry (SESI-HRMS), which distinguish children with cystic fibrosis from healthy controls. The aim of this study was to annotate as many m/z features as possible with putative chemical structures. Compound identification was performed by applying a rigorous workflow, which included the analysis of on-line MS2 spectra and a literature comparison. A total of 49 discriminatory exhaled compounds were putatively identified. A group of compounds including glycolic acid, glyceric acid and xanthine were elevated in the cystic fibrosis group. A large group of acylcarnitines and aldehydes were found to be decreased in cystic fibrosis. The proposed compound identification workflow was used to identify signatures of volatile organic compounds that discriminate children with cystic fibrosis from healthy controls, which is the first step for future non-invasive and personalized applications.
Collapse
Affiliation(s)
- Ronja Weber
- Department of Respiratory Medicine and Childhood Research Center, University Children’s Hospital Zurich, Steinwiesstrasse 75, 8032 Zurich, Switzerland
| | - Nathan Perkins
- Division of Clinical Chemistry and Biochemistry, University of Zurich, Steinwiesstrasse 75, 8032 Zurich, Switzerland
| | - Tobias Bruderer
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via Giuseppe Moruzzi 13, 56124 Pisa, Italy
| | - Srdjan Micic
- Department of Respiratory Medicine and Childhood Research Center, University Children’s Hospital Zurich, Steinwiesstrasse 75, 8032 Zurich, Switzerland
| | - Alexander Moeller
- Department of Respiratory Medicine and Childhood Research Center, University Children’s Hospital Zurich, Steinwiesstrasse 75, 8032 Zurich, Switzerland
- Faculty of Medicine, University of Zurich, Raemistrasse 71, 8006 Zurich, Switzerland
| |
Collapse
|
12
|
Bicarbonate Effects on Antibacterial Immunity and Mucus Glycobiology in the Cystic Fibrosis Lung: A Review With Selected Experimental Observations. INFECTIOUS MICROBES & DISEASES 2022; 4:103-110. [PMID: 36793929 PMCID: PMC9928163 DOI: 10.1097/im9.0000000000000101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The primary defect in cystic fibrosis (CF) is abnormal chloride and bicarbonate transport in the cystic fibrosis transmembrane conductance regulator (CFTR) epithelial ion channel. The apical surface of the respiratory tract is lined by an airway surface liquid layer (ASL) composed of mucin comprising mainly MUC5A and MUC5B glycoproteins. ASL homeostasis depends on sodium bicarbonate secretion into the airways and secretion deficits alter mucus properties leading to airway obstruction, inflammation, and infections. Downstream effects of abnormal ion transport in the lungs include altered intrinsic immune defenses. We observed that neutrophils killed Pseudomonas aeruginosa more efficiently when it had been exposed to sodium bicarbonate, and formation of neutrophil extracellular traps (NETs) by neutrophils was augmented in the presence of increasing bicarbonate concentrations. Physiological levels of bicarbonate sensitized P. aeruginosa to the antimicrobial peptide cathelicidin LL-37, which is present in both lung ASL and in NETs. Sodium bicarbonate has various uses in clinical medicine and in the care of CF patients, and could be further explored as a therapeutic adjunct against Pseudomonas infections.
Collapse
|
13
|
Immune Response to Biofilm Growing Pulmonary Pseudomonas aeruginosa Infection. Biomedicines 2022; 10:biomedicines10092064. [PMID: 36140163 PMCID: PMC9495460 DOI: 10.3390/biomedicines10092064] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 11/29/2022] Open
Abstract
Biofilm infections are tolerant to the host responses and recalcitrance to antibiotic drugs and disinfectants. The induced host-specific innate and adaptive immune responses by established biofilms are significantly implicated and contributes to the course of the infections. Essentially, the host response may be the single one factor impacting the outcome most, especially in cases where the biofilm is caused by low virulent opportunistic bacterial species. Due to the chronicity of biofilm infections, activation of the adaptive immune response mechanisms is frequently experienced, and instead of clearing the infection, the adaptive response adds to the pathogenesis. To a high degree, this has been reported for chronic Pseudomonas aeruginosa lung infections, where both a pronounced antibody response and a skewed Th1/Th2 balance has been related to a poorer outcome. In addition, detection of an adaptive immune response can be used as a significant indicator of a chronic P. aeruginosa lung infection and is included in the clinical definitions as such. Those issues are presented in the present review, along with a characterization of the airway structure in relation to immune responses towards P. aeruginosa pulmonary infections.
Collapse
|
14
|
Galodé F, Ladipo O, Andrieux A, Feghali H, Bui S, Fayon M. Prevalence and Determinants of Wheezing and Bronchodilatation in Children With Cystic Fibrosis: A Retrospective Cohort Study. Front Pediatr 2022; 10:856840. [PMID: 35633979 PMCID: PMC9133441 DOI: 10.3389/fped.2022.856840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 03/10/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Many patients with cystic fibrosis (CF) wheeze, and are dubbed as having CF-asthma. Understanding the determinants of such wheezing may avoid unnecessary treatments and open newer treatment avenues. OBJECTIVES Main: To evaluate the prevalence and characteristics of wheezing and a positive bronchodilatory response (BDR) in children with CF. Secondary: To identify the predictive markers and the impact of current wheezing a positive BDR. METHODS A retrospective single-center study in children with CF. We determined the characteristics of physician-reported wheeze in patients <6 years, and a BDR in patients aged 6-17 years. Anthropometric, lung function, laboratory, genetic and microbiological data were recorded in all groups. Variables were compared using the Chi2 and Student t-tests, and ANOVA. RESULTS 125 preschool and 69 school-aged children and adolescents with CF were included in the study. 71.2% of patients <6 years of age had had at least one episode of wheezing: 26.3% of patients were Transient Early Wheezers, 12.6% Late Onset Wheezers and 37.9% were Persistent Wheezers. The prevalence of a positive BDR was 73.5, 48.5, and 52.9% in the 6-8 years, 10-12 years, and 15-17 years age groups, respectively. Allergic factors were not predictive of wheezing in preschoolers. In the 6-8 years age group, the sum of wheal diameters of allergic skin prick tests (SPT, house dust mite + cat + dog dander) was greater in those with a BDR vs. no BDR (4 [2.0-8.8] vs. 1 [0-7.0] mm, p = 0.01). The presence of Pseudomonas aeruginosa in the bronchial secretions before 3 years of age was not significantly associated with either the presence of wheezing at the age of 6 years or a BDR in school-aged children and adolescents. The proportion of homozygous p.F508del patients was significantly lower in the group of patients who had wheezed by 6 years of age (60% vs. 72.7%, p = 0.009), but higher in the 6-8 years old group with a BDR vs. no BDR (64% vs. 36%, p = 0.04). Current wheezers at 6 years had a lower mean FEV1 vs. the non-current wheezers (91.5 ± 4.4% vs. 100.9 ± 2.4%; p = 0.047). Similarly, forced vital capacity (FVC) was significantly lower in the 6-8 years old group with BDR vs. no BDR (85 ± 19 vs. 101 ± 21%, p = 0.015). CONCLUSION Wheezing and BDR are very frequent findings in children with CF. Current wheeze at the age of 6 years was associated with worse lung function. Labeling wheezing in CF as "CF-Asthma" is misleading since the determinants are different, and may lead to inappropriate prescriptions of inhaled steroids.
Collapse
Affiliation(s)
- Francois Galodé
- Paediatric Cystic Fibrosis Reference Center, Hôpital Pellegrin-Enfants, CHU de Bordeaux, Bordeaux, France
| | - O. Ladipo
- Service de Pédiatrie, CHU de la Mère et de l’Enfant Lagune, Cotonou, Benin
| | - A. Andrieux
- Paediatric Cystic Fibrosis Reference Center, Hôpital Pellegrin-Enfants, CHU de Bordeaux, Bordeaux, France
| | - H. Feghali
- Paediatric Cystic Fibrosis Reference Center, Hôpital Pellegrin-Enfants, CHU de Bordeaux, Bordeaux, France
| | - S. Bui
- Paediatric Cystic Fibrosis Reference Center, Hôpital Pellegrin-Enfants, CHU de Bordeaux, Bordeaux, France
| | - Michael Fayon
- Paediatric Cystic Fibrosis Reference Center, Hôpital Pellegrin-Enfants, CHU de Bordeaux, Bordeaux, France
- INSERM, Centre d’Investigation Clinique (CIC 1401), University of Bordeaux, Bordeaux, France
| |
Collapse
|
15
|
Novel Immunomodulatory Therapies for Respiratory Pathologies. COMPREHENSIVE PHARMACOLOGY 2022. [PMCID: PMC8238403 DOI: 10.1016/b978-0-12-820472-6.00073-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
16
|
Hryciw DH, Jackson CA, Shrestha N, Parsons D, Donnelley M, McAinch AJ. Role for animal models in understanding essential fatty acid deficiency in cystic fibrosis. Cell Mol Life Sci 2021; 78:7991-7999. [PMID: 34741185 PMCID: PMC11072998 DOI: 10.1007/s00018-021-04014-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 10/11/2021] [Accepted: 10/25/2021] [Indexed: 10/19/2022]
Abstract
Essential fatty acid deficiency has been observed in most patients with Cystic Fibrosis (CF); however, pancreatic supplementation does not restore the deficiency, suggesting a different pathology independent of the pancreas. At this time, the underlying pathological mechanisms are largely unknown. Essential fatty acids are obtained from the diet and processed by organs including the liver and intestine, two organs significantly impacted by mutations in the cystic fibrosis transmembrane conductance regulator gene (Cftr). There are several CF animal models in a variety of species that have been developed to investigate molecular mechanisms associated with the CF phenotype. Specifically, global and systemic mutations in Cftr which mimic genotypic changes identified in CF patients have been generated in mice, rats, sheep, pigs and ferrets. These mutations produce CFTR proteins with a gating defect, trafficking defect, or an absent or inactive CFTR channel. Essential fatty acids are critical to CFTR function, with a bidirectional relationship between CFTR and essential fatty acids proposed. Currently, there are limited analyses on the essential fatty acid status in most of these animal models. Of interest, in the mouse model, essential fatty acid status is dependent on the genotype and resultant phenotype of the mouse. Future investigations should identify an optimal animal model that has most of the phenotypic changes associated with CF including the essential fatty acid deficiencies, which can be used in the development of therapeutics.
Collapse
Affiliation(s)
- Deanne H Hryciw
- School of Environment and Science, Griffith University, Nathan, QLD, Australia.
- Centre for Planetary Health and Food Security, Griffith University, Nathan, QLD, Australia.
- Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia.
| | - Courtney A Jackson
- School of Environment and Science, Griffith University, Nathan, QLD, Australia
| | - Nirajan Shrestha
- School of Pharmacy and Medical Sciences, Griffith University, Southport, QLD, Australia
| | - David Parsons
- Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
- Respiratory and Sleep Medicine, Women's and Children's Hospital, North Adelaide, SA, Australia
- Robinson Research Institute, University of Adelaide, Adelaide, SA, Australia
| | - Martin Donnelley
- Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
- Respiratory and Sleep Medicine, Women's and Children's Hospital, North Adelaide, SA, Australia
- Robinson Research Institute, University of Adelaide, Adelaide, SA, Australia
| | - Andrew J McAinch
- Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia
- Australian Institute for Musculoskeletal Science (AIMSS), Victoria University, St. Albans, VIC, Australia
| |
Collapse
|
17
|
Rumpf C, Lange J, Schwartbeck B, Kahl BC. Staphylococcus aureus and Cystic Fibrosis-A Close Relationship. What Can We Learn from Sequencing Studies? Pathogens 2021; 10:1177. [PMID: 34578208 PMCID: PMC8466686 DOI: 10.3390/pathogens10091177] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/07/2021] [Accepted: 09/08/2021] [Indexed: 01/13/2023] Open
Abstract
Staphylococcus aureus is next to Pseudomonas aeruginosa the most isolated pathogen from the airways of cystic fibrosis (CF) patients, who are often infected by a dominant S. aureus clone for extended periods. To be able to persist, the pathogen has to adapt to the hostile niche of the airways to counteract host defence, antibiotic therapy and the competition with coinfecting pathogens. S. aureus is equipped with many virulence factors including adhesins, toxins that are localized on the chromosome, on plasmids or are phage-related. S. aureus is especially versatile and adaptation and evolution of the pathogen occurs by the acquisition of new genes by horizontal gene transfer (HGT), changes in nucleotides (single nucleotide variations, SNVs) that can cause a selective advantage for the bacteria and become fixed in subpopulations. Methicillin-resistant S. aureus are a special threat to CF patients due to the more severe lung disease occurring in infected patients. Today, with decreasing costs for sequencing, more and more studies using S. aureus isolates cultured from CF patients are being published, which use whole genome sequencing (WGS), multilocus sequence typing (MLST) or spa-sequence typing (spa-typing) to follow the population dynamics of S. aureus, elucidate the underlying mechanisms of phenotypic variants, newly acquired resistance or adaptation to the host response in this particular niche. In the first part of this review, an introduction to the genetic make-up and the pathogenesis of S. aureus with respect to CF is provided. The second part presents an overview of recent studies and their findings using genotypic methods such as single or multilocus sequencing and whole genome sequencing, which identify factors contributing to the adaptation of S. aureus and its evolution in the airways of individuals with CF.
Collapse
Affiliation(s)
| | | | | | - Barbara C. Kahl
- Institute of Medical Microbiology, University Hospital Münster, 48149 Münster, Germany; (C.R.); (J.L.); (B.S.)
| |
Collapse
|
18
|
Serum inflammatory profiles in cystic fibrosis mice with and without Bordetella pseudohinzii infection. Sci Rep 2021; 11:17535. [PMID: 34475490 PMCID: PMC8413329 DOI: 10.1038/s41598-021-97033-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 08/09/2021] [Indexed: 01/04/2023] Open
Abstract
Cystic fibrosis (CF) is an autosomal recessive disease caused by dysfunctional cystic fibrosis transmembrane conductance regulator (CFTR) protein, and is marked by an accumulation of mucus in affected airways resulting in persistent infection and chronic inflammation. Quantitative differences in inflammatory markers have been observed in CF patient serum, tracheal cells, and bronchoalveolar lavage fluid, in the absence of detectable infection, implying that absent CFTR function alone may result in dysregulated immune responses. To examine the relationship between absent CFTR and systemic inflammation, 22 analytes were measured in CF mice (F508del/F508del) sera using the MSD multiplex platform. Pro-inflammatory cytokines IL-2, TNF-α, IL-17α, IFN-γ, IL-1β, and MIP-3α are significantly elevated in infection-naïve CF mice (p < 0.050). Anti-inflammatory cytokines IL-10 and IL-4 are also significantly increased (p = 0.00003, p = 0.004). Additionally, six general markers of inflammation are significantly different from non-CF controls (p < 0.050). To elucidate the effects of chronic infection on the CF inflammatory profile, we examined CF mice exposed to spontaneous Bordetella pseudohinzii infections. There are no statistical differences in nearly all inflammatory markers when compared to their infection-naïve CF counterparts, except in the Th2-derived IL-4 and IL-5 which demonstrate significant decreases following exposure (p = 0.046, p = 0.045). Lastly, following acute infection, CF mice demonstrate elevations in nearly all inflammatory markers, but exhibit a shortened return to uninfected levels over time, and suppression of Th1-derived IL-2 and IL-5 (p = 0.043, p = 0.011). These results imply that CF mice have a persistent inflammatory profile often indistinguishable from chronic infection, and a dysregulated humoral response during and following active infection.
Collapse
|
19
|
King PT, Dousha L, Clarke N, Schaefer J, Carzino R, Sharma R, Wan KL, Anantharajah A, O'Sullivan K, Lu ZX, Holdsworth SR, Ranganathan S, Bardin PG, Armstrong DS. Phagocyte extracellular traps in children with neutrophilic airway inflammation. ERJ Open Res 2021; 7:00883-2020. [PMID: 34164555 PMCID: PMC8215332 DOI: 10.1183/23120541.00883-2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 02/16/2021] [Indexed: 12/02/2022] Open
Abstract
Childhood lung infection is often associated with prominent neutrophilic airway inflammation and excess production of proteases such as neutrophil elastase (NE). The mechanisms responsible for this inflammation are not well understood. One potentially relevant pathway is the production of extracellular traps by neutrophils (NETs) and macrophages (METs). The aim of this study was to measure NET and MET expression in children and the effect of deoxyribonculease (DNase) 1 and α1-antitrypsin (AAT) on this process. We studied 76 children (median age of 4.0 years) with cystic fibrosis or chronic cough who underwent investigational bronchoscopy. NETs, METs and neutrophil elastase activity in bronchoalveolar lavage (BAL) samples were measured using confocal microscopy and functional assays. The effects of DNase 1 and AAT on NET/MET expression and neutrophil elastase activity were examined in vitro. Both subject groups had airway neutrophilia with prominent BAL production of NETs with neutrophil elastase co-expression; the mean %±standard error of the mean of neutrophils expressing NETs in the cystic fibrosis group was 23.3±2.8% and in the non-cystic fibrosis group was 28.4±3.9%. NET expression was higher in subjects who had detectable neutrophil elastase activity (p≤0.0074). The percentage of macrophages expressing METs in the cystic fibrosis group was 10.7±1.2% and in the non-cystic fibrosis group was 13.2±1.9%. DNase 1 decreased NET/MET expression (p<0.0001), but increased neutrophil elastase activity (p≤0.0137). The combination of AAT and DNase 1 reduced neutrophil elastase activity (p≤0.0049). We observed prominent extracellular trap formation in symptomatic children with and without cystic fibrosis. This innate inflammatory response was down-regulated by a combination of currently available therapeutics. Prominent extracellular trap formation may be observed in young children with airway inflammation, with and without cystic fibrosis. This innate inflammatory response is down-regulated by a combination of currently available therapeutics.https://bit.ly/3bDaWyC
Collapse
Affiliation(s)
- Paul T King
- Monash Lung and Sleep, Monash Medical Centre, Melbourne, Australia.,Monash University Dept of Medicine, Monash Medical Centre, Melbourne, Victoria, Australia
| | - Lovisa Dousha
- Monash Lung and Sleep, Monash Medical Centre, Melbourne, Australia.,Monash University Dept of Medicine, Monash Medical Centre, Melbourne, Victoria, Australia
| | - Nadeene Clarke
- Paediatric Respiratory Medicine, Royal Children's Hospital, Melbourne, Australia.,Murdoch Children's Research Institute, Melbourne, Australia
| | - Jennifer Schaefer
- Monash Lung and Sleep, Monash Medical Centre, Melbourne, Australia.,Monash Children's Hospital, Melbourne, Australia
| | - Rosemary Carzino
- Paediatric Respiratory Medicine, Royal Children's Hospital, Melbourne, Australia.,Murdoch Children's Research Institute, Melbourne, Australia
| | - Roleen Sharma
- Monash Lung and Sleep, Monash Medical Centre, Melbourne, Australia.,Monash University Dept of Medicine, Monash Medical Centre, Melbourne, Victoria, Australia
| | - Ken L Wan
- Dept of Biochemistry, Monash Pathology, Monash Health, Melbourne, Australia
| | - Aveena Anantharajah
- Monash Lung and Sleep, Monash Medical Centre, Melbourne, Australia.,Monash Children's Hospital, Melbourne, Australia
| | - Kim O'Sullivan
- Monash University Dept of Medicine, Monash Medical Centre, Melbourne, Victoria, Australia
| | - Zhong X Lu
- Monash University Dept of Medicine, Monash Medical Centre, Melbourne, Victoria, Australia.,Dept of Biochemistry, Monash Pathology, Monash Health, Melbourne, Australia
| | - Stephen R Holdsworth
- Monash University Dept of Medicine, Monash Medical Centre, Melbourne, Victoria, Australia.,Dept of Immunology, Monash Health, Melbourne, Australia
| | - Sarath Ranganathan
- Paediatric Respiratory Medicine, Royal Children's Hospital, Melbourne, Australia.,Murdoch Children's Research Institute, Melbourne, Australia.,Dept of Paediatrics, University of Melbourne, Melbourne, Australia
| | - Philip G Bardin
- Monash Lung and Sleep, Monash Medical Centre, Melbourne, Australia.,Monash University Dept of Medicine, Monash Medical Centre, Melbourne, Victoria, Australia.,Hudson Institute of Medical Research, Melbourne, Australia
| | - David S Armstrong
- Monash Lung and Sleep, Monash Medical Centre, Melbourne, Australia.,Monash Children's Hospital, Melbourne, Australia.,Monash University Dept of Paediatrics, Monash Medical Centre, Melbourne, Australia
| |
Collapse
|
20
|
Wolter DJ, Scott A, Armbruster CR, Whittington D, Edgar JS, Qin X, Buccat AM, McNamara S, Blackledge M, Waalkes A, Salipante SJ, Ernst RK, Hoffman LR. Repeated isolation of an antibiotic-dependent and temperature-sensitive mutant of Pseudomonas aeruginosa from a cystic fibrosis patient. J Antimicrob Chemother 2021; 76:616-625. [PMID: 33259594 DOI: 10.1093/jac/dkaa482] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 10/02/2020] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Bacteria adapt to survive and grow in different environments. Genetic mutations that promote bacterial survival under harsh conditions can also restrict growth. The causes and consequences of these adaptations have important implications for diagnosis, pathogenesis, and therapy. OBJECTIVES We describe the isolation and characterization of an antibiotic-dependent, temperature-sensitive Pseudomonas aeruginosa mutant chronically infecting the respiratory tract of a cystic fibrosis (CF) patient, underscoring the clinical challenges bacterial adaptations can present. METHODS Respiratory samples collected from a CF patient during routine care were cultured for standard pathogens. P. aeruginosa isolates recovered from samples were analysed for in vitro growth characteristics, antibiotic susceptibility, clonality, and membrane phospholipid and lipid A composition. Genetic mutations were identified by whole genome sequencing. RESULTS P. aeruginosa isolates collected over 5 years from respiratory samples of a CF patient frequently harboured a mutation in phosphatidylserine decarboxylase (psd), encoding an enzyme responsible for phospholipid synthesis. This mutant could only grow at 37°C when in the presence of supplemented magnesium, glycerol, or, surprisingly, the antibiotic sulfamethoxazole, which the source patient had repeatedly received. Of concern, this mutant was not detectable on standard selective medium at 37°C. This growth defect correlated with alterations in membrane phospholipid and lipid A content. CONCLUSIONS A P. aeruginosa mutant chronically infecting a CF patient exhibited dependence on sulphonamides and would likely evade detection using standard clinical laboratory methods. The diagnostic and therapeutic challenges presented by this mutant highlight the complex interplay between bacterial adaptation, antibiotics, and laboratory practices, during chronic bacterial infections.
Collapse
Affiliation(s)
- Daniel J Wolter
- Department of Pediatrics, University of Washington, Seattle, WA, USA.,Seattle Children's Hospital, Seattle, WA, USA
| | - Alison Scott
- Department of Microbial Pathogenesis, University of Maryland, Baltimore, MD, USA
| | | | - Dale Whittington
- Department of Medicinal Chemistry, University of Washington, Seattle, WA, USA
| | - John S Edgar
- Department of Medicinal Chemistry, University of Washington, Seattle, WA, USA
| | - Xuan Qin
- Seattle Children's Hospital, Seattle, WA, USA
| | | | | | | | - Adam Waalkes
- Department of Laboratory Medicine, University of Washington, Seattle, WA, USA
| | - Stephen J Salipante
- Department of Laboratory Medicine, University of Washington, Seattle, WA, USA
| | - Robert K Ernst
- Department of Microbial Pathogenesis, University of Maryland, Baltimore, MD, USA
| | - Lucas R Hoffman
- Department of Pediatrics, University of Washington, Seattle, WA, USA.,Seattle Children's Hospital, Seattle, WA, USA.,Department of Microbiology, University of Washington, Seattle, WA, USA
| |
Collapse
|
21
|
Patel D, Dacanay KC, Pashley CH, Gaillard EA. Comparative Analysis of Clinical Parameters and Sputum Biomarkers in Establishing the Relevance of Filamentous Fungi in Cystic Fibrosis. Front Cell Infect Microbiol 2021; 10:605241. [PMID: 33553007 PMCID: PMC7862329 DOI: 10.3389/fcimb.2020.605241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 12/04/2020] [Indexed: 11/13/2022] Open
Abstract
Background The relationship between fungal culture (FC) positivity and airway inflammation in CF is largely unknown. Identifying the clinical significance of filamentous fungi in CF using both clinical parameters and biomarkers may change our antimicrobial therapeutic strategies. Objectives To investigate the clinical characteristics and airway biomarker profile in relation to the detection of filamentous fungi in respiratory samples obtained from CF patients. Methods A prospective cohort study over 24 months, including children and adults with CF. Participants provided sputum and/or bronchoalveolar lavage samples, which underwent processing for bacterial and fungal culture, leukocyte differential cell count and biomarker analysis for neutrophil elastase (NE), interleukin-8 (IL-8), galactomannan and tumor necrosis factor receptor type 2 (TNF-R2). We performed FC using neat sputum plugs, an approach shown to be more sensitive compared to routine laboratory testing. Results Sixty-one patients provided 76 respiratory samples (72 sputum and 4 BAL). Median age was 17 years (range 6 months-59 years). FC positivity was noted in 49% of the cohort. FC positivity was greater during pulmonary exacerbation compared to the stable state (67 versus 50%). Participants aged 5-30 years had a lower FEV1 within the FC positive group. A significant association between FC positivity and non-tuberculosis mycobacterial (NTM) culture was observed on non-parametric testing (p = 0.022) and regression analysis (p = 0.007). Exposure to indoor mold was a predictor for FC positivity (p = 0.047). There was a trend towards increased lung clearance index (LCI), bronchiectasis and intravenous antibiotic use in the FC positive group. There was no significant difference in biomarkers between FC positive and negative patients. Conclusion Aspergillus. fumigatus is the commonest filamentous fungi cultured from CF airways. We found no difference in the airway biomarker profile between FC positive and negative patients. The role of galactomannan and TNFR2 as fungal specific biomarkers in CF remains uncertain. FC positivity is associated with a lower FEV1 in younger patients, a lower LCI, NTM positivity, bronchiectasis, and intravenous antibiotic exposure. Larger trials are needed to determine the role of galactomannan and TNF-R2 as potential fungal biomarkers in CF.
Collapse
Affiliation(s)
- Deepa Patel
- Department of Respiratory Sciences, University of Leicester, Leicester, United Kingdom.,Paediatric Respiratory Department, University Hospitals of Leicester NHS Trust, Leicester, United Kingdom
| | - Keith Chester Dacanay
- Department of Respiratory Sciences, University of Leicester, Leicester, United Kingdom.,Institute for Lung Health, NIHR Respiratory Biomedical Research Center, Leicester, United Kingdom
| | - Catherine H Pashley
- Department of Respiratory Sciences, University of Leicester, Leicester, United Kingdom.,Institute for Lung Health, NIHR Respiratory Biomedical Research Center, Leicester, United Kingdom
| | - Erol A Gaillard
- Department of Respiratory Sciences, University of Leicester, Leicester, United Kingdom.,Paediatric Respiratory Department, University Hospitals of Leicester NHS Trust, Leicester, United Kingdom.,Institute for Lung Health, NIHR Respiratory Biomedical Research Center, Leicester, United Kingdom
| |
Collapse
|
22
|
Bene Z, Fejes Z, Macek M, Amaral MD, Balogh I, Nagy B. Laboratory biomarkers for lung disease severity and progression in cystic fibrosis. Clin Chim Acta 2020; 508:277-286. [PMID: 32428503 DOI: 10.1016/j.cca.2020.05.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 04/20/2020] [Accepted: 05/07/2020] [Indexed: 12/22/2022]
Abstract
Although the clinical outcomes of cystic fibrosis (CF) have been markedly improved through the recent implementation of novel CF transmembrane conductance regulator (CFTR) modulator drugs, robust and reliable biomarkers are still demanded for the early detection of CF lung disease progression, monitoring treatment efficacy and predicting life-threatening clinical complications. Thus, there is an unmet need to identify and validate novel, ideally blood based biomarkers with strong correlations to the severity of CF lung disease, which represents a major contribution to overall CF morbidity and mortality. In this review, we aim to summarize the utility of thus far studied blood-, sputum- and bronchoalveolar lavage (BAL)-based biomarkers to evaluate inflammatory conditions in the lung and to follow treatment efficacy in CF. Measurements of sweat chloride concentrations and the spirometric parameter FEV1 are currently utilized to monitor CFTR function and the effect of various CF therapies. Nonetheless, both have inherent pitfalls and limitations, thus routinely analyzed biomarkers in blood, sputum or BAL samples are required as surrogates for lung disorders. Recent discovery of new protein (e.g. HE4) and RNA-based biomarkers, such as microRNAs may offer a higher efficacy, which in aggregate may be valuable to evaluate disease prognosis and to substantiate CF drug efficacy.
Collapse
Affiliation(s)
- Zsolt Bene
- Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary; Department of Pediatrics, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Zsolt Fejes
- Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Milan Macek
- Department of Biology and Medical Genetics, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Margarida D Amaral
- University of Lisboa, Faculty of Sciences, BioISI-Biosystems & Integrative Sciences Institute, Lisboa, Portugal
| | - István Balogh
- Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary; Division of Clinical Genetics, Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Béla Nagy
- Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.
| |
Collapse
|
23
|
Toprak Kanık E, Yilmaz O, Ozdogru E, Alper H, Ulman C, Kanık A, Simsek Y, Yuksel H. Relevance between clinical status and exhaled molecules related to neutrophilic inflammation in pediatric cystic fibrosis. J Breath Res 2020; 14:046007. [PMID: 31896101 DOI: 10.1088/1752-7163/ab670d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Cystic fibrosis (CF) is characterized with chronic inflammation with neutrophil and related cytokines in airway secretions. We aimed to measure the levels of neutrophil related inflammatory markers as nitric oxide, IL-8, IL-17, leukotriene B4 and neutrophil elastase as well as e-cadherin in exhaled breath condensate (EBC), and to determine their relation with clinical findings. METHODS We consecutively enrolled cystic fibrosis patients into our clinics between the age of six and eighteen years who could cooperate for exhaled breath condensate to this case-control study (n = 30). The age and sex matched control group (n = 26) was enrolled. Spirometry was performed during the stable period and EBC samples were obtained for measurement of the markers. RESULTS The mean age of the subjects enrolled was 12.1(4.2) years and 40% were positive for P.Aeruginosa in sputum. Subjects who had P.Aeruginosa in sputum cultures had significantly lower FEV1, FVC and FEF 25/75 values compared to the ones without P.Aeruginosa (p = 0.002, p = 0.002 and p = 0.005 respectively). EBC neutrophil elastase levels were significantly higher in the CF patients compared to non-CF controls (3.11 ± 4.71 versus 0.90 ± 2.68, p = 0.04). Nitric oxide, IL-17, IL-8, e-cadherin, neutrophil elastase or leukotriene B4 levels in EBC of CF patients were not related to P.Aeruginosa s infection, FEV1 levels or hospital admission in the last year. CONCLUSION In our study, neutrophil elastase levels in EBC are higher in CF patients compared to non-CF controls. This is independent of acute infection and is evidence to the persistence of neutrophilic lung injury. However, EBC NO, IL-8, IL-17, e-cadherin, neutrophil elastase and leukotriene B4 levels as inflammatory markers, are not correlated with disease progression or clinical findings.
Collapse
Affiliation(s)
- E Toprak Kanık
- Celal Bayar University Medical Faculty, Pediatric Allergy and Pulmonology, Manisa, Turkey
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Ng HP, Jennings S, Wellems D, Sun F, Xu J, Nauseef WM, Wang G. Myeloid CFTR loss-of-function causes persistent neutrophilic inflammation in cystic fibrosis. J Leukoc Biol 2020; 108:1777-1785. [PMID: 32531843 DOI: 10.1002/jlb.3a0520-193rr] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 05/07/2020] [Accepted: 05/08/2020] [Indexed: 01/04/2023] Open
Abstract
Persistent neutrophilic inflammation is a hallmark of cystic fibrosis (CF). However, the mechanisms underlying this outstanding pathology remain incompletely understood. Here, we report that CFTR in myeloid immune cells plays a pivotal role in control of neutrophilic inflammation. Myeloid CFTR-Knockout (Mye-Cftr-/-) mice and congenic wild-type (WT) mice were challenged peritoneally with zymosan particles at different doses, creating aseptic peritonitis with varied severity. A high-dose challenge resulted in significantly higher mortality in Mye-Cftr-/- mice, indicating an intrinsic defect in host control of inflammation in mice whose myeloid cells lack CF. The low-dose challenge demonstrated an impaired resolution of inflammation in Mye-Cftr-/- mice, reflected by a significant overproduction of proinflammatory cytokines, including neutrophil chemokines MIP-2 and KC, and sustained accumulation of neutrophils. Tracing neutrophil mobilization in vivo demonstrated that myeloid CF mice recruited significantly more neutrophils than did WT mice. Pulmonary challenge with zymosan elicited exuberant inflammation in the lung and recapitulated the findings from peritoneal challenge. To determine the major type of cell that was primarily responsible for the over-recruitment of neutrophils, we purified and cultured ex vivo zymosan-elicited peritoneal neutrophils and macrophages. The CF neutrophils produced significantly more MIP-2 than did the WT counterparts, and peripheral blood neutrophils isolated from myeloid CF mice also produced significantly more MIP-2 after zymosan stimulation in vitro. These data altogether suggest that CFTR dysfunction in myeloid immune cells, especially neutrophils, leads to hyperinflammation and excessive neutrophil mobilization in the absence of infection. Thus, dysregulated inflammation secondary to abnormal or absent CFTR in myeloid cells may underlie the clinically observed neutrophilic inflammation in CF.
Collapse
Affiliation(s)
- Hang Pong Ng
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| | - Scott Jennings
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| | - Dianne Wellems
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| | - Fei Sun
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Jie Xu
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical Center, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - William M Nauseef
- Department of Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, and Veterans Administration Medical Center, Iowa City, Iowa, USA
| | - Guoshun Wang
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| |
Collapse
|
25
|
Tarique AA, Evron T, Zhang G, Tepper MA, Morshed MM, Andersen ISG, Begum N, Sly PD, Fantino E. Anti-inflammatory effects of lenabasum, a cannabinoid receptor type 2 agonist, on macrophages from cystic fibrosis. J Cyst Fibros 2020; 19:823-829. [PMID: 32387042 DOI: 10.1016/j.jcf.2020.03.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 02/12/2020] [Accepted: 03/24/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND Lenabasum is an oral synthetic cannabinoid receptor type 2 agonist previously shown to reduce the production of key airway pro-inflammatory cytokines known to play a role in cystic fibrosis (CF). In a double-blinded, randomized, placebo-control phase 2 study, lenabasum lowered the rate of pulmonary exacerbation among patients with CF. The present study was undertaken to investigate anti-inflammatory mechanisms of lenabasum exhibits in CF macrophages. METHODS We used monocyte-derived macrophages (MDMs) from healthy donors (n = 15), MDMs with CFTR inhibited with C-172 (n = 5) and MDMs from patients with CF (n = 4). Monocytes were differentiated to macrophages and polarized into classically activated (M1) macrophages by LPS or alternatively activated (M2) macrophages by IL-13 in presence or absence of lenabasum. RESULTS Lenabasum had no effect on differentiation, polarization and function of macrophages from healthy individuals. However, in CF macrophages lenabasum downregulated macrophage polarization into the pro-inflammatory M1 phenotype and secretion of the pro-inflammatory cytokines IL-8 and TNF-α in a dose-dependent manner. An improvement in phagocytic activity was also observed following lenabasum treatment. Although lenabasum did not restore the impaired polarization of anti-inflammatory M2 macrophage, it reduced the levels of IL-13 and enhanced the endocytic function of CF MDMs. The effects of lenabasum on MDMs with CFTR inhibited by C-172 were not as obvious. CONCLUSION In CF macrophages lenabasum modulates macrophage polarization and function in vitro in a way that would reduce inflammation in vivo. Further studies are warranted to determine the link between activating the CBR2 receptor and CFTR.
Collapse
Affiliation(s)
- Abdullah A Tarique
- Child Health Research Centre (CHRC), The University of Queensland, Brisbane, Australia
| | - Tama Evron
- Corbus Pharmaceuticals, Inc., Norwood, MA, USA
| | | | | | - Mohammed M Morshed
- Child Health Research Centre (CHRC), The University of Queensland, Brisbane, Australia
| | - Isabella S G Andersen
- Child Health Research Centre (CHRC), The University of Queensland, Brisbane, Australia
| | - Nelufa Begum
- Child Health Research Centre (CHRC), The University of Queensland, Brisbane, Australia
| | - Peter D Sly
- Child Health Research Centre (CHRC), The University of Queensland, Brisbane, Australia.
| | - Emmanuelle Fantino
- Child Health Research Centre (CHRC), The University of Queensland, Brisbane, Australia
| |
Collapse
|
26
|
Lange J, Heidenreich K, Higelin K, Dyck K, Marx V, Reichel C, van Wamel W, den Reijer M, Görlich D, Kahl BC. Staphylococcus aureus Pathogenicity in Cystic Fibrosis Patients-Results from an Observational Prospective Multicenter Study Concerning Virulence Genes, Phylogeny, and Gene Plasticity. Toxins (Basel) 2020; 12:toxins12050279. [PMID: 32357453 PMCID: PMC7290773 DOI: 10.3390/toxins12050279] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 04/16/2020] [Accepted: 04/21/2020] [Indexed: 12/04/2022] Open
Abstract
Staphylococcus aureus and cystic fibrosis (CF) are closely interlinked. To date, however, the impact of S. aureus culture in CF airways on lung function and disease progression has only been elucidated to a limited degree. This analysis aims to identify bacterial factors associated to clinical deterioration. Data were collected during an observational prospective multi-center study following 195 patients from 17 centers. The average follow-up time was 80 weeks. S. aureus isolates (n = 3180) were scanned for the presence of 25 virulence genes and agr-types using single and multiplex PCR. The presence of specific virulence genes was not associated to clinical deterioration. For the agr-types 1 and 4, however, a link to the subjects’ clinical status became evident. Furthermore, a significant longitudinal decrease in the virulence gene quantity was observed. Analyses of the plasticity of the virulence genes revealed significantly increased plasticity rates in the presence of environmental stress. The results suggest that the phylogenetic background defines S. aureus pathogenicity rather than specific virulence genes. The longitudinal loss of virulence genes most likely reflects the adaptation process directed towards a persistent and colonizing rather than infecting lifestyle.
Collapse
Affiliation(s)
- Jonas Lange
- Institute of Medical Microbiology, University Hospital Münster, 48149 Münster, Germany; (J.L.); (K.H.); (K.H.); (K.D.); (V.M.); (C.R.)
| | - Kathrin Heidenreich
- Institute of Medical Microbiology, University Hospital Münster, 48149 Münster, Germany; (J.L.); (K.H.); (K.H.); (K.D.); (V.M.); (C.R.)
| | - Katharina Higelin
- Institute of Medical Microbiology, University Hospital Münster, 48149 Münster, Germany; (J.L.); (K.H.); (K.H.); (K.D.); (V.M.); (C.R.)
| | - Kristina Dyck
- Institute of Medical Microbiology, University Hospital Münster, 48149 Münster, Germany; (J.L.); (K.H.); (K.H.); (K.D.); (V.M.); (C.R.)
| | - Vanessa Marx
- Institute of Medical Microbiology, University Hospital Münster, 48149 Münster, Germany; (J.L.); (K.H.); (K.H.); (K.D.); (V.M.); (C.R.)
| | - Christian Reichel
- Institute of Medical Microbiology, University Hospital Münster, 48149 Münster, Germany; (J.L.); (K.H.); (K.H.); (K.D.); (V.M.); (C.R.)
| | - Willem van Wamel
- Department of Medical Microbiology and Infectious Diseases, Erasmus Medical Center Rotterdam, 3015 CN Rotterdam, The Netherlands; (W.v.W.); (M.d.R.)
| | - Martijn den Reijer
- Department of Medical Microbiology and Infectious Diseases, Erasmus Medical Center Rotterdam, 3015 CN Rotterdam, The Netherlands; (W.v.W.); (M.d.R.)
| | - Dennis Görlich
- Institute of Biostatistics and Clinical Research, University Hospital Münster, 48149 Münster, Germany;
| | - Barbara C. Kahl
- Institute of Medical Microbiology, University Hospital Münster, 48149 Münster, Germany; (J.L.); (K.H.); (K.H.); (K.D.); (V.M.); (C.R.)
- Correspondence: ; Tel.: +49-251-8355358
| |
Collapse
|
27
|
McMahon DB, Carey RM, Kohanski MA, Tong CCL, Papagiannopoulos P, Adappa ND, Palmer JN, Lee RJ. Neuropeptide regulation of secretion and inflammation in human airway gland serous cells. Eur Respir J 2020; 55:13993003.01386-2019. [PMID: 32029445 DOI: 10.1183/13993003.01386-2019] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 01/13/2020] [Indexed: 12/14/2022]
Abstract
Airway submucosal gland serous cells are sites of expression of the cystic fibrosis transmembrane conductance regulator (CFTR) and are important for fluid secretion in conducting airways. To elucidate how neuropeptides regulate serous cells, we tested if human nasal turbinate serous cells secrete bicarbonate (HCO3 -), important for mucus polymerisation and antimicrobial peptide function, during stimulation with cAMP-elevating vasoactive intestinal peptide (VIP) and if this requires CFTR. Serous cells stimulated with VIP exhibited a ∼15-20% cAMP-dependent decrease in cell volume and a ∼0.15 unit decrease in intracellular pH (pHi), reflecting activation of Cl- and HCO3 - secretion, respectively. HCO3 - secretion was directly dependent on CFTR and was absent in cells from CF patients. In contrast, neuropeptide Y (NPY) reduced VIP-evoked cAMP increases, CFTR activation, and Cl-/HCO3 - secretion. Culture of primary serous cells in a model that maintained a serous phenotype confirmed the activating and inhibiting effects of VIP and NPY, respectively, on fluid and HCO3 - secretion. Moreover, VIP enhanced antimicrobial peptide secretion and antimicrobial efficacy of secretions while NPY reduced antimicrobial efficacy. In contrast, NPY enhanced cytokine release while VIP reduced cytokine release through a mechanism requiring CFTR. As levels of VIP and NPY are up-regulated in diseases like allergy, asthma, and chronic rhinosinusitis, the balance of these two peptides in the airway may control mucus rheology and inflammatory responses in serous cells. Furthermore, the loss of CFTR conductance in serous cells may contribute to CF pathophysiology by increasing serous cells inflammatory responses in addition to directly impairing Cl- and HCO3 - secretion.
Collapse
Affiliation(s)
- Derek B McMahon
- Dept of Otorhinolaryngology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Ryan M Carey
- Dept of Otorhinolaryngology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Michael A Kohanski
- Dept of Otorhinolaryngology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Charles C L Tong
- Dept of Otorhinolaryngology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Peter Papagiannopoulos
- Dept of Otorhinolaryngology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Nithin D Adappa
- Dept of Otorhinolaryngology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - James N Palmer
- Dept of Otorhinolaryngology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Robert J Lee
- Dept of Otorhinolaryngology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.,Dept of Physiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
28
|
Laucirica DR, Garratt LW, Kicic A. Progress in Model Systems of Cystic Fibrosis Mucosal Inflammation to Understand Aberrant Neutrophil Activity. Front Immunol 2020; 11:595. [PMID: 32318073 PMCID: PMC7154161 DOI: 10.3389/fimmu.2020.00595] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 03/13/2020] [Indexed: 12/18/2022] Open
Abstract
In response to recurrent infection in cystic fibrosis (CF), powerful innate immune signals trigger polymorphonuclear neutrophil recruitment into the airway lumen. Exaggerated neutrophil proteolytic activity results in sustained inflammation and scarring of the airways. Consequently, neutrophils and their secretions are reliable clinical biomarkers of lung disease progression. As neutrophils are required to clear infection and yet a direct cause of airway damage, modulating adverse neutrophil activity while preserving their pathogen fighting function remains a key area of CF research. The factors that drive their pathological behavior are still under investigation, especially in early disease when aberrant neutrophil behavior first becomes evident. Here we examine the latest findings of neutrophils in pediatric CF lung disease and proposed mechanisms of their pathogenicity. Highlighted in this review are current and emerging experimental methods for assessing CF mucosal immunity and human neutrophil function in the laboratory.
Collapse
Affiliation(s)
- Daniel R Laucirica
- Faculty of Health and Medical Sciences, University of Western Australia, Nedlands, WA, Australia.,Telethon Kids Institute, University of Western Australia, Nedlands, WA, Australia
| | - Luke W Garratt
- Telethon Kids Institute, University of Western Australia, Nedlands, WA, Australia
| | - Anthony Kicic
- Faculty of Health and Medical Sciences, University of Western Australia, Nedlands, WA, Australia.,Telethon Kids Institute, University of Western Australia, Nedlands, WA, Australia.,Department of Respiratory and Sleep Medicine, Perth Children's Hospital, Nedlands, WA, Australia.,School of Public Health, Curtin University, Bentley, WA, Australia
| |
Collapse
|
29
|
Taylor SL, Leong LEX, Ivey KL, Wesselingh S, Grimwood K, Wainwright CE, Rogers GB. Total bacterial load, inflammation, and structural lung disease in paediatric cystic fibrosis. J Cyst Fibros 2020; 19:923-930. [PMID: 32199729 DOI: 10.1016/j.jcf.2020.03.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 03/11/2020] [Accepted: 03/12/2020] [Indexed: 12/23/2022]
Abstract
BACKGROUND Cystic fibrosis (CF) is characterised by reduced airway clearance, microbial accumulation, inflammation, and lung function decline. Certain bacterial species may contribute disproportionately to worsening lung disease. However, the relative importance of these microorganisms compared to the absolute abundance of all bacteria is uncertain. We aimed to identify the characteristics of lower airway microbiology that best reflect CF airway inflammation and disease in children. METHODS Analysis was performed on bronchoalveolar lavage (BAL) fluid from 78 participants of the Australasian CF Bronchoalveolar Lavage (ACFBAL) clinical trial, aged 4.5-5.5 years. Universal bacterial quantitative PCR (qPCR), species-specific qPCR, and 16S rRNA gene sequencing were performed on DNA extracts to determine total bacterial load, species-specific load and taxa relative abundance. Quantification of pre-specified pathogens was performed by culture-based methods. Bacteriological data were related to neutrophil counts, interleukin-8, lung function, and two computed-tomography based measures, CF-CT (as the primary measure) and PRAGMA. RESULTS Of all bacteriological measures assessed, total bacterial load determined by qPCR correlated most strongly with structural disease (CF-CT total score, rs=0.30, P=0.0095). Specifically, total bacterial load correlated with bronchiectasis, airway wall thickening, mucus plugging and parenchymal disease sub-scores. In contrast, culture-based quantification, microbiota-derived measures, and pathogen-specific qPCR-based quantification were weakly associated with total CF-CT. Regression analyses supported correlation findings, with total bacterial load explaining the greatest variance in total CF-CT (R2=0.097, P=0.0061). Correlations with PRAGMA score were comparable to CF-CT total score. CONCLUSIONS Within the ACFBAL trial, culture-independent quantification of total bacteria provided the most clinically-informative bacteriological measure in 5-year-old CF patients.
Collapse
Affiliation(s)
- Steven L Taylor
- SAHMRI Microbiome Research Laboratory, Flinders University College of Medicine and Public Health, Adelaide, SA, Australia; Microbiome and Host Health, South Australia Health and Medical Research Institute, North Terrace, Adelaide, SA, Australia.
| | - Lex E X Leong
- Microbiology and Infectious Diseases, SA Pathology, South Australia, Australia
| | - Kerry L Ivey
- Microbiome and Host Health, South Australia Health and Medical Research Institute, North Terrace, Adelaide, SA, Australia; Department of Nutrition, Harvard T. H. Chan School of Public Health, Boston, MA, United States; Department of Nutrition and Dietetics, College of Nursing and Health Sciences Flinders University, Adelaide, SA
| | - Steve Wesselingh
- Microbiome and Host Health, South Australia Health and Medical Research Institute, North Terrace, Adelaide, SA, Australia
| | - Keith Grimwood
- School of Medicine and Menzies Health Institute Queensland, Griffith University Gold Coast Campus and Departments of Infectious Diseases and Paediatrics, Gold Coast Health, Gold Coast, Queensland, Australia
| | - Claire E Wainwright
- Respiratory and Sleep Medicine, Queensland Children's Hospital, South Brisbane, Queensland, Australia; Child Health Research Centre, The University of Queensland, Brisbane, Queensland, Australia
| | - Geraint B Rogers
- SAHMRI Microbiome Research Laboratory, Flinders University College of Medicine and Public Health, Adelaide, SA, Australia; Microbiome and Host Health, South Australia Health and Medical Research Institute, North Terrace, Adelaide, SA, Australia
| | | |
Collapse
|
30
|
Breuer O, Schultz A, Turkovic L, de Klerk N, Keil AD, Brennan S, Harrison J, Robertson C, Robinson PJ, Sly PD, Ranganathan S, Stick SM, Caudri D. Changing Prevalence of Lower Airway Infections in Young Children with Cystic Fibrosis. Am J Respir Crit Care Med 2020; 200:590-599. [PMID: 30811949 DOI: 10.1164/rccm.201810-1919oc] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Rationale: Historical studies suggest that airway infection in cystic fibrosis initiates with Staphylococcus aureus and Haemophilus influenzae, with later emergence of Pseudomonas aeruginosa. Aspergillus species are regarded as relatively infrequent, late-occurring infections.Objectives: To assess the prevalence and change in prevalence of early lower airway infections in a modern cohort of children with cystic fibrosis.Methods: All infants diagnosed with cystic fibrosis after newborn screening participating in the Australian Respiratory Early Surveillance Team for Cystic Fibrosis (AREST CF) cohort study between 2000 and 2018 were included. Participants prospectively underwent BAL at 3-6 months, 1 year, and annually up to 6 years of age. Lower airway infection prevalence was described. Changes in prevalence patterns were assessed longitudinally using generalized estimating equations controlling for age and repeated visits.Measurements and Main Results: A total of 380 infants underwent 1,759 BALs. The overall prevalence and median age of first acquisition of the most common infections were as follows: S. aureus, 11%, 2.5 years; P. aeruginosa, 8%, 2.4 years; Aspergillus species, 11%, 3.2 years; and H. influenzae, 9%, 3.1 years. During the study, a significant decrease in prevalence of P. aeruginosa (P < 0.001) and S. aureus (P < 0.001) was observed with a significant change toward more aggressive treatment. Prevalence of Aspergillus infections did not significantly change (P = 0.669).Conclusions: Aspergillus species and P. aeruginosa are commonly present in the lower airways from infancy. The decrease in prevalence of P. aeruginosa and S. aureus since 2000, coinciding with a more aggressive therapeutic approach, has resulted in Aspergillus becoming the most commonly isolated pathogen in young children. Further research is warranted to understand the implication of these findings.
Collapse
Affiliation(s)
- Oded Breuer
- Telethon Kids Respiratory Research Centre, Telethon Kids Institute, and.,Perth Children's Hospital, Perth, Australia
| | - Andre Schultz
- Telethon Kids Respiratory Research Centre, Telethon Kids Institute, and.,Division of Paediatric and Child Health, Faculty of Medicine, University of Western Australia, Perth, Western Australia, Australia.,Perth Children's Hospital, Perth, Australia
| | - Lidija Turkovic
- Telethon Kids Respiratory Research Centre, Telethon Kids Institute, and
| | - Nicholas de Klerk
- Telethon Kids Respiratory Research Centre, Telethon Kids Institute, and
| | - Anthony D Keil
- Perth Children's Hospital, Perth, Australia.,Department of Microbiology, PathWest Laboratory Medicine WA, Perth, Western Australia, Australia
| | - Siobhain Brennan
- Telethon Kids Respiratory Research Centre, Telethon Kids Institute, and
| | - Joanne Harrison
- Department of Paediatrics, University of Melbourne, Melbourne, Australia.,Murdoch Children's Research Institute, Parkville, Australia.,Department of Respiratory and Sleep Medicine, Royal Children's Hospital, Parkville, Australia
| | - Colin Robertson
- Department of Paediatrics, University of Melbourne, Melbourne, Australia.,Murdoch Children's Research Institute, Parkville, Australia.,Department of Respiratory and Sleep Medicine, Royal Children's Hospital, Parkville, Australia
| | - Philip J Robinson
- Department of Paediatrics, University of Melbourne, Melbourne, Australia.,Murdoch Children's Research Institute, Parkville, Australia.,Department of Respiratory and Sleep Medicine, Royal Children's Hospital, Parkville, Australia
| | - Peter D Sly
- Children's Health and Environment Program, Child Health Research Centre, The University of Queensland, Brisbane, Australia; and
| | - Sarath Ranganathan
- Department of Paediatrics, University of Melbourne, Melbourne, Australia.,Murdoch Children's Research Institute, Parkville, Australia.,Department of Respiratory and Sleep Medicine, Royal Children's Hospital, Parkville, Australia
| | - Stephen M Stick
- Telethon Kids Respiratory Research Centre, Telethon Kids Institute, and.,Division of Paediatric and Child Health, Faculty of Medicine, University of Western Australia, Perth, Western Australia, Australia.,Perth Children's Hospital, Perth, Australia
| | - Daan Caudri
- Telethon Kids Respiratory Research Centre, Telethon Kids Institute, and.,Perth Children's Hospital, Perth, Australia.,Department of Pediatrics/Respiratory Medicine, Erasmus MC, Rotterdam, the Netherlands
| |
Collapse
|
31
|
Margaroli C, Garratt LW, Horati H, Dittrich AS, Rosenow T, Montgomery ST, Frey DL, Brown MR, Schultz C, Guglani L, Kicic A, Peng L, Scholte BJ, Mall MA, Janssens HM, Stick SM, Tirouvanziam R. Elastase Exocytosis by Airway Neutrophils Is Associated with Early Lung Damage in Children with Cystic Fibrosis. Am J Respir Crit Care Med 2020; 199:873-881. [PMID: 30281324 DOI: 10.1164/rccm.201803-0442oc] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
RATIONALE Neutrophils are recruited to the airways of individuals with cystic fibrosis (CF). In adolescents and adults with CF, airway neutrophils actively exocytose the primary granule protease elastase (NE), whose extracellular activity correlates with lung damage. During childhood, free extracellular NE activity is measurable only in a subset of patients, and the exocytic function of airway neutrophils is unknown. OBJECTIVES To measure NE exocytosis by airway neutrophils in relation to free extracellular NE activity and lung damage in children with CF. METHODS We measured lung damage using chest computed tomography coupled with the Perth-Rotterdam Annotated Grid Morphometric Analysis for Cystic Fibrosis scoring system. Concomitantly, we phenotyped blood and BAL fluid leukocytes by flow and image cytometry, and measured free extracellular NE activity using spectrophotometric and Förster resonance energy transfer assays. Children with airway inflammation linked to aerodigestive disorder were enrolled as control subjects. MEASUREMENTS AND MAIN RESULTS Children with CF but not disease control children harbored BAL fluid neutrophils with high exocytosis of primary granules, before the detection of bronchiectasis. This measure of NE exocytosis correlated with lung damage (R = 0.55; P = 0.0008), whereas the molecular measure of free extracellular NE activity did not. This discrepancy may be caused by the inhibition of extracellular NE by BAL fluid antiproteases and its binding to leukocytes. CONCLUSIONS NE exocytosis by airway neutrophils occurs in all children with CF, and its cellular measure correlates with early lung damage. These findings implicate live airway neutrophils in early CF pathogenesis, which should instruct biomarker development and antiinflammatory therapy in children with CF.
Collapse
Affiliation(s)
- Camilla Margaroli
- 1 Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia.,2 Center for CF & Airways Disease Research, Children's Healthcare of Atlanta, Atlanta, Georgia
| | | | - Hamed Horati
- 4 Department of Pediatric Pulmonology, Erasmus University Medical Center/Sophia Children's Hospital, Rotterdam, the Netherlands
| | - A Susanne Dittrich
- 5 Department of Translational Pulmonology, Translational Lung Research Center, German Center for Lung Research, and.,6 Department of Pulmonology, and Critical Care Medicine, Thoraxklinik, University of Heidelberg, Heidelberg, Germany
| | | | | | - Dario L Frey
- 5 Department of Translational Pulmonology, Translational Lung Research Center, German Center for Lung Research, and
| | - Milton R Brown
- 1 Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia.,2 Center for CF & Airways Disease Research, Children's Healthcare of Atlanta, Atlanta, Georgia
| | - Carsten Schultz
- 7 Department of Physiology and Pharmacology, Oregon Health & Science University, Portland, Oregon
| | - Lokesh Guglani
- 1 Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia.,2 Center for CF & Airways Disease Research, Children's Healthcare of Atlanta, Atlanta, Georgia
| | - Anthony Kicic
- 3 Telethon Kids Institute, Perth, Australia.,8 Department of Respiratory Medicine, Perth Children's Hospital, Perth, Western Australia, Australia.,9 Faculty of Medicine, University of Western Australia, Perth, Western Australia, Australia
| | - Limin Peng
- 10 Department of Biostatistics, Emory University School of Public Health, Atlanta, Georgia
| | - Bob J Scholte
- 4 Department of Pediatric Pulmonology, Erasmus University Medical Center/Sophia Children's Hospital, Rotterdam, the Netherlands
| | - Marcus A Mall
- 5 Department of Translational Pulmonology, Translational Lung Research Center, German Center for Lung Research, and.,11 Berlin Institute of Health, Berlin, Germany; and.,12 Department of Pediatric Pulmonology, Immunology and Intensive Care Medicine, Charité-Universitätmedizin Berlin, Berlin, Germany
| | - Hettie M Janssens
- 4 Department of Pediatric Pulmonology, Erasmus University Medical Center/Sophia Children's Hospital, Rotterdam, the Netherlands
| | - Stephen M Stick
- 3 Telethon Kids Institute, Perth, Australia.,8 Department of Respiratory Medicine, Perth Children's Hospital, Perth, Western Australia, Australia.,9 Faculty of Medicine, University of Western Australia, Perth, Western Australia, Australia
| | - Rabindra Tirouvanziam
- 1 Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia.,2 Center for CF & Airways Disease Research, Children's Healthcare of Atlanta, Atlanta, Georgia
| |
Collapse
|
32
|
Weber R, Haas N, Baghdasaryan A, Bruderer T, Inci D, Micic S, Perkins N, Spinas R, Zenobi R, Moeller A. Volatile organic compound breath signatures of children with cystic fibrosis by real-time SESI-HRMS. ERJ Open Res 2020; 6:00171-2019. [PMID: 31956658 PMCID: PMC6955441 DOI: 10.1183/23120541.00171-2019] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Accepted: 11/05/2019] [Indexed: 11/05/2022] Open
Abstract
Early pulmonary infection and inflammation result in irreversible lung damage and are major contributors to cystic fibrosis (CF)-related morbidity. An easy to apply and noninvasive assessment for the timely detection of disease-associated complications would be of high value. We aimed to detect volatile organic compound (VOC) breath signatures of children with CF by real-time secondary electrospray ionisation high-resolution mass spectrometry (SESI-HRMS). A total of 101 children, aged 4-18 years (CF=52; healthy controls=49) and comparable for sex, body mass index and lung function were included in this prospective cross-sectional study. Exhaled air was analysed by a SESI-source linked to a high-resolution time-of-flight mass spectrometer. Mass spectra ranging from m/z 50 to 500 were recorded. Out of 3468 m/z features, 171 were significantly different in children with CF (false discovery rate adjusted p-value of 0.05). The predictive ability (CF versus healthy) was assessed by using a support-vector machine classifier and showed an average accuracy (repeated cross-validation) of 72.1% (sensitivity of 77.2% and specificity of 67.7%). This is the first study to assess entire breath profiles of children with SESI-HRMS and to extract sets of VOCs that are associated with CF. We have detected a large set of exhaled molecules that are potentially related to CF, indicating that the molecular breath of children with CF is diverse and informative.
Collapse
Affiliation(s)
- Ronja Weber
- Division of Respiratory Medicine and Childhood Research Center, University Children's Hospital Zürich, Zürich, Switzerland
| | - Naemi Haas
- Division of Respiratory Medicine and Childhood Research Center, University Children's Hospital Zürich, Zürich, Switzerland
| | - Astghik Baghdasaryan
- Division of Respiratory Medicine and Childhood Research Center, University Children's Hospital Zürich, Zürich, Switzerland.,Joint Medical Center Arabkir, Division of Pulmonology, Yerevan, Armenia
| | - Tobias Bruderer
- Division of Respiratory Medicine and Childhood Research Center, University Children's Hospital Zürich, Zürich, Switzerland.,ETH Zürich, Dept of Chemistry and Applied Bioscience, Zürich, Switzerland
| | - Demet Inci
- Division of Respiratory Medicine and Childhood Research Center, University Children's Hospital Zürich, Zürich, Switzerland
| | - Srdjan Micic
- Division of Respiratory Medicine and Childhood Research Center, University Children's Hospital Zürich, Zürich, Switzerland
| | - Nathan Perkins
- Division of Clinical Chemistry and Biochemistry, University Children's Hospital Zürich, Zürich, Switzerland
| | - Renate Spinas
- Division of Respiratory Medicine and Childhood Research Center, University Children's Hospital Zürich, Zürich, Switzerland
| | - Renato Zenobi
- ETH Zürich, Dept of Chemistry and Applied Bioscience, Zürich, Switzerland
| | - Alexander Moeller
- Division of Respiratory Medicine and Childhood Research Center, University Children's Hospital Zürich, Zürich, Switzerland.,A list of the members of the Paediatric Exhalomics Group can be found at the end of this article
| |
Collapse
|
33
|
Kirst ME, Baker D, Li E, Abu-Hasan M, Wang GP. Upper versus lower airway microbiome and metagenome in children with cystic fibrosis and their correlation with lung inflammation. PLoS One 2019; 14:e0222323. [PMID: 31536536 PMCID: PMC6752789 DOI: 10.1371/journal.pone.0222323] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 08/28/2019] [Indexed: 12/21/2022] Open
Abstract
Objective Airways of children with cystic fibrosis (CF) harbor complex polymicrobial communities which correlates with pulmonary disease progression and use of antibiotics. Throat swabs are widely used in young CF children as a surrogate to detect potentially pathogenic microorganisms in lower airways. However, the relationship between upper and lower airway microbial communities remains poorly understood. This study aims to determine (1) to what extent oropharyngeal microbiome resembles the lung microbiome in CF children and (2) if lung microbiome composition correlates with airway inflammation. Method Throat swabs and bronchoalveolar lavage (BAL) were obtained concurrently from 21 CF children and 26 disease controls. Oropharyngeal and lung microbiota were analyzed using 16S rRNA deep sequencing and correlated with neutrophil counts in BAL and antibiotic exposure. Results Oropharyngeal microbial communities clustered separately from lung communities and had higher microbial diversity (p < 0.001). CF microbiome differed significantly from non-CF controls, with a higher abundance of Proteobacteria in both upper and lower CF airways. Neutrophil count in the BAL correlated negatively with the diversity but not richness of the lung microbiome. In CF children, microbial genes involved in bacterial motility proteins, two-component system, flagella assembly, and secretion system were enriched in both oropharyngeal and lung microbiome, whereas genes associated with synthesis and metabolism of nucleic acids and protein dominated the non-CF controls. Conclusions This study identified a unique microbial profile with altered microbial diversity and metabolic functions in CF airways which is significantly affected by airway inflammation. These results highlight the limitations of using throat swabs as a surrogate to study lower airway microbiome and metagenome in CF children.
Collapse
Affiliation(s)
- Mariana E. Kirst
- Department of Medicine, Division of Infectious Diseases and Global Medicine, University of Florida College of Medicine, Gainesville, FL, United States of America
| | - Dawn Baker
- Department of Pediatrics, Division of Pediatric Pulmonology, University of Florida College of Medicine, Gainesville, FL, United States of America
| | - Eric Li
- Department of Medicine, Division of Infectious Diseases and Global Medicine, University of Florida College of Medicine, Gainesville, FL, United States of America
| | - Mutasim Abu-Hasan
- Department of Pediatrics, Division of Pediatric Pulmonology, University of Florida College of Medicine, Gainesville, FL, United States of America
| | - Gary P. Wang
- Department of Medicine, Division of Infectious Diseases and Global Medicine, University of Florida College of Medicine, Gainesville, FL, United States of America
- Medical Service, Infectious Disease Section, North Florida/South Georgia Veterans Health System, Gainesville, FL, United States of America
- * E-mail:
| |
Collapse
|
34
|
Bruderer T, Gaisl T, Gaugg MT, Nowak N, Streckenbach B, Müller S, Moeller A, Kohler M, Zenobi R. On-Line Analysis of Exhaled Breath Focus Review. Chem Rev 2019; 119:10803-10828. [PMID: 31594311 DOI: 10.1021/acs.chemrev.9b00005] [Citation(s) in RCA: 122] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
On-line analysis of exhaled breath offers insight into a person's metabolism without the need for sample preparation or sample collection. Due to its noninvasive nature and the possibility to sample continuously, the analysis of breath has great clinical potential. The unique features of this technology make it an attractive candidate for applications in medicine, beyond the task of diagnosis. We review the current methodologies for on-line breath analysis, discuss current and future applications, and critically evaluate challenges and pitfalls such as the need for standardization. Special emphasis is given to the use of the technology in diagnosing respiratory diseases, potential niche applications, and the promise of breath analysis for personalized medicine. The analytical methodologies used range from very small and low-cost chemical sensors, which are ideal for continuous monitoring of disease status, to optical spectroscopy and state-of-the-art, high-resolution mass spectrometry. The latter can be utilized for untargeted analysis of exhaled breath, with the capability to identify hitherto unknown molecules. The interpretation of the resulting big data sets is complex and often constrained due to a limited number of participants. Even larger data sets will be needed for assessing reproducibility and for validation of biomarker candidates. In addition, molecular structures and quantification of compounds are generally not easily available from on-line measurements and require complementary measurements, for example, a separation method coupled to mass spectrometry. Furthermore, a lack of standardization still hampers the application of the technique to screen larger cohorts of patients. This review summarizes the present status and continuous improvements of the principal on-line breath analysis methods and evaluates obstacles for their wider application.
Collapse
Affiliation(s)
- Tobias Bruderer
- Department of Chemistry and Applied Biosciences , Swiss Federal Institute of Technology , CH-8093 Zurich , Switzerland.,Division of Respiratory Medicine , University Children's Hospital Zurich and Children's Research Center Zurich , CH-8032 Zurich , Switzerland
| | - Thomas Gaisl
- Department of Pulmonology , University Hospital Zurich , CH-8091 Zurich , Switzerland.,Zurich Center for Interdisciplinary Sleep Research , University of Zurich , CH-8091 Zurich , Switzerland
| | - Martin T Gaugg
- Department of Chemistry and Applied Biosciences , Swiss Federal Institute of Technology , CH-8093 Zurich , Switzerland
| | - Nora Nowak
- Department of Chemistry and Applied Biosciences , Swiss Federal Institute of Technology , CH-8093 Zurich , Switzerland
| | - Bettina Streckenbach
- Department of Chemistry and Applied Biosciences , Swiss Federal Institute of Technology , CH-8093 Zurich , Switzerland
| | - Simona Müller
- Department of Chemistry and Applied Biosciences , Swiss Federal Institute of Technology , CH-8093 Zurich , Switzerland
| | - Alexander Moeller
- Division of Respiratory Medicine , University Children's Hospital Zurich and Children's Research Center Zurich , CH-8032 Zurich , Switzerland
| | - Malcolm Kohler
- Department of Pulmonology , University Hospital Zurich , CH-8091 Zurich , Switzerland.,Center for Integrative Human Physiology , University of Zurich , CH-8091 Zurich , Switzerland.,Zurich Center for Interdisciplinary Sleep Research , University of Zurich , CH-8091 Zurich , Switzerland
| | - Renato Zenobi
- Department of Chemistry and Applied Biosciences , Swiss Federal Institute of Technology , CH-8093 Zurich , Switzerland
| |
Collapse
|
35
|
Cooney AL, Singh BK, Loza LM, Thornell IM, Hippee CE, Powers LS, Ostedgaard LS, Meyerholz DK, Wohlford-Lenane C, Stoltz DA, B McCray P, Sinn PL. Widespread airway distribution and short-term phenotypic correction of cystic fibrosis pigs following aerosol delivery of piggyBac/adenovirus. Nucleic Acids Res 2019; 46:9591-9600. [PMID: 30165523 PMCID: PMC6182177 DOI: 10.1093/nar/gky773] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 08/22/2018] [Indexed: 11/14/2022] Open
Abstract
Cystic fibrosis (CF) is a common genetic disease caused by mutations in the gene coding for cystic fibrosis transmembrane conductance regulator (CFTR). Although CF affects multiple organ systems, chronic bacterial infections and inflammation in the lung are the leading causes of morbidity and mortality in people with CF. Complementation with a functional CFTR gene repairs this defect, regardless of the disease-causing mutation. In this study, we used a gene delivery system termed piggyBac/adenovirus (Ad), which combines the delivery efficiency of an adenoviral-based vector with the persistent expression of a DNA transposon-based vector. We aerosolized piggyBac/Ad to the airways of pigs and observed widespread pulmonary distribution of vector. We quantified the regional distribution in the airways and observed transduction of large and small airway epithelial cells of non-CF pigs, with ∼30–50% of surface epithelial cells positive for GFP. We transduced multiple cell types including ciliated, non-ciliated, basal, and submucosal gland cells. In addition, we phenotypically corrected CF pigs following delivery of piggyBac/Ad expressing CFTR as measured by anion channel activity, airway surface liquid pH, and bacterial killing ability. Combining an integrating DNA transposon with adenoviral vector delivery is an efficient method for achieving functional CFTR correction from a single vector administration.
Collapse
Affiliation(s)
- Ashley L Cooney
- Department of Microbiology, The University of Iowa, Iowa City, IA 52242, USA
- Stead Family Department of Pediatrics, The University of Iowa, Iowa City, IA 52242, USA
- Pappajohn Biomedical Institute and the Center for Gene Therapy for Cystic Fibrosis, The University of Iowa, Iowa City, IA 52242, USA
| | - Brajesh K Singh
- Stead Family Department of Pediatrics, The University of Iowa, Iowa City, IA 52242, USA
- Pappajohn Biomedical Institute and the Center for Gene Therapy for Cystic Fibrosis, The University of Iowa, Iowa City, IA 52242, USA
| | - Laura Marquez Loza
- Pappajohn Biomedical Institute and the Center for Gene Therapy for Cystic Fibrosis, The University of Iowa, Iowa City, IA 52242, USA
- Department of Molecular Medicine, The University of Iowa, Iowa City, IA 52242, USA
| | - Ian M Thornell
- Pappajohn Biomedical Institute and the Center for Gene Therapy for Cystic Fibrosis, The University of Iowa, Iowa City, IA 52242, USA
- Department of Internal Medicine, The University of Iowa, Iowa City, IA 52242, USA
| | - Camilla E Hippee
- Stead Family Department of Pediatrics, The University of Iowa, Iowa City, IA 52242, USA
- Pappajohn Biomedical Institute and the Center for Gene Therapy for Cystic Fibrosis, The University of Iowa, Iowa City, IA 52242, USA
| | - Linda S Powers
- Pappajohn Biomedical Institute and the Center for Gene Therapy for Cystic Fibrosis, The University of Iowa, Iowa City, IA 52242, USA
- Department of Internal Medicine, The University of Iowa, Iowa City, IA 52242, USA
| | - Lynda S Ostedgaard
- Pappajohn Biomedical Institute and the Center for Gene Therapy for Cystic Fibrosis, The University of Iowa, Iowa City, IA 52242, USA
- Department of Internal Medicine, The University of Iowa, Iowa City, IA 52242, USA
| | - David K Meyerholz
- Pappajohn Biomedical Institute and the Center for Gene Therapy for Cystic Fibrosis, The University of Iowa, Iowa City, IA 52242, USA
- Department of Pathology, The University of Iowa, Iowa City, IA 52242, USA
| | - Chris Wohlford-Lenane
- Stead Family Department of Pediatrics, The University of Iowa, Iowa City, IA 52242, USA
- Pappajohn Biomedical Institute and the Center for Gene Therapy for Cystic Fibrosis, The University of Iowa, Iowa City, IA 52242, USA
| | - David A Stoltz
- Pappajohn Biomedical Institute and the Center for Gene Therapy for Cystic Fibrosis, The University of Iowa, Iowa City, IA 52242, USA
- Department of Internal Medicine, The University of Iowa, Iowa City, IA 52242, USA
- Department of Pathology, The University of Iowa, Iowa City, IA 52242, USA
| | - Paul B McCray
- Department of Microbiology, The University of Iowa, Iowa City, IA 52242, USA
- Stead Family Department of Pediatrics, The University of Iowa, Iowa City, IA 52242, USA
- Pappajohn Biomedical Institute and the Center for Gene Therapy for Cystic Fibrosis, The University of Iowa, Iowa City, IA 52242, USA
- Department of Molecular Medicine, The University of Iowa, Iowa City, IA 52242, USA
| | - Patrick L Sinn
- Stead Family Department of Pediatrics, The University of Iowa, Iowa City, IA 52242, USA
- Pappajohn Biomedical Institute and the Center for Gene Therapy for Cystic Fibrosis, The University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
36
|
Malhotra S, Hayes D, Wozniak DJ. Cystic Fibrosis and Pseudomonas aeruginosa: the Host-Microbe Interface. Clin Microbiol Rev 2019; 32:e00138-18. [PMID: 31142499 PMCID: PMC6589863 DOI: 10.1128/cmr.00138-18] [Citation(s) in RCA: 302] [Impact Index Per Article: 50.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
In human pathophysiology, the clash between microbial infection and host immunity contributes to multiple diseases. Cystic fibrosis (CF) is a classical example of this phenomenon, wherein a dysfunctional, hyperinflammatory immune response combined with chronic pulmonary infections wreak havoc upon the airway, leading to a disease course of substantial morbidity and shortened life span. Pseudomonas aeruginosa is an opportunistic pathogen that commonly infects the CF lung, promoting an accelerated decline of pulmonary function. Importantly, P. aeruginosa exhibits significant resistance to innate immune effectors and to antibiotics, in part, by expressing specific virulence factors (e.g., antioxidants and exopolysaccharides) and by acquiring adaptive mutations during chronic infection. In an effort to review our current understanding of the host-pathogen interface driving CF pulmonary disease, we discuss (i) the progression of disease within the primitive CF lung, specifically focusing on the role of host versus bacterial factors; (ii) critical, neutrophil-derived innate immune effectors that are implicated in CF pulmonary disease, including reactive oxygen species (ROS) and antimicrobial peptides (e.g., LL-37); (iii) P. aeruginosa virulence factors and adaptive mutations that enable evasion of the host response; and (iv) ongoing work examining the distribution and colocalization of host and bacterial factors within distinct anatomical niches of the CF lung.
Collapse
Affiliation(s)
- Sankalp Malhotra
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio, USA
- The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Don Hayes
- The Ohio State University College of Medicine, Columbus, Ohio, USA
- Department of Pediatrics, The Ohio State University, Columbus, Ohio, USA
- Section of Pulmonary Medicine, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Daniel J Wozniak
- The Ohio State University College of Medicine, Columbus, Ohio, USA
- Section of Pulmonary Medicine, Nationwide Children's Hospital, Columbus, Ohio, USA
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
37
|
Neutrophil Elastase Activity Imaging: Recent Approaches in the Design and Applications of Activity-Based Probes and Substrate-Based Probes. CONTRAST MEDIA & MOLECULAR IMAGING 2019; 2019:7417192. [PMID: 31281234 PMCID: PMC6594253 DOI: 10.1155/2019/7417192] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 05/19/2019] [Indexed: 02/07/2023]
Abstract
The last few decades of protease research has confirmed that a number of important biological processes are strictly dependent on proteolysis. Neutrophil elastase (NE) is a critical protease in immune response and host defense mechanisms in both physiological and disease-associated conditions. Particularly, NE has been identified as a promising biomarker for early diagnosis of lung inflammation. Recent studies have shown an increasing interest in developing methods for NE activity imaging both in vitro and in vivo. Unlike anatomical imaging modalities, functional molecular imaging, including enzymatic activities, enables disease detection at a very early stage and thus constitutes a much more accurate approach. When combined with advanced imaging technologies, opportunities arise for measuring imbalanced proteolytic activities with unprecedented details. Such technologies consist in building the highest resolved and sensitive instruments as well as the most specific probes based either on peptide substrates or on covalent inhibitors. This review outlines strengths and weaknesses of these technologies and discuss their applications to investigate NE activity as biomarker of pulmonary inflammatory diseases by imaging.
Collapse
|
38
|
Malhotra S, Hayes D, Wozniak DJ. Mucoid Pseudomonas aeruginosa and regional inflammation in the cystic fibrosis lung. J Cyst Fibros 2019; 18:796-803. [PMID: 31036488 DOI: 10.1016/j.jcf.2019.04.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 04/05/2019] [Accepted: 04/08/2019] [Indexed: 10/26/2022]
Abstract
BACKGROUND Pseudomonas aeruginosa is the prominent bacterial pathogen in the cystic fibrosis (CF) lung and contributes to significant morbidity and mortality. Though P. aeruginosa strains initially colonizing the CF lung have a nonmucoid colony morphology, they often mutate into mucoid variants that are associated with clinical deterioration. Both nonmucoid and mucoid P. aeruginosa variants are often co-isolated on microbiological cultures of sputum collected from CF patients. With regional variation in bronchiectasis, tissue damage, inflammation, and microbial colonization, lobar distribution of nonmucoid and mucoid P. aeruginosa variants may impact local microenvironments in the CF lung, but this has not been well-studied. METHODS We prospectively collected lobe-specific bronchoalveolar lavage (BAL) fluid from a CF patient cohort (n = 14) using a standardized bronchoscopic protocol where collection was performed in 6 lobar regions. The lobar BAL specimens were plated on P. aeruginosa-selective media and proinflammatory cytokines (IL-1, TNF, IL-6 and IL-8) were measured via cytokine array. Correlations between infecting P. aeruginosa variants (nonmucoid, mucoid, or mixed-variant populations), the lobar regions in which these variants were found, and regional proinflammatory cytokine concentrations were measured. RESULTS P. aeruginosa mucoid and nonmucoid variants were homogenously distributed throughout the CF lung. However, infection with mucoid variants (found within single- or mixed-variant populations) was associated with significantly greater regional inflammation. The upper and lower lobes of the CF lung did not exhibit differences in inflammatory cytokine concentrations. CONCLUSIONS Mucoid P. aeruginosa infection is a microbial determinant of regional inflammation within the CF lung.
Collapse
Affiliation(s)
- Sankalp Malhotra
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, USA; The Ohio State University College of Medicine, Columbus, OH, USA
| | - Don Hayes
- The Ohio State University College of Medicine, Columbus, OH, USA; Department of Pediatrics, The Ohio State University, Columbus, OH, USA; Section. of Pulmonary Medicine, Nationwide Children's Hospital, Columbus, OH, USA
| | - Daniel J Wozniak
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, USA; The Ohio State University College of Medicine, Columbus, OH, USA; Department of Microbiology, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
39
|
Rosenow T, Mok LC, Turkovic L, Berry LJ, Sly PD, Ranganathan S, Tiddens HA, Stick SM. The cumulative effect of inflammation and infection on structural lung disease in early cystic fibrosis. Eur Respir J 2019; 54:13993003.01771-2018. [DOI: 10.1183/13993003.01771-2018] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 04/09/2019] [Indexed: 11/05/2022]
Abstract
IntroductionPulmonary inflammation and infection are important clinical and prognostic markers of lung disease in cystic fibrosis (CF). However, whether in young children they are transient findings or have cumulative, long-term impacts on respiratory health is largely unknown. We aimed to determine whether their repeated detection has a deleterious effect on structural lung disease.MethodsAll patients aged <6 years with annual computed tomography (CT) and bronchoalveolar lavage (BAL) were included. Structural lung disease on CT (%Disease) was determined using the PRAGMA-CF (Perth–Rotterdam Annotated Grid Morphometric Analysis for CF) method. The number of times free neutrophil elastase (NE) and infection were detected in BAL were counted, to determine cumulative BAL history. Linear mixed model analysis, accounting for repeat visits and adjusted for age, was used to determine associations.Results265 children (683 scans) were included for analysis, with BAL history comprising 1161 visits. %Disease was significantly associated with the number of prior NE (0.31, 95% CI 0.09–0.54; p=0.007) but not infection (0.23, 95% CI −0.01–0.47; p=0.060) detections. Reference equations were determined.ConclusionsPulmonary inflammation in surveillance BAL has a cumulative effect on structural lung disease extent, more so than infection. This provides a strong rationale for therapies aimed at reducing inflammation in young children.
Collapse
|
40
|
Early respiratory viral infections in infants with cystic fibrosis. J Cyst Fibros 2019; 18:844-850. [PMID: 30826285 PMCID: PMC6711838 DOI: 10.1016/j.jcf.2019.02.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Revised: 02/08/2019] [Accepted: 02/09/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND Viral infections contribute to morbidity in cystic fibrosis (CF), but the impact of respiratory viruses on the development of airway disease is poorly understood. METHODS Infants with CF identified by newborn screening were enrolled prior to 4 months of age to participate in a prospective observational study at 4 centers. Clinical data were collected at clinic visits and weekly phone calls. Multiplex PCR assays were performed on nasopharyngeal swabs to detect respiratory viruses during routine visits and when symptomatic. Participants underwent bronchoscopy with bronchoalveolar lavage (BAL) and a subset underwent pulmonary function testing. We present findings through 8.5 months of life. RESULTS Seventy infants were enrolled, mean age 3.1 ± 0.8 months. Rhinovirus was the most prevalent virus (66%), followed by parainfluenza (19%), and coronavirus (16%). Participants had a median of 1.5 viral positive swabs (range 0-10). Past viral infection was associated with elevated neutrophil concentrations and bacterial isolates in BAL fluid, including recovery of classic CF bacterial pathogens. When antibiotics were prescribed for respiratory-related indications, viruses were identified in 52% of those instances. CONCLUSIONS Early viral infections were associated with greater neutrophilic inflammation and bacterial pathogens. Early viral infections appear to contribute to initiation of lower airway inflammation in infants with CF. Antibiotics were commonly prescribed in the setting of a viral infection. Future investigations examining longitudinal relationships between viral infections, airway microbiome, and antibiotic use will allow us to elucidate the interplay between these factors in young children with CF.
Collapse
|
41
|
Khan MA, Ali ZS, Sweezey N, Grasemann H, Palaniyar N. Progression of Cystic Fibrosis Lung Disease from Childhood to Adulthood: Neutrophils, Neutrophil Extracellular Trap (NET) Formation, and NET Degradation. Genes (Basel) 2019; 10:genes10030183. [PMID: 30813645 PMCID: PMC6471578 DOI: 10.3390/genes10030183] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Accepted: 02/11/2019] [Indexed: 12/11/2022] Open
Abstract
Genetic defects in cystic fibrosis (CF) transmembrane conductance regulator (CFTR) gene cause CF. Infants with CFTR mutations show a peribronchial neutrophil infiltration prior to the establishment of infection in their lung. The inflammatory response progressively increases in children that include both upper and lower airways. Infectious and inflammatory response leads to an increase in mucus viscosity and mucus plugging of small and medium-size bronchioles. Eventually, neutrophils chronically infiltrate the airways with biofilm or chronic bacterial infection. Perpetual infection and airway inflammation destroy the lungs, which leads to increased morbidity and eventual mortality in most of the patients with CF. Studies have now established that neutrophil cytotoxins, extracellular DNA, and neutrophil extracellular traps (NETs) are associated with increased mucus clogging and lung injury in CF. In addition to opportunistic pathogens, various aspects of the CF airway milieux (e.g., airway pH, salt concentration, and neutrophil phenotypes) influence the NETotic capacity of neutrophils. CF airway milieu may promote the survival of neutrophils and eventual pro-inflammatory aberrant NETosis, rather than the anti-inflammatory apoptotic death in these cells. Degrading NETs helps to manage CF airway disease; since DNAse treatment release cytotoxins from the NETs, further improvements are needed to degrade NETs with maximal positive effects. Neutrophil-T cell interactions may be important in regulating viral infection-mediated pulmonary exacerbations in patients with bacterial infections. Therefore, clarifying the role of neutrophils and NETs in CF lung disease and identifying therapies that preserve the positive effects of neutrophils, while reducing the detrimental effects of NETs and cytotoxic components, are essential in achieving innovative therapeutic advances.
Collapse
Affiliation(s)
- Meraj A Khan
- Translational Medicine, Peter Gilgan Center for Research and Learning, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada.
| | - Zubair Sabz Ali
- Translational Medicine, Peter Gilgan Center for Research and Learning, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada.
| | - Neil Sweezey
- Translational Medicine, Peter Gilgan Center for Research and Learning, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada.
- Institute of Medical Sciences, Faculty of Medicine, University of Toronto, Toronto, ON M5G 1X8, Canada.
- Division of Respiratory Medicine, Department of Paediatrics, The Hospital for Sick Children, and University of Toronto, Toronto, ON M5G 1X8, Canada.
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON M5G 1X8, Canada.
| | - Hartmut Grasemann
- Translational Medicine, Peter Gilgan Center for Research and Learning, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada.
- Institute of Medical Sciences, Faculty of Medicine, University of Toronto, Toronto, ON M5G 1X8, Canada.
- Division of Respiratory Medicine, Department of Paediatrics, The Hospital for Sick Children, and University of Toronto, Toronto, ON M5G 1X8, Canada.
| | - Nades Palaniyar
- Translational Medicine, Peter Gilgan Center for Research and Learning, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada.
- Institute of Medical Sciences, Faculty of Medicine, University of Toronto, Toronto, ON M5G 1X8, Canada.
- Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, ON M5G 1X8, Canada.
| |
Collapse
|
42
|
Biodegradable microparticles designed to efficiently reach and act on cystic fibrosis mucus barrier. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 95:19-28. [DOI: 10.1016/j.msec.2018.10.064] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 09/09/2018] [Accepted: 10/17/2018] [Indexed: 02/06/2023]
|
43
|
Kopp BT, Thompson R, Kim J, Konstan R, Diaz A, Smith B, Shrestha C, Rogers LK, Hayes D, Tumin D, Woodley FW, Ramilo O, Sanders DB, Groner JA, Mejias A. Secondhand smoke alters arachidonic acid metabolism and inflammation in infants and children with cystic fibrosis. Thorax 2019; 74:237-246. [PMID: 30661024 DOI: 10.1136/thoraxjnl-2018-211845] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 11/09/2018] [Accepted: 12/24/2018] [Indexed: 11/04/2022]
Abstract
BACKGROUND Mechanisms that facilitate early infection and inflammation in cystic fibrosis (CF) are unclear. We previously demonstrated that children with CF and parental-reported secondhand smoke exposure (SHSe) have increased susceptibility to bacterial infections. SHSe hinders arachidonic acid (AA) metabolites that mediate immune function in patients without CF, and may influence CF immune dysfunction. We aimed to define SHSe's impact on inflammation mediators and infection in children with CF. METHODS Seventy-seven children with CF <10 years of age (35 infants <1 year; 42 children 1-10 years) were enrolled and hair nicotine concentrations measured as an objective surrogate of SHSe. AA signalling by serum and macrophage lipidomics, inflammation using blood transcriptional profiles and in vitro macrophage responses to bacterial infection after SHSe were assessed. RESULTS Hair nicotine concentrations were elevated in 63% of patients. Of the AA metabolites measured by plasma lipidomics, prostaglandin D2 (PGD2) concentrations were decreased in children with CF exposed to SHSe, and associated with more frequent hospitalisations (p=0.007) and worsened weight z scores (p=0.008). Children with CF exposed to SHSe demonstrated decreased expression of the prostaglandin genes PTGES3 and PTGR2 and overexpression of inflammatory pathways. These findings were confirmed using an in vitro model, where SHSe was associated with a dose-dependent decrease in PGD2 and increased methicillin-resistant Staphylococcus aureus survival in human CF macrophages. CONCLUSIONS Infants and young children with CF and SHSe have altered AA metabolism and dysregulated inflammatory gene expression resulting in impaired bacterial clearance. Our findings identified potential therapeutic targets to halt early disease progression associated with SHSe in the young population with CF.
Collapse
Affiliation(s)
- Benjamin T Kopp
- Division of Pulmonary Medicine, Nationwide Children's Hospital, Columbus, Ohio, USA.,Center for Microbial Pathogenesis, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Rohan Thompson
- Division of Pulmonary Medicine, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Jeeho Kim
- Center for Microbial Pathogenesis, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Robert Konstan
- Center for Microbial Pathogenesis, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Alejandro Diaz
- Center for Vaccines and Immunity, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Bennett Smith
- Center for Vaccines and Immunity, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Chandra Shrestha
- Center for Microbial Pathogenesis, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Lynette K Rogers
- Center for Perinatal Research, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Don Hayes
- Division of Pulmonary Medicine, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Dmitry Tumin
- Department of Anesthesiology and Pain Medicine, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Frederick W Woodley
- Division of Gastroenterology, Hepatology and Nutrition, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Octavio Ramilo
- Center for Vaccines and Immunity, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Don B Sanders
- Riley Children's Hospital, Indianapolis, Indiana, USA
| | - Judith A Groner
- Section of Ambulatory Pediatrics, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Asuncion Mejias
- Center for Vaccines and Immunity, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| |
Collapse
|
44
|
Differences in the lower airway microbiota of infants with and without cystic fibrosis. J Cyst Fibros 2018; 18:646-652. [PMID: 30580994 DOI: 10.1016/j.jcf.2018.12.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 11/23/2018] [Accepted: 12/06/2018] [Indexed: 01/21/2023]
Abstract
BACKGROUND Cystic fibrosis (CF) lung disease commences in infancy, and understanding the role of the microbiota in disease pathogenesis is critical. This study examined and compared the lower airway microbiota of infants with and without CF and its relationship to airway inflammation in the first months of life. METHODS Infants newly-diagnosed with CF were recruited into a single-centre study in Melbourne, Australia from 1992 to 2001. Bronchoalveolar lavage was performed at study entry. Healthy infants undergoing bronchoscopy to investigate chronic stridor acted as controls. Quantitative microbiological culture was performed and inflammatory markers were measured contemporaneously. 16S ribosomal RNA gene analysis was performed on stored samples. RESULTS Thirteen bronchoalveolar samples from infants with CF and nine from control infants, collected at median ages of 1.8-months (25th-75th percentile 1.5 to 3.1-months) and 5-months (25th-75th percentile 2.9 to 8.2-months) respectively, provided 16S rRNA gene data. Bacterial biomass was positively associated with inflammation. Alpha diversity was reduced in infants with CF and between-group compositional differences were apparent. These differences were driven by increased Staphylococcus and decreased Fusobacterium and were most apparent in symptomatic infants with CF. CONCLUSION In CF lung disease, differences in lower airway microbial community composition and structure are established by age 6-months.
Collapse
|
45
|
Targeting Cytokines as Evolving Treatment Strategies in Chronic Inflammatory Airway Diseases. Int J Mol Sci 2018; 19:ijms19113402. [PMID: 30380761 PMCID: PMC6275012 DOI: 10.3390/ijms19113402] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 10/25/2018] [Accepted: 10/27/2018] [Indexed: 12/13/2022] Open
Abstract
Cytokines are key players in the initiation and propagation of inflammation in chronic inflammatory airway diseases such as chronic obstructive pulmonary disease (COPD), bronchiectasis and allergic asthma. This makes them attractive targets for specific novel anti-inflammatory treatment strategies. Recently, both interleukin-1 (IL-1) and IL-6 have been associated with negative health outcomes, mortality and a pro-inflammatory phenotype in COPD. IL-6 in COPD was shown to correlate negatively with lung function, and IL-1beta was induced by cigarette smoke in the bronchial epithelium, causing airway inflammation. Furthermore, IL-8 has been shown to be a pro-inflammatory marker in bronchiectasis, COPD and allergic asthma. Clinical trials using specific cytokine blockade therapies are currently emerging and have contributed to reduce exacerbations and steroid use in COPD. Here, we present a review of the current understanding of the roles of cytokines in the pathophysiology of chronic inflammatory airway diseases. Furthermore, outcomes of clinical trials in cytokine blockade as novel treatment strategies for selected patient populations with those diseases will be discussed.
Collapse
|
46
|
Rollet-Cohen V, Bourderioux M, Lipecka J, Chhuon C, Jung VA, Mesbahi M, Nguyen-Khoa T, Guérin-Pfyffer S, Schmitt A, Edelman A, Sermet-Gaudelus I, Guerrera IC. Comparative proteomics of respiratory exosomes in cystic fibrosis, primary ciliary dyskinesia and asthma. J Proteomics 2018; 185:1-7. [PMID: 30032860 DOI: 10.1016/j.jprot.2018.07.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 05/18/2018] [Accepted: 07/02/2018] [Indexed: 01/02/2023]
Abstract
Cystic fibrosis (CF) and primary ciliary dyskinesia (PCD) are pulmonary genetic disorders associated with inflammation and heterogeneous progression of the lung disease. We hypothesized that respiratory exosomes, nanovesicles circulating in the respiratory tract, may be involved in the progression of inflammation-related lung damage. We compared proteomic content of respiratory exosomes isolated from bronchoalveolar lavage fluid in CF and PCD to asthma (A), a condition also associated with inflammation but with less severe lung damage. BALF were obtained from 3 CF, 3 PCD and 6 A patients. Exosomes were isolated from BALF by ultracentrifugations and characterized using immunoelectron microscopy and western-blot. Exosomal protein analysis was performed by high-resolution mass spectrometry using label-free quantification. Exosome enrichment was validated by electron microscopy and immunodetection of CD9, CD63 and ALIX. Mass spectrometry analysis allowed the quantification of 665 proteins, of which 14 were statistically differential according to the disease. PCD and CF exosomes contained higher levels of antioxidant proteins (Superoxide-dismutase, Glutathione peroxidase-3, Peroxiredoxin-5) and proteins involved in leukocyte chemotaxis. All these proteins are known activators of the NF-KappaB pathway. Our results suggest that respiratory exosomes are involved in the pro-inflammatory propagation during the extension of CF or PCD lung diseases. SIGNIFICANCE The mechanism of local propagation of lung disease in cystic fibrosis (CF) and primary ciliary dyskinesia (PCD) is not clearly understood. Differential Proteomic profiles of exosomes isolated from BAL from CF, PCD and asthmatic patients suggest that they carry pro-inflammatory proteins that may be involved in the progression of lung damage.
Collapse
Affiliation(s)
- Virginie Rollet-Cohen
- Inserm U1151, Université Paris Descartes, Sorbonne Paris Cité, Paris, France; Cystic Fibrosis Center, Assistance Publique-Hôpitaux de Paris, Necker Hospital, Paris, France
| | - Matthieu Bourderioux
- Inserm U1151, Université Paris Descartes, Sorbonne Paris Cité, Paris, France; Proteomics Platform 3P5-Necker, Université Paris Descartes - Structure Fédérative de Recherche Necker, INSERM US24/CNRS UMS3633, Paris, France
| | - Joanna Lipecka
- Inserm U894, Center of Psychiatry and Neurosciences, Paris, France
| | - Cerina Chhuon
- Proteomics Platform 3P5-Necker, Université Paris Descartes - Structure Fédérative de Recherche Necker, INSERM US24/CNRS UMS3633, Paris, France
| | - Vincent A Jung
- Proteomics Platform 3P5-Necker, Université Paris Descartes - Structure Fédérative de Recherche Necker, INSERM US24/CNRS UMS3633, Paris, France
| | - Myriam Mesbahi
- Inserm U1151, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Thao Nguyen-Khoa
- Inserm U1151, Université Paris Descartes, Sorbonne Paris Cité, Paris, France; Laboratory of General Biochemistry, Assistance Publique-Hôpitaux de Paris, Necker Hospital, Paris, France
| | - Sophie Guérin-Pfyffer
- Cystic Fibrosis Center, Assistance Publique-Hôpitaux de Paris, Necker Hospital, Paris, France
| | - Alain Schmitt
- Electron Microscopy Platform, Inserm U1016, Institut Cochin, CNRS UMR 81044, Université Paris Descartes, Paris, France
| | - Aleksander Edelman
- Inserm U1151, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Isabelle Sermet-Gaudelus
- Inserm U1151, Université Paris Descartes, Sorbonne Paris Cité, Paris, France; Cystic Fibrosis Center, Assistance Publique-Hôpitaux de Paris, Necker Hospital, Paris, France
| | - Ida Chiara Guerrera
- Proteomics Platform 3P5-Necker, Université Paris Descartes - Structure Fédérative de Recherche Necker, INSERM US24/CNRS UMS3633, Paris, France.
| |
Collapse
|
47
|
Montgomery ST, Dittrich AS, Garratt LW, Turkovic L, Frey DL, Stick SM, Mall MA, Kicic A. Interleukin-1 is associated with inflammation and structural lung disease in young children with cystic fibrosis. J Cyst Fibros 2018; 17:715-722. [PMID: 29884450 DOI: 10.1016/j.jcf.2018.05.006] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 05/08/2018] [Accepted: 05/09/2018] [Indexed: 11/29/2022]
Abstract
BACKGROUND Little is known about the role of interleukin (IL)-1 in the pathogenesis of cystic fibrosis (CF) lung disease. This study investigated the relationship between IL-1 signalling, neutrophilic inflammation and structural lung changes in children with CF. METHODS Bronchoalveolar lavage fluid (BALf) from 102 children with CF were used to determine IL-1α, IL-1β, IL-8 levels and neutrophil elastase (NE) activity, which were then correlated to structural lung changes observed on chest computed tomography (CT) scans. RESULTS IL-1α and IL-1β were detectable in BAL in absence of infection, increased in the presence of bacterial infection and correlated with IL-8 (p < 0.0001), neutrophils (p < 0.0001) and NE activity (p < 0.01 and p < 0.001). IL-1α had the strongest association with structural lung disease (p < 0.01) in the absence of infection (uninfected: p < 0.01 vs. infected: p = 0.122). CONCLUSION Our data associates IL-1α with early structural lung damage in CF and suggests this pathway as a novel anti-inflammatory target.
Collapse
Affiliation(s)
- Samuel T Montgomery
- School of Paediatrics and Child Health, University of Western Australia, Nedlands 6009, Western Australia, Australia
| | - A Susanne Dittrich
- Department of Translational Pulmonology, Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL),University of Heidelberg, Heidelberg, Germany; Department of Pneumology and Critical Care Medicine, Thoraxklinik at the University Hospital Heidelberg, Heidelberg, Germany
| | - Luke W Garratt
- Telethon Kids Institute, University of Western Australia, Nedlands 6009, Western Australia, Australia
| | - Lidija Turkovic
- Telethon Kids Institute, University of Western Australia, Nedlands 6009, Western Australia, Australia
| | - Dario L Frey
- Department of Translational Pulmonology, Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL),University of Heidelberg, Heidelberg, Germany; Department of Pneumology and Critical Care Medicine, Thoraxklinik at the University Hospital Heidelberg, Heidelberg, Germany
| | - Stephen M Stick
- School of Paediatrics and Child Health, University of Western Australia, Nedlands 6009, Western Australia, Australia; Telethon Kids Institute, University of Western Australia, Nedlands 6009, Western Australia, Australia; Department of Respiratory Medicine, Princess Margaret Hospital for Children, Perth 6001, Western Australia, Australia; Centre for Cell Therapy and Regenerative Medicine, School of Medicine and Pharmacology, University of Western Australia, Nedlands 6009,Western Australia, Australia
| | - Marcus A Mall
- Department of Translational Pulmonology, Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL),University of Heidelberg, Heidelberg, Germany; Department of Pediatric Pulmonology and Immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany; Berlin Institute of Health (BIH), Berlin, Germany
| | - Anthony Kicic
- School of Paediatrics and Child Health, University of Western Australia, Nedlands 6009, Western Australia, Australia; Telethon Kids Institute, University of Western Australia, Nedlands 6009, Western Australia, Australia; Department of Respiratory Medicine, Princess Margaret Hospital for Children, Perth 6001, Western Australia, Australia; Centre for Cell Therapy and Regenerative Medicine, School of Medicine and Pharmacology, University of Western Australia, Nedlands 6009,Western Australia, Australia; School of Public Health, Curtin University, Bentley 6102, Western Australia, Australia.
| | -
- School of Paediatrics and Child Health, University of Western Australia, Nedlands 6009, Western Australia, Australia; Department of Respiratory Medicine, Princess Margaret Hospital for Children, Perth 6001, Western Australia, Australia; Murdoch Children's Research Institute, Parkville, 3052 Melbourne, Victoria, Australia; Department of Paediatrics, University of Melbourne, Parkville, 3052 Melbourne, Victoria, Australia
| |
Collapse
|
48
|
Hoffman LR, Hajjar AM. Ferreting Out the Role of Infection in Cystic Fibrosis Lung Disease. Am J Respir Crit Care Med 2018; 197:1243-1244. [DOI: 10.1164/rccm.201801-0053ed] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Lucas R. Hoffman
- Department of Pediatrics
- Department of MicrobiologyUniversity of WashingtonSeattle, Washingtonand
| | - Adeline M. Hajjar
- Department of Comparative MedicineUniversity of WashingtonSeattle, Washington
| |
Collapse
|
49
|
McCarron A, Donnelley M, Parsons D. Airway disease phenotypes in animal models of cystic fibrosis. Respir Res 2018; 19:54. [PMID: 29609604 PMCID: PMC5879563 DOI: 10.1186/s12931-018-0750-y] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 03/13/2018] [Indexed: 12/20/2022] Open
Abstract
In humans, cystic fibrosis (CF) lung disease is characterised by chronic infection, inflammation, airway remodelling, and mucus obstruction. A lack of pulmonary manifestations in CF mouse models has hindered investigations of airway disease pathogenesis, as well as the development and testing of potential therapeutics. However, recently generated CF animal models including rat, ferret and pig models demonstrate a range of well characterised lung disease phenotypes with varying degrees of severity. This review discusses the airway phenotypes of currently available CF animal models and presents potential applications of each model in airway-related CF research.
Collapse
Affiliation(s)
- Alexandra McCarron
- Adelaide Medical School, Discipline of Paediatrics, University of Adelaide, Adelaide, SA Australia
- Department of Respiratory and Sleep Medicine, Women’s and Children’s Hospital, Adelaide, SA Australia
- Robinson Research Institute, University of Adelaide, Adelaide, SA Australia
| | - Martin Donnelley
- Adelaide Medical School, Discipline of Paediatrics, University of Adelaide, Adelaide, SA Australia
- Department of Respiratory and Sleep Medicine, Women’s and Children’s Hospital, Adelaide, SA Australia
- Robinson Research Institute, University of Adelaide, Adelaide, SA Australia
| | - David Parsons
- Adelaide Medical School, Discipline of Paediatrics, University of Adelaide, Adelaide, SA Australia
- Department of Respiratory and Sleep Medicine, Women’s and Children’s Hospital, Adelaide, SA Australia
- Robinson Research Institute, University of Adelaide, Adelaide, SA Australia
| |
Collapse
|
50
|
Ding FM, Zhang XY, Chen YQ, Liao RM, Xie GG, Zhang PY, Shao P, Zhang M. Lentivirus-mediated overexpression of suppressor of cytokine signaling-3 reduces neutrophilic airway inflammation by suppressing T-helper 17 responses in mice with chronic Pseudomonas aeruginosa lung infections. Int J Mol Med 2018; 41:2193-2200. [PMID: 29393363 DOI: 10.3892/ijmm.2018.3417] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 01/08/2018] [Indexed: 11/06/2022] Open
Abstract
The aim of the present study was to explore the effect of overexpressed suppressor of cytokine signaling‑3 (SOCS3) on T-helper (Th)17 cell responses and neutrophilic airway inflammation in mice with chronic Pseudomonas aeruginosa (PA) infections. SOCS3 expression was enhanced via the administration of tail vein injections of therapeutic lentivirus in mice with chronic PA lung infections. SOCS3 expression in the blood and lung tissue was assessed using reverse transcription‑quantitative polymerase chain reaction (RT‑qPCR) and western blot analysis. Total and differential cell numbers and myeloperoxidase levels in the bronchoalveolar lavage (BAL) fluid were assessed, as well as the number of bacterial colonies in the lungs. Histological analysis of lung tissue was performed using hematoxylin and eosin staining and phosphorylated‑signal transducer and activator of transcription‑3 (p‑STAT3) expression was measured by western blot analysis and immunohistochemistry. The expression of STAT3 mRNA and retinoid‑related orphan receptor (ROR)γt were measured by RT‑qPCR. The percentage of interleukin (IL)‑17+ cells among cluster of differentiation (CD)4+ cells was calculated using flow cytometry and levels of IL‑17A and IL‑6 were assessed by ELISA. The expression of SOCS3 was significantly increased in CD4+ T cells following lentivirus injection and the inflammation of neutrophilic airways was notably ameliorated. Enhanced SOCS3 expression was associated with a significant decrease in the expression of p‑STAT3 and RORγt in CD4+ T cells. Additionally, the percentage of IL‑17+ cells among CD4+ T cells and the IL‑17 contents in the BAL fluid were significantly decreased. Lentivirus‑mediated overexpression of SOCS3 was revealed to ameliorate neutrophilic airway inflammation by inhibiting pulmonary Th17 responses in mice with chronic PA lung infections.
Collapse
Affiliation(s)
- Feng-Ming Ding
- Department of Respiratory Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, P.R. China
| | - Xing-Yi Zhang
- Department of Respiratory Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, P.R. China
| | - Yu-Qing Chen
- Department of Respiratory Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, P.R. China
| | - Ruo-Min Liao
- Department of Respiratory Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, P.R. China
| | - Guo-Gang Xie
- Department of Respiratory Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, P.R. China
| | - Peng-Yu Zhang
- Department of Respiratory Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, P.R. China
| | - Ping Shao
- Department of Respiratory Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, P.R. China
| | - Min Zhang
- Department of Respiratory Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, P.R. China
| |
Collapse
|