1
|
Liz CF, Proença E. Oxygen in the newborn period: Could the oxygen reserve index offer a new perspective? Pediatr Pulmonol 2025; 60:e27343. [PMID: 39436049 DOI: 10.1002/ppul.27343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 09/20/2024] [Accepted: 10/13/2024] [Indexed: 10/23/2024]
Abstract
Oxygen therapy has been one of the main challenges in neonatal intensive care units (NICU). The guidelines currently in use try to balance the burden of hypoxia and hyperoxia such as retinopathy of prematurity, bronchopulmonary dysplasia, and death. The goal of this paper is to review neonatal oxygenation and the impact of hyperoxia and hypoxia in neonatal outcomes as well as review the available literature concerning the use of Oxygen Reserve Index (ORiTM) in clinical practice and its potential in Neonatology, particularly in NICU. Pulse oximetry has been used to monitor oxygenation in newborns with the advantage of being a noninvasive and continuous parameter, however it has limitations in detecting hyperoxemic states due to the flattening of the hemoglobin dissociation curve. The ORiTM is a new parameter that has been used to detect moderate hyperoxia and, when used in addiction to spO2, could be helpful in both hypoxia and hyperoxia. Studies using this tool are mainly in the adult population, during anesthetic procedures with only a small number of studies being performed in pediatric context. Oxygen targets remain a major problem for neonatal population and regardless of the efforts made to establish a safe oxygenation range, a more individualized approach seems to be the more appropriate pathway. ORiTM monitoring could help defining how much oxygen is too much for each newborn. Despite its promising potential, ORiTM is still a recent technology that requires more studies to determine its true potential in clinical practice.
Collapse
Affiliation(s)
| | - Elisa Proença
- Neonatology Department, Centro Hospitalar de Santo António
| |
Collapse
|
2
|
Lin X, Zhou M, Wang H. A rat model establishment of bronchopulmonary dysplasia-related lung & brain injury within 28 days after birth. BMC Neurosci 2024; 25:73. [PMID: 39609737 PMCID: PMC11603889 DOI: 10.1186/s12868-024-00912-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 11/19/2024] [Indexed: 11/30/2024] Open
Abstract
PURPOSE Lung injury associated with bronchopulmonary dysplasia (BPD) and its related neurodevelopmental disorders have garnered increasing attention in the context of premature infants. Establishing a reliable animal model is essential for delving into the underlying mechanisms of these conditions. METHODS Newborn rats were randomly assigned to two groups: the hyperoxia-induced BPD group and the normoxia (NO) group. For the BPD group, they were nurtured in a hyperoxic environment with a high oxygen inspired fraction (0.85) from birth until day 14 within 28 days postnatally. In contrast, the NO group consisted of newborn rats that were nurtured in a normoxic environment with a standard oxygen inspired fraction (0.21) for 28 days postnatally. Various pathological sections of both lung and brain tissues were examined. TUNEL staining, immunofluorescence assays, and functional tests were performed, and the results were meticulously analyzed to assess the impact of hyperoxia environments on the developing organs. RESULTS In the newborn rats of the BPD group, a significant reduction in alveolar number coupled with enlargement was observed, alongside severe fibrosis, collagen deposition, and constriction of bronchi and vascular lumens. This was accompanied by an accumulation of inflammatory cells and a marked deterioration in lung function compared to the NO group (P < 0.05). Additionally, a decrease in neuronal count, an increase in neuronal apoptosis, proliferation of neuroglia cells, and demyelination were noted, and poorer performance in the Morris water maze test within the BPD group (P < 0.05). CONCLUSION The BPD-rats model was established successfully. Lung injury in the BPD group evident across the bronchi to the alveoli and pulmonary vessels, which was associated with deteriorated lung function at postnatal day 14. Concurrently, brain injury extended from the cerebral cortex to the hippocampus, which was associated with impaired performance in orientation navigation and spatial probe tests at postnatal day 28.
Collapse
Affiliation(s)
- Xin Lin
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
- Department of Neonatology, Fujian Maternity and Child Health Hospital/College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Affiliated Hospital of Fujian Medical University, Fuzhou, China
- Key Laboratory of Birth Defects and Related Disease of Women and Children (Sichuan University), Ministry of Education, Sichuan University, No. 20, Section 3, South Renmin Road, Chengdu, Sichuan Province, 610041, China
| | - Meicen Zhou
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Disease of Women and Children (Sichuan University), Ministry of Education, Sichuan University, No. 20, Section 3, South Renmin Road, Chengdu, Sichuan Province, 610041, China
| | - Hua Wang
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China.
- Key Laboratory of Birth Defects and Related Disease of Women and Children (Sichuan University), Ministry of Education, Sichuan University, No. 20, Section 3, South Renmin Road, Chengdu, Sichuan Province, 610041, China.
| |
Collapse
|
3
|
Severyn NT, Esparza P, Gao H, Mickler EA, Albrecht ME, Fisher AJ, Yakubov B, Cook TG, Slaven JE, Walts AD, Tepper RS, Lahm T. Effect of estrogen receptor α on cardiopulmonary adaptation to chronic developmental hypoxia in a rat model. Am J Physiol Lung Cell Mol Physiol 2024; 326:L786-L795. [PMID: 38713613 PMCID: PMC11380959 DOI: 10.1152/ajplung.00161.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 03/29/2024] [Accepted: 03/30/2024] [Indexed: 05/09/2024] Open
Abstract
Humans living at high-altitude (HA) have adapted to this environment by increasing pulmonary vascular and alveolar growth. RNA sequencing data from a novel murine model that mimics this phenotypical response to HA suggested estrogen signaling via estrogen receptor alpha (ERα) may be involved in this adaptation. We hypothesized ERα was a key mediator in the cardiopulmonary adaptation to chronic hypoxia and sought to delineate the mechanistic role ERα contributes to this process by exposing novel loss-of-function ERα mutant (ERαMut) rats to simulated HA. ERα mutant or wild-type (wt) rats were exposed to normoxia or hypoxia starting at conception and continued postnatally until 6 wk of age. Both wt and ERαMut animals born and raised in hypoxia exhibited lower body mass and higher hematocrits, total alveolar volumes (Va), diffusion capacities of carbon monoxide (DLCO), pulmonary arteriole (PA) wall thickness, and Fulton indices than normoxia animals. Right ventricle adaptation was maintained in the setting of hypoxia. Although no major physiologic differences were seen between wt and ERαMut animals at either exposure, ERαMut animals exhibited smaller mean linear intercepts (MLI) and increased PA total and lumen areas. Hypoxia exposure or ERα loss-of-function did not affect lung mRNA abundance of vascular endothelial growth factor, angiopoietin 2, or apelin. Sexual dimorphisms were noted in PA wall thickness and PA lumen area in ERαMut rats. In summary, in room air-exposed rats and rats with peri- and postnatal hypoxia exposure, ERα loss-of-function was associated with decreased alveolar size (primarily driven by hypoxic animals) and increased PA remodeling.NEW & NOTEWORTHY By exposing novel loss-of-function estrogen receptor alpha (Erα) mutant rats to a novel model of human high-altitude exposure, we demonstrate that ERα has subtle but inconsistent effects on endpoints relevant to cardiopulmonary adaptation to chronic hypoxia. Given that we observed some histologic, sex, and genotype differences, further research into cell-specific effects of ERα during hypoxia-induced cardiopulmonary adaptation is warranted.
Collapse
Affiliation(s)
- Nicholas T Severyn
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, University of Kentucky School of Medicine, Lexington, Kentucky, United States
| | - Patricia Esparza
- Division of Pulmonology, Department of Pediatrics, Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, United States
| | - Huanling Gao
- Division of Pulmonology, Department of Pediatrics, Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, United States
| | - Elizabeth A Mickler
- Division of Pulmonology and Sleep Medicine, Indiana University School of Medicine, Indianapolis, Indiana, United States
| | - Marjorie E Albrecht
- Division of Pulmonology and Sleep Medicine, Indiana University School of Medicine, Indianapolis, Indiana, United States
| | - Amanda J Fisher
- Division of Pulmonology and Sleep Medicine, Indiana University School of Medicine, Indianapolis, Indiana, United States
| | - Bahktiyor Yakubov
- Division of Pulmonology and Sleep Medicine, Indiana University School of Medicine, Indianapolis, Indiana, United States
| | - Todd G Cook
- Division of Pulmonology and Sleep Medicine, Indiana University School of Medicine, Indianapolis, Indiana, United States
| | - James E Slaven
- Division of Pulmonology, Department of Pediatrics, Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, United States
| | - Avram D Walts
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, National Jewish Health, Denver, Colorado, United States
| | - Robert S Tepper
- Division of Pulmonology, Department of Pediatrics, Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, United States
| | - Tim Lahm
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, National Jewish Health, Denver, Colorado, United States
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado, Aurora, Colorado, United States
- Rocky Mountain Regional VA Medical Center, Aurora, Colorado, United States
| |
Collapse
|
4
|
Yuliana ME, Chou HC, Su ECY, Chuang HC, Huang LT, Chen CM. Uteroplacental insufficiency decreases leptin expression and impairs lung development in growth-restricted newborn rats. Pediatr Res 2024; 95:1503-1509. [PMID: 38049649 DOI: 10.1038/s41390-023-02946-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 11/16/2023] [Indexed: 12/06/2023]
Abstract
BACKGROUND The study aimed to analyze the effect of uteroplacental insufficiency (UPI) on leptin expression and lung development of intrauterine growth restriction (IUGR) rats. METHODS On day 17 of pregnancy, time-dated Sprague-Dawley rats were randomly divided into either an IUGR group or a control group. Uteroplacental insufficiency surgery (IUGR) and sham surgery (control) were conducted. Offspring rats were spontaneously delivered on day 22 of pregnancy. On postnatal days 0 and 7, rats' pups were selected at random from the control and IUGR groups. Blood was withdrawn from the heart to determine leptin levels. The right lung was obtained for leptin and leptin receptor levels, immunohistochemistry, proliferating cell nuclear antigen (PCNA), western blot, and metabolomic analyses. RESULTS UPI-induced IUGR decreased leptin expression and impaired lung development, causing decreased surface area and volume in offspring. This results in lower body weight, decreased serum leptin levels, lung leptin and leptin receptor levels, alveolar space, PCNA, and increased alveolar wall volume fraction in IUGR offspring rats. The IUGR group found significant relationships between serum leptin, radial alveolar count, von Willebrand Factor, and metabolites. CONCLUSION Leptin may contribute to UPI-induced lung development during the postnatal period, suggesting supplementation as a potential treatment. IMPACT The neonatal rats with intrauterine growth restriction (IUGR) caused by uteroplacental insufficiency (UPI) showed decreased leptin expression and impaired lung development. UPI-induced IUGR significantly decreased surface area and volume in lung offspring. This is a novel study that investigates leptin expression and lung development in neonatal rats with IUGR caused by UPI. If our findings translate to IUGR infants, leptin may contribute to UPI-induced lung development during the postnatal period, suggesting supplementation as a potential treatment.
Collapse
Affiliation(s)
- Merryl Esther Yuliana
- International PhD Program in Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Hsiu-Chu Chou
- Department of Anatomy and Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Emily Chia-Yu Su
- Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- Research Center for Artificial Intelligence in Medicine, Taipei Medical University, Taipei, Taiwan
| | - Hsiao-Chi Chuang
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Liang-Ti Huang
- Department of Pediatrics, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- Department of Pediatrics, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chung-Ming Chen
- International PhD Program in Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
- Department of Pediatrics, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
- Department of Pediatrics, Taipei Medical University Hospital, Taipei, Taiwan.
| |
Collapse
|
5
|
Tepper RS, Morgan WJ, Taussig LM. Additional Thoughts on Intrinsic Dysanapsis. Am J Respir Crit Care Med 2024; 209:1040-1041. [PMID: 38301264 PMCID: PMC11531213 DOI: 10.1164/rccm.202312-2226le] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 01/31/2024] [Indexed: 02/03/2024] Open
Affiliation(s)
- Robert S. Tepper
- Pediatric Pulmonology, Wells Center for Pediatric Research, School of Medicine, Indiana University, Indianapolis, Indiana
| | - Wayne J. Morgan
- Department of Pediatrics, University of Arizona, Tucson, Arizona; and
| | - Lynn M. Taussig
- School of Medicine, University of Colorado, Centennial, Colorado
| |
Collapse
|
6
|
Xie B, Li S, Bai W, Li Z, Lou F. Artesunate Alleviates Hyperoxia-Induced Lung Injury in Neonatal Mice by Inhibiting NLRP3 Inflammasome Activation. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2023; 2023:7603943. [PMID: 36785753 PMCID: PMC9922194 DOI: 10.1155/2023/7603943] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/25/2022] [Accepted: 11/24/2022] [Indexed: 02/06/2023]
Abstract
Bronchopulmonary dysplasia (BPD) is a chronic respiratory disease in preterm infants that may cause persistent lung injury. Artesunate exhibits excellent anti-inflammatory in lung injury caused by various factors. This study aimed to investigate the effect of the artesunate on hyperoxia-induced lung injury in neonatal mice and its mechanism. A BPD model of hyperoxic lung injury in neonatal mice was established after hyperoxia (75% oxygen) exposure for 14 days, and part of the mice received intraperitoneal injections of the artesunate. H&E staining was used to observe the pathology of lung tissue, and the degree of oxidative stress in the lung tissue was determined by commercial kits. The levels of inflammatory cytokines in the serum and lung tissues of neonatal mice were detected by an enzyme-linked immunosorbent assay. Immunohistochemical experiments were performed to further evaluate the expression of IL-1β. The real-time quantitative polymerase chain reaction was used to determine the mRNA level of the NLRP3 inflammasome. The western blot assay was used to measure the levels of NLRP3 inflammasome and NF-κB pathway-related proteins. Artesunate ameliorated weight loss and lung tissue injury in neonatal mice induced by hyperoxia. The level of malondialdehyde was decreased, while the activity of superoxide dismutase and the level of glutathione increased after artesunate treatment. Artesunate reduced the level of inflammation cytokines TNF-α, IL-6, and IL-1β in the serum and lung. Moreover, artesunate inhibited the mRNA expression and protein levels of NLRP3, ASC, and caspase-1, as well as the phosphorylation of the NF-κB and IκBα. Our findings suggest that artesunate treatment can attenuate hyperoxia-induced lung injury in BPD neonatal mice by inhibiting the activation of NLRP3 inflammasome and the phosphorylation of the NF-κB pathway.
Collapse
Affiliation(s)
- Bin Xie
- Department of Pharmacy, Shaoxing Integrated Traditional Chinese and Western Medicine Hospital, Shaoxing, China
| | - Shouye Li
- College of Pharmacy, Hangzhou Medical College, Hangzhou, China
| | - Wuxia Bai
- College of Pharmacy, Hangzhou Medical College, Hangzhou, China
| | - Zheming Li
- College of Pharmacy, Hangzhou Medical College, Hangzhou, China
| | - Feifeng Lou
- Department of Neonatology, Zhuji People's Hospital of Zhejiang Province, Zhuji, China
| |
Collapse
|
7
|
Yang X, Jiang S, Deng X, Luo Z, Chen A, Yu R. Effects of Antioxidants in Human Milk on Bronchopulmonary Dysplasia Prevention and Treatment: A Review. Front Nutr 2022; 9:924036. [PMID: 35923207 PMCID: PMC9340220 DOI: 10.3389/fnut.2022.924036] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 06/21/2022] [Indexed: 12/20/2022] Open
Abstract
Bronchopulmonary dysplasia (BPD) is a severe chronic lung illness that affects neonates, particularly premature infants. It has far-reaching consequences for infant health and their families due to intractable short- and long-term repercussions. Premature infant survival and long-term quality of life are severely harmed by BPD, which is characterized by alveolarization arrest and hypoplasia of pulmonary microvascular cells. BPD can be caused by various factors, with oxidative stress (OS) being the most common. Premature infants frequently require breathing support, which results in a hyperoxic environment in the developing lung and obstructs lung growth. OS can damage the lungs of infants by inducing cell death, inhibiting alveolarization, inducing inflammation, and impairing pulmonary angiogenesis. Therefore, antioxidant therapy for BPD relieves OS and lung injury in preterm newborns. Many antioxidants have been found in human milk, including superoxide dismutase, glutathione peroxidase, glutathione, vitamins, melatonin, short-chain fatty acids, and phytochemicals. Human milk oligosaccharides, milk fat globule membrane, and lactoferrin, all unique to human milk, also have antioxidant properties. Hence, human milk may help prevent OS injury and improve BPD prognosis in premature infants. In this review, we explored the role of OS in the pathophysiology of BPD and related signaling pathways. Furthermore, we examined antioxidants in human milk and how they could play a role in BPD to understand whether human milk could prevent and treat BPD.
Collapse
Affiliation(s)
- Xianpeng Yang
- Department of Neonatology, Wuxi Maternity and Child Health Care Hospital, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Shanyu Jiang
- Department of Neonatology, Wuxi Maternity and Child Health Care Hospital, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Xianhui Deng
- Department of Neonatology, Wuxi Maternity and Child Health Care Hospital, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Zichen Luo
- Department of Neonatology, Wuxi Maternity and Child Health Care Hospital, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Ailing Chen
- Translational Medicine Laboratory, Research Institute for Reproductive Health and Genetic Diseases, The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi, China
| | - Renqiang Yu
- Department of Neonatology, Wuxi Maternity and Child Health Care Hospital, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| |
Collapse
|
8
|
Riccetti MR, Ushakumary MG, Waltamath M, Green J, Snowball J, Dautel SE, Endale M, Lami B, Woods J, Ahlfeld SK, Perl AKT. Maladaptive functional changes in alveolar fibroblasts due to perinatal hyperoxia impair epithelial differentiation. JCI Insight 2022; 7:e152404. [PMID: 35113810 PMCID: PMC8983125 DOI: 10.1172/jci.insight.152404] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 01/26/2022] [Indexed: 11/17/2022] Open
Abstract
Infants born prematurely worldwide have up to a 50% chance of developing bronchopulmonary dysplasia (BPD), a clinical morbidity characterized by dysregulated lung alveolarization and microvascular development. It is known that PDGFR alpha-positive (PDGFRA+) fibroblasts are critical for alveolarization and that PDGFRA+ fibroblasts are reduced in BPD. A better understanding of fibroblast heterogeneity and functional activation status during pathogenesis is required to develop mesenchymal population-targeted therapies for BPD. In this study, we utilized a neonatal hyperoxia mouse model (90% O2 postnatal days 0-7, PN0-PN7) and performed studies on sorted PDGFRA+ cells during injury and room air recovery. After hyperoxia injury, PDGFRA+ matrix and myofibroblasts decreased and PDGFRA+ lipofibroblasts increased by transcriptional signature and population size. PDGFRA+ matrix and myofibroblasts recovered during repair (PN10). After 7 days of in vivo hyperoxia, PDGFRA+ sorted fibroblasts had reduced contractility in vitro, reflecting loss of myofibroblast commitment. Organoids made with PN7 PDGFRA+ fibroblasts from hyperoxia in mice exhibited reduced alveolar type 1 cell differentiation, suggesting reduced alveolar niche-supporting PDGFRA+ matrix fibroblast function. Pathway analysis predicted reduced WNT signaling in hyperoxia fibroblasts. In alveolar organoids from hyperoxia-exposed fibroblasts, WNT activation by CHIR increased the size and number of alveolar organoids and enhanced alveolar type 2 cell differentiation.
Collapse
Affiliation(s)
- Matthew R. Riccetti
- The Perinatal Institute and Section of Neonatology, Perinatal and Pulmonary Biology, and
- Molecular and Developmental Biology Graduate Program, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | | | - Marion Waltamath
- The Perinatal Institute and Section of Neonatology, Perinatal and Pulmonary Biology, and
| | - Jenna Green
- The Perinatal Institute and Section of Neonatology, Perinatal and Pulmonary Biology, and
| | - John Snowball
- The Perinatal Institute and Section of Neonatology, Perinatal and Pulmonary Biology, and
| | - Sydney E. Dautel
- The Perinatal Institute and Section of Neonatology, Perinatal and Pulmonary Biology, and
| | - Mehari Endale
- The Perinatal Institute and Section of Neonatology, Perinatal and Pulmonary Biology, and
| | - Bonny Lami
- The Perinatal Institute and Section of Neonatology, Perinatal and Pulmonary Biology, and
| | - Jason Woods
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
- Center for Pulmonary Imaging Research, Division of Pulmonary Medicine & Department of Radiology, Cincinnati Children’s Hospital, Cincinnati, Ohio, USA
| | - Shawn K. Ahlfeld
- The Perinatal Institute and Section of Neonatology, Perinatal and Pulmonary Biology, and
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Anne-Karina T. Perl
- The Perinatal Institute and Section of Neonatology, Perinatal and Pulmonary Biology, and
- Molecular and Developmental Biology Graduate Program, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| |
Collapse
|
9
|
Zhang S, Luan X, Li H, Jin Z. Insulin-like growth factor-1: A potential target for bronchopulmonary dysplasia treatment (Review). Exp Ther Med 2022; 23:191. [PMID: 35126694 PMCID: PMC8794548 DOI: 10.3892/etm.2022.11114] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 12/08/2021] [Indexed: 11/05/2022] Open
Abstract
Bronchopulmonary dysplasia (BPD) is a common respiratory disorder among preterm infants, particularly low-birth-weight infants (LBWIs) and very-low-birth-weight infants (VLBWIs). Although BPD was first reported 50 years ago, no specific drugs or efficient measures are yet available for prevention or treatment. Insulin-like growth factor-1 (IGF-1) belongs to the insulin family. It promotes mitosis and stimulates cell proliferation and DNA synthesis, the primary factors involved in pulmonary development during the fetal and postnatal periods. Several studies have reported that IGF-1 exerts certain effects on BPD genesis and progression by regulating BPD-related biological processes. In addition, exogenous addition of IGF-1 can alleviate lung inflammation, cell apoptosis and eliminate alveolar development disorders in children with BPD. These findings suggest that IGF-1 could be a new target for treating BPD. Here, we summarize and analyze the definition, pathogenesis, and research status of BPD, as well as the pathogenesis of IGF-1 in BPD and the latest findings in related biological processes.
Collapse
Affiliation(s)
- Shujian Zhang
- Department of Pediatrics, Affiliated Hospital of Yanbian University, Yanji, Jilin 133000, P.R. China
| | - Xue Luan
- Department of Pediatrics, First Hospital, Jilin University, Changchun, Jilin 130000, P.R. China
| | - Huiwen Li
- Department of Pediatrics, Affiliated Hospital of Yanbian University, Yanji, Jilin 133000, P.R. China
| | - Zhengyong Jin
- Department of Pediatrics, Affiliated Hospital of Yanbian University, Yanji, Jilin 133000, P.R. China
| |
Collapse
|
10
|
Appuhn SV, Siebert S, Myti D, Wrede C, Surate Solaligue DE, Pérez-Bravo D, Brandenberger C, Schipke J, Morty RE, Grothausmann R, Mühlfeld C. Capillary Changes Precede Disordered Alveolarization in a Mouse Model of Bronchopulmonary Dysplasia. Am J Respir Cell Mol Biol 2021; 65:81-91. [PMID: 33784484 DOI: 10.1165/rcmb.2021-0004oc] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Bronchopulmonary dysplasia (BPD), the most common sequela of preterm birth, is a severe disorder of the lung that is often associated with long-lasting morbidity. A hallmark of BPD is the disruption of alveolarization, whose pathogenesis is incompletely understood. Here, we tested the vascular hypothesis that disordered vascular development precedes the decreased alveolarization associated with BPD. Neonatal mouse pups were exposed to 7, 14, or 21 days of normoxia (21% O2) or hyperoxia (85% O2) with n = 8-11 for each group. The right lungs were fixed by vascular perfusion and investigated by design-based stereology or three-dimensional reconstruction of data sets obtained by serial block-face scanning EM. The alveolar capillary network of hyperoxia-exposed mice was characterized by rarefaction, partially altered geometry, and widening of capillary segments as shown by three-dimensional reconstruction. Stereology revealed that the development of alveolar epithelium and capillary endothelium was decreased in hyperoxia-exposed mice; however, the time course of these effects was different. That the surface area of the alveolar epithelium was smaller in hyperoxia-exposed mice first became evident at Day 14. In contrast, the surface area of the endothelium was reduced in hyperoxia-exposed mouse pups at Day 7. The thickness of the air-blood barrier decreased during postnatal development in normoxic mice, whereas it increased in hyperoxic mice. The endothelium and the septal connective tissue made appreciable contributions to the thickened septa. In conclusion, the present study provides clear support for the idea that the stunted alveolarization follows the disordered microvascular development, thus supporting the vascular hypothesis of BPD.
Collapse
Affiliation(s)
- Svenja V Appuhn
- Institute of Functional and Applied Anatomy and.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover, Member of the German Center for Lung Research (DZL), Hannover, Germany
| | - Sara Siebert
- Institute of Functional and Applied Anatomy and.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover, Member of the German Center for Lung Research (DZL), Hannover, Germany
| | - Despoina Myti
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,Department of Internal Medicine (Pulmonology), Member of the German Center for Lung Research (DZL), University of Giessen and Marburg Lung Center, Giessen, Germany; and
| | - Christoph Wrede
- Institute of Functional and Applied Anatomy and.,Research Core Unit Electron Microscopy, Hannover Medical School, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover, Member of the German Center for Lung Research (DZL), Hannover, Germany
| | - David E Surate Solaligue
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,Department of Internal Medicine (Pulmonology), Member of the German Center for Lung Research (DZL), University of Giessen and Marburg Lung Center, Giessen, Germany; and
| | - David Pérez-Bravo
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,Department of Internal Medicine (Pulmonology), Member of the German Center for Lung Research (DZL), University of Giessen and Marburg Lung Center, Giessen, Germany; and
| | - Christina Brandenberger
- Institute of Functional and Applied Anatomy and.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover, Member of the German Center for Lung Research (DZL), Hannover, Germany
| | - Julia Schipke
- Institute of Functional and Applied Anatomy and.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover, Member of the German Center for Lung Research (DZL), Hannover, Germany
| | - Rory E Morty
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,Department of Internal Medicine (Pulmonology), Member of the German Center for Lung Research (DZL), University of Giessen and Marburg Lung Center, Giessen, Germany; and
| | - Roman Grothausmann
- Institute of Functional and Applied Anatomy and.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover, Member of the German Center for Lung Research (DZL), Hannover, Germany.,Faculty of Engineering and Health, HAWK University of Applied Sciences and Arts, Göttingen, Germany
| | - Christian Mühlfeld
- Institute of Functional and Applied Anatomy and.,Research Core Unit Electron Microscopy, Hannover Medical School, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover, Member of the German Center for Lung Research (DZL), Hannover, Germany
| |
Collapse
|
11
|
Krishnan S, Stearman RS, Zeng L, Fisher A, Mickler EA, Rodriguez BH, Simpson ER, Cook T, Slaven JE, Ivan M, Geraci MW, Lahm T, Tepper RS. Transcriptomic modifications in developmental cardiopulmonary adaptations to chronic hypoxia using a murine model of simulated high-altitude exposure. Am J Physiol Lung Cell Mol Physiol 2020; 319:L456-L470. [PMID: 32639867 DOI: 10.1152/ajplung.00487.2019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Mechanisms driving adaptive developmental responses to chronic high-altitude (HA) exposure are incompletely known. We developed a novel rat model mimicking the human condition of cardiopulmonary adaptation to HA starting at conception and spanning the in utero and postnatal timeframe. We assessed lung growth and cardiopulmonary structure and function and performed transcriptome analyses to identify mechanisms facilitating developmental adaptations to chronic hypoxia. To generate the model, breeding pairs of Sprague-Dawley rats were exposed to hypobaric hypoxia (equivalent to 9,000 ft elevation). Mating, pregnancy, and delivery occurred in hypoxic conditions. Six weeks postpartum, structural and functional data were collected in the offspring. RNA-Seq was performed on right ventricle (RV) and lung tissue. Age-matched breeding pairs and offspring under room air (RA) conditions served as controls. Hypoxic rats exhibited significantly lower body weights and higher hematocrit levels, alveolar volumes, pulmonary diffusion capacities, RV mass, and RV systolic pressure, as well as increased pulmonary artery remodeling. RNA-Seq analyses revealed multiple differentially expressed genes in lungs and RVs from hypoxic rats. Although there was considerable similarity between hypoxic lungs and RVs compared with RA controls, several upstream regulators unique to lung or RV were identified. We noted a pattern of immune downregulation and regulation patterns of immune and hormonal mediators similar to the genome from patients with pulmonary arterial hypertension. In summary, we developed a novel murine model of chronic hypoxia exposure that demonstrates functional and structural phenotypes similar to human adaptation. We identified transcriptomic alterations that suggest potential mechanisms for adaptation to chronic HA.
Collapse
Affiliation(s)
- Sheila Krishnan
- Department of Medicine, Division of Pulmonary, Critical Care, Sleep and Occupational Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Robert S Stearman
- Department of Medicine, Division of Pulmonary, Critical Care, Sleep and Occupational Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Lily Zeng
- Department of Medicine, Division of Pulmonary, Critical Care, Sleep and Occupational Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Amanda Fisher
- Department of Anesthesiology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Elizabeth A Mickler
- Department of Medicine, Division of Pulmonary, Critical Care, Sleep and Occupational Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Brooke H Rodriguez
- Department of Medicine, Division of Pulmonary, Critical Care, Sleep and Occupational Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Edward R Simpson
- Department of BioHealth Informatics, School of Informatics and Computing, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana.,Center for Computational Biology and Bioinformatics, Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana
| | - Todd Cook
- Indiana Center for Vascular Biology and Medicine, Indianapolis, Indiana
| | - James E Slaven
- Department of Biostatistics, Indiana University School of Medicine, Indianapolis, Indiana.,Department of Medicine, Division of Hematology and Oncology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Mircea Ivan
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Mark W Geraci
- Department of Medicine, Division of Pulmonary, Critical Care, Sleep and Occupational Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Tim Lahm
- Department of Medicine, Division of Pulmonary, Critical Care, Sleep and Occupational Medicine, Indiana University School of Medicine, Indianapolis, Indiana.,Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana.,Richard L. Roudebush Veterans Affairs Medical Center, Indianapolis, Indiana
| | - Robert S Tepper
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana
| |
Collapse
|
12
|
Dylag AM, Haak J, Yee M, O’Reilly MA. Pulmonary mechanics and structural lung development after neonatal hyperoxia in mice. Pediatr Res 2020; 87:1201-1210. [PMID: 31835269 PMCID: PMC7255955 DOI: 10.1038/s41390-019-0723-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 10/22/2019] [Accepted: 12/03/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND Supplemental oxygen exposure administered to premature infants is associated with chronic lung disease and abnormal pulmonary function. This study used mild (40%), moderate (60%), and severe (80%) oxygen to determine how hyperoxia-induced changes in lung structure impact pulmonary mechanics in mice. METHODS C57BL/6J mice were exposed to room air or hyperoxia from birth through postnatal day 8. Baseline pulmonary function and methacholine challenge was assessed at 4 and 8 weeks of age, accompanied by immunohistochemical assessments of both airway (smooth muscle, tethering) and alveolar (simplification, elastin deposition) structure. RESULTS Mild/moderate hyperoxia increased baseline airway resistance (40% only) and airway hyperreactivity (40 and 60%) at 4 weeks accompanied by increased airway smooth muscle deposition, which resolved at 8 weeks. Severe hyperoxia increased baseline compliance, baseline resistance, and total elastin/surface area ratio without increasing airway hyperreactivity, and was accompanied by increased alveolar simplification, decreased airway tethering, and changes in elastin distribution at both time points. CONCLUSIONS Mild to moderate hyperoxia causes changes in airway function and airway hyperreactivity with minimal parenchymal response. Severe hyperoxia drives its functional changes through alveolar simplification, airway tethering, and elastin redistribution. These differential responses can be leveraged to further develop hyperoxia mouse models.
Collapse
Affiliation(s)
- Andrew M. Dylag
- Department of Pediatrics, University of Rochester Medical Center, Rochester, New York, USA
| | - Jeannie Haak
- Department of Pediatrics, University of Rochester Medical Center, Rochester, New York, USA
| | - Min Yee
- Department of Pediatrics, University of Rochester Medical Center, Rochester, New York, USA
| | - Michael A. O’Reilly
- Department of Pediatrics, University of Rochester Medical Center, Rochester, New York, USA
| |
Collapse
|
13
|
Li K, Zhang F, Wei L, Han Z, Liu X, Pan Y, Guo C, Han W. Recombinant Human Elafin Ameliorates Chronic Hyperoxia-Induced Lung Injury by Inhibiting Nuclear Factor-Kappa B Signaling in Neonatal Mice. J Interferon Cytokine Res 2020; 40:320-330. [PMID: 32460595 DOI: 10.1089/jir.2019.0241] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The study aimed to investigate whether recombinant human elafin can prevent hyperoxia-induced pulmonary inflammation in newborn mice, and to explore the mechanism underlying the inhibitory effects of elafin on nuclear factor-kappa B (NF-κB) signaling pathway. Neonatal C57BL/6J mice were exposed to 85% O2 for 1, 3, 7, 14, or 21 days. Then, elafin was administered daily for 20 days through intraperitoneal injection. After treatment, morphometric analysis, quantitative real-time polymerase chain reaction, terminal deoxynucleotidyl transferase dUTP nick end labeling staining, and Western blotting were carried out to determine the key markers involved in inflammatory process and the potential signaling pathways in hyperoxia-exposed newborn mice treated with elafin. In neonatal bronchopulmonary dysplasia (BPD) mice, hyperoxia induced apoptosis by increasing Bcl-2-associated X protein expression, and triggered inflammation by upregulating the expression levels of interleukin (IL)-1β, IL-6, IL-8, and tumor necrosis factor-α. Moreover, hyperoxia activated NF-κB signaling pathway by promoting the nuclear translocation of p65 in lung tissue. However, all these changes could be inhibited or reversed by elafin at least partially. Elafin reduced apoptosis, suppressed inflammation cytokines, and improved NF-κB p65 nuclear accumulation in hyperoxia-exposed neonatal mice, indicating that this recombinant protein can serve as a novel target for the treatment of BPD.
Collapse
Affiliation(s)
- Kexin Li
- Laboratory Animal Center, Chongqing Medical University, Chongqing, P.R. China
| | - Fengmei Zhang
- Laboratory Animal Center, Chongqing Medical University, Chongqing, P.R. China
| | - Li Wei
- Centre for Lipid Research and Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Chongqing Medical University, Chongqing, P.R. China
| | - Zhigang Han
- Laboratory Animal Center, Chongqing Medical University, Chongqing, P.R. China
| | - Xuwei Liu
- Ministry of Education Key Laboratory of Child Development and Disorders, Department of Neonatology, Children's Hospital of Chongqing Medical University, Chongqing, P.R. China
| | - Yongquan Pan
- Laboratory Animal Center, Chongqing Medical University, Chongqing, P.R. China
| | - Chunbao Guo
- Ministry of Education Key Laboratory of Child Development and Disorders, Department of Neonatology, Children's Hospital of Chongqing Medical University, Chongqing, P.R. China.,Department of Hepatology and Liver Transplantation Center, Children's Hospital, Chongqing Medical University, Chongqing, P.R. China
| | - Wenli Han
- Laboratory Animal Center, Chongqing Medical University, Chongqing, P.R. China
| |
Collapse
|
14
|
Oherle K, Acker E, Bonfield M, Wang T, Gray J, Lang I, Bridges J, Lewkowich I, Xu Y, Ahlfeld S, Zacharias W, Alenghat T, Deshmukh H. Insulin-like Growth Factor 1 Supports a Pulmonary Niche that Promotes Type 3 Innate Lymphoid Cell Development in Newborn Lungs. Immunity 2020; 52:275-294.e9. [PMID: 32075728 PMCID: PMC7382307 DOI: 10.1016/j.immuni.2020.01.005] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Revised: 05/16/2019] [Accepted: 01/17/2020] [Indexed: 02/07/2023]
Abstract
Type 3 innate lymphoid cells (ILC3s) are critical for lung defense against bacterial pneumonia in the neonatal period, but the signals that guide pulmonary ILC3 development remain unclear. Here, we demonstrated that pulmonary ILC3s descended from ILC precursors that populated a niche defined by fibroblasts in the developing lung. Alveolar fibroblasts produced insulin-like growth factor 1 (IGF1), which instructed expansion and maturation of pulmonary ILC precursors. Conditional ablation of IGF1 in alveolar fibroblasts or deletion of the IGF-1 receptor from ILC precursors interrupted ILC3 biogenesis and rendered newborn mice susceptible to pneumonia. Premature infants with bronchopulmonary dysplasia, characterized by interrupted postnatal alveolar development and increased morbidity to respiratory infections, had reduced IGF1 concentrations and pulmonary ILC3 numbers. These findings indicate that the newborn period is a critical window in pulmonary immunity development, and disrupted lung development in prematurely born infants may have enduring effects on host resistance to respiratory infections.
Collapse
Affiliation(s)
- Katherine Oherle
- Division of Neonatology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45219, USA
| | - Elizabeth Acker
- Division of Neonatology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45219, USA
| | - Madeline Bonfield
- Division of Neonatology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45219, USA; Immunology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Timothy Wang
- Division of Neonatology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45219, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Jerilyn Gray
- Division of Neonatology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45219, USA
| | - Ian Lang
- Division of Neonatology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45219, USA
| | - James Bridges
- Division of Neonatology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45219, USA; Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45219, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Ian Lewkowich
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45219, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Yan Xu
- Division of Neonatology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45219, USA; Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45219, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Shawn Ahlfeld
- Division of Neonatology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45219, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - William Zacharias
- Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45219, USA; Department of Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Theresa Alenghat
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45219, USA; Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45219, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Hitesh Deshmukh
- Division of Neonatology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45219, USA; Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45219, USA; Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45219, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA.
| |
Collapse
|
15
|
Kindermann A, Binder L, Baier J, Gündel B, Simm A, Haase R, Bartling B. Severe but not moderate hyperoxia of newborn mice causes an emphysematous lung phenotype in adulthood without persisting oxidative stress and inflammation. BMC Pulm Med 2019; 19:245. [PMID: 31842840 PMCID: PMC6915952 DOI: 10.1186/s12890-019-0993-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 11/14/2019] [Indexed: 12/25/2022] Open
Abstract
Background Preterm newborns typically require supplemental oxygen but hyperoxic conditions also damage the premature lung. Oxygen-induced lung damages are mainly studied in newborn mouse models using oxygen concentrations above 75% and looking at short-term effects. Therefore, we aimed at the investigation of long-term effects and their dependency on different oxygen concentrations. Methods Newborn mice were exposed to moderate vs. severe hyperoxic air conditions (50 vs. 75% O2) for 14 days followed by a longer period of normoxic conditions. Lung-related parameters were collected at an age of 60 or 120 days. Results Severe hyperoxia caused lower alveolar density, enlargement of parenchymal air spaces and fragmented elastic fibers as well as higher lung compliance with peak airflow limitations and higher sensitivity to ventilation-mediated damages in later life. However, these long-term lung structural and functional changes did not restrict the voluntary physical activity. Also, they were not accompanied by ongoing inflammatory processes, increased formation of reactive oxygen species (ROS) or altered expressions of antioxidant enzymes (superoxide dismutases, catalase) and lung elasticity-relevant proteins (elastin, pro-surfactant proteins) in adulthood. In contrast to severe hyperoxia, moderate hyperoxia was less lung damaging but also not free of long-term effects (higher lung compliance without peak airflow limitations, increased ROS formation). Conclusions Severe but not moderate neonatal hyperoxia causes emphysematous lungs without persisting oxidative stress and inflammation in adulthood. As the existing fragmentation of the elastic fibers seems to play a pivotal role, it indicates the usefulness of elastin-protecting compounds in the reduction of long-term oxygen-related lung damages.
Collapse
Affiliation(s)
- Anke Kindermann
- Department of Cardiac Surgery, Middle German Heart Center, University Hospital Halle (Saale), Martin Luther University Halle-Wittenberg, Ernst-Grube-Str. 40, 06120, Halle (Saale), Germany
| | - Leonore Binder
- Department of Cardiac Surgery, Middle German Heart Center, University Hospital Halle (Saale), Martin Luther University Halle-Wittenberg, Ernst-Grube-Str. 40, 06120, Halle (Saale), Germany
| | - Jan Baier
- Department of Neonatology and Pediatric Intensive Care, Clinic for Child and Adolescent Medicine, University Hospital Halle (Saale), Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Beate Gündel
- Department of Cardiac Surgery, Middle German Heart Center, University Hospital Halle (Saale), Martin Luther University Halle-Wittenberg, Ernst-Grube-Str. 40, 06120, Halle (Saale), Germany
| | - Andreas Simm
- Department of Cardiac Surgery, Middle German Heart Center, University Hospital Halle (Saale), Martin Luther University Halle-Wittenberg, Ernst-Grube-Str. 40, 06120, Halle (Saale), Germany
| | - Roland Haase
- Department of Neonatology and Pediatric Intensive Care, Clinic for Child and Adolescent Medicine, University Hospital Halle (Saale), Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Babett Bartling
- Department of Cardiac Surgery, Middle German Heart Center, University Hospital Halle (Saale), Martin Luther University Halle-Wittenberg, Ernst-Grube-Str. 40, 06120, Halle (Saale), Germany.
| |
Collapse
|
16
|
Lignelli E, Palumbo F, Myti D, Morty RE. Recent advances in our understanding of the mechanisms of lung alveolarization and bronchopulmonary dysplasia. Am J Physiol Lung Cell Mol Physiol 2019; 317:L832-L887. [PMID: 31596603 DOI: 10.1152/ajplung.00369.2019] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Bronchopulmonary dysplasia (BPD) is the most common cause of morbidity and mortality in preterm infants. A key histopathological feature of BPD is stunted late lung development, where the process of alveolarization-the generation of alveolar gas exchange units-is impeded, through mechanisms that remain largely unclear. As such, there is interest in the clarification both of the pathomechanisms at play in affected lungs, and the mechanisms of de novo alveoli generation in healthy, developing lungs. A better understanding of normal and pathological alveolarization might reveal opportunities for improved medical management of affected infants. Furthermore, disturbances to the alveolar architecture are a key histopathological feature of several adult chronic lung diseases, including emphysema and fibrosis, and it is envisaged that knowledge about the mechanisms of alveologenesis might facilitate regeneration of healthy lung parenchyma in affected patients. To this end, recent efforts have interrogated clinical data, developed new-and refined existing-in vivo and in vitro models of BPD, have applied new microscopic and radiographic approaches, and have developed advanced cell-culture approaches, including organoid generation. Advances have also been made in the development of other methodologies, including single-cell analysis, metabolomics, lipidomics, and proteomics, as well as the generation and use of complex mouse genetics tools. The objective of this review is to present advances made in our understanding of the mechanisms of lung alveolarization and BPD over the period 1 January 2017-30 June 2019, a period that spans the 50th anniversary of the original clinical description of BPD in preterm infants.
Collapse
Affiliation(s)
- Ettore Lignelli
- Department of Lung Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, member of the German Center for Lung Research, Giessen, Germany
| | - Francesco Palumbo
- Department of Lung Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, member of the German Center for Lung Research, Giessen, Germany
| | - Despoina Myti
- Department of Lung Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, member of the German Center for Lung Research, Giessen, Germany
| | - Rory E Morty
- Department of Lung Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, member of the German Center for Lung Research, Giessen, Germany
| |
Collapse
|
17
|
Rodgers JL, Iyer D, Rodgers LE, Vanthenapalli S, Panguluri SK. Impact of hyperoxia on cardiac pathophysiology. J Cell Physiol 2019; 234:12595-12603. [PMID: 30652312 DOI: 10.1002/jcp.28136] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 12/20/2018] [Indexed: 01/09/2023]
Abstract
Mechanical ventilation with high oxygen therapy (hyperoxia) is widely implemented in critical care and ICU settings. Although supplemental oxygen is beneficial to treat hypoxia, its use is also associated with poor outcomes and high mortality in patients. Lung injury due to hyperoxia exposure has been well-documented in patients, including in adults and neonates. Thus, lung injury due to hyperoxia has been extensively researched in both preclinical and clinical studies. However, hyperoxia has also been shown to be associated with hemodynamic changes in patients in ICU, including reductions in heart rate, stroke volume, and cardiac output. In addition, certain experimental studies report that hyperoxia exposure in neonates results in cardiac dysfunction in later adult life. Despite this, until recently, the impact of hyperoxia within the heart has not been well studied, or reported, specifically in adult experimental models. To close this significant gap, our lab has sought to clarify hyperoxia-induced cardiac pathophysiology in adult murine models. This review discusses the current findings regarding the cardiovascular impact of hyperoxia exposure.
Collapse
Affiliation(s)
- Jennifer L Rodgers
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, Florida
| | - Drishya Iyer
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, Florida
| | - Lydia E Rodgers
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, Florida
| | - Sahit Vanthenapalli
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, Florida
| | - Siva K Panguluri
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, Florida
| |
Collapse
|
18
|
Hu Y, Fu J, Xue X. Association of the proliferation of lung fibroblasts with the ERK1/2 signaling pathway in neonatal rats with hyperoxia-induced lung fibrosis. Exp Ther Med 2018; 17:701-708. [PMID: 30651853 PMCID: PMC6307421 DOI: 10.3892/etm.2018.6999] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 11/08/2018] [Indexed: 01/02/2023] Open
Abstract
Bronchopulmonary dysplasia (BPD) is a common, serious complication occurring in premature infants. Although clinical characteristics and pathologic changes are well described, the pathogenesis of alveolar dysplasia and interstitial fibrosis is less clear. Lung fibroblasts (LFs) are present in the extracellular matrix and serve essential roles during pulmonary epithelial injury and in response to fibrosis development in BPD. The current study investigated hyperoxia-induced proliferation of primary LFs in vitro and mechanisms that may be involved. Newborn rats were exposed to 90% oxygen, while control rats were kept in normal atmosphere. Primary LFs were isolated on postnatal day 3, 7 and 14. Hyperoxia-induced proliferation of LFs isolated on day 7 and 14 by accelerating the cell cycle progression from G1 to S phase. Collagen type I protein secretion and mRNA expression on day 7 and 14 were increased by hyperoxia compared with the controls. Hyperoxia significantly increased the phosphorylation of extracellular signal-regulated kinase (ERK) and significantly increased collagen type I expression compared with the room air control group. The findings indicated that an increase in LF proliferation in response to hyperoxia was associated with ERK1/2 phosphorylation. This mechanism may contribute to over-proliferation of LFs leading to disturbed formation of normal alveoli.
Collapse
Affiliation(s)
- Yu Hu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Jianhua Fu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Xindong Xue
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| |
Collapse
|
19
|
Cheon IS, Son YM, Jiang L, Goplen NP, Kaplan MH, Limper AH, Kita H, Paczesny S, Prakash YS, Tepper R, Ahlfeld SK, Sun J. Neonatal hyperoxia promotes asthma-like features through IL-33-dependent ILC2 responses. J Allergy Clin Immunol 2018; 142:1100-1112. [PMID: 29253513 PMCID: PMC6003836 DOI: 10.1016/j.jaci.2017.11.025] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 11/06/2017] [Accepted: 11/24/2017] [Indexed: 12/19/2022]
Abstract
BACKGROUND Premature infants often require oxygen supplementation and, therefore, are exposed to oxidative stress. Following oxygen exposure, preterm infants frequently develop chronic lung disease and have a significantly increased risk of asthma. OBJECTIVE We sought to identify the underlying mechanisms by which neonatal hyperoxia promotes asthma development. METHODS Mice were exposed to neonatal hyperoxia followed by a period of room air recovery. A group of mice was also intranasally exposed to house dust mite antigen. Assessments were performed at various time points for evaluation of airway hyperresponsiveness, eosinophilia, mucus production, inflammatory gene expression, and TH and group 2 innate lymphoid cell (ILC2) responses. Sera from term- and preterm-born infants were also collected and levels of IL-33 and type 2 cytokines were measured. RESULTS Neonatal hyperoxia induced asthma-like features including airway hyperresponsiveness, mucus hyperplasia, airway eosinophilia, and type 2 pulmonary inflammation. In addition, neonatal hyperoxia promoted allergic TH responses to house dust mite exposure. Elevated IL-33 levels and ILC2 responses were observed in the lungs most likely due to oxidative stress caused by neonatal hyperoxia. IL-33 receptor signaling and ILC2s were vital for the induction of asthma-like features following neonatal hyperoxia. Serum IL-33 levels correlated significantly with serum levels of IL-5 and IL-13 but not IL-4 in preterm infants. CONCLUSIONS These data demonstrate that an axis involving IL-33 and ILC2s is important for the development of asthma-like features following neonatal hyperoxia and suggest therapeutic potential for targeting IL-33, ILC2s, and oxidative stress to prevent and/or treat asthma development related to prematurity.
Collapse
Affiliation(s)
- In Su Cheon
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Ind; Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic College of Medicine and Science, Rochester, Minn
| | - Young Min Son
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Ind; Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic College of Medicine and Science, Rochester, Minn
| | - Li Jiang
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Ind; Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic College of Medicine and Science, Rochester, Minn
| | - Nicholas P Goplen
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic College of Medicine and Science, Rochester, Minn
| | - Mark H Kaplan
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Ind
| | - Andrew H Limper
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic College of Medicine and Science, Rochester, Minn
| | - Hirohito Kita
- Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, Minn
| | - Sophie Paczesny
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Ind
| | - Y S Prakash
- Department of Anesthesiology, Mayo Clinic College of Medicine and Science, Rochester, Minn; Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, Minn
| | - Robert Tepper
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Ind
| | - Shawn K Ahlfeld
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Ind; Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio
| | - Jie Sun
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Ind; Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic College of Medicine and Science, Rochester, Minn; Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, Minn.
| |
Collapse
|
20
|
Auten RL. 2017 pediatric pulmonology year in review part 2-neonatology. Pediatr Pulmonol 2018; 53:1147-1151. [PMID: 29737005 DOI: 10.1002/ppul.24040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 04/17/2018] [Indexed: 11/11/2022]
Abstract
The articles published in 2017 in topic areas relevant to neonatal pulmonology are reviewed in Part 2 of the Year-in-Review.
Collapse
Affiliation(s)
- Richard L Auten
- Cone Health System, Greensboro, North Carolina.,Duke University, Durham, North Carolina
| |
Collapse
|
21
|
Liu Y, Dong WB. [Preventive effect of caffeine on bronchopulmonary dysplasia in preterm infants]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2018; 20:598-602. [PMID: 30022766 PMCID: PMC7389204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Accepted: 06/05/2018] [Indexed: 11/12/2023]
Abstract
With the increase in the rescue success rate of critically ill preterm infants and extremely preterm infants, the incidence rate of bronchopulmonary dysplasia (BPD) is increasing year by year. BPD has a high mortality rate and high possibility of sequelae, which greatly affects the quality of life of preterm infants and brings a heavy burden to their families, and so the treatment of BPD is of vital importance. At present, no consensus has been reached on the treatment measures for BPD. However, recent studies have shown that early application of caffeine can prevent BPD. With reference to the latest studies on the effect of caffeine in the prevention of BPD, this article reviews the mechanism of action of caffeine in reducing pulmonary inflammation, improving morphological abnormalities of lung injury, reducing oxidative stress injury, and improving pulmonary function.
Collapse
MESH Headings
- Animals
- Bronchopulmonary Dysplasia/genetics
- Bronchopulmonary Dysplasia/metabolism
- Bronchopulmonary Dysplasia/physiopathology
- Bronchopulmonary Dysplasia/prevention & control
- Caffeine/administration & dosage
- Humans
- Infant, Premature/growth & development
- Infant, Premature/metabolism
- Infant, Premature, Diseases/genetics
- Infant, Premature, Diseases/metabolism
- Infant, Premature, Diseases/physiopathology
- Infant, Premature, Diseases/prevention & control
- Oxidative Stress/drug effects
Collapse
Affiliation(s)
- Yang Liu
- Department of Neonatology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China.
| | | |
Collapse
|
22
|
Surate Solaligue DE, Rodríguez-Castillo JA, Ahlbrecht K, Morty RE. Recent advances in our understanding of the mechanisms of late lung development and bronchopulmonary dysplasia. Am J Physiol Lung Cell Mol Physiol 2017; 313:L1101-L1153. [PMID: 28971976 DOI: 10.1152/ajplung.00343.2017] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 09/21/2017] [Accepted: 09/23/2017] [Indexed: 02/08/2023] Open
Abstract
The objective of lung development is to generate an organ of gas exchange that provides both a thin gas diffusion barrier and a large gas diffusion surface area, which concomitantly generates a steep gas diffusion concentration gradient. As such, the lung is perfectly structured to undertake the function of gas exchange: a large number of small alveoli provide extensive surface area within the limited volume of the lung, and a delicate alveolo-capillary barrier brings circulating blood into close proximity to the inspired air. Efficient movement of inspired air and circulating blood through the conducting airways and conducting vessels, respectively, generates steep oxygen and carbon dioxide concentration gradients across the alveolo-capillary barrier, providing ideal conditions for effective diffusion of both gases during breathing. The development of the gas exchange apparatus of the lung occurs during the second phase of lung development-namely, late lung development-which includes the canalicular, saccular, and alveolar stages of lung development. It is during these stages of lung development that preterm-born infants are delivered, when the lung is not yet competent for effective gas exchange. These infants may develop bronchopulmonary dysplasia (BPD), a syndrome complicated by disturbances to the development of the alveoli and the pulmonary vasculature. It is the objective of this review to update the reader about recent developments that further our understanding of the mechanisms of lung alveolarization and vascularization and the pathogenesis of BPD and other neonatal lung diseases that feature lung hypoplasia.
Collapse
Affiliation(s)
- David E Surate Solaligue
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; and.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, German Center for Lung Research, Giessen, Germany
| | - José Alberto Rodríguez-Castillo
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; and.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, German Center for Lung Research, Giessen, Germany
| | - Katrin Ahlbrecht
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; and.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, German Center for Lung Research, Giessen, Germany
| | - Rory E Morty
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; and .,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, German Center for Lung Research, Giessen, Germany
| |
Collapse
|