1
|
Sasidharan A, Grosche A, Xu X, Kinane TB, Angoli D, Vidyasagar S. Select amino acids recover cytokine-altered ENaC function in human bronchial epithelial cells. PLoS One 2024; 19:e0307809. [PMID: 39052685 PMCID: PMC11271875 DOI: 10.1371/journal.pone.0307809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 07/11/2024] [Indexed: 07/27/2024] Open
Abstract
The airway epithelium plays a pivotal role in regulating mucosal immunity and inflammation. Epithelial barrier function, homeostasis of luminal fluid, and mucociliary clearance are major components of mucosal defense mechanisms. The epithelial sodium channel (ENaC) is one of the key players in controlling airway fluid volume and composition, and characteristic cytokines cause ENaC and barrier dysfunctions following pulmonary infections or allergic reactions. Given the limited understanding of the requisite duration and magnitude of cytokines to affect ENaC and barrier function, available treatment options for restoring normal ENaC activity are limited. Previous studies have demonstrated that distinct amino acids can modulate epithelial ion channel activities and barrier function in intestines and airways. Here, we have investigated the time- and concentration-dependent effect of representative cytokines for Th1- (IFN-γ and TNF-α), Th2- (IL-4 and IL-13), and Treg-mediated (TGF-β1) immune responses on ENaC activity and barrier function in human bronchial epithelial cells. When cells were exposed to Th1 and Treg cytokines, ENaC activity decreased gradually while barrier function remained largely unaffected. In contrast, Th2 cytokines had an immediate and profound inhibitory effect on ENaC activity that was subsequently followed by epithelial barrier disruption. These functional changes were associated with decreased membrane protein expression of α-, β-, and γ-ENaC, and decreased mRNA levels of β- and γ-ENaC. A proprietary blend of amino acids was developed based on their ability to prevent Th2 cytokine-induced ENaC dysfunction. Exposure to the select amino acids reversed the inhibitory effect of IL-13 on ENaC activity by increasing mRNA levels of β- and γ-ENaC, and protein expression of γ-ENaC. This study indicates the beneficial effect of select amino acids on ENaC activity in an in vitro setting of Th2-mediated inflammation suggesting these amino acids as a novel therapeutic approach for correcting this condition.
Collapse
Affiliation(s)
- Anusree Sasidharan
- Department of Radiation Oncology, Shands Cancer Center, University of Florida, Gainesville, Florida, United States of America
| | - Astrid Grosche
- Department of Radiation Oncology, Shands Cancer Center, University of Florida, Gainesville, Florida, United States of America
| | - Xiaodong Xu
- Department of Radiation Oncology, Shands Cancer Center, University of Florida, Gainesville, Florida, United States of America
| | - T. Bernard Kinane
- Pediatric Pulmonary Division, Massachusetts General Hospital for Children, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
| | - Damiano Angoli
- Pediatric Pulmonary Division, College of Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Sadasivan Vidyasagar
- Department of Radiation Oncology, Shands Cancer Center, University of Florida, Gainesville, Florida, United States of America
| |
Collapse
|
2
|
Okuka N, Milinkovic N, Velickovic K, Polovina S, Sumarac-Dumanovic M, Minic R, Korčok D, Djordjevic B, Ivanovic ND. Beneficial effects of a new probiotic formulation on adipocytokines, appetite-regulating hormones, and metabolic parameters in obese women. Food Funct 2024; 15:7658-7668. [PMID: 38953736 DOI: 10.1039/d4fo01269k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Obesity is often accompanied by low-grade chronic inflammation and metabolic syndrome. It has been established that microbiota influences many physiological processes, including the development of obesity, and dysbiosis has been observed in obese individuals. In this study, we aimed to evaluate the impact of a new probiotic formulation, containing two probiotic strains and the bioactive compound octacosanol, on body weight, metabolic parameters, and concentrations of certain adipocytokines and appetite-regulating hormones in obese women. This double blind placebo-controlled supplementary intervention study included twenty-five women in the intervention group and twenty-three in the placebo group, and it lasted 12 weeks. Daily oral supplementation included 7 × 1010 CFU of Lactiplantibacillus plantarum 299v (DSM9843), 5 × 109 CFU of Saccharomyces cerevisiae var. boulardii (DBVPG6763), and 40 mg of octacosanol or placebo. Body weight, metabolic parameters, adipocytokines, and appetite-regulating hormones were assessed before (T0) and after the intervention (T1). After the intervention, significantly lower median concentrations of CRP (p = 0.005) and IL-6 (p = 0.012) were measured in the intervention group than the baseline, while the median concentrations of ghrelin (p = 0.026) and HDL-cholesterol (p = 0.03) were significantly increased. The intervention group had lower CRP levels (p = 0.023) and higher ghrelin levels (p = 0.006) than the placebo group. Significant changes in BMI between groups were not observed. In summary, although the new probiotic formulation showed beneficial effects on IL-6, CRP, HDL, and ghrelin levels, its potential effects on regulating triglyceride, insulin, and glucose levels require further studies before the novel dietary intervention could be considered a useful adjuvant therapy and an effective strategy for the management of obesity and obesity-associated comorbidities.
Collapse
Affiliation(s)
- Nina Okuka
- University of Banja Luka, Faculty of Medicine, Department of Bromatology, 78000 Banja Luka, Bosnia and Herzegovina.
| | - Neda Milinkovic
- University of Belgrade, Faculty of Pharmacy, Department of Medical Biochemistry, 11000, Belgrade, Serbia
| | - Ksenija Velickovic
- University of Belgrade, Faculty of Biology, Department of Cell and Tissue Biology, 11000 Belgrade, Serbia
| | - Snezana Polovina
- Clinic for Endocrinology, Diabetes and Diseases of Metabolism, University Clinical Center of Serbia, 11000 Belgrade, Serbia
- Faculty of Pharmacy, Novi Sad, University Business Academy, 21000 Novi Sad, Serbia
| | - Mirjana Sumarac-Dumanovic
- Clinic for Endocrinology, Diabetes and Diseases of Metabolism, University Clinical Center of Serbia, 11000 Belgrade, Serbia
- School of Medicine, University of Belgrade, Clinic for Endocrinology, Diabetes and Diseases of Metabolism, 11000 Belgrade, Serbia
| | - Rajna Minic
- Institute of Virology, Vaccines and Sera "Torlak", Department of Protein Engineering and Biochemistry, 11000 Belgrade, Serbia
| | - Davor Korčok
- Faculty of Pharmacy, Novi Sad, University Business Academy, 21000 Novi Sad, Serbia
| | - Brizita Djordjevic
- University of Belgrade, Faculty of Pharmacy, Department of Bromatology, 11000 Belgrade, Serbia
| | - Nevena Dj Ivanovic
- University of Belgrade, Faculty of Pharmacy, Department of Bromatology, 11000 Belgrade, Serbia
| |
Collapse
|
3
|
Kadia BM, Allen SJ. Effect of Pre-, Pro-, and Synbiotics on Biomarkers of Systemic Inflammation in Children: A Scoping Review. Nutrients 2024; 16:336. [PMID: 38337621 PMCID: PMC10856957 DOI: 10.3390/nu16030336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/19/2024] [Accepted: 01/19/2024] [Indexed: 02/12/2024] Open
Abstract
Systemic inflammation plays a central role in many diseases and is, therefore, an important therapeutic target. In a scoping review, we assessed the evidence base for the anti-inflammatory effects of pre-, pro-, and synbiotics in children. Of the 1254 clinical trials published in English in Ovid Medline and Cochrane Library PubMed from January 2003 to September 2022, 29 were included in the review. In six studies of healthy children (n = 1552), one reported that fructo-oligosaccharides added to infant formula significantly reduced pro-inflammatory biomarkers, and one study of a single-strain probiotic reported both anti- and pro-inflammatory effects. No effects were seen in the remaining two single-strain studies, one multi-strain probiotic, and one synbiotic study. In 23 studies of children with diseases (n = 1550), prebiotics were tested in 3, single-strain in 16, multi-strain probiotics in 6, and synbiotics in 2 studies. Significantly reduced inflammatory biomarkers were reported in 7/10 studies of atopic/allergic conditions, 3/5 studies of autoimmune diseases, 1/2 studies of preterm infants, 1 study of overweight/obesity, 2/2 studies of severe illness, and 2/3 studies of other diseases. However, only one or two of several biomarkers were often improved; increased pro-inflammatory biomarkers occurred in five of these studies, and a probiotic increased inflammatory biomarkers in a study of newborns with congenital heart disease. The evidence base for the effects of pre-, pro-, and synbiotics on systemic inflammation in children is weak. Further research is needed to determine if anti-inflammatory effects depend on the specific pre-, pro-, and synbiotic preparations, health status, and biomarkers studied.
Collapse
Affiliation(s)
| | - Stephen John Allen
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK;
| |
Collapse
|
4
|
Suswał K, Tomaszewski M, Romaniuk A, Świechowska-Starek P, Zygmunt W, Styczeń A, Romaniuk-Suswał M. Gut-Lung Axis in Focus: Deciphering the Impact of Gut Microbiota on Pulmonary Arterial Hypertension. J Pers Med 2023; 14:8. [PMID: 38276223 PMCID: PMC10817474 DOI: 10.3390/jpm14010008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/11/2023] [Accepted: 12/14/2023] [Indexed: 01/27/2024] Open
Abstract
Recent advancements in the understanding of pulmonary arterial hypertension (PAH) have highlighted the significant role of the gut microbiota (GM) in its pathogenesis. This comprehensive review delves into the intricate relationship between the GM and PAH, emphasizing the influence of gut microbial composition and the critical metabolites produced. We particularly focus on the dynamic interaction between the gut and lung, examining how microbial dysbiosis contributes to PAH development through inflammation, altered immune responses, and changes in the gut-lung axis. Noteworthy findings include variations in the ratios of key bacterial groups such as Firmicutes and Bacteroidetes in PAH and the pivotal roles of metabolites like trimethylamine N-oxide (TMAO), short-chain fatty acids (SCFAs), and serotonin in the disease's progression. Additionally, the review elucidates potential diagnostic biomarkers and novel therapeutic approaches, including the use of probiotics and fecal microbiota transplantation, which leverage the gut microbiota for managing PAH. This review encapsulates the current state of research in this field, offering insights into the potential of gut microbiota modulation as a promising strategy in PAH diagnosing and treatment.
Collapse
Affiliation(s)
- Konrad Suswał
- Department of Pulmonology, Alergollogy and Oncology, Medical University of Lublin, 20-954 Lublin, Poland;
| | - Michał Tomaszewski
- Department of Cardiology, Medical University of Lublin, 20-954 Lublin, Poland;
| | - Aleksandra Romaniuk
- Cardiology Student Scientific Circle, Academy of Silesia, 40-555 Katowice, Poland;
| | | | - Wojciech Zygmunt
- Department of Pulmonology, Alergollogy and Oncology, Medical University of Lublin, 20-954 Lublin, Poland;
| | - Agnieszka Styczeń
- Department of Cardiology, Medical University of Lublin, 20-954 Lublin, Poland;
| | - Małgorzata Romaniuk-Suswał
- Department of Psychiatry, Psychotheraphy and Early Intervention, Medical University of Lublin, 20-954 Lublin, Poland
| |
Collapse
|
5
|
Martín-Del-Campo F, Avesani CM, Stenvinkel P, Lindholm B, Cueto-Manzano AM, Cortés-Sanabria L. Gut microbiota disturbances and protein-energy wasting in chronic kidney disease: a narrative review. J Nephrol 2023; 36:873-883. [PMID: 36689170 PMCID: PMC9869315 DOI: 10.1007/s40620-022-01560-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 12/18/2022] [Indexed: 01/24/2023]
Abstract
Protein-energy wasting (PEW) is common in patients with chronic kidney disease (CKD) and is associated with increased morbidity and mortality, and lower quality of life. It is a complex syndrome, in which inflammation and retention of uremic toxins are two main factors. Causes of inflammation and uremic toxin retention in CKD are multiple; however, gut dysbiosis plays an important role, serving as a link between those entities and PEW. Besides, there are several pathways by which microbiota may influence PEW, e.g., through effects on appetite mediated by microbiota-derived proteins and hormonal changes, or by impacting skeletal muscle via a gut-muscle axis. Hence, microbiota disturbances may influence PEW independently of its relationship with local and systemic inflammation. A better understanding of the complex interrelationships between microbiota and the host may help to explain how changes in the gut affect distant organs and systems of the body and could potentially lead to the development of new strategies targeting the microbiota to improve nutrition and clinical outcomes in CKD patients. In this review, we describe possible interactions of gut microbiota with nutrient metabolism, energy balance, hunger/satiety signals and muscle depletion, all of which are strongly related to PEW in CKD patients.
Collapse
Affiliation(s)
- Fabiola Martín-Del-Campo
- Unidad de Investigación Médica en Enfermedades Renales, Hospital de Especialidades, Centro Médico Nacional de Occidente, Instituto Mexicano del Seguro Social, Guadalajara, Jalisco, Mexico
| | - Carla Maria Avesani
- Division of Renal Medicine and Baxter Novum, Department of Clinical Science, Technology and Intervention, Karolinska Institutet, M99 Karolinska University Hospital Huddinge, 14186, Stockholm, Sweden
| | - Peter Stenvinkel
- Division of Renal Medicine and Baxter Novum, Department of Clinical Science, Technology and Intervention, Karolinska Institutet, M99 Karolinska University Hospital Huddinge, 14186, Stockholm, Sweden
| | - Bengt Lindholm
- Division of Renal Medicine and Baxter Novum, Department of Clinical Science, Technology and Intervention, Karolinska Institutet, M99 Karolinska University Hospital Huddinge, 14186, Stockholm, Sweden.
| | - Alfonso M Cueto-Manzano
- Unidad de Investigación Médica en Enfermedades Renales, Hospital de Especialidades, Centro Médico Nacional de Occidente, Instituto Mexicano del Seguro Social, Guadalajara, Jalisco, Mexico
| | - Laura Cortés-Sanabria
- Unidad de Investigación Médica en Enfermedades Renales, Hospital de Especialidades, Centro Médico Nacional de Occidente, Instituto Mexicano del Seguro Social, Guadalajara, Jalisco, Mexico
| |
Collapse
|
6
|
Pathobiology, Severity, and Risk Stratification of Pediatric Acute Respiratory Distress Syndrome: From the Second Pediatric Acute Lung Injury Consensus Conference. Pediatr Crit Care Med 2023; 24:S12-S27. [PMID: 36661433 DOI: 10.1097/pcc.0000000000003156] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
OBJECTIVES To review the literature for studies published in children on the pathobiology, severity, and risk stratification of pediatric acute respiratory distress syndrome (PARDS) with the intent of guiding current medical practice and identifying important areas for future research related to severity and risk stratification. DATA SOURCES Electronic searches of PubMed and Embase were conducted from 2013 to March 2022 by using a combination of medical subject heading terms and text words to capture the pathobiology, severity, and comorbidities of PARDS. STUDY SELECTION We included studies of critically ill patients with PARDS that related to the severity and risk stratification of PARDS using characteristics other than the oxygenation defect. Studies using animal models, adult only, and studies with 10 or fewer children were excluded from our review. DATA EXTRACTION Title/abstract review, full-text review, and data extraction using a standardized data collection form. DATA SYNTHESIS The Grading of Recommendations Assessment, Development, and Evaluation approach was used to identify and summarize relevant evidence and develop recommendations for clinical practice. There were 192 studies identified for full-text extraction to address the relevant Patient/Intervention/Comparator/Outcome questions. One clinical recommendation was generated related to the use of dead space fraction for risk stratification. In addition, six research statements were generated about the impact of age on acute respiratory distress syndrome pathobiology and outcomes, addressing PARDS heterogeneity using biomarkers to identify subphenotypes and endotypes, and use of standardized ventilator, physiologic, and nonpulmonary organ failure measurements for future research. CONCLUSIONS Based on an extensive literature review, we propose clinical management and research recommendations related to characterization and risk stratification of PARDS severity.
Collapse
|
7
|
Probiotics in Critical Illness: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Crit Care Med 2022; 50:1175-1186. [PMID: 35608319 DOI: 10.1097/ccm.0000000000005580] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
OBJECTIVES To determine the safety and efficacy of probiotics or synbiotics on morbidity and mortality in critically ill adults and children. DATA SOURCES We searched MEDLINE, EMBASE, CENTRAL, and unpublished sources from inception to May 4, 2021. STUDY SELECTION We performed a systematic search for randomized controlled trials (RCTs) that compared enteral probiotics or synbiotics to placebo or no treatment in critically ill patients. We screened studies independently and in duplicate. DATA EXTRACTION Independent reviewers extracted data in duplicate. A random-effects model was used to pool data. We assessed the overall certainty of evidence for each outcome using the Grading Recommendations Assessment, Development, and Evaluation approach. DATA SYNTHESIS Sixty-five RCTs enrolled 8,483 patients. Probiotics may reduce ventilator-associated pneumonia (VAP) (relative risk [RR], 0.72; 95% CI, 0.59 to 0.89 and risk difference [RD], 6.9% reduction; 95% CI, 2.7-10.2% fewer; low certainty), healthcare-associated pneumonia (HAP) (RR, 0.70; 95% CI, 0.55-0.89; RD, 5.5% reduction; 95% CI, 8.2-2.0% fewer; low certainty), ICU length of stay (LOS) (mean difference [MD], 1.38 days fewer; 95% CI, 0.57-2.19 d fewer; low certainty), hospital LOS (MD, 2.21 d fewer; 95% CI, 1.18-3.24 d fewer; low certainty), and duration of invasive mechanical ventilation (MD, 2.53 d fewer; 95% CI, 1.31-3.74 d fewer; low certainty). Probiotics probably have no effect on mortality (RR, 0.95; 95% CI, 0.87-1.04 and RD, 1.1% reduction; 95% CI, 2.8% reduction to 0.8% increase; moderate certainty). Post hoc sensitivity analyses without high risk of bias studies negated the effect of probiotics on VAP, HAP, and hospital LOS. CONCLUSIONS Low certainty RCT evidence suggests that probiotics or synbiotics during critical illness may reduce VAP, HAP, ICU and hospital LOS but probably have no effect on mortality.
Collapse
|
8
|
Olimpio F, da Silva JRM, Vieira RP, Oliveira CR, Aimbire F. Lacticaseibacillus rhamnosus modulates the inflammatory response and the subsequent lung damage in a murine model of acute lung inflammation. Clinics (Sao Paulo) 2022; 77:100021. [PMID: 35303586 PMCID: PMC8931357 DOI: 10.1016/j.clinsp.2022.100021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 11/05/2021] [Indexed: 11/25/2022] Open
Abstract
OBJECTIVE The present study investigated the anti-inflammatory effect of the probiotic Lacticaseibacillus rhamnosus (Lr) on lung inflammation induced by Lipopolysaccharide (LPS) of Escherichia coli in C57BL/6 mice. METHODS C57BL/6 mice were divided into four groups: control, LPS, Lr (1 day) + LPS, and Lr (14 days) + LPS. Total and differential cells from Bronchoalveolar Lavage Fluid (BALF) were counted in a Neubauer 40X chamber, and pro-and anti-inflammatory cytokines (IL-1β, IL-6, CXCL-1, TNF-α, TGF-β, and IL-10) were measured by ELISA assay. The analysis of whole leukocytes in blood was performed using the automated system Sysmex 800i. Morphometry of pulmonary tissue evaluated alveolar hemorrhage, alveolar collapse, and inflammatory cells. Pulmonary vascular permeability was assessed by Evans blue dye extravasation, and bronchoconstriction was evaluated in a tissue bath station. The transcription factor NF-kB was evaluated by ELISA, and its gene expression and TLR-2, TLR-4, MMP-9, MMP-12, and TIMP by PCR. RESULTS The probiotic Lr had a protective effect against the inflammatory responses induced by LPS. Lr significantly reduced pro-inflammatory cells in the airways, lung parenchyma, and blood leukocytes. Furthermore, Lr reduced the production of pro-inflammatory cytokines and chemokines in BALF and the expression of TLRs, MMPs, and NF-kB in lung tissue and maintained the expression of TIMP in treated animals promoting a protective effect on lung tissue. CONCLUSIONS The results of the study indicate that pre-treatment with the probiotic Lr may be a promising way to mitigate lung inflammation in endotoxemia.
Collapse
Affiliation(s)
- Fabiana Olimpio
- Department of Medicine, Programa de Pós-graduação em Medicina Translacional, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil.
| | - José Roberto Mateus da Silva
- Institute of Science and Technology, Programa de Pós-graduação em Engenharia Biomédica, Universidade Federal de São Paulo (UNIFESP), São José dos Campos, SP, Brazil
| | - Rodolfo P Vieira
- Department of Human Movement Sciences, Universidade Federal de São Paulo (UNIFESP), Santos, SP, Brazil
| | - Carlos R Oliveira
- Institute of Science and Technology, Programa de Pós-graduação em Engenharia Biomédica, Universidade Federal de São Paulo (UNIFESP), São José dos Campos, SP, Brazil
| | - Flavio Aimbire
- Department of Medicine, Programa de Pós-graduação em Medicina Translacional, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil; Institute of Science and Technology, Universidade Federal de São Paulo (UNIFESP), São José dos Campos, SP, Brazil
| |
Collapse
|
9
|
Abstract
Chloride transport across cell membranes is broadly involved in epithelial fluid transport, cell volume and pH regulation, muscle contraction, membrane excitability, and organellar acidification. The human genome encodes at least 53 chloride-transporting proteins with expression in cell plasma or intracellular membranes, which include chloride channels, exchangers, and cotransporters, some having broad anion specificity. Loss-of-function mutations in chloride transporters cause a wide variety of human diseases, including cystic fibrosis, secretory diarrhea, kidney stones, salt-wasting nephropathy, myotonia, osteopetrosis, hearing loss, and goiter. Although impactful advances have been made in the past decade in drug treatment of cystic fibrosis using small molecule modulators of the defective cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel, other chloride channels and solute carrier proteins (SLCs) represent relatively underexplored target classes for drug discovery. New opportunities have emerged for the development of chloride transport modulators as potential therapeutics for secretory diarrheas, constipation, dry eye disorders, kidney stones, polycystic kidney disease, hypertension, and osteoporosis. Approaches to chloride transport-targeted drug discovery are reviewed herein, with focus on chloride channel and exchanger classes in which recent preclinical advances have been made in the identification of small molecule modulators and in proof of concept testing in experimental animal models.
Collapse
Affiliation(s)
- Alan S Verkman
- Department of Medicine, University of California, San Francisco, California.,Department of Physiology, University of California, San Francisco, California
| | - Luis J V Galietta
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy.,Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| |
Collapse
|
10
|
Wang S, Tang Z, Zheng X, Deng J, Wang Z. Efficacy of human immunoglobulin injection and effects on serum inflammatory cytokines in neonates with acute lung injury. Exp Ther Med 2021; 22:931. [PMID: 34306200 PMCID: PMC8281239 DOI: 10.3892/etm.2021.10363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 10/15/2020] [Indexed: 12/02/2022] Open
Abstract
The present study aimed to explore the efficacy of intravenous immunoglobulin (IVIG) injection in neonates with acute lung injury (ALI) and assess its effects on serum inflammatory cytokine levels. The research subjects were 140 neonates with ALI who were evenly distributed into a control group (COG) and a study group (STG). The COG patients were treated routinely, whereas patients in the STG were administered IVIG in addition to the standard treatment received by the COG. The arterial partial pressure of oxygen (PaO2), PaO2/fraction of inspired oxygen (FIO2), mechanical ventilation time and hospitalization time were compared between the two groups. ELISA was used to determine the levels of interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) in the patients before treatment and at 12, 24 and 36 h after treatment. The Kaplan-Meier method was used to analyze the survival of the patients, including their survival for 30 days after treatment. The patients were divided into high and low cytokine expression groups based on their mean expression levels of serum IL-6 and TNF-α before treatment. After treatment, PaO2 and PaO2/FiO2 were significantly higher and mechanical ventilation and hospitalization time were reduced in the STG in comparison with the COG (all P<0.001). At 12, 24 and 36 h after treatment, serum IL-6 and TNF-α levels in the STG were lower than those in the COG (both P<0.05). The 30-day survival rate after treatment was not significantly different between the two groups (P>0.05). The 30-day survival rate in the high IL-6 and high TNF-α expression COG was lower than that in the low IL-6 and low TNF-α expression COG (both P<0.05). The results of the present study indicate that IVIG may improve pulmonary gas exchange, shorten the course of disease and reduce the inflammatory response in neonates with ALI.
Collapse
Affiliation(s)
- Shaohua Wang
- Neonatal Intensive Care Unit, Women and Children Health Institute of Futian, University of South China, Shenzen, Guangdong 518033, P.R. China
| | - Zanmei Tang
- Neonatal Intensive Care Unit, Women and Children Health Institute of Futian, University of South China, Shenzen, Guangdong 518033, P.R. China
| | - Xuemei Zheng
- Neonatal Intensive Care Unit, Women and Children Health Institute of Futian, University of South China, Shenzen, Guangdong 518033, P.R. China
| | - Jian Deng
- Neonatal Intensive Care Unit, Women and Children Health Institute of Futian, University of South China, Shenzen, Guangdong 518033, P.R. China
| | - Zhangxing Wang
- Neonatal Intensive Care Unit, Longhua People's Hospital, Shenzhen, Guangdong 518109, P.R. China
| |
Collapse
|
11
|
Al-Yassir F, Khoder G, Sugathan S, Saseedharan P, Al Menhali A, Karam SM. Modulation of Stem Cell Progeny by Probiotics during Regeneration of Gastric Mucosal Erosions. BIOLOGY 2021; 10:596. [PMID: 34203400 PMCID: PMC8301058 DOI: 10.3390/biology10070596] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/23/2021] [Accepted: 06/25/2021] [Indexed: 02/07/2023]
Abstract
Patients with gastric mucosal erosions are predisposed to chronic gastritis, ulcer or even cancer. The repair of mucosal erosions involves several events including proliferation of gastric epithelial stem cells. The aim of this study was to investigate the effects of the probiotic mixture of De Simone Formulation on gastric epithelial stem cell lineages in mouse models of gastric mucosal erosions. Gastric erosions were induced by a single oral gavage of 80% ethanol containing 15 mg/mL acetylsalicylic acid (5 mL/kg) following a daily dose of probiotic mixture (5 mg/day/mouse) for 10 days. In another protocol, erosions were induced by a daily gavage of acetylsalicylic acid (400 mg/kg/day/mouse) for 5 days before or after daily administration of probiotic mixture for 5 days. Control mice received water gavage for 10 days. All mice were injected with bromodeoxyuridine two hours before sacrifice to label S-phase cells. The stomachs of all mice were processed for histological examination, lectin binding, and immunohistochemical analysis. The results reveal that mice that received probiotics before or after the induction of erosion showed a decrease in erosion index with an increase in gastric epithelial stem/progenitor cell proliferation and enhanced production of mucus, trefoil factors, and ghrelin by mucous and enteroendocrine cell lineages. These mice also showed restoration of the amount of H+,K+-ATPase and pepsinogen involved in the production of the harsh acidic environment by parietal and chief cell lineages. In conclusion, this study demonstrates the beneficial effects of probiotics against gastric mucosal erosion and highlights the involvement and modulation of proliferative stem cells and their multiple glandular epithelial cell lineages.
Collapse
Affiliation(s)
- Farah Al-Yassir
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain 17666, United Arab Emirates; (F.A.-Y.); (S.S.); (P.S.)
- Department of Biological Sciences, Faculty of Science, Debbieh Campus, Beirut Arab University, P.O. Box 11-50-20 Riad El Solh 11072809, Beirut, Lebanon
| | - Ghalia Khoder
- Department of Pharmaceutics and Pharmaceutical Technology, Sharjah Institute for Medical Research, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Subi Sugathan
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain 17666, United Arab Emirates; (F.A.-Y.); (S.S.); (P.S.)
| | - Prashanth Saseedharan
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain 17666, United Arab Emirates; (F.A.-Y.); (S.S.); (P.S.)
| | - Asma Al Menhali
- Department of Biology, College of Science, United Arab Emirates University, Al Ain 15551, United Arab Emirates
- Zayed Research Center for Health Sciences, United Arab Emirates University, Al Ain 17666, United Arab Emirates
| | - Sherif M. Karam
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain 17666, United Arab Emirates; (F.A.-Y.); (S.S.); (P.S.)
- Zayed Research Center for Health Sciences, United Arab Emirates University, Al Ain 17666, United Arab Emirates
| |
Collapse
|
12
|
Hartmann JE, Albrich WC, Dmitrijeva M, Kahlert CR. The Effects of Corticosteroids on the Respiratory Microbiome: A Systematic Review. Front Med (Lausanne) 2021; 8:588584. [PMID: 33777968 PMCID: PMC7988087 DOI: 10.3389/fmed.2021.588584] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 02/08/2021] [Indexed: 12/20/2022] Open
Abstract
Background: Since its discovery, the respiratory microbiome has been implicated in the pathogenesis of multiple pulmonary diseases. Even though corticosteroid treatments are widely prescribed for pulmonary diseases, their effects on the respiratory microbiome are still poorly understood. This systematic review summarizes the current understanding of the effects of corticosteroids on the microbiome of the airways. Research Question: How does treatment with corticosteroids impact the respiratory microbiome? Study Design and Methods: According to the PRISMA guidelines, Embase, Medline, and the Cochrane Central Register of Controlled Trials (CENTRAL) databases were systematically searched for all observational or randomized-controlled studies comparing the microbiome parameters of patients receiving corticosteroids to those of controls. The primary outcomes of interest were changes in the diversity, composition and total burden of the respiratory microbiome as assessed by culture-independent molecular methods. Results: Out of 1,943 identified reports, five studies could be included: two on patients with asthma, two on patients with chronic obstructive pulmonary disease and one on patients with chronic rhinosinusitis. The studies were highly heterogeneous with regards to the methods used and the populations investigated. Microbiome diversity increased with corticosteroids at least transiently in three studies and decreased in one study. The effects of corticosteroids on the composition of the respiratory microbiome were significant but without a clear shared direction. A significant increase in microbial burden after corticosteroids was seen in one study. Interpretation: Data on the effect of corticosteroids on the respiratory microbiome are still limited, with considerable heterogeneity between studies. However, available data suggest that corticosteroid treatment may have significant effects on the composition and possibly the diversity of the respiratory microbiome. Further research is needed to better understand the influence of corticosteroids on the respiratory microbiome and thus better target its widespread therapeutic use.
Collapse
Affiliation(s)
- Julia E. Hartmann
- Division of Infectious Diseases/Hospital Epidemiology, Kantonsspital St. Gallen, St.Gallen, Switzerland
| | - Werner C. Albrich
- Division of Infectious Diseases/Hospital Epidemiology, Kantonsspital St. Gallen, St.Gallen, Switzerland
| | - Marija Dmitrijeva
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
- Swiss Institute of Bioinformatics, Zurich, Switzerland
| | - Christian R. Kahlert
- Division of Infectious Diseases/Hospital Epidemiology, Kantonsspital St. Gallen, St.Gallen, Switzerland
- Division of Infectious Diseases/Hospital Epidemiology, Children's Hospital of Eastern Switzerland, St. Gallen, Switzerland
| |
Collapse
|
13
|
Cardinale V, Capurso G, Ianiro G, Gasbarrini A, Arcidiacono PG, Alvaro D. Intestinal permeability changes with bacterial translocation as key events modulating systemic host immune response to SARS-CoV-2: A working hypothesis. Dig Liver Dis 2020; 52:1383-1389. [PMID: 33023827 PMCID: PMC7494274 DOI: 10.1016/j.dld.2020.09.009] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 08/16/2020] [Accepted: 09/02/2020] [Indexed: 12/15/2022]
Abstract
The microbiota-gut-liver-lung axis plays a bidirectional role in the pathophysiology of a number of infectious diseases. During the course of severe acute respiratory syndrome coronavirus 1 (SARS-CoV-1) and 2 (SARS-CoV-2) infection, this pathway is unbalanced due to intestinal involvement and systemic inflammatory response. Moreover, there is convincing preliminary evidence linking microbiota-gut-liver axis perturbations, proinflammatory status, and endothelial damage in noncommunicable preventable diseases with coronavirus disease 2019 (Covid-19) severity. Intestinal damage due to SARS-CoV-2 infection, systemic inflammation-induced dysfunction, and IL-6-mediated diffuse vascular damage may increase intestinal permeability and precipitate bacterial translocation. The systemic release of damage- and pathogen-associated molecular patterns (e.g. lipopolysaccharides) and consequent immune-activation may in turn auto-fuel vicious cycles of systemic inflammation and tissue damage. Thus, intestinal bacterial translocation may play an additive/synergistic role in the cytokine release syndrome in Covid-19. This review provides evidence on gut-liver axis involvement in Covid-19 as well as insights into the hypothesis that intestinal endotheliitis and permeability changes with bacterial translocation are key pathophysiologic events modulating systemic inflammatory response. Moreover, it presents an overview of readily applicable measures for the modulation of the gut-liver axis and microbiota in clinical practice.
Collapse
Affiliation(s)
- Vincenzo Cardinale
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Viale dell'Università 37, Rome 00185, Italy.
| | - Gabriele Capurso
- Pancreato-biliary Endoscopy and Endosonography Division, Pancreas Translational and Clinical Research Center, San Raffaele Scientific Institute IRCCS, Milan, Italy
| | - Gianluca Ianiro
- Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Catholic University of Sacred Heart, Rome, Italy
| | - Antonio Gasbarrini
- Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Catholic University of Sacred Heart, Rome, Italy
| | - Paolo Giorgio Arcidiacono
- Pancreato-biliary Endoscopy and Endosonography Division, Pancreas Translational and Clinical Research Center, San Raffaele Scientific Institute IRCCS, Milan, Italy
| | - Domenico Alvaro
- Department of Translational and Precision Medicine, Sapienza University of Rome, Viale dell'Università 37, Rome 00185, Italy
| |
Collapse
|
14
|
Raghay K, Akki R, Bensaid D, Errami M. Ghrelin as an anti-inflammatory and protective agent in ischemia/reperfusion injury. Peptides 2020; 124:170226. [PMID: 31786283 DOI: 10.1016/j.peptides.2019.170226] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 11/27/2019] [Accepted: 11/27/2019] [Indexed: 02/06/2023]
Abstract
Ischemia/reperfusion (I/R) continue to be the most frequent cause of damaged tissues. Injured tissues resulted from the first ischemic insult, which is determined by the interruption in the blood supply, followed by subsequent impairment induced by reperfusion. In addition, ischemia-reperfusion injury is mediated by tumor necrosis factor (TNF) and other cytokines that activate complements and proteases responsible for free radical production. However, earlier studies have reported the protective roles of bioactive peptides during ischemia reperfusion injury. In fact, ghrelin is a peptide hormone discovered since 1999 as GH secretagogue and its production was identified in gastric X/A-like endocrine cells in rats and P/D1 type cells in humans. To date, this peptide receives growing attention due to its pleiotropic action in the organism and its role in maintaining energy homeostasis. Ghrelin is also involved in stress responses, assuming a modulatory action on immune pathways. Previous studies have identified many other functions related to an anti-inflammatory role in ischemia reperfusion injury. Under these challenging conditions, studies described acylated and unacylated ghrelin in activation and/or inhibition processes related to ischemia-reperfusion injury. The aim of this article is to provide a minireview about ghrelin mechanisms involved in the proinflammatory response of I/R injury. However, the regulatory processes of ghrelin in this pathologic event are still very limited and warrant further investigation.
Collapse
Affiliation(s)
- K Raghay
- Department of Biology, Faculty of Sciences, Abdelmalek Essaadi University, Tetouan, Morocco.
| | - R Akki
- Department of Biology, Faculty of Sciences, Abdelmalek Essaadi University, Tetouan, Morocco.
| | - D Bensaid
- Department of Biology, Faculty of Sciences, Abdelmalek Essaadi University, Tetouan, Morocco.
| | - M Errami
- Department of Biology, Faculty of Sciences, Abdelmalek Essaadi University, Tetouan, Morocco.
| |
Collapse
|
15
|
Effects of probiotic therapy on serum inflammatory markers: A systematic review and meta-analysis. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.01.051] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|