1
|
Aziz A, Baharin MF, Fauzi MY, Abdul Hamid FS, Nadarajaw T, Ahmad R, Hashim H. Rare cause of transfusion-dependent hemolytic anemia: A case report of HbE/Hb Nottingham and literature review. Pediatr Blood Cancer 2022; 69:e29629. [PMID: 35253358 DOI: 10.1002/pbc.29629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 02/08/2022] [Accepted: 02/09/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Aisyah Aziz
- Hematology Unit, Cancer Research Centre, Institute for Medical Research (IMR), National Institute of Health (NIH), Ministry of Health Malaysia, Shah Alam, Selangor, Malaysia
| | - Mohd Farid Baharin
- Immunodeficiency & Immunogenetics Unit, Allergy & Immunology Research Centre, Institute for Medical Research (IMR), National Institute of Health (NIH), Ministry of Health Malaysia, Shah Alam, Selangor, Malaysia
| | - Muhammad Yusri Fauzi
- Hematology Unit, Cancer Research Centre, Institute for Medical Research (IMR), National Institute of Health (NIH), Ministry of Health Malaysia, Shah Alam, Selangor, Malaysia
| | - Faidatul Syazlin Abdul Hamid
- Hematology Unit, Cancer Research Centre, Institute for Medical Research (IMR), National Institute of Health (NIH), Ministry of Health Malaysia, Shah Alam, Selangor, Malaysia
| | - Thiyagar Nadarajaw
- Department of Pediatrics, Hospital Sultanah Bahiyah (HSB), Alor Setar, Kedah, Malaysia
| | - Rahimah Ahmad
- Hematology Unit, Cancer Research Centre, Institute for Medical Research (IMR), National Institute of Health (NIH), Ministry of Health Malaysia, Shah Alam, Selangor, Malaysia
| | - Hafizah Hashim
- Department of Pathology, Hospital Sultanah Bahiyah (HSB), Alor Setar, Kedah, Malaysia
| |
Collapse
|
2
|
Han G, Cao C, Yang X, Zhao GW, Hu XJ, Yu DL, Yang RF, Yang K, Zhang YY, Wang WT, Liu XZ, Xu P, Liu XH, Chen P, Xue Z, Liu DP, Lv X. Nrf2 expands the intracellular pool of the chaperone AHSP in a cellular model of β-thalassemia. Redox Biol 2022; 50:102239. [PMID: 35092867 PMCID: PMC8801382 DOI: 10.1016/j.redox.2022.102239] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/21/2021] [Accepted: 01/14/2022] [Indexed: 12/30/2022] Open
Abstract
In β-thalassemia, free α-globin chains are unstable and tend to aggregate or degrade, releasing toxic heme, porphyrins and iron, which produce reactive oxygen species (ROS). α-Hemoglobin-stabilizing protein (AHSP) is a potential modifier of β-thalassemia due to its ability to escort free α-globin and inhibit the cellular production of ROS. The influence of AHSP on the redox equilibrium raises the question of whether AHSP expression is regulated by components of ROS signaling pathways and/or canonical redox proteins. Here, we report that AHSP expression in K562 cells could be stimulated by NFE2-related factor 2 (Nrf2) and its agonist tert-butylhydroquinone (tBHQ). This tBHQ-induced increase in AHSP expression was also observed in Ter119+ mouse erythroblasts at each individual stage during terminal erythroid differentiation. We further report that the AHSP level was elevated in α-globin-overexpressing K562 cells and staged erythroblasts from βIVS-2-654 thalassemic mice. tBHQ treatment partially alleviated, whereas Nrf2 or AHSP knockdown exacerbated, α-globin precipitation and ROS production in fetal liver-derived thalassemic erythroid cells. MafG and Nrf2 occupancy at the MARE-1 site downstream of the AHSP transcription start site was detected in K562 cells. Finally, we show that MafG facilitated the activation of the AHSP gene in K562 cells by Nrf2. Our results demonstrate Nrf2-mediated feedback regulation of AHSP in response to excess α-globin, as occurs in β-thalassemia.
Collapse
|
3
|
Proteome of Stored RBC Membrane and Vesicles from Heterozygous Beta Thalassemia Donors. Int J Mol Sci 2021; 22:ijms22073369. [PMID: 33806028 PMCID: PMC8037027 DOI: 10.3390/ijms22073369] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/19/2021] [Accepted: 03/22/2021] [Indexed: 01/19/2023] Open
Abstract
Genetic characteristics of blood donors may impact the storability of blood products. Despite higher basal stress, red blood cells (RBCs) from eligible donors that are heterozygous for beta-thalassemia traits (βThal+) possess a differential nitrogen-related metabolism, and cope better with storage stress compared to the control. Nevertheless, not much is known about how storage impacts the proteome of membrane and extracellular vesicles (EVs) in βThal+. For this purpose, RBC units from twelve βThal+ donors were studied through proteomics, immunoblotting, electron microscopy, and functional ELISA assays, versus units from sex- and aged-matched controls. βThal+ RBCs exhibited less irreversible shape modifications. Their membrane proteome was characterized by different levels of structural, lipid raft, transport, chaperoning, redox, and enzyme components. The most prominent findings include the upregulation of myosin proteoforms, arginase-1, heat shock proteins, and protein kinases, but the downregulation of nitrogen-related transporters. The unique membrane proteome was also mirrored, in part, to that of βThal+ EVs. Network analysis revealed interesting connections of membrane vesiculation with storage and stress hemolysis, along with proteome control modulators of the RBC membrane. Our findings, which are in line with the mild but consistent oxidative stress these cells experience in vivo, provide insight into the physiology and aging of stored βThal+ RBCs.
Collapse
|
4
|
Fujii J, Homma T, Kobayashi S, Warang P, Madkaikar M, Mukherjee MB. Erythrocytes as a preferential target of oxidative stress in blood. Free Radic Res 2021; 55:562-580. [PMID: 33427524 DOI: 10.1080/10715762.2021.1873318] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Red blood cells (RBC) are specifically differentiated to transport oxygen and carbon dioxide in the blood and they lack most organelles, including mitochondria. The autoxidation of hemoglobin constitutes a major source of reactive oxygen species (ROS). Nitric oxide, which is produced by endothelial nitric oxide synthase (NOS3) or via the hemoglobin-mediated conversion of nitrite, interacts with ROS and results in the production of reactive nitrogen oxide species. Herein we present an overview of anemic diseases that are closely related to oxidative damage. Because the compensation of proteins by means of gene expression does not proceed in enucleated cells, antioxidative and redox systems play more important roles in maintaining the homeostasis of RBC against oxidative insult compared to ordinary cells. Defects in hemoglobin and enzymes that are involved in energy production and redox reactions largely trigger oxidative damage to RBC. The results of studies using genetically modified mice suggest that antioxidative enzymes, notably superoxide dismutase 1 and peroxiredoxin 2, play essential roles in coping with oxidative damage in erythroid cells, and their absence limits erythropoiesis, the life-span of RBC and consequently results in the development of anemia. The degeneration of the machinery involved in the proteolytic removal of damaged proteins appears to be associated with hemolytic events. The ubiquitin-proteasome system is the dominant machinery, not only for the proteolytic removal of damaged proteins in erythroid cells but also for the development of erythropoiesis. Hence, despite the fact that it is less abundant in RBC compared to ordinary cells, the aberrant ubiquitin-proteasome system may be associated with the development of anemic diseases via the accumulation of damaged proteins, as typified in sickle cell disease, and impaired erythropoiesis.
Collapse
Affiliation(s)
- Junichi Fujii
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Yamagata University, Yamagata, Japan
| | - Takujiro Homma
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Yamagata University, Yamagata, Japan
| | - Sho Kobayashi
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Yamagata University, Yamagata, Japan
| | - Prashant Warang
- ICMR - National Institute of Immunohaematology, Mumbai, India
| | | | | |
Collapse
|
5
|
Taunk K, Kalita B, Kale V, Chanukuppa V, Naiya T, Zingde SM, Rapole S. The development and clinical applications of proteomics: an Indian perspective. Expert Rev Proteomics 2020; 17:433-451. [PMID: 32576061 DOI: 10.1080/14789450.2020.1787157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
INTRODUCTION Proteomic research has been extensively used to identify potential biomarkers or targets for various diseases. Advances in mass spectrometry along with data analytics have led proteomics to become a powerful tool for exploring the critical molecular players associated with diseases, thereby, playing a significant role in the development of proteomic applications for the clinic. AREAS COVERED This review presents recent advances in the development and clinical applications of proteomics in India toward understanding various diseases including cancer, metabolic diseases, and reproductive diseases. Keywords combined with 'clinical proteomics in India' 'proteomic research in India' and 'mass spectrometry' were used to search PubMed. EXPERT OPINION The past decade has seen a significant increase in research in clinical proteomics in India. This approach has resulted in the development of proteomics-based marker technologies for disease management in the country. The majority of these investigations are still in the discovery phase and efforts have to be made to address the intended clinical use so that the identified potential biomarkers reach the clinic. To move toward this necessity, there is a pressing need to establish some key infrastructure requirements and meaningful collaborations between the clinicians and scientists which will enable more effective solutions to address health issues specific to India.
Collapse
Affiliation(s)
- Khushman Taunk
- Proteomics Lab, National Centre for Cell Science , Pune, Maharashtra, India.,Department of Biotechnology, Maulana Abul Kalam Azad University of Technology, West Bengal , Haringhata, West Bengal, India
| | - Bhargab Kalita
- Proteomics Lab, National Centre for Cell Science , Pune, Maharashtra, India
| | - Vaikhari Kale
- Proteomics Lab, National Centre for Cell Science , Pune, Maharashtra, India
| | | | - Tufan Naiya
- Department of Biotechnology, Maulana Abul Kalam Azad University of Technology, West Bengal , Haringhata, West Bengal, India
| | - Surekha M Zingde
- CH3-53, Kendriya Vihar, Sector 11, Kharghar , Navi Mumbai, Maharashtra, India
| | - Srikanth Rapole
- Proteomics Lab, National Centre for Cell Science , Pune, Maharashtra, India
| |
Collapse
|
6
|
Sumera A, Anuar ND, Radhakrishnan AK, Ibrahim H, Rutt NH, Ismail NH, Tan TM, Baba AA. A Novel Method to Identify Autoantibodies against Putative Target Proteins in Serum from beta-Thalassemia Major: A Pilot Study. Biomedicines 2020; 8:E97. [PMID: 32357536 PMCID: PMC7277850 DOI: 10.3390/biomedicines8050097] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/22/2020] [Accepted: 04/23/2020] [Indexed: 12/31/2022] Open
Abstract
Abnormal immune reactivity in patients with beta-thalassemia (beta-thal) major can be associated with poor prognosis. Immunome protein-array analysis represents a powerful approach to identify novel biomarkers. The Sengenics Immunome Protein Array platform was used for high-throughput quantification of autoantibodies in 12 serum samples collected from nine beta-thal major patients and three non-thalassemia controls, which were run together with two pooled normal sera (Sengenics Internal QC samples). To obtain more accurate and reliable results, the evaluation of the biological relevance of the shortlisted biomarkers was analyzed using an Open Target Platform online database. Elevated autoantibodies directed against 23 autoantigens on the immunome array were identified and analyzed using a penetrance fold change-based bioinformatics method. Understanding the autoantibody profile of beta-thal major patients would help to further understand the pathogenesis of the disease. The identified autoantigens may serve as potential biomarkers for the prognosis of beta-thal major.
Collapse
Affiliation(s)
- Afshan Sumera
- School of Medicine, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia;
| | - Nur Diana Anuar
- Sengenics Corporation Pte Ltd., Singapore 409051, Singapore; (N.D.A.); (N.H.R.); (N.H.I.); (T.-M.T.)
| | - Ammu Kutty Radhakrishnan
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Sunway 47500, Malaysia;
| | - Hishamshah Ibrahim
- Paediatrics Department, Kuala Lumpur General Hospital, Jalan Ipoh, Kuala Lumpur 50586, Malaysia;
| | - Nurul H. Rutt
- Sengenics Corporation Pte Ltd., Singapore 409051, Singapore; (N.D.A.); (N.H.R.); (N.H.I.); (T.-M.T.)
| | - Nur Hafiza Ismail
- Sengenics Corporation Pte Ltd., Singapore 409051, Singapore; (N.D.A.); (N.H.R.); (N.H.I.); (T.-M.T.)
| | - Ti-Myen Tan
- Sengenics Corporation Pte Ltd., Singapore 409051, Singapore; (N.D.A.); (N.H.R.); (N.H.I.); (T.-M.T.)
| | - Abdul Aziz Baba
- School of Medicine, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia;
| |
Collapse
|
7
|
Chanpeng P, Svasti S, Paiboonsukwong K, Smith DR, Leecharoenkiat K. Platelet proteome reveals specific proteins associated with platelet activation and the hypercoagulable state in β-thalassmia/HbE patients. Sci Rep 2019; 9:6059. [PMID: 30988349 PMCID: PMC6465338 DOI: 10.1038/s41598-019-42432-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 03/29/2019] [Indexed: 12/24/2022] Open
Abstract
A hypercoagulable state leading to a high risk of a thrombotic event is one of the most common complications observed in β-thalassemia/HbE disease, particularly in patients who have undergone a splenectomy. However, the hypercoagulable state, as well as the molecular mechanism of this aspect of the pathogenesis of β-thalassemia/HbE, remains poorly understood. To address this issue, fifteen non-splenectomized β-thalassemia/HbE patients, 8 splenectomized β-thalassemia/HbE patients and 20 healthy volunteers were recruited to this study. Platelet activation and hypercoagulable parameters including levels of CD62P and prothrombin fragment 1 + 2 were analyzed by flow cytometry and ELISA, respectively. A proteomic analysis was conducted to compare the platelet proteome between patients and normal subjects, and the results were validated by western blot analysis. The β-thalassemia/HbE patients showed significantly higher levels of CD62P and prothrombin fragment 1 + 2 than normal subjects. The levels of platelet activation and hypercoagulation found in patients were strongly associated with splenectomy status. The platelet proteome analysis revealed 19 differential spots which were identified to be 19 platelet proteins, which included 10 cytoskeleton proteins, thrombin generation related proteins, and antioxidant enzymes. Our findings highlight markers of coagulation activation and molecular pathways known to be associated with the pathogenesis of platelet activation, the hypercoagulable state, and consequently with the thrombosis observed in β-thalassemia/HbE patients.
Collapse
Affiliation(s)
- Puangpaka Chanpeng
- Oxidation in Red Cell Disorders and Health Task Force, Department of Clinical Microscopy, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Saovaros Svasti
- Thalassemia Research Center, Institute of Molecular Biosciences, Mahidol University, Bangkok, Thailand
| | - Kittiphong Paiboonsukwong
- Thalassemia Research Center, Institute of Molecular Biosciences, Mahidol University, Bangkok, Thailand
| | - Duncan R Smith
- Molecular Pathology Laboratory, Institute of Molecular Biosciences, Mahidol University, Bangkok, Thailand
| | - Kamonlak Leecharoenkiat
- Oxidation in Red Cell Disorders and Health Task Force, Department of Clinical Microscopy, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand.
| |
Collapse
|
8
|
Liang C, Mickey MC, Receno CN, Atalay M, DeRuisseau KC. Functional and biochemical responses of skeletal muscle following a moderate degree of systemic iron loading in mice. J Appl Physiol (1985) 2019; 126:799-809. [PMID: 30653415 DOI: 10.1152/japplphysiol.00237.2018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Excessive iron loading may cause skeletal muscle atrophy and weakness because of its free radical generating properties. To determine whether a clinically relevant degree of iron loading impairs skeletal muscle function, young male mice received injections of iron dextran (4 mg iron/200 µl) or 2 mM d-glucose (control) 5 days/week for 2 weeks ( n = 10/group). Systemic iron loading induced an approximate fourfold increase in the skeletal muscle nonheme iron concentration. Soleus specific tension (1, 30-250 Hz) was lower among iron-loaded animals compared with controls despite similar body mass and muscle mass. Soleus lipid peroxidation (4-hydroxynonenal adducts) and protein oxidation (protein carbonyls) levels were similar between groups. In gastrocnemius muscle, reduced glutathione (GSH) and glutathione peroxidase activity were similar but glutathione disulfide (GSSG) and the GSSG/GSH ratio were greater in iron-loaded muscle. A greater protein expression level of endogenous thiol antioxidant thioredoxin (TRX) was observed among iron-loaded muscle whereas its endogenous inhibitor thioredoxin-interacting protein (TXNip) and the TRX/TXNip ratio were similar. Glutaredoxin2, a thiol-disulfide oxidoreductase activated by GSSG-induced destabilization of its iron-sulfur [2Fe-2S] cluster, was lower following iron loading. Additionally, protein levels of α-actinin and αII-spectrin at 240 kDa were lower in the iron-loaded group. Ryanodine receptor stabilizing subunit calstabin1 was also lower following iron loading. In summary, the contractile dysfunction that resulted from moderate iron loading may be mediated by a disturbance in the muscle redox balance and from changes arising from an increased proteolytic response and aberrant sarcoplasmic reticulum Ca2+ release. NEW & NOTEWORTHY Although severe iron loading is known to cause muscle oxidative stress and dysfunction, the effects of a moderate degree of systemic iron loading on muscle contractile function and biochemical responses remain unclear. This study demonstrates that a pathophysiological elevation in the skeletal muscle iron load leads to force deficits that coincide with impaired redox status, structural integrity, and lower ryanodine receptor-associated calstabin1 in the absence of muscle mass changes or oxidative damage.
Collapse
Affiliation(s)
- Chen Liang
- Department of Exercise Science, Syracuse University , Syracuse, New York
| | - Marisa C Mickey
- Department of Exercise Science, Syracuse University , Syracuse, New York
| | - Candace N Receno
- Department of Exercise Science, Syracuse University , Syracuse, New York
| | - Mustafa Atalay
- Institute of Biomedicine, Physiology, University of Eastern Finland , Kuopio , Finland
| | - Keith C DeRuisseau
- Department of Exercise Science, Syracuse University , Syracuse, New York
| |
Collapse
|
9
|
Quantitative proteomics of plasma vesicles identify novel biomarkers for hemoglobin E/β-thalassemic patients. Blood Adv 2019; 2:95-104. [PMID: 29365317 DOI: 10.1182/bloodadvances.2017011726] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 12/16/2017] [Indexed: 01/17/2023] Open
Abstract
Hemoglobin E (HbE)/β-thalassemia has a wide spectrum of clinical manifestations that cannot be explained purely by its genetic background. Circulating extracellular vesicles (EVs) are one factor that likely contributes to disease severity. This study has explored the differences in protein composition and quantity between EVs from HbE/β-thalassemic patients and healthy individuals. We used tandem mass tag labeling mass spectrometry to analyze the EV proteins isolated from the plasma of 15 patients compared with the controls. To reduce biological variation between individuals, the EV proteins isolated from randomly assigned groups of 5 HbE/β-thalassemic patients were pooled and compared with 5 pooled age- and sex-matched controls in 3 separate experiments. Alpha hemoglobin-stabilizing protein had the highest fold increase. Catalase, superoxide dismutase, T-complex proteins, heat shock proteins, transferrin receptor, ferritin, and cathepsin S were also upregulated in thalassemic circulating EVs. Importantly, haptoglobin and hemopexin were consistently reduced in patients' EVs across all data sets, in keeping with the existing hemolysis that occurs in thalassemia. The proteomic data analysis of EV samples isolated from 6 individual HbE/β-thalassemic patients and western blotting results corroborated these findings. In conclusion, we have successfully identified consistent alterations of protein quantity between EVs from HbE/β-thalassemic and healthy individuals. This work highlights haptoglobin, hemopexin, and cathepsin S as potential clinically relevant biomarkers for levels of hemolysis and inflammation. Monitoring of these plasma proteins could help in the clinical management of thalassemia.
Collapse
|
10
|
Zohaib M, Ansari SH, Shamsi TS, Zubarev RA, Zarina S. Pharmacoproteomics Profiling of Plasma From β-Thalassemia Patients in Response to Hydroxyurea Treatment. J Clin Pharmacol 2018; 59:98-106. [PMID: 30152032 DOI: 10.1002/jcph.1297] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 07/11/2018] [Indexed: 11/07/2022]
Abstract
β-Thalassemia is a genetic disorder caused by defects in the β-globin gene resulting in the absence or reduced synthesis of adult hemoglobin (HbA). Hydroxyurea is an effective drug to increase fetal γ-globin (HbF) expression, replacing the missing adult β-globin. The mechanism of HbF induction by hydroxyurea and improvement in clinical symptoms are still poorly understood. In the present study we performed comparative analysis of plasma proteome in pre- and post-hydroxyurea-treated β-thalassemia major transfusion-dependent children (n = 10, mean age = 3.2 years) as well as responders versus nonresponders to hydroxyurea treatment. Plasma was collected before and after 6 months of hydroxyurea treatment, with patients subcategorized on the basis of their response to hydroxyurea. Among 400 identified proteins using a label-free quantitative proteomics approach, 28 proteins were found to be significantly different in pre- versus post-hydroxyurea-treated groups, with transferrin receptor protein-1 being most downregulated and hemopexin and haptoglobin the most upregulated proteins after treatment. In responder versus nonresponder comparison, 26 proteins were found to be differentially expressed, with carbonic anhydrase 1, hemoglobin subunit γ-1, and peroxiredoxin-2 showing the significant changes. The mechanism of hydroxyurea treatment in β-thalassemia patients appears to be complex, requiring a large sample size and a longer period of treatment to reveal its details.
Collapse
Affiliation(s)
- Muhammad Zohaib
- National Center for Proteomics, University of Karachi, Karachi, Pakistan
| | - Saqib H Ansari
- National Institute of Blood Diseases and Bone Marrow Transplantation, Karachi, Pakistan
| | - Tahir S Shamsi
- National Institute of Blood Diseases and Bone Marrow Transplantation, Karachi, Pakistan
| | - Roman A Zubarev
- Division of Physiological Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden.,Department of Pharmacological & Technological Chemistry, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Shamshad Zarina
- National Center for Proteomics, University of Karachi, Karachi, Pakistan
| |
Collapse
|
11
|
Loniewska-Lwowska A, Koza K, Mendek-Czajkowska E, Wieszczy P, Adamowicz-Salach A, Branicka K, Witos I, Sapala-Smoczynska A, Jackowska T, Fabijanska-Mitek J. Diminished presentation of complement regulatory protein CD55 on red blood cells from patients with hereditary haemolytic anaemias. Int J Lab Hematol 2017; 40:128-135. [PMID: 28963754 DOI: 10.1111/ijlh.12752] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 09/04/2017] [Indexed: 01/16/2023]
Abstract
INTRODUCTION Hereditary haemolytic anaemias (HHA) encompass a heterogeneous group of anaemias characterized by decreased red blood cell survival. The aim of this study was to evaluate the status of red blood cell (RBC) surface molecules known or previously proposed to participate in preventing premature RBC clearance, analysing erythrocytes from patients with two types of HHA: hereditary spherocytosis (HS) and microcytosis. MATERIAL/METHODS Relative binding of five monoclonal antibodies (mAbs), anti-CD55, anti-CD59, anti-CD44, anti-CD47 and anti-CD58, was evaluated in erythrocytes of patients with HS and hereditary microcytosis, using flow cytometry. The amount of CD55 protein was assessed by semi-quantitative Western blots densitometry analysis. RESULTS The majority of both HS and microcytic patients demonstrated significant reduction of anti-CD55 binding by erythrocytes (average 23% and 19%, respectively, P < .001), with no concomitant anti-CD59-binding deficiency. Anti-CD44, anti-CD47 and anti-CD58 binding was within the healthy control range or was slightly decreased. CONCLUSIONS This study provides evidence supporting the presence of erythrocytes deficient in CD55 presentation in HS and hereditary microcytosis. Moreover, deficiency of CD55 antigen presentation on RBC does not correlate with the amount of CD55 in RBC membrane. Further studies using molecular techniques will clarify the exact participation of CD55 deficiency in premature RBC clearance in HHA.
Collapse
Affiliation(s)
- A Loniewska-Lwowska
- Department of Immunohaematology, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - K Koza
- Department of Immunohaematology, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - E Mendek-Czajkowska
- Outpatient Clinic for Congenital Anaemias, Institute of Haematology and Blood Transfusion, Warsaw, Poland
| | - P Wieszczy
- Department of Gastroenterology and Hepatology and Clinical Oncology, Centre of Postgraduate Medical Education, Warsaw, Poland.,Department of Cancer Prevention, The Maria Skłodowska-Curie Memorial Cancer Centre and Institute of Oncology, Warsaw, Poland
| | - A Adamowicz-Salach
- Department of Paediatrics, Haematology and Oncology, Medical University of Warsaw, Warsaw, Poland
| | - K Branicka
- Department of Immunohaematology, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - I Witos
- Department of Immunohaematology, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - A Sapala-Smoczynska
- Department of Paediatrics, Medical Centre of Postgraduate Education, Bielanski Hospital, Warsaw, Poland
| | - T Jackowska
- Department of Paediatrics, Medical Centre of Postgraduate Education, Bielanski Hospital, Warsaw, Poland
| | - J Fabijanska-Mitek
- Department of Immunohaematology, Centre of Postgraduate Medical Education, Warsaw, Poland
| |
Collapse
|
12
|
Hirsch RE, Sibmooh N, Fucharoen S, Friedman JM. HbE/β-Thalassemia and Oxidative Stress: The Key to Pathophysiological Mechanisms and Novel Therapeutics. Antioxid Redox Signal 2017; 26:794-813. [PMID: 27650096 PMCID: PMC5421591 DOI: 10.1089/ars.2016.6806] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 09/16/2016] [Indexed: 01/19/2023]
Abstract
SIGNIFICANCE Oxidative stress and generation of free radicals are fundamental in initiating pathophysiological mechanisms leading to an inflammatory cascade resulting in high rates of morbidity and death from many inherited point mutation-derived hemoglobinopathies. Hemoglobin (Hb)E is the most common point mutation worldwide. The βE-globin gene is found in greatest frequency in Southeast Asia, including Thailand, Malaysia, Indonesia, Vietnam, Cambodia, and Laos. With the wave of worldwide migration, it is entering the gene pool of diverse populations with greater consequences than expected. CRITICAL ISSUES While HbE by itself presents as a mild anemia and a single gene for β-thalassemia is not serious, it remains unexplained why HbE/β-thalassemia (HbE/β-thal) is a grave disease with high morbidity and mortality. Patients often exhibit defective physical development, severe chronic anemia, and often die of cardiovascular disease and severe infections. Recent Advances: This article presents an overview of HbE/β-thal disease with an emphasis on new findings pointing to pathophysiological mechanisms derived from and initiated by the dysfunctional property of HbE as a reduced nitrite reductase concomitant with excess α-chains exacerbating unstable HbE, leading to a combination of nitric oxide imbalance, oxidative stress, and proinflammatory events. FUTURE DIRECTIONS Additionally, we present new therapeutic strategies that are based on the emerging molecular-level understanding of the pathophysiology of this and other hemoglobinopathies. These strategies are designed to short-circuit the inflammatory cascade leading to devastating chronic morbidity and fatal consequences. Antioxid. Redox Signal. 26, 794-813.
Collapse
Affiliation(s)
- Rhoda Elison Hirsch
- Department of Medicine (Hematology), Albert Einstein College of Medicine, Bronx, New York
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York
| | - Nathawut Sibmooh
- Department of Pharmacology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Suthat Fucharoen
- Thalassemia Research Center, Institute of Molecular Biosciences, Mahidol University, Nakornpathom, Thailand
| | - Joel M. Friedman
- Department of Physiology and Biophysics, Albert Einstein College of Medicine, Bronx, New York
| |
Collapse
|
13
|
Lithanatudom P, Smith DR. Analysis of protein profiling studies of β-thalassemia/Hb E disease. Proteomics Clin Appl 2016; 10:1093-1102. [DOI: 10.1002/prca.201600086] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 07/29/2016] [Accepted: 08/08/2016] [Indexed: 12/14/2022]
Affiliation(s)
| | - Duncan R. Smith
- Institute of Molecular Biosciences; Mahidol University; Nakorn Pathom Thailand
| |
Collapse
|
14
|
Mendonça R, Silveira AAA, Conran N. Red cell DAMPs and inflammation. Inflamm Res 2016; 65:665-78. [PMID: 27251171 DOI: 10.1007/s00011-016-0955-9] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 04/19/2016] [Accepted: 05/21/2016] [Indexed: 12/14/2022] Open
Abstract
Intravascular hemolysis, or the destruction of red blood cells in the circulation, can occur in numerous diseases, including the acquired hemolytic anemias, sickle cell disease and β-thalassemia, as well as during some transfusion reactions, preeclampsia and infections, such as those caused by malaria or Clostridium perfringens. Hemolysis results in the release of large quantities of red cell damage-associated molecular patterns (DAMPs) into the circulation, which, if not neutralized by innate protective mechanisms, have the potential to activate multiple inflammatory pathways. One of the major red cell DAMPs, heme, is able to activate converging inflammatory pathways, such as toll-like receptor signaling, neutrophil extracellular trap formation and inflammasome formation, suggesting that this DAMP both activates and amplifies inflammation. Other potent DAMPs that may be released by the erythrocytes upon their rupture include heat shock proteins (Hsp), such as Hsp70, interleukin-33 and Adenosine 5' triphosphate. As such, hemolysis represents a major inflammatory mechanism that potentially contributes to the clinical manifestations that have been associated with the hemolytic diseases, such as pulmonary hypertension and leg ulcers, and likely plays a role in specific complications of sickle cell disease such as endothelial activation, vaso-occlusive processes and tissue injury.
Collapse
Affiliation(s)
- Rafaela Mendonça
- Hematology Center, School of Medicine, University of Campinas-UNICAMP, Barão Geraldo, Campinas, Sao Paulo, 13083-970, Brazil
| | - Angélica A A Silveira
- Hematology Center, School of Medicine, University of Campinas-UNICAMP, Barão Geraldo, Campinas, Sao Paulo, 13083-970, Brazil
| | - Nicola Conran
- Hematology Center, School of Medicine, University of Campinas-UNICAMP, Barão Geraldo, Campinas, Sao Paulo, 13083-970, Brazil.
| |
Collapse
|
15
|
Chatterjee T, Halder S, Chakravarty A, Chakravarty S, Chakrabarti A. A FACS Based Case Study on Two HbE-β Thalassaemia Members of a Family, Having Similar Mutational Background. SCIENTIFICA 2016; 2016:3181937. [PMID: 27195173 PMCID: PMC4852363 DOI: 10.1155/2016/3181937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 03/17/2016] [Accepted: 03/17/2016] [Indexed: 06/05/2023]
Abstract
In this report we have tried to explain the reasons behind the difference in the pattern of transfusion requirement between two members of a family with similar β-globin mutation. The father and younger son both are HbE-β, but the father never had transfusion, whereas the younger son takes transfusion monthly. Mother and the elder son are HbEE without any history of transfusion. β-globin mutations of all family members were determined by ARMS-PCR. These were reconfirmed by direct sequencing of β-globin gene. Father and younger son were found to be Cod 26 (G-A)/IVS 1-5 (G-C), whereas mother and elder son were found to be Cod 26 (G-A)/Cod 26 (G-A). XmnI sequencing also revealed that all members of the family were CC. Then, flow cytometry study of red blood cells (RBCs) was performed to measure the oxidative stress of the RBCs. This study was also done on the light and dense fractions of the RBC population of the father and younger son. It was seen that the younger son suffers severe oxidative stress, which can be explained by his higher transfusion requirement. From our work, we have established the importance of taking oxidative stress of RBCs into consideration to explain the clinical manifestation and progression of haemoglobin related diseases like thalassaemia.
Collapse
Affiliation(s)
- Tridip Chatterjee
- Department of Human Genetics, Institute of Genetic Medicine and Genomic Science, 30A Thakurhat Road, Kolkata 700128, India
- Institute of Genetic Engineering, 30 Thakurhat Road, Kolkata, West Bengal 700128, India
| | - Suchismita Halder
- Crystallography and Molecular Biology Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India
| | - Amit Chakravarty
- Department of Human Genetics, Institute of Genetic Medicine and Genomic Science, 30A Thakurhat Road, Kolkata 700128, India
| | - Sudipa Chakravarty
- Institute of Genetic Engineering, 30 Thakurhat Road, Kolkata, West Bengal 700128, India
| | - Abhijit Chakrabarti
- Crystallography and Molecular Biology Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India
| |
Collapse
|
16
|
Karmakar S, Banerjee D, Chakrabarti A. Platelet proteomics in thalassemia: Factors responsible for hypercoagulation. Proteomics Clin Appl 2016; 10:239-47. [PMID: 26403856 DOI: 10.1002/prca.201500049] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 07/28/2015] [Accepted: 09/21/2015] [Indexed: 01/19/2023]
Abstract
PURPOSE Thalassemias can be defined as a group with inherited hemolytic anemia due to differential expressions of α and β globin genes. Hemoglobin E combined with β thalassemia (HbEβ) creates high oxidative stress in platelets producing different degrees of pathophysiological severity. Numerous cases of thalassemia have been reported with thromboembolic complications due to the hypercoagulable state, the mechanism underlying that is not yet well understood. EXPERIMENTAL DESIGN We have used 2DE and DIGE coupled with MALDI TOF/TOF-based MS identification and characterization of altered proteins in both splenectomized and nonsplenectomized HbEβ and β thalassemia to investigate the factors responsible for hypercoagulation. RESULTS The study revealed elevated levels of chaperones like HSP70, protein disulfide isomerase; oxidative stress proteins like peroxiredoxin2 and superoxide dismutase1 along with high ROS levels. Upregulation of translation initiation factor 5a observed in thalassemia is a novel finding and plays a protective role toward cell survival under oxidative stress. CONCLUSIONS AND CLINICAL RELEVANCE The altered levels of chaperones and oxidative stress proteins indicate toward regulation of integrin binding and platelet activation under oxidative stress. Altogether, this comparative proteomics study of platelets in thalassemia could provide an insight into better understanding of the pathophysiology of the disease.
Collapse
Affiliation(s)
- Shilpita Karmakar
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India
| | - Debasis Banerjee
- Hematology Unit, Ramakrishna Mission Seva Prathisthan, Kolkata, India
- Clinical Haematology Service, Park Clinic, Kolkata, India
| | - Abhijit Chakrabarti
- Crystallography and Molecular Biology Division, Saha Institute of Nuclear Physics, Kolkata, India
| |
Collapse
|
17
|
Chakrabarti A, Halder S, Karmakar S. Erythrocyte and platelet proteomics in hematological disorders. Proteomics Clin Appl 2016; 10:403-14. [PMID: 26611378 DOI: 10.1002/prca.201500080] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 10/26/2015] [Accepted: 11/19/2015] [Indexed: 12/20/2022]
Abstract
Erythrocytes undergo ineffective erythropoesis, hemolysis, and premature eryptosis in sickle cell disease and thalassemia. Abnormal hemoglobin variants associated with hemoglobinopathy lead to vesiculation, membrane instability, and loss of membrane asymmetry with exposal of phosphatidylserine. This potentiates thrombin generation resulting in activation of the coagulation cascade responsible for subclinical phenotypes. Platelet activation also results in the release of microparticles, which express and transfer functional receptors from platelet membrane, playing key roles in vascular reactivity and activation of intracellular signaling pathways. Over the last decade, proteomics had proven to be an important field of research in studies of blood and blood diseases. Blood cells and its fluidic components have been proven to be easy systems for studying differential expressions of proteins in hematological diseases encompassing hemoglobinopathies, different types of anemias, myeloproliferative disorders, and coagulopathies. Proteomic studies of erythrocytes and platelets reported from several groups have highlighted various factors that intersect the signaling networks in these anucleate systems. In this review, we have elaborated on the current scenario of anucleate blood cell proteomes in normal and diseased individuals and the cross-talk between the two major constituent cell types of circulating blood.
Collapse
Affiliation(s)
- Abhijit Chakrabarti
- Crystallography and Molecular Biology Division, Saha Institute of Nuclear Physics, Kolkata, India
| | - Suchismita Halder
- Crystallography and Molecular Biology Division, Saha Institute of Nuclear Physics, Kolkata, India
| | - Shilpita Karmakar
- Biophysics and Structural Genomics Division, Saha institute of Nuclear Physics, Kolkata, India
| |
Collapse
|
18
|
Choudhury KR, Das S, Bhattacharyya NP. Differential proteomic and genomic profiling of mouse striatal cell model of Huntington's disease and control; probable implications to the disease biology. J Proteomics 2015; 132:155-66. [PMID: 26581643 DOI: 10.1016/j.jprot.2015.11.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Revised: 09/16/2015] [Accepted: 11/11/2015] [Indexed: 10/22/2022]
Abstract
UNLABELLED Huntington's disease (HD) is an autosomal dominant disorder of central nervous system caused by expansion of CAG repeats in exon1 of the huntingtin gene (Htt). Among various dysfunctions originated from the mutation in Htt gene, transcriptional deregulation has been considered to be one of the most important abnormalities. Large numbers of investigations identified altered expressions of genes in brains of HD patients and many models of HD. In this study we employed 2D SDS-PAGE/MALDI-MS coupled with 2D-DIGE and real-time PCR experiments of an array of genes focused to HD pathway to determine altered protein and gene expressions in STHdh(Q111)/Hdh(Q111) cells, a cell model of HD and compared with STHdh(Q7)/Hdh(Q7) cells, its wild type counterpart. We annotated 76 proteins from these cells and observed differential expressions of 31 proteins (by 2D-DIGE) involved in processes like unfolded protein binding, negative regulation of neuron apoptosis, response to superoxides etc. Our PCR array experiments identified altered expressions of 47 genes. Altogether significant alteration of 77 genes/proteins could be identified in this HD cell line with potential relevance to HD biology. BIOLOGICAL SIGNIFICANCE In this study we intended to find out differential proteomic and genomic profiles in HD condition. We used the STHdh cells, a cellular model for HD and control. These are mouse striatal neuronal cell lines harboring 7 and 111 knock-in CAG repeats in their two alleles. The 111Q containing cell line (STHdh(Q111)/Hdh(Q111)) mimics diseased condition, whereas the 7Q containing ones (STHdh(Q7)/Hdh(Q7)), serves as the proper control cell line. Proteomic experiments were performed earlier to obtain differential expressions of proteins in R6/2 mice models, Hdh(Q) knock-in mice and in plasma and CSF from HD patients. However, no earlier report on proteomic alterations in these two HD cell lines and control was available in literature. It was, therefore, an important objective to find out differential expressions of proteins in these two cell lines. In this study, we annotated 76 proteins from STHdh(Q7)/Hdh(Q7) and STHdh(Q111)/Hdh(Q111) cells using 2D-gel/mass spectrometry. Next, by performing 2D-DIGE, we observed differential expressions of 31 proteins (16 upregulated and 15 downregulated) between these two cell lines. We also performed customized qRT-PCR array focused to HD pathway and found differential expressions of 47 genes (8 gene expressions increased and 39 genes were decreased significantly). A total of 77 genes/proteins (Htt downregulated in both the studies) were found to be significantly altered from both the experimental paradigms. We validated the differential expressions of Vim, Hypk, Ran, Dstn, Hspa5 and Sod2 either by qRT-PCR or Western blot analysis or both. Out of these 77, similar trends in alteration of 19 out of 31 and 38 out of 47 proteins/genes were reported in earlier studies. Thus our study confirmed earlier observations on differential gene/protein expressions in HD and are really useful. Additionally, we observed differential expression of some novel genes/proteins. One of this was Hypk, a Htt-interacting chaperone protein with the ability to solubilize mHtt aggregated structures in cell lines. We propose that downregulation of Hypk in STHdh(Q111)/Hdh(Q111) has a causal effect towards HD pathogenesis. Thus the novel findings from our study need further research and might be helpful to understand the molecular mechanism behind HD pathogenesis.
Collapse
Affiliation(s)
- Kamalika Roy Choudhury
- Crystallography & Molecular Biology Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India.
| | - Srijit Das
- Crystallography & Molecular Biology Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India.
| | - Nitai P Bhattacharyya
- Crystallography & Molecular Biology Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India.
| |
Collapse
|
19
|
Basu A, Chakrabarti A. Hemoglobin interacting proteins and implications of spectrin hemoglobin interaction. J Proteomics 2015; 128:469-75. [DOI: 10.1016/j.jprot.2015.06.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 06/16/2015] [Accepted: 06/25/2015] [Indexed: 01/09/2023]
|
20
|
Halder S, Dey RK, Chowdhury AR, Bhattacharyya P, Chakrabarti A. Differential regulation of urine proteins in urothelial neoplasm. J Proteomics 2015; 127:185-92. [PMID: 25943868 DOI: 10.1016/j.jprot.2015.04.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Revised: 04/13/2015] [Accepted: 04/21/2015] [Indexed: 01/21/2023]
Abstract
UNLABELLED Urothelial neoplasm of the urinary bladder has a high rate of multifocality and recurrence. To understand this we first need to understand the changes in the molecular level that distinguishes a normal individual from a patient and also a low grade neoplasm from a high grade. In this work we aim to study the urine proteome of Indian patients with urothelial neoplasm categorised on the basis of their p53 immunohistochemistry. The urine samples of pre-operative patients were subjected to two dimensional gel electrophoresis followed by densitometric analysis and spot identification using MALDI mass spectrometry. Our study shows that few proteins such as albumin, alpha 1 antitrypsin, apolipoprotein A1, transferrin, transthyretin, haptoglobin and haemoglobin β chain were upregulated and inter alpha trypsin inhibitor heavy chain was downregulated in the disease samples. Further we have reported that some of these proteins show an association with disease severity. The present study marks the first step in the identification of new diagnostic markers as well as therapeutic targets. BIOLOGICAL SIGNIFICANCE Bladder carcinoma is the ninth most common cancer worldwide. It has gained attention within both clinicians and cancer biologists because of its recurrence and mortality rate. Identifying the prognostic factors of progression is a challenge, so that high risk patients who may be a candidate for a radical cystectomy may be identified. In this study we have attempted to study the changes observed in the urinary protein levels of urothelial neoplasm patients. The samples were graded based on p53 immunohistochemistry staining. We have reported eight (8) proteins, mostly highly abundant; those have exhibited differential regulation in case of diseased samples. This study is first of its kind that associates the changes in the urinary protein levels to that of the severity of the disease. We believe that the findings can be used as a stepping stone in the development of a noninvasive prognostic tool for the disease. This article is part of a Special Issue entitled: Proteomics in India.
Collapse
Affiliation(s)
- Suchismita Halder
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, West Bengal, India
| | - Ranjan Kumar Dey
- Department of Urosurgery, R. G. Kar Medical College and Hospital, 1, Khudiram Bose Sarani, Kolkata 700004, West Bengal, India
| | - Anadi Roy Chowdhury
- Department of Pathology, R. G. Kar Medical College and Hospital, 1, Khudiram Bose Sarani, Kolkata 700004, West Bengal, India
| | - Palash Bhattacharyya
- Department of Pathology, R. G. Kar Medical College and Hospital, 1, Khudiram Bose Sarani, Kolkata 700004, West Bengal, India
| | - Abhijit Chakrabarti
- Crystallography and Molecular Biology Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, West Bengal, India.
| |
Collapse
|
21
|
Ozturk Z, Genc GE, Kupesiz A, Kurtoglu E, Gumuslu S. Thalassemia major patients using iron chelators showed a reduced plasma thioredoxin level and reduced thioredoxin reductase activity, despite elevated oxidative stress. Free Radic Res 2015; 49:309-16. [PMID: 25564095 DOI: 10.3109/10715762.2015.1004327] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
In the present study, we aimed to investigate plasma levels of peroxiredoxin 2 (Prx2) and thioredoxin 1 (Trx1), and the activity of thioredoxin reductase (TrxR), in thalassemia major (TM) patients living in the Antalya region, Turkey. The patients were divided into three groups, according to chelators - the deferoxamine group (DFO, n = 20), the deferasirox group (DFX, n = 20), and the deferiprone group (DFP, n = 20), to compare any possible effect of chelators on antioxidative and oxidative stress parameters. A control group (n = 20) was selected from healthy volunteers. The activities of glutathione peroxidase (GPx), glutathione reductase (GR), glutathione-S-transferase (GST), superoxide dismutase (SOD), catalase (CAT), and TrxR, as well as the concentrations of Prx2, Trx1, glucose-6-phosphate dehydrogenase (G-6-PD), reduced glutathione (GSH), hydrogen peroxide (H2O2), and malondialdehyde (MDA) were measured in the plasma samples of TM patients and the controls. The activity of CAT and the levels of H2O2 and MDA in the TM patients were significantly higher than those in the controls, while the levels of GPx, Trx1, TrxR, and GSH were lower. The concentrations of ferritin, GSH, H2O2, and MDA, as well as the activities of GR, CAT and TrxR, showed significant differences among the chelator groups. Although TrxR activity showed an increase in TM patients due to an elevated iron overload, both TrxR activity and Trx1 level were lower in the patient groups compared with the cases in the control group. As a result, because Trx1 level and TrxR activity were measured at a low level in the patients, increasing the levels of Trx1 and TrxR in TM patients will be a target of future treatment.
Collapse
Affiliation(s)
- Z Ozturk
- Department of Medical Biochemistry, Faculty of Medicine, Akdeniz University , Antalya , Turkey
| | | | | | | | | |
Collapse
|
22
|
Halder S, Chatterjee T, Chakravarty A, Chakravarty S, Chakrabarti A. Differential Regulation of Plasma Proteins between Members of a Family with Homozygous HbE and HbEβ-thalassemia. THALASSEMIA REPORTS 2014. [DOI: 10.4081/thal.2014.1837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
In this report we’ve compared the plasma protein profiles of 4 individuals in a family. Father and the younger son both are hemoglobin (Hb) Eβ-thalassemic {Cod 26 (G-A)/IVS 1- 5 (G-C)}, but the father never requires transfusion, whereas the younger son requires monthly blood transfusion. Mother and the elder son are HbEE {Cod 26 (G-A)/Cod 26 (GA)} without any history of transfusion. Proteomic study was done on the plasma fraction of the blood following ammonium sulphate precipitation. Proteins were separated by 2D-gel electrophoresis, expression of proteins compared by densitometry and proteins identified by tandem MALDI mass spectrometry. Proteins responsible in hemolysis, hypercoagulation and hemoglobin scavenging have shown differential regulation, establishing the relation between the differences in the levels of plasma proteins with the progression of the disease phenotype, manifested in the extent of transfusion dependence of the patient.
Collapse
|
23
|
Karmakar S, Saha S, Banerjee D, Chakrabarti A. Differential proteomics study of platelets in asymptomatic constitutional macrothrombocytopenia: altered levels of cytoskeletal proteins. Eur J Haematol 2014; 94:43-50. [PMID: 24934967 DOI: 10.1111/ejh.12398] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/11/2014] [Indexed: 12/27/2022]
Abstract
OBJECTIVES Harris platelet syndrome (HPS), also known as asymptomatic constitutional macrothrombocytopenia (ACMT), is an autosomal dominant platelet disorder characterized by mild-to-severe thrombocytopenia and giant platelets with normal platelet aggregation and absence of bleeding symptoms. We have attempted a comparative proteomics study for profiling of platelet proteins in healthy vs. pathological states to discover characteristic protein expression changes in macrothrombocytes and decipher the factors responsible for the functionally active yet morphologically distinct platelets. METHODS We have used 2-D gel-based protein separation techniques coupled with MALDI-ToF/ToF-based mass spectrometric identification and characterization of the proteins to investigate the differential proteome profiling of platelet proteins isolated from the peripheral blood samples of patients and normal volunteers. RESULTS AND CONCLUSION Our study revealed altered levels of actin-binding proteins such as myosin light chain, coactosin-like protein, actin-related protein 2/3 complex, and transgelin2 that hint toward the cytoskeletal changes necessary to maintain the structural and functional integrity of macrothrombocytes. We have also observed over expressed levels of peroxiredoxin2 that signifies the prevailing oxidative stress in these cells. Additionally, altered levels of protein disulfide isomerase and transthyretin provide insights into the measures adapted by the macrothrombocytes to maintain their normal functional activity. This first proteomics study of platelets from ACMT may provide an understanding of the structural stability and normal functioning of these platelets in spite of their large size.
Collapse
Affiliation(s)
- Shilpita Karmakar
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India
| | | | | | | |
Collapse
|
24
|
2DGE and DIGE based proteomic study of malignant B-cells in B-cell acute lymphoblastic leukemia. EUPA OPEN PROTEOMICS 2014. [DOI: 10.1016/j.euprot.2014.01.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
25
|
Prudent M, Tissot JD, Lion N. Proteomics of blood and derived products: what’s next? Expert Rev Proteomics 2014; 8:717-37. [DOI: 10.1586/epr.11.58] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
26
|
Chakrabarti A, Bhattacharya D, Deb S, Chakraborty M. Differential thermal stability and oxidative vulnerability of the hemoglobin variants, HbA2 and HbE. PLoS One 2013; 8:e81820. [PMID: 24244748 PMCID: PMC3828284 DOI: 10.1371/journal.pone.0081820] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Accepted: 10/25/2013] [Indexed: 11/18/2022] Open
Abstract
Apart from few early biophysical studies, the relative thermal instability of HbE has been only shown by clinical investigations. We have compared in vitro thermal stability of HbE with HbA2 and HbA using optical spectroscopy. From absorption measurements in the soret region, synchronous fluorescence spectroscopy and dynamic light scattering experiments, we have found thermal stability of the three hemoglobin variants following the order HbE<HbA<HbA2 in terms of structural unfolding and aggregation pattern. We have found formation of intermolecular dityrosine fluorophores with characteristic fluorescence signature, at pH >11.0 in all the three variants. Under oxidative stress conditions in presence of hydrogen peroxide, HbE has been found to be more vulnerable to aggregation compared to HbA and HbA2. Taken together, these studies have shown thermal and oxidative instability of HbE and points towards the role of HbE in the upregulation of redox regulators and chaperone proteins in erythrocyte proteome of patients suffering from HbEbeta thalassemia.
Collapse
Affiliation(s)
- Abhijit Chakrabarti
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Bidhannagar, Kolkata, India
- * E-mail:
| | - Dipankar Bhattacharya
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Bidhannagar, Kolkata, India
| | - Sanghamitra Deb
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Bidhannagar, Kolkata, India
| | - Madhumita Chakraborty
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Bidhannagar, Kolkata, India
| |
Collapse
|
27
|
Basu A, Saha S, Karmakar S, Chakravarty S, Banerjee D, Dash BP, Chakrabarti A. 2D DIGE based proteomics study of erythrocyte cytosol in sickle cell disease: Altered proteostasis and oxidative stress. Proteomics 2013; 13:3233-42. [DOI: 10.1002/pmic.201300177] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Revised: 08/08/2013] [Accepted: 08/09/2013] [Indexed: 11/12/2022]
Affiliation(s)
- Avik Basu
- Biophysics and Structural Genomics Division; Saha Institute of Nuclear Physics; Bidhannagar Kolkata India
| | - Sutapa Saha
- Biophysics and Structural Genomics Division; Saha Institute of Nuclear Physics; Bidhannagar Kolkata India
| | - Shilpita Karmakar
- Biophysics and Structural Genomics Division; Saha Institute of Nuclear Physics; Bidhannagar Kolkata India
| | | | - Debasis Banerjee
- Hematology Unit; Ramakrishna Mission Seva Prathisthan; Kolkata India
| | - Bisnu Prasad Dash
- P.G. Department of Biosciences and Biotechnology; Fakir Mohan University; Nuapadhi, Mitrapur Orissa India
| | - Abhijit Chakrabarti
- Biophysics and Structural Genomics Division; Saha Institute of Nuclear Physics; Bidhannagar Kolkata India
| |
Collapse
|
28
|
Goodman SR, Daescu O, Kakhniashvili DG, Zivanic M. The proteomics and interactomics of human erythrocytes. Exp Biol Med (Maywood) 2013; 238:509-18. [DOI: 10.1177/1535370213488474] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
In this minireview, we focus on advances in our knowledge of the human erythrocyte proteome and interactome that have occurred since our seminal review on the topic published in 2007. As will be explained, the number of unique proteins has grown from 751 in 2007 to 2289 as of today. We describe how proteomics and interactomics tools have been used to probe critical protein changes in disorders impacting the blood. The primary example used is the work done on sickle cell disease where biomarkers of severity have been identified, protein changes in the erythrocyte membranes identified, pharmacoproteomic impact of hydroxyurea studied and interactomics used to identify erythrocyte protein changes that are predicted to have the greatest impact on protein interaction networks.
Collapse
Affiliation(s)
- Steven R Goodman
- Department of Biochemistry & Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Ovidiu Daescu
- Department of Computer Science, University of Texas at Dallas, Richardson, TX 75080, USA
| | - David G Kakhniashvili
- Department of Biochemistry & Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Marko Zivanic
- Department of Computer Science, University of Texas at Dallas, Richardson, TX 75080, USA
| |
Collapse
|
29
|
Choudhury KR, Raychaudhuri S, Bhattacharyya NP. Identification of HYPK-interacting proteins reveals involvement of HYPK in regulating cell growth, cell cycle, unfolded protein response and cell death. PLoS One 2012; 7:e51415. [PMID: 23272104 PMCID: PMC3525516 DOI: 10.1371/journal.pone.0051415] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Accepted: 11/01/2012] [Indexed: 11/18/2022] Open
Abstract
Huntingtin Yeast Two-Hybrid Protein K (HYPK) is an intrinsically unstructured huntingtin (HTT)-interacting protein with chaperone-like activity. To obtain more information about the function(s) of the protein, we identified 27 novel interacting partners of HYPK by pull-down assay coupled with mass spectrometry and, further, 9 proteins were identified by co-localization and co-immunoprecipitation (co-IP) assays. In neuronal cells, (EEF1A1 and HSPA1A), (HTT and LMNB2) and (TP53 and RELA) were identified in complex with HYPK in different experiments. Various Gene Ontology (GO) terms for biological processes, like protein folding (GO: 0006457), response to unfolded protein (GO: 0006986), cell cycle arrest (GO: 0007050), anti-apoptosis (GO: 0006916) and regulation of transcription (GO: 0006355) were significantly enriched with the HYPK-interacting proteins. Cell growth and the ability to refold heat-denatured reporter luciferase were decreased, but cytotoxicity was increased in neuronal cells where HYPK was knocked-down using HYPK antisense DNA construct. The proportion of cells in different phases of cell cycle was also altered in cells with reduced levels of HYPK. These results show that HYPK is involved in several biological processes, possibly through interaction with its partners.
Collapse
Affiliation(s)
- Kamalika Roy Choudhury
- Crystallography and Molecular Biology Division, Saha Institute of Nuclear Physics, Kolkata, West Bengal, India
| | - Swasti Raychaudhuri
- Crystallography and Molecular Biology Division, Saha Institute of Nuclear Physics, Kolkata, West Bengal, India
| | - Nitai P. Bhattacharyya
- Crystallography and Molecular Biology Division, Saha Institute of Nuclear Physics, Kolkata, West Bengal, India
- * E-mail:
| |
Collapse
|
30
|
Chaichompoo P, Kumya P, Khowawisetsut L, Chiangjong W, Chaiyarit S, Pongsakul N, Sirithanaratanakul N, Fucharoen S, Thongboonkerd V, Pattanapanyasat K. Characterizations and proteome analysis of platelet-free plasma-derived microparticles in β-thalassemia/hemoglobin E patients. J Proteomics 2012; 76 Spec No.:239-50. [PMID: 22705320 DOI: 10.1016/j.jprot.2012.06.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Revised: 05/17/2012] [Accepted: 06/01/2012] [Indexed: 12/29/2022]
Abstract
Aggregatability and oxidative damage of red blood cells (RBCs), platelet activation and increased amount of blood cells-derived microparticles (MPs) are thought to be the etiologies for the thrombotic risk in thalassemia, but with unclear mechanisms. Here we report cellular origins and increases in number, oxidative stress status, and procoagulant activity, as well as altered proteome of MPs isolated from β-thal/HbE patients. Flow cytometric analysis revealed that β-thal/HbE patients had significantly higher levels of phosphatidylserine (PS)-bearing MPs in platelet-free plasma (PFP) as compared to normal subjects. The high levels of MPs correlated with not only the increased procoagulant activity but also the increased platelet counts. Additionally, these PS-bearing MPs were originated mostly from platelets and RBCs, both of which had increased levels of reactive oxygen species. Proteome analysis of MPs by 2-DE followed by Q-TOF MS and MS/MS analyses identified 29 proteins with significantly altered levels in MPs derived from β-thal/HbE patients (e.g. the increased levels of peroxiredoxin 6, apolipoprotein E, cyclophilin A and heat shock protein 90). These findings suggest that the oxidative damage in platelets and RBCs potentially induces production of MPs with altered proteome that may, in turn, facilitate thromboembolic complications, which are commonly found in thalassemic patients. This article is part of a Special Issue entitled: Integrated omics.
Collapse
Affiliation(s)
- Porntip Chaichompoo
- Department of Immunology and Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
von Löhneysen K, Scott TM, Soldau K, Xu X, Friedman JS. Assessment of the red cell proteome of young patients with unexplained hemolytic anemia by two-dimensional differential in-gel electrophoresis (DIGE). PLoS One 2012; 7:e34237. [PMID: 22509282 PMCID: PMC3317954 DOI: 10.1371/journal.pone.0034237] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Accepted: 02/24/2012] [Indexed: 12/13/2022] Open
Abstract
Erythrocyte cytosolic protein expression profiles of children with unexplained hemolytic anemia were compared with profiles of close relatives and controls by two-dimensional differential in-gel electrophoresis (2D-DIGE). The severity of anemia in the patients varied from compensated (i.e., no medical intervention required) to chronic transfusion dependence. Common characteristics of all patients included chronic elevation of reticulocyte count and a negative workup for anemia focusing on hemoglobinopathies, morphologic abnormalities that would suggest a membrane defect, immune-mediated red cell destruction, and evaluation of the most common red cell enzyme defects, glucose-6-phosphate dehydrogenase and pyruvate kinase deficiency. Based upon this initial workup and presentation during infancy or early childhood, four patients classified as hereditary nonspherocytic hemolytic anemia (HNSHA) of unknown etiology were selected for proteomic analysis. DIGE analysis of red cell cytosolic proteins clearly discriminated each anemic patient from both familial and unrelated controls, revealing both patient-specific and shared patterns of differential protein expression. Changes in expression pattern shared among the four patients were identified in several protein classes including chaperons, cytoskeletal and proteasome proteins. Elevated expression in patient samples of some proteins correlated with high reticulocyte count, likely identifying a subset of proteins that are normally lost during erythroid maturation, including proteins involved in mitochondrial metabolism and protein synthesis. Proteins identified with patient-specific decreased expression included components of the glutathione synthetic pathway, antioxidant pathways, and proteins involved in signal transduction and nucleotide metabolism. Among the more than 200 proteins identified in this study are 21 proteins not previously described as part of the erythrocyte proteome. These results demonstrate the feasibility of applying a global proteomic approach to aid characterization of red cells from patients with hereditary anemia of unknown cause, including the identification of differentially expressed proteins as potential candidates with a role in disease pathogenesis.
Collapse
Affiliation(s)
- Katharina von Löhneysen
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California, United States of America
| | - Thomas M. Scott
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California, United States of America
| | - Katrin Soldau
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California, United States of America
| | - Xiuling Xu
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California, United States of America
| | - Jeffrey S. Friedman
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
32
|
Proteomic analysis of Hemoglobin H-Constant Spring (Hb H-CS) erythroblasts. Blood Cells Mol Dis 2012; 48:77-85. [DOI: 10.1016/j.bcmd.2011.11.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Accepted: 11/07/2011] [Indexed: 12/31/2022]
|
33
|
Banerjee M, Pramanik M, Bhattacharya D, Lahiry M, Basu S, Chakrabarti A. Faster heme loss from hemoglobin E than HbS, in acidic pH: Effect of aminophospholipids. J Biosci 2011; 36:809-16. [DOI: 10.1007/s12038-011-9163-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
34
|
Saha S, Ramanathan R, Basu A, Banerjee D, Chakrabarti A. Elevated levels of redox regulators, membrane-bound globin chains, and cytoskeletal protein fragments in hereditary spherocytosis erythrocyte proteome. Eur J Haematol 2011; 87:259-66. [PMID: 21575061 DOI: 10.1111/j.1600-0609.2011.01648.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
OBJECTIVE Hereditary spherocytosis (HS), a common inherited hemolytic anemia characterized by decreased deformability, reduced surface to volume ratio, and increased osmotic fragility of the spheroidal erythrocytes, is associated with several mutations of α- and β-spectrin, ankyrin, band 3, band 4.2. HS manifests itself with high degrees of clinical heterogeneity and the molecular events leading to premature hemolysis of the spherocytes are unclear. We have employed proteomic techniques to identify differentially regulated proteins in the membrane and hemoglobin-depleted cytosol of HS erythrocytes. METHODS We have employed 2-D gel electrophoresis and tandem matrix assisted laser desorption ionization-time of flight/time of flight mass spectrometry to investigate the differential proteome profiling of membrane and hemoglobin-depleted cytosol of erythrocytes isolated from the peripheral blood samples of HS patients and normal volunteers. RESULTS Our study showed that redox regulators are up-regulated; while a co-chaperone and a nucleotide kinase are down-regulated in HS erythrocyte cytosol. We observed elevated levels of membrane-associated globin chains and low-molecular weight fragments of several major cytoskeletal proteins. CONCLUSION The observed changes in the erythrocyte proteomes indicate altered redox regulation, nucleotide metabolism, protein aggregation and/or degradation, cytoskeletal disorganization, and severe oxidative stress in HS. Taken together, this study could enlighten upon disease progression and pathophysiology of HS.
Collapse
Affiliation(s)
- Sutapa Saha
- Structural Genomics Division, Saha Institute of Nuclear Physics, Bidhannagar Department of Pathology, Ramakrishna Mission Seva Prathisthan, Kolkata, India
| | | | | | | | | |
Collapse
|
35
|
Chakrabarti A, Bhattacharya D, Basu A, Basu S, Saha S, Halder S. Differential expression of red cell proteins in hemoglobinopathy. Proteomics Clin Appl 2011; 5:98-108. [DOI: 10.1002/prca.201000063] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2010] [Revised: 11/02/2010] [Accepted: 11/08/2010] [Indexed: 01/21/2023]
|