1
|
Hanashima S, Asahina T, Malabed R, Sasaki K, Murata M. Effect of glucosylation for the vertical movement of cholesterol in bilayer membranes. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2025; 1867:184422. [PMID: 40318835 DOI: 10.1016/j.bbamem.2025.184422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 02/24/2025] [Accepted: 04/30/2025] [Indexed: 05/07/2025]
Abstract
Cholesterol (Chol) in mammalian cell membranes facilitates the assembly of dynamic membrane domains that are involved in vital biological processes through lateral and transbilayer movements in the membranes. In the cell membranes, Chol undergoes glucose transglycosylation to produce cholesteryl-β-d-glucoside (ChoGlc). ChoGlc is involved in neurodegenerative diseases and accumulates in lysosomal storage disorders. However, the effects of glucosylation on membrane properties of Chol remain unclear. We investigated the membrane interaction of ChoGlc and its subsequent translocation between leaflets using fluorescent probes, such as 4-trimethylammoniumphenyl)-6-phenyl-1,3,5-hexatriene (TMA-DPH) and the newly synthesized 7-nitro-2,1,3-benzoxadiazole-labeled ChoGlc (NBD-ChoGlc) in dioleoylphosphatidylcholine (DOPC) membranes. The fluorescence of TMA-DPH, which selectively reported the order of the outer leaflet of the bilayer, indicated that ChoGlc added to the external solution, was mostly incorporated into the membranes and increased the DOPC membrane ordering. Furthermore, the anisotropy values reached a level similar to that of the ChoGlc-preloaded symmetric vesicle within approximately 5 min owing to the rapid distribution of ChoGlc in both leaflets. This was further confirmed by the selective fluorescence quenching of NBD-ChoGlc in the outer leaflet through irreversible quenching by dithionite. The similarity of the fluorescence decay curves of NBD-ChoGlc and NBD-Chol indicated that the glucosylation had little impact on the flip-flops of Chol in the DOPC bilayers. Our data demonstrates that some of the important membrane properties of Chol, such as fast flip-flop between leaflets and increased membrane order, were mostly maintained in ChoGlc despite hydrophilic glucose modification.
Collapse
Affiliation(s)
- Shinya Hanashima
- Graduate School of Engineering, Tottori University, 4-101 Koyama-cho Minami, Tottori 680-8550, Japan; GSC Center, Tottori University, 4-101 Koyama-cho Minami, Tottori 680-8550, Japan; Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan.
| | - Takafumi Asahina
- Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Raymond Malabed
- Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan; Department of Chemistry, De La Salle University, 2401 Taft Avenue, 0922 Manila, Philippines
| | - Katsuaki Sasaki
- Graduate School of Engineering, Tottori University, 4-101 Koyama-cho Minami, Tottori 680-8550, Japan
| | - Michio Murata
- Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan; Forefront Research Center, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|
2
|
Azarfar K, Decourt B, Camacho BS, Lawrence JJ, Omondi TR, Sabbagh MN. Cholesterol-modifying strategies for Alzheimer disease: promise or fallacy? Expert Rev Neurother 2025; 25:521-535. [PMID: 40140971 PMCID: PMC12068190 DOI: 10.1080/14737175.2025.2483928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 03/06/2025] [Accepted: 03/20/2025] [Indexed: 03/28/2025]
Abstract
INTRODUCTION As the world population ages, Alzheimer disease (AD) prevalence increases. However, understanding of AD etiology continues to evolve, and the pathophysiological processes involved are only partially elucidated. One compound suspected to play a role in the development and progression of AD is cholesterol. Several lines of evidence support this connection, yet it remains unclear whether cholesterol-modifying strategies have potential applications in the clinical management of AD. AREAS COVERED A deep literature search using PubMed was performed to prepare this narrative review. The literature search, performed in early 2024, was inclusive of literature from 1990 to 2024. After providing an overview of cholesterol metabolism, this study summarizes key preclinical studies that have investigated cholesterol-modifying therapies in laboratory models of AD. It also summarizes past and current clinical trials testing specific targets modulated by anti-cholesterol therapies in AD patients. EXPERT OPINION Based on current epidemiological and mechanistic studies, cholesterol likely plays a role in AD etiology. The use of cholesterol-modifying therapies could be a promising treatment approach if administered at presymptomatic to early AD phases, but it is unlikely to be efficient in mild, moderate, and late AD stages. Several recommendations are provided for hypercholesterolemia management in AD patients.
Collapse
Affiliation(s)
- Katia Azarfar
- Department of Pharmacology and Neurosciences, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Boris Decourt
- Department of Pharmacology and Neurosciences, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Brandon Sanchez Camacho
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, Arizona
| | - John Joshua Lawrence
- Department of Pharmacology and Neurosciences, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Tania R. Omondi
- Department of Pharmacology and Neurosciences, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Marwan N. Sabbagh
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, Arizona
| |
Collapse
|
3
|
Yang X, Yao K, Zhang M, Zhang W, Zu H. New insight into the role of altered brain cholesterol metabolism in the pathogenesis of AD: A unifying cholesterol hypothesis and new therapeutic approach for AD. Brain Res Bull 2025; 224:111321. [PMID: 40164234 DOI: 10.1016/j.brainresbull.2025.111321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 03/16/2025] [Accepted: 03/24/2025] [Indexed: 04/02/2025]
Abstract
The dysregulation of cholesterol metabolism homeostasis has been universally suggested in the aeotiology of Alzheimer's disease (AD). Initially, studies indicate that alteration of serum cholesterol level might contribute to AD. However, because blood-brain barrier impedes entry of plasma cholesterol, brain cells are not directly influenced by plasma cholesterol. Furthermore, mounting evidences suggest a link between alteration of brain cholesterol metabolism and AD. Interestingly, Amyloid-β proteins (Aβ) can markedly inhibit cellular cholesterol biosynthesis and lower cellular cholesterol content in cultured cells. And Aβ overproduction/overload induces a significant decrease of brain cellular cholesterol content in familial AD (FAD) animals. Importantly, mutations or polymorphisms of genes related to brain cholesterol transportation, such as ApoE4, ATP binding cassette (ABC) transporters, low-density lipoprotein receptor (LDLR) family and Niemann-Pick C disease 1 or 2 (NPC1/2), obviously lead to decreased brain cholesterol transport, resulting in brain cellular cholesterol loss, which could be tightly associated with AD pathological impairments. Additionally, accumulating data show that there are reduction of brain cholesterol biosynthesis and/or disorder of brain cholesterol trafficking in a variety of sporadic AD (SAD) animals and patients. Collectively, compelling evidences indicate that FAD and SAD could share one common and overlapping neurochemical mechanism: brain neuronal/cellular cholesterol deficiency. Therefore, accumulated evidences strongly support a novel hypothesis that deficiency of brain cholesterol contributes to the onset and progression of AD. This review highlights the pivotal role of brain cholesterol deficiency in the pathogenesis of AD. The hypothesis offers valuable insights for the future development of AD treatment.
Collapse
Affiliation(s)
- Xiaobo Yang
- Department of Neurology, Jinshan Hospital affiliated to Fudan University, Shanghai 201508, China; Department of Neurology, Shanghai Xuhui Central Hospital, Fudan University, Shanghai 200237, China
| | - Kai Yao
- Department of Neurology, Jinshan Hospital affiliated to Fudan University, Shanghai 201508, China
| | - Mengqi Zhang
- Department of Neurology, Jinshan Hospital affiliated to Fudan University, Shanghai 201508, China
| | - Wenbin Zhang
- Department of Neurology, Jinshan Hospital affiliated to Fudan University, Shanghai 201508, China
| | - Hengbing Zu
- Department of Neurology, Jinshan Hospital affiliated to Fudan University, Shanghai 201508, China.
| |
Collapse
|
4
|
Volynsky PE, Urban AS, Pavlov KV, Bershatsky YV, Bocharova OV, Kryuchkova AK, Zlobina VV, Gavrilenkova AA, Dolotova SM, Kamynina AV, Zangieva OT, Taldaev A, Batishchev OV, Okhrimenko IS, Rakitina TV, Efremov RG, Bocharov EV. Diverse Interactions of Sterols with Amyloid Precursor Protein Transmembrane Domain Can Shift Distribution Between Alternative Amyloid-β Production Cascades in Manner Dependent on Local Lipid Environment. Int J Mol Sci 2025; 26:553. [PMID: 39859269 PMCID: PMC11764862 DOI: 10.3390/ijms26020553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 12/29/2024] [Accepted: 01/07/2025] [Indexed: 01/27/2025] Open
Abstract
Alzheimer's disease (AD) pathogenesis is correlated with the membrane content of various lipid species, including cholesterol, whose interactions with amyloid precursor protein (APP) have been extensively explored. Amyloid-β peptides triggering AD are products of APP cleavage by secretases, which differ depending on the APP and secretase location relative to ordered or disordered membrane microdomains. We used high-resolution NMR to probe the interactions of the cholesterol analog with APP transmembrane domain in two membrane-mimicking systems resembling ordered or perturbed lipid environments (bicelles/micelles). In bicelles, spin-labeled sterol interacted with the peptide near the amphiphilic juxtamembrane region and N-terminal part of APP transmembrane helix, as described earlier for cholesterol. Upon transition into micellar environment, another interaction site appeared where sterol polar head was buried in the hydrophobic core near the hinge region. In MD simulations, sterol moved between three interaction sites, sliding along the polar groove formed by glycine residues composing the dimerization interfaces and flexible hinge of the APP transmembrane domain. Because the lipid environment modulates interactions, the role of lipids in the AD pathogenesis is defined by the state of the entire lipid subsystem rather than the effects of individual lipid species. Cholesterol can interplay with other lipids (polyunsaturated, gangliosides, etc.), determining the outcome of amyloid-β production cascades.
Collapse
Affiliation(s)
- Pavel E. Volynsky
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia; (P.E.V.); (A.S.U.); (Y.V.B.); (O.V.B.); (V.V.Z.); (A.A.G.); (S.M.D.); (A.V.K.); (R.G.E.)
| | - Anatoly S. Urban
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia; (P.E.V.); (A.S.U.); (Y.V.B.); (O.V.B.); (V.V.Z.); (A.A.G.); (S.M.D.); (A.V.K.); (R.G.E.)
| | - Konstantin V. Pavlov
- Moscow Center of Advanced Studies, 123592 Moscow, Russia; (K.V.P.); (A.K.K.); (A.T.); (I.S.O.)
| | - Yaroslav V. Bershatsky
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia; (P.E.V.); (A.S.U.); (Y.V.B.); (O.V.B.); (V.V.Z.); (A.A.G.); (S.M.D.); (A.V.K.); (R.G.E.)
| | - Olga V. Bocharova
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia; (P.E.V.); (A.S.U.); (Y.V.B.); (O.V.B.); (V.V.Z.); (A.A.G.); (S.M.D.); (A.V.K.); (R.G.E.)
| | - Anastasia K. Kryuchkova
- Moscow Center of Advanced Studies, 123592 Moscow, Russia; (K.V.P.); (A.K.K.); (A.T.); (I.S.O.)
| | - Veronika V. Zlobina
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia; (P.E.V.); (A.S.U.); (Y.V.B.); (O.V.B.); (V.V.Z.); (A.A.G.); (S.M.D.); (A.V.K.); (R.G.E.)
- Moscow Center of Advanced Studies, 123592 Moscow, Russia; (K.V.P.); (A.K.K.); (A.T.); (I.S.O.)
| | - Alina A. Gavrilenkova
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia; (P.E.V.); (A.S.U.); (Y.V.B.); (O.V.B.); (V.V.Z.); (A.A.G.); (S.M.D.); (A.V.K.); (R.G.E.)
- Moscow Center of Advanced Studies, 123592 Moscow, Russia; (K.V.P.); (A.K.K.); (A.T.); (I.S.O.)
| | - Sofya M. Dolotova
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia; (P.E.V.); (A.S.U.); (Y.V.B.); (O.V.B.); (V.V.Z.); (A.A.G.); (S.M.D.); (A.V.K.); (R.G.E.)
- Moscow Center of Advanced Studies, 123592 Moscow, Russia; (K.V.P.); (A.K.K.); (A.T.); (I.S.O.)
| | - Anna V. Kamynina
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia; (P.E.V.); (A.S.U.); (Y.V.B.); (O.V.B.); (V.V.Z.); (A.A.G.); (S.M.D.); (A.V.K.); (R.G.E.)
- Moscow Center of Advanced Studies, 123592 Moscow, Russia; (K.V.P.); (A.K.K.); (A.T.); (I.S.O.)
| | - Olga T. Zangieva
- Pirogov National Medical and Surgical Center, 105203 Moscow, Russia;
| | - Amir Taldaev
- Moscow Center of Advanced Studies, 123592 Moscow, Russia; (K.V.P.); (A.K.K.); (A.T.); (I.S.O.)
- Institute of Biomedical Chemistry, 119121 Moscow, Russia
| | - Oleg V. Batishchev
- Frumkin Institute of Physical Chemistry and Electrochemistry RAS, 119071 Moscow, Russia;
| | - Ivan S. Okhrimenko
- Moscow Center of Advanced Studies, 123592 Moscow, Russia; (K.V.P.); (A.K.K.); (A.T.); (I.S.O.)
| | - Tatiana V. Rakitina
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia; (P.E.V.); (A.S.U.); (Y.V.B.); (O.V.B.); (V.V.Z.); (A.A.G.); (S.M.D.); (A.V.K.); (R.G.E.)
| | - Roman G. Efremov
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia; (P.E.V.); (A.S.U.); (Y.V.B.); (O.V.B.); (V.V.Z.); (A.A.G.); (S.M.D.); (A.V.K.); (R.G.E.)
- Department of Applied Mathematics, National Research University Higher School of Economics, 101000 Moscow, Russia
| | - Eduard V. Bocharov
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia; (P.E.V.); (A.S.U.); (Y.V.B.); (O.V.B.); (V.V.Z.); (A.A.G.); (S.M.D.); (A.V.K.); (R.G.E.)
- Moscow Center of Advanced Studies, 123592 Moscow, Russia; (K.V.P.); (A.K.K.); (A.T.); (I.S.O.)
| |
Collapse
|
5
|
Oleynikov IP, Firsov AM, Azarkina NV, Vygodina TV. Cholesterol Attenuates the Pore-Forming Capacity of CARC-Containing Amphipathic Peptides. Int J Mol Sci 2025; 26:533. [PMID: 39859248 PMCID: PMC11765261 DOI: 10.3390/ijms26020533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 12/29/2024] [Accepted: 01/07/2025] [Indexed: 01/27/2025] Open
Abstract
Artificial peptides P4, A1 and A4 are homologous to amphipathic α-helical fragments of the influenza virus M1 protein. P4 and A4 contain the cholesterol recognition sequence CARC, which is absent in A1. As shown previously, P4 and A4 but not A1 have cytotoxic effects on some eukaryotic and bacterial cells. This might be caused by the dysfunction of cholesterol-dependent cellular structures, inhibition of the respiratory chain, or disruption of the membrane. Here, we analyzed the latter hypothesis by studying the uncoupling effect of the peptides on asolectin membranes. The influence of A4 on Δψ pre-formed either by the valinomycin-dependent K+ diffusion or by the activity of membrane-built cytochrome c oxidase (CcO) was studied on (proteo)liposomes. Also, we investigated the effect of P4, A1 and A4 on liposomes loaded with calcein. It is found that A4 in a submicromolar range causes an immediate and complete dissipation of diffusion Δψ across the liposomal membrane. Uncoupling of the CcO-containing proteoliposomes requires an order of magnitude of higher peptide concentration, which may indicate the sorption of A4 on the enzyme. The presence of cholesterol in the membrane significantly weakens the uncoupling. Submicromolar A4 and P4 cause the release of calcein from liposomes, indicating the formation of membrane pores. The process develops in minutes and is significantly decelerated by cholesterol. Micromolar A1 induces pore formation in a cholesterol-independent manner. We conclude that the peptides P4, A4 and, in higher concentrations, A1 form pores in the asolectin membrane. The CARC-mediated interaction of A4 and P4 with cholesterol impedes the peptide oligomerization necessary for pore formation. The rapid uncoupling effect of A4 is apparently caused by an increase in the proton conductivity of the membrane without pore formation.
Collapse
Affiliation(s)
| | | | - Natalia V. Azarkina
- A. N. Belozersky Institute of Physico-Chemical Biology, M. V. Lomonosov Moscow State University, Leninskie Gory 1, Bld. 40, Moscow 119992, Russia; (I.P.O.); (A.M.F.); (T.V.V.)
| | | |
Collapse
|
6
|
Nguyen A, Ondrus AE. In Silico Tools to Score and Predict Cholesterol-Protein Interactions. J Med Chem 2024; 67:20765-20775. [PMID: 39616623 DOI: 10.1021/acs.jmedchem.4c01885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
Cholesterol is structurally distinct from other lipids, which confers it with singular roles in membrane organization and protein function. As a signaling molecule, cholesterol engages in discrete interactions with transmembrane, peripheral, and certain soluble proteins to control cellular responses. Accordingly, the cholesterol-protein interface is central to cholesterol-related diseases and is an essential consideration in drug design. However, cholesterol's hydrophobic, un-drug-like nature presents a unique challenge to traditional in silico analyses. In this Perspective, we survey a collection of tools designed to predict and evaluate cholesterol binding sites in proteins, including classical sequence motifs, molecular docking, template-based strategies, molecular dynamics simulations, and recent artificial intelligence approaches. We then comment on contemporary tools to evaluate ligand-protein interactions, their applicability to cholesterol, and the yet-untapped potential of cholesterol-protein interactions in human health and disease.
Collapse
Affiliation(s)
- Anna Nguyen
- Department of Pharmaceutical Sciences, University of Illinois Chicago, Chicago, Illinois 60607, United States
| | - Alison E Ondrus
- Department of Pharmaceutical Sciences, University of Illinois Chicago, Chicago, Illinois 60607, United States
- Department of Chemistry, University of Illinois Chicago, Chicago, Illinois 60607, United States
| |
Collapse
|
7
|
Kim M, Bezprozvanny I. Biological function of Aβ peptides revealed by analysis of membrane-association properties: Implications for Azheimer's disease pathogenesis. Biochem Biophys Res Commun 2024; 734:150611. [PMID: 39222574 DOI: 10.1016/j.bbrc.2024.150611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Proteolytic processing of amyloid precursor protein (APP) plays a critical role in the pathogenesis of Azheimer's disease (AD). Sequential cleavage of APP by β and γ secretases leads to generation of Aβ40 (non-amyloidogenic) and Aβ42 (amyloidogenic) peptides. Despite intense studies, the biological function of these peptides and the mechanism of Aβ42 toxicity is poorly understood. In the previous publications we proposed that association of Aβ peptides with the endosomal membranes may have important implications for pathogenesis of AD (Kim and Bezprozvanny, IJMS, 2021, vol 22, 13600; Kim and Bezprozvanny, IJMS, 2023, vol 24, 2092). To understand potential biological importance of such interaction, we focused on the region of Aβ peptides involved in peri-membrane association (E682 to N698). We discovered that association of this region with the membranes is reminiscent of several known anti-microbial peptides (AMP) such as PA13, Aurein1.2 and BP100. Our analysis further revealed that energy of peri-membrane association of Aβ40 is significantly weaker than for Aβ42 or AMP peptides, but it can be increased in the presence of non-amyloidogenic FAD mutations or in the presence of cholesterol in the membrane. Based on similarity with established mechanism of action of AMP peptides, we propose that Aβ peptides affect the curvature of endosomal membranes and shift the balance between endosomal recycling to plasma membrane and late endosomal/lysosomal pathway. We further propose that these effects are enhanced as a result of non-amyloidogenic FAD mutations in the sequence of Aβ peptides or in the presence of cholesterol in the membrane. The proposed model provides potential mechanistic explanation to synaptic defects induced by increased levels of Aβ42, by non-amyloidogenic FAD mutations in APP and by age-related increase in the levels of cholesterol in the brain.
Collapse
Affiliation(s)
- Meewhi Kim
- Dept of Physiology, UT Southwestern Medical Center, Dallas, TX, 75390, USA.
| | - Ilya Bezprozvanny
- Dept of Physiology, UT Southwestern Medical Center, Dallas, TX, 75390, USA; Laboratory of Molecular Neurodegeneration, St Petersburg State Polytechnical Universty, St Petersburg, 195251, Russian Federation.
| |
Collapse
|
8
|
Majumder A, Gu Y, Chen YC, An X, Reinhard BM, Straub JE. Probing the Origins of the Disorder-to-Order Transition of a Modified Cholesterol in Ternary Lipid Bilayers. J Am Chem Soc 2024; 146:27725-27735. [PMID: 39315765 PMCID: PMC11734599 DOI: 10.1021/jacs.4c09495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
In a recent study, spectroscopic observations of modified cholesterol in both lipid-coated nanoparticles and liposomes provided evidence for a disorder-to-order orientational transition with increasing temperature. Below a critical temperature, in a membrane composed of modified cholesterol, saturated (DPPC) lipid, and anionic (DOPS) lipid, a roughly equal population of head-out and head-in conformations was observed. Surprisingly, as temperature was increased the modified cholesterol presented an abrupt transition to a population of all head-in orientations. Additionally, when saturated DPPC lipids were replaced by unsaturated DOPC the disorder-to-order transition was eliminated. To gain insight into this curious transition, we use all-atom molecular dynamics simulations to characterize the structure and fluctuations of lipid bilayers composed of saturated and unsaturated lipids, in the presence of normal and modified cholesterol. Free energy differences between head-out and head-in conformations are computed as a function of varying lipid membrane composition for normal and modified cholesterol. In bilayers primarily composed of DPPC, the orientation of modified cholesterol is observed to depend sensitively on the orientation of the surrounding normal or modified cholesterol molecules, suggesting cooperative Ising-like interactions favoring an ordered state. In bilayers primarily composed of DOPC, spontaneous flip-flop of modified cholesterol is observed, consistent with the measured small free energy barrier separating the head-in and head-out orientations. This combined experimental and computational study effectively characterizes the orientational dimorphism and provides novel insight into the fundamental nature of cholesterol interactions in membrane.
Collapse
Affiliation(s)
- Ayan Majumder
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
| | - Yuanqing Gu
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
- The Photonics Center, Boston University, 8 Saint Mary's Street, Boston, Massachusetts 02215, United States
| | - Yi-Chen Chen
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
| | - Xingda An
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
- The Photonics Center, Boston University, 8 Saint Mary's Street, Boston, Massachusetts 02215, United States
| | - Björn M Reinhard
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
- The Photonics Center, Boston University, 8 Saint Mary's Street, Boston, Massachusetts 02215, United States
| | - John E Straub
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
| |
Collapse
|
9
|
Lee MS, Tuohy PJ, Kim CY, Yost PP, Lichauco K, Parrish HL, Van Doorslaer K, Kuhns MS. The CD4 transmembrane GGXXG and juxtamembrane (C/F)CV+C motifs mediate pMHCII-specific signaling independently of CD4-LCK interactions. eLife 2024; 12:RP88225. [PMID: 38639990 PMCID: PMC11031086 DOI: 10.7554/elife.88225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024] Open
Abstract
CD4+ T cell activation is driven by five-module receptor complexes. The T cell receptor (TCR) is the receptor module that binds composite surfaces of peptide antigens embedded within MHCII molecules (pMHCII). It associates with three signaling modules (CD3γε, CD3δε, and CD3ζζ) to form TCR-CD3 complexes. CD4 is the coreceptor module. It reciprocally associates with TCR-CD3-pMHCII assemblies on the outside of a CD4+ T cells and with the Src kinase, LCK, on the inside. Previously, we reported that the CD4 transmembrane GGXXG and cytoplasmic juxtamembrane (C/F)CV+C motifs found in eutherian (placental mammal) CD4 have constituent residues that evolved under purifying selection (Lee et al., 2022). Expressing mutants of these motifs together in T cell hybridomas increased CD4-LCK association but reduced CD3ζ, ZAP70, and PLCγ1 phosphorylation levels, as well as IL-2 production, in response to agonist pMHCII. Because these mutants preferentially localized CD4-LCK pairs to non-raft membrane fractions, one explanation for our results was that they impaired proximal signaling by sequestering LCK away from TCR-CD3. An alternative hypothesis is that the mutations directly impacted signaling because the motifs normally play an LCK-independent role in signaling. The goal of this study was to discriminate between these possibilities. Using T cell hybridomas, our results indicate that: intracellular CD4-LCK interactions are not necessary for pMHCII-specific signal initiation; the GGXXG and (C/F)CV+C motifs are key determinants of CD4-mediated pMHCII-specific signal amplification; the GGXXG and (C/F)CV+C motifs exert their functions independently of direct CD4-LCK association. These data provide a mechanistic explanation for why residues within these motifs are under purifying selection in jawed vertebrates. The results are also important to consider for biomimetic engineering of synthetic receptors.
Collapse
Affiliation(s)
- Mark S Lee
- Department of Immunobiology, The University of Arizona College of MedicineTucsonUnited States
| | - Peter J Tuohy
- Department of Immunobiology, The University of Arizona College of MedicineTucsonUnited States
| | - Caleb Y Kim
- Department of Immunobiology, The University of Arizona College of MedicineTucsonUnited States
| | - Philip P Yost
- Department of Immunobiology, The University of Arizona College of MedicineTucsonUnited States
| | - Katrina Lichauco
- Department of Immunobiology, The University of Arizona College of MedicineTucsonUnited States
| | - Heather L Parrish
- Department of Immunobiology, The University of Arizona College of MedicineTucsonUnited States
| | - Koenraad Van Doorslaer
- Department of Immunobiology, The University of Arizona College of MedicineTucsonUnited States
- School of Animal and Comparative Biomedical Sciences, The University of ArizonaTucsonUnited States
- Cancer Biology Graduate Interdisciplinary Program and Genetics Graduate Interdisciplinary Program, The University of ArizonaTucsonUnited States
- The BIO-5 Institute, The University of ArizonaTucsonUnited States
- The University of Arizona Cancer CenterTucsonUnited States
- The Arizona Center on Aging, The University of Arizona College of MedicineTucsonUnited States
| | - Michael S Kuhns
- Department of Immunobiology, The University of Arizona College of MedicineTucsonUnited States
- Cancer Biology Graduate Interdisciplinary Program and Genetics Graduate Interdisciplinary Program, The University of ArizonaTucsonUnited States
- The BIO-5 Institute, The University of ArizonaTucsonUnited States
- The University of Arizona Cancer CenterTucsonUnited States
- The Arizona Center on Aging, The University of Arizona College of MedicineTucsonUnited States
| |
Collapse
|
10
|
Steck TL, Ali Tabei SM, Lange Y. Estimating the Cholesterol Affinity of Integral Membrane Proteins from Experimental Data. Biochemistry 2024; 63:19-26. [PMID: 38099740 PMCID: PMC10765374 DOI: 10.1021/acs.biochem.3c00567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/29/2023] [Accepted: 11/29/2023] [Indexed: 01/03/2024]
Abstract
The cholesterol affinities of many integral plasma membrane proteins have been estimated by molecular computation. However, these values lack experimental confirmation. We therefore developed a simple mathematical model to extract sterol affinity constants and stoichiometries from published isotherms for the dependence of the activity of such proteins on the membrane cholesterol concentration. The binding curves for these proteins are sigmoidal, with strongly lagged thresholds attributable to competition for the cholesterol by bilayer phospholipids. The model provided isotherms that matched the experimental data using published values for the sterol association constants and stoichiometries of the phospholipids. Three oligomeric transporters were found to bind cholesterol without cooperativity, with dimensionless association constants of 35 for Kir3.4* and 100 for both Kir2 and a GAT transporter. (The corresponding ΔG° values were -8.8, -11.4, and -11.4 kJ/mol, respectively). These association constants are significantly lower than those for the phospholipids, which range from ∼100 to 6000. The BK channel, the nicotinic acetylcholine receptor, and the M192I mutant of Kir3.4* appear to bind multiple cholesterol molecules cooperatively (n = 2 or 4), with subunit affinities of 563, 950, and 700, respectively. The model predicts that the three less avid transporters are approximately half-saturated in their native plasma membranes; hence, they are sensitive to variations in cholesterol in vivo. The more avid proteins would be nearly saturated in vivo. The method can be applied to any integral protein or other ligands in any bilayer for which there are reasonable estimates of the sterol affinities and stoichiometries of the phospholipids.
Collapse
Affiliation(s)
- Theodore L. Steck
- Department
of Biochemistry and Molecular Biology, University
of Chicago, 929 East 57th Street, Chicago, Illinois 60637, United States
| | - S. M. Ali Tabei
- Department
of Physics, University of Northern Iowa, Cedar Falls, Iowa 50614, United States
| | - Yvonne Lange
- Department
of Pathology, Rush University Medical Center, Chicago, Illinois 60612, United States
| |
Collapse
|
11
|
Samhan-Arias AK, Poejo J, Marques-da-Silva D, Martínez-Costa OH, Gutierrez-Merino C. Hexa-Histidine, a Peptide with Versatile Applications in the Study of Amyloid-β(1-42) Molecular Mechanisms of Action. Molecules 2023; 28:7138. [PMID: 38067638 PMCID: PMC10708093 DOI: 10.3390/molecules28237909] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/10/2023] [Accepted: 10/13/2023] [Indexed: 12/18/2023] Open
Abstract
Amyloid β (Aβ) oligomers are the most neurotoxic forms of Aβ, and Aβ(1-42) is the prevalent Aβ peptide found in the amyloid plaques of Alzheimer's disease patients. Aβ(25-35) is the shortest peptide that retains the toxicity of Aβ(1-42). Aβ oligomers bind to calmodulin (CaM) and calbindin-D28k with dissociation constants in the nanomolar Aβ(1-42) concentration range. Aβ and histidine-rich proteins have a high affinity for transition metal ions Cu2+, Fe3+ and Zn2+. In this work, we show that the fluorescence of Aβ(1-42) HiLyteTM-Fluor555 can be used to monitor hexa-histidine peptide (His6) interaction with Aβ(1-42). The formation of His6/Aβ(1-42) complexes is also supported by docking results yielded by the MDockPeP Server. Also, we found that micromolar concentrations of His6 block the increase in the fluorescence of Aβ(1-42) HiLyteTM-Fluor555 produced by its interaction with the proteins CaM and calbindin-D28k. In addition, we found that the His6-tag provides a high-affinity site for the binding of Aβ(1-42) and Aβ(25-35) peptides to the human recombinant cytochrome b5 reductase, and sensitizes this enzyme to inhibition by these peptides. In conclusion, our results suggest that a His6-tag could provide a valuable new tool to experimentally direct the action of neurotoxic Aβ peptides toward selected cellular targets.
Collapse
Affiliation(s)
- Alejandro K. Samhan-Arias
- Departamento de Bioquímica, Universidad Autónoma de Madrid (UAM), C/Arturo Duperier 4, 28029 Madrid, Spain;
- Instituto de Investigaciones Biomédicas ‘Sols-Morreale’ (CSIC-UAM), C/Arturo Duperier 4, 28029 Madrid, Spain
| | - Joana Poejo
- Instituto de Biomarcadores de Patologías Moleculares, Universidad de Extremadura, 06006 Badajoz, Spain;
| | - Dorinda Marques-da-Silva
- LSRE—Laboratory of Separation and Reaction Engineering and LCM—Laboratory of Catalysis and Materials, School of Management and Technology, Polytechnic Institute of Leiria, Morro do Lena-Alto do Vieiro, 2411-901 Leiria, Portugal;
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- School of Technology and Management, Polytechnic Institute of Leiria, Morro do Lena-Alto do Vieiro, 2411-901 Leiria, Portugal
| | - Oscar H. Martínez-Costa
- Departamento de Bioquímica, Universidad Autónoma de Madrid (UAM), C/Arturo Duperier 4, 28029 Madrid, Spain;
- Instituto de Investigaciones Biomédicas ‘Sols-Morreale’ (CSIC-UAM), C/Arturo Duperier 4, 28029 Madrid, Spain
| | - Carlos Gutierrez-Merino
- Instituto de Biomarcadores de Patologías Moleculares, Universidad de Extremadura, 06006 Badajoz, Spain;
| |
Collapse
|
12
|
Li Z, Wang Y, Xing R, Zeng H, Yu XJ, Zhang YJ, Xu J, Zheng L. Cholesterol Efflux Drives the Generation of Immunosuppressive Macrophages to Promote the Progression of Human Hepatocellular Carcinoma. Cancer Immunol Res 2023; 11:1400-1413. [PMID: 37467346 DOI: 10.1158/2326-6066.cir-22-0907] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 04/07/2023] [Accepted: 07/18/2023] [Indexed: 07/21/2023]
Abstract
Cholesterol is often enriched in tumor microenvironment (TME); however, its impact on disease progression varies in different tissues and cells. Monocytes/macrophages (Mφ) are major components and regulators of the TME and play pivotal roles in tumor progression and therapeutic responses. We aimed to investigate the profile, effects, and regulatory mechanisms of Mφ cholesterol metabolism in the context of human hepatocellular carcinoma (HCC). Here, we found that patients with high serum levels of cholesterol had shorter survival times and lower response rates to anti-PD-1 treatment. However, the cholesterol content in tumor-infiltrating monocytes/Mφ was significantly lower than that in their counterparts in paired nontumor tissues. The expression of the cholesterol efflux transporter, ABCA1, was upregulated in tumor monocytes/Mφ, and ABCA1 upregulation positively associated with decreased cellular cholesterol content and increased serum cholesterol levels. Mechanistically, autocrine cytokines from tumor-treated monocytes increased LXRα and ABCA1 expression, which led to the generation of immature and immunosuppressive Mφ. Although exogenous cholesterol alone had little direct effect on Mφ, it did act synergistically with tumor-derived factors to promote ABCA1 expression in Mφ with more immunosuppressive features. Moreover, high numbers of ABCA1+ Mφ in HCC tumors associated with reduced CD8+ T-cell infiltration and predicted poor clinical outcome for patients. Our results revealed that dysregulated cholesterol homeostasis, due to the collaborative effects of tumors and exogenous cholesterol, drives the generation of immunosuppressive Mφ. The selective modulation of cholesterol metabolism in Mφ may represent a novel strategy for cancer treatment.
Collapse
Affiliation(s)
- Zhixiong Li
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, P.R. China
| | - Yongchun Wang
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Rui Xing
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Huilan Zeng
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
- Department of Liver Surgery, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Xing-Juan Yu
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Yao-Jun Zhang
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
- Department of Liver Surgery, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Jing Xu
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Limin Zheng
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, P.R. China
| |
Collapse
|
13
|
Kim M, Bezprozvanny I. Structure-Based Modeling of Sigma 1 Receptor Interactions with Ligands and Cholesterol and Implications for Its Biological Function. Int J Mol Sci 2023; 24:12980. [PMID: 37629160 PMCID: PMC10455549 DOI: 10.3390/ijms241612980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/15/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
The sigma 1 receptor (S1R) is a 223-amino-acid-long transmembrane endoplasmic reticulum (ER) protein. The S1R plays an important role in neuronal health and it is an established therapeutic target for neurodegenerative and neuropsychiatric disorders. Despite its importance in physiology and disease, the biological function of S1R is poorly understood. To gain insight into the biological and signaling functions of S1R, we took advantage of recently reported crystal structures of human and Xenopus S1Rs and performed structural modeling of S1R interactions with ligands and cholesterol in the presence of the membrane. By combining bioinformatics analysis of S1R sequence and structural modelling approaches, we proposed a model that suggests that S1R may exist in two distinct conformations-"dynamic monomer" (DM) and "anchored monomer" (AM). We further propose that equilibrium between AM and DM conformations of S1R is essential for its biological function in cells, with AM conformation facilitating the oligomerization of S1R and DM conformation facilitating deoligomerization. Consistent with experimental evidence, our hypothesis predicts that increased levels of membrane cholesterol and S1R antagonists should promote the oligomeric state of S1R, but S1R agonists and pathogenic mutations should promote its deoligomerization. Obtained results provide mechanistic insights into signaling functions of S1R in cells, and the proposed model may help to explain neuroprotective effects of S1R modulators.
Collapse
Affiliation(s)
- Meewhi Kim
- Department of Physiology, UT Southwestern Medical Center at Dallas, Dallas, TX 75390, USA
| | - Ilya Bezprozvanny
- Department of Physiology, UT Southwestern Medical Center at Dallas, Dallas, TX 75390, USA
- Laboratory of Molecular Neurodegeneration, Peter the Great St Petersburg State Polytechnical University, 195251 St. Petersburg, Russia
| |
Collapse
|
14
|
Ray AP, Thakur N, Pour NG, Eddy MT. Dual mechanisms of cholesterol-GPCR interactions that depend on membrane phospholipid composition. Structure 2023; 31:836-847.e6. [PMID: 37236187 PMCID: PMC10330489 DOI: 10.1016/j.str.2023.05.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/25/2023] [Accepted: 05/01/2023] [Indexed: 05/28/2023]
Abstract
Cholesterol is a critical component of mammalian cell membranes and an allosteric modulator of G protein-coupled receptors (GPCRs), but divergent views exist on the mechanisms by which cholesterol influences receptor functions. Leveraging the benefits of lipid nanodiscs, i.e., quantitative control of lipid composition, we observe distinct impacts of cholesterol in the presence and absence of anionic phospholipids on the function-related conformational dynamics of the human A2A adenosine receptor (A2AAR). Direct receptor-cholesterol interactions drive activation of agonist-bound A2AAR in membranes containing zwitterionic phospholipids. Intriguingly, the presence of anionic lipids attenuates cholesterol's impact through direct interactions with the receptor, highlighting a more complex role for cholesterol that depends on membrane phospholipid composition. Targeted amino acid replacements at two frequently predicted cholesterol interaction sites showed distinct impacts of cholesterol at different receptor locations, demonstrating the ability to delineate different roles of cholesterol in modulating receptor signaling and maintaining receptor structural integrity.
Collapse
Affiliation(s)
- Arka Prabha Ray
- Department of Chemistry, University of Florida, 126 Sisler Hall, Gainesville, FL 32611, USA
| | - Naveen Thakur
- Department of Chemistry, University of Florida, 126 Sisler Hall, Gainesville, FL 32611, USA
| | - Niloofar Gopal Pour
- Department of Chemistry, University of Florida, 126 Sisler Hall, Gainesville, FL 32611, USA
| | - Matthew T Eddy
- Department of Chemistry, University of Florida, 126 Sisler Hall, Gainesville, FL 32611, USA.
| |
Collapse
|
15
|
Zhang WB, Huang Y, Guo XR, Zhang MQ, Yuan XS, Zu HB. DHCR24 reverses Alzheimer's disease-related pathology and cognitive impairment via increasing hippocampal cholesterol levels in 5xFAD mice. Acta Neuropathol Commun 2023; 11:102. [PMID: 37344916 DOI: 10.1186/s40478-023-01593-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 05/30/2023] [Indexed: 06/23/2023] Open
Abstract
Accumulating evidences reveal that cellular cholesterol deficiency could trigger the onset of Alzheimer's disease (AD). As a key regulator, 24-dehydrocholesterol reductase (DHCR24) controls cellular cholesterol homeostasis, which was found to be downregulated in AD vulnerable regions and involved in AD-related pathological activities. However, DHCR24 as a potential therapeutic target for AD remains to be identified. In present study, we demonstrated the role of DHCR24 in AD by employing delivery of adeno-associated virus carrying DHCR24 gene into the hippocampus of 5xFAD mice. Here, we found that 5xFAD mice had lower levels of cholesterol and DHCR24 expression, and the cholesterol loss was alleviated by DHCR24 overexpression. Surprisingly, the cognitive impairment of 5xFAD mice was significantly reversed after DHCR24-based gene therapy. Moreover, we revealed that DHCR24 knock-in successfully prevented or reversed AD-related pathology in 5xFAD mice, including amyloid-β deposition, synaptic injuries, autophagy, reactive astrocytosis, microglial phagocytosis and apoptosis. In conclusion, our results firstly demonstrated that the potential value of DHCR24-mediated regulation of cellular cholesterol level as a promising treatment for AD.
Collapse
Affiliation(s)
- Wen-Bin Zhang
- Department of Neurology, Jinshan Hospital Affiliated to Fudan University, No.1508 Long-Hang Road, Jinshan District, Shanghai, 201508, China
| | - Yue Huang
- Department of Neurology, Jinshan Hospital Affiliated to Fudan University, No.1508 Long-Hang Road, Jinshan District, Shanghai, 201508, China
| | - Xiao-Rou Guo
- Department of Neurology, Jinshan Hospital Affiliated to Fudan University, No.1508 Long-Hang Road, Jinshan District, Shanghai, 201508, China
| | - Meng-Qi Zhang
- Department of Neurology, Jinshan Hospital Affiliated to Fudan University, No.1508 Long-Hang Road, Jinshan District, Shanghai, 201508, China
| | - Xiang-Shan Yuan
- Department of Neurology, Jinshan Hospital Affiliated to Fudan University, No.1508 Long-Hang Road, Jinshan District, Shanghai, 201508, China.
- Department of Anatomy and Histoembryology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China.
- State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China.
| | - Heng-Bing Zu
- Department of Neurology, Jinshan Hospital Affiliated to Fudan University, No.1508 Long-Hang Road, Jinshan District, Shanghai, 201508, China.
| |
Collapse
|
16
|
Isu UH, Badiee SA, Khodadadi E, Moradi M. Cholesterol in Class C GPCRs: Role, Relevance, and Localization. MEMBRANES 2023; 13:301. [PMID: 36984688 PMCID: PMC10056374 DOI: 10.3390/membranes13030301] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/21/2023] [Accepted: 02/28/2023] [Indexed: 06/18/2023]
Abstract
G-protein coupled receptors (GPCRs), one of the largest superfamilies of cell-surface receptors, are heptahelical integral membrane proteins that play critical roles in virtually every organ system. G-protein-coupled receptors operate in membranes rich in cholesterol, with an imbalance in cholesterol level within the vicinity of GPCR transmembrane domains affecting the structure and/or function of many GPCRs, a phenomenon that has been linked to several diseases. These effects of cholesterol could result in indirect changes by altering the mechanical properties of the lipid environment or direct changes by binding to specific sites on the protein. There are a number of studies and reviews on how cholesterol modulates class A GPCRs; however, this area of study is yet to be explored for class C GPCRs, which are characterized by a large extracellular region and often form constitutive dimers. This review highlights specific sites of interaction, functions, and structural dynamics involved in the cholesterol recognition of the class C GPCRs. We summarize recent data from some typical family members to explain the effects of membrane cholesterol on the structural features and functions of class C GPCRs and speculate on their corresponding therapeutic potential.
Collapse
Affiliation(s)
| | | | | | - Mahmoud Moradi
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, USA
| |
Collapse
|
17
|
Oleynikov IP, Sudakov RV, Radyukhin VA, Arutyunyan AM, Azarkina NV, Vygodina TV. Interaction of Amphipathic Peptide from Influenza Virus M1 Protein with Mitochondrial Cytochrome Oxidase. Int J Mol Sci 2023; 24:ijms24044119. [PMID: 36835528 PMCID: PMC9961948 DOI: 10.3390/ijms24044119] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/07/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
The Bile Acid Binding Site (BABS) of cytochrome oxidase (CcO) binds numerous amphipathic ligands. To determine which of the BABS-lining residues are critical for interaction, we used the peptide P4 and its derivatives A1-A4. P4 is composed of two flexibly bound modified α-helices from the M1 protein of the influenza virus, each containing a cholesterol-recognizing CRAC motif. The effect of the peptides on the activity of CcO was studied in solution and in membranes. The secondary structure of the peptides was examined by molecular dynamics, circular dichroism spectroscopy, and testing the ability to form membrane pores. P4 was found to suppress the oxidase but not the peroxidase activity of solubilized CcO. The Ki(app) is linearly dependent on the dodecyl-maltoside (DM) concentration, indicating that DM and P4 compete in a 1:1 ratio. The true Ki is 3 μM. The deoxycholate-induced increase in Ki(app) points to a competition between P4 and deoxycholate. A1 and A4 inhibit solubilized CcO with Ki(app)~20 μM at 1 mM DM. A2 and A3 hardly inhibit CcO either in solution or in membranes. The mitochondrial membrane-bound CcO retains sensitivity to P4 and A4 but acquires resistance to A1. We associate the inhibitory effect of P4 with its binding to BABS and dysfunction of the proton channel K. Trp residue is critical for inhibition. The resistance of the membrane-bound enzyme to inhibition may be due to the disordered secondary structure of the inhibitory peptide.
Collapse
|
18
|
Cornut D, Soulié M, Moreno A, Boussambe GNM, Damian M, Igonet S, Guillet P, Banères JL, Durand G. Non-ionic cholesterol-based additives for the stabilization of membrane proteins. Biochimie 2023; 205:27-39. [PMID: 36586567 DOI: 10.1016/j.biochi.2022.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 12/30/2022]
Abstract
We report herein the synthesis of two non-ionic amphiphiles with a cholesterol hydrophobic moiety that can be used as chemical additives for biochemical studies of membrane proteins. They were designed to show a high similarity with the planar steroid core of cholesterol and small-to-medium polar head groups attached at the C3 position of ring-A on the sterol skeleton. The two Chol-Tris and Chol-DG have a Tris-hydroxymethyl and a branched diglucose polar head group, respectively, which provide them sufficient water solubility when mixed with the "gold standard" detergent n-Dodecyl-β-D-Maltoside (DDM). The colloidal properties of these mixed micelles were investigated by means of surface tension (SFT) measurements and dynamic light scattering (DLS) experiments and showed the formation of globular micelles of about 8 nm in diameter with a critical micellar concentration of 0.20 mM for DDM:Chol-DG and 0.22 mM for DDM:Chol-Tris. We showed that mixed micelles do not alter the extraction potency of a G-protein coupled receptor (GPCR): the human adenosine A2A receptor (A2AR). The thermostabilizing effect of the mixed micelles was confirmed on two GPCRs, A2AR and the growth hormone secretagogue receptor (GHSR). Finally, these two mixed micelles were found suitable for the purification of an active form of A2AR which remained able to bind two ligands of different class i.e. the specific agonist CGS-21680 and the specific inverse agonist ZM-241385. This suggests that Chol-Tris and Chol-DG may be used as a non-ionic alternative to the cholesteryl hemisuccinate (CHS) stabilizing agent.
Collapse
Affiliation(s)
- Damien Cornut
- Institut des Biomolécules Max Mousseron UMR 5247 UM-CNRS-ENSCM & Avignon Université, 301 rue Baruch de Spinoza, 84916, Avignon, Cedex 9, France; CHEM2STAB, 301 rue Baruch de Spinoza, 84916, Avignon, Cedex 9, France
| | - Marine Soulié
- Institut des Biomolécules Max Mousseron UMR 5247 UM-CNRS-ENSCM & Avignon Université, 301 rue Baruch de Spinoza, 84916, Avignon, Cedex 9, France; CHEM2STAB, 301 rue Baruch de Spinoza, 84916, Avignon, Cedex 9, France
| | | | - Gildas Nyame Mendendy Boussambe
- Institut des Biomolécules Max Mousseron UMR 5247 UM-CNRS-ENSCM & Avignon Université, 301 rue Baruch de Spinoza, 84916, Avignon, Cedex 9, France; CHEM2STAB, 301 rue Baruch de Spinoza, 84916, Avignon, Cedex 9, France
| | - Marjorie Damian
- Institut des Biomolécules Max Mousseron UMR 5247 UM-CNRS-ENSCM, 1919 route de Mende, 34293, Montpellier, Cedex 5, France
| | | | - Pierre Guillet
- Institut des Biomolécules Max Mousseron UMR 5247 UM-CNRS-ENSCM & Avignon Université, 301 rue Baruch de Spinoza, 84916, Avignon, Cedex 9, France; CHEM2STAB, 301 rue Baruch de Spinoza, 84916, Avignon, Cedex 9, France
| | - Jean-Louis Banères
- Institut des Biomolécules Max Mousseron UMR 5247 UM-CNRS-ENSCM, 1919 route de Mende, 34293, Montpellier, Cedex 5, France
| | - Grégory Durand
- Institut des Biomolécules Max Mousseron UMR 5247 UM-CNRS-ENSCM & Avignon Université, 301 rue Baruch de Spinoza, 84916, Avignon, Cedex 9, France; CHEM2STAB, 301 rue Baruch de Spinoza, 84916, Avignon, Cedex 9, France.
| |
Collapse
|
19
|
Yue X, Kong Y, Zhang Y, Sun M, Liu S, Wu Z, Gao L, Liang X, Ma C. SREBF2-STARD4 axis confers sorafenib resistance in hepatocellular carcinoma by regulating mitochondrial cholesterol homeostasis. Cancer Sci 2022; 114:477-489. [PMID: 35642354 PMCID: PMC9899602 DOI: 10.1111/cas.15449] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 05/21/2022] [Accepted: 05/26/2022] [Indexed: 01/07/2023] Open
Abstract
Sorafenib resistance limits its survival benefit for treatment of hepatocellular carcinoma (HCC). Cholesterol metabolism is dysregulated in HCC, and its role in sorafenib resistance of HCC has not been fully elucidated. Aiming to elucidate this, in vitro and in vivo sorafenib resistant models were established. Sterol regulatory element binding transcription factor 2 (SREBF2), the key regulator of cholesterol metabolism, was activated in sorafenib resistant HepG2 and Huh7 cells. Knockdown of SREBF2 resensitized sorafenib resistant cells and xenografts tumors to sorafenib. Further study showed that SREBF2 positively correlated with StAR related lipid transfer domain containing 4 (STARD4) in our sorafenib resistant models and publicly available datasets. STARD4, mediating cholesterol trafficking, not only promoted proliferation and migration of HepG2 and Huh7 cells, but also increased sorafenib resistance in liver cancer. Mechanically, SREBF2 promoted expression of STARD4 by directly binding to its promoter region, leading to increased mitochondrial cholesterol levels and inhibition of mitochondrial cytochrome c release. Importantly, knockdown of SREBF2 or STARD4 decreased mitochondrial cholesterol levels and increased mitochondrial cytochrome c release, respectively. Moreover, overexpression of STARD4 reversed the effect of SREBF2 knockdown on mitochondrial cytochrome c release and sorafenib resistance. In conclusion, SREBF2 promotes STARD4 transcription, which in turn contributes to mitochondrial cholesterol transport and sorafenib resistance in HCC. Therefore, targeting the SREBF2-STARD4 axis would be beneficial to a subset of HCC patients with sorafenib resistance.
Collapse
Affiliation(s)
- Xuetian Yue
- Department of Cell Biology, School of Basic Medical Sciences, Cheeloo College of MedicineShandong UniversityJinanChina
| | - Youzi Kong
- Department of Cell Biology, School of Basic Medical Sciences, Cheeloo College of MedicineShandong UniversityJinanChina
| | - Yankun Zhang
- Key Laboratory for Experimental Teratology of Ministry of Education, Key Laboratory of Infection and Immunity of Shandong Province, and Department of Immunology, School of Basic Medical Sciences, Cheeloo Medical College of MedicineShandong UniversityJinanChina
| | - Min Sun
- Department of Hernia and Abdominal Wall Surgery, General Surgery, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanChina
| | - Shuyue Liu
- Department of Cell Biology, School of Basic Medical Sciences, Cheeloo College of MedicineShandong UniversityJinanChina
| | - Zhuanchang Wu
- Key Laboratory for Experimental Teratology of Ministry of Education, Key Laboratory of Infection and Immunity of Shandong Province, and Department of Immunology, School of Basic Medical Sciences, Cheeloo Medical College of MedicineShandong UniversityJinanChina
| | - Lifen Gao
- Key Laboratory for Experimental Teratology of Ministry of Education, Key Laboratory of Infection and Immunity of Shandong Province, and Department of Immunology, School of Basic Medical Sciences, Cheeloo Medical College of MedicineShandong UniversityJinanChina
| | - Xiaohong Liang
- Key Laboratory for Experimental Teratology of Ministry of Education, Key Laboratory of Infection and Immunity of Shandong Province, and Department of Immunology, School of Basic Medical Sciences, Cheeloo Medical College of MedicineShandong UniversityJinanChina
| | - Chunhong Ma
- Key Laboratory for Experimental Teratology of Ministry of Education, Key Laboratory of Infection and Immunity of Shandong Province, and Department of Immunology, School of Basic Medical Sciences, Cheeloo Medical College of MedicineShandong UniversityJinanChina
| |
Collapse
|
20
|
Papadopoulos N, Suelves N, Perrin F, Vadukul DM, Vrancx C, Constantinescu SN, Kienlen-Campard P. Structural Determinant of β-Amyloid Formation: From Transmembrane Protein Dimerization to β-Amyloid Aggregates. Biomedicines 2022; 10:2753. [PMID: 36359274 PMCID: PMC9687742 DOI: 10.3390/biomedicines10112753] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/18/2022] [Accepted: 10/21/2022] [Indexed: 10/03/2023] Open
Abstract
Most neurodegenerative diseases have the characteristics of protein folding disorders, i.e., they cause lesions to appear in vulnerable regions of the nervous system, corresponding to protein aggregates that progressively spread through the neuronal network as the symptoms progress. Alzheimer's disease is one of these diseases. It is characterized by two types of lesions: neurofibrillary tangles (NFTs) composed of tau proteins and senile plaques, formed essentially of amyloid peptides (Aβ). A combination of factors ranging from genetic mutations to age-related changes in the cellular context converge in this disease to accelerate Aβ deposition. Over the last two decades, numerous studies have attempted to elucidate how structural determinants of its precursor (APP) modify Aβ production, and to understand the processes leading to the formation of different Aβ aggregates, e.g., fibrils and oligomers. The synthesis proposed in this review indicates that the same motifs can control APP function and Aβ production essentially by regulating membrane protein dimerization, and subsequently Aβ aggregation processes. The distinct properties of these motifs and the cellular context regulate the APP conformation to trigger the transition to the amyloid pathology. This concept is critical to better decipher the patterns switching APP protein conformation from physiological to pathological and improve our understanding of the mechanisms underpinning the formation of amyloid fibrils that devastate neuronal functions.
Collapse
Affiliation(s)
- Nicolas Papadopoulos
- SIGN Unit, de Duve Institute, UCLouvain, 1200 Brussels, Belgium
- Ludwig Institute for Cancer Research Brussels, 1348 Brussels, Belgium
| | - Nuria Suelves
- Aging and Dementia Research Group, Cellular and Molecular (CEMO) Division, Institute of Neuroscience, UCLouvain, 1200 Brussels, Belgium
| | - Florian Perrin
- Memory Disorders Unit, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Devkee M. Vadukul
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London SW7 2BX, UK
| | - Céline Vrancx
- Laboratory for Membrane Trafficking, VIB-Center for Brain and Disease Research, KU Leuven, 3000 Leuven, Belgium
- Department of Neurosciences, KU Leuven, 3000 Leuven, Belgium
| | - Stefan N. Constantinescu
- SIGN Unit, de Duve Institute, UCLouvain, 1200 Brussels, Belgium
- Ludwig Institute for Cancer Research Brussels, 1348 Brussels, Belgium
- Walloon Excellence in Life Sciences and Biotechnology (WELBIO), 1300 Wavre, Belgium
- Nuffield Department of Medicine, Ludwig Institute for Cancer Research, Oxford University, Oxford OX1 2JD, UK
| | - Pascal Kienlen-Campard
- Aging and Dementia Research Group, Cellular and Molecular (CEMO) Division, Institute of Neuroscience, UCLouvain, 1200 Brussels, Belgium
| |
Collapse
|
21
|
Salnikov E, Bechinger B. Effect of lipid saturation on the topology and oligomeric state of helical membrane polypeptides. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:184001. [PMID: 35817122 DOI: 10.1016/j.bbamem.2022.184001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 06/15/2023]
Abstract
Natural liquid crystalline membranes are made up of many different lipids carrying a mixture of saturated and unsaturated fatty acyl chains. Whereas in the past considerable attention has been paid to cholesterol content, the phospholipid head groups and the membrane surface charge the detailed fatty acyl composition was often considered less important. However, recent investigations indicate that the detailed fatty acyl chain composition has pronounced effects on the oligomerization of the transmembrane helical anchoring domains of the MHC II receptor or the membrane alignment of the cationic antimicrobial peptide PGLa. In contrast the antimicrobial peptides magainin 2 and alamethicin are less susceptible to lipid saturation. Using histidine-rich LAH4 designer peptides the high energetic contributions of lipid saturation in stabilizing transmembrane helical alignments are quantitatively evaluated. These observations can have important implications for the biological regulation of membrane proteins and should be taken into considerations during biophysical or structural experiments.
Collapse
Affiliation(s)
- Evgeniy Salnikov
- University of Strasbourg/CNRS, UMR7177 Chemistry Institute, Membrane Biophysics and NMR, Strasbourg, France
| | - Burkhard Bechinger
- University of Strasbourg/CNRS, UMR7177 Chemistry Institute, Membrane Biophysics and NMR, Strasbourg, France; Institut Universitaire de France, France.
| |
Collapse
|
22
|
Shahrokhi SZ, Tehrani FSK, Salami S. Molecular mechanisms of bilirubin induced G1 cell cycle arrest and apoptosis in human breast cancer cell lines: involvement of the intrinsic pathway. Mol Biol Rep 2022; 49:10421-10429. [DOI: 10.1007/s11033-022-07757-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/27/2022] [Accepted: 06/29/2022] [Indexed: 11/24/2022]
|
23
|
Myconoside Affects the Viability of Polarized Epithelial MDCKII Cell Line by Interacting with the Plasma Membrane and the Apical Junctional Complexes. SEPARATIONS 2022. [DOI: 10.3390/separations9090239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The phenyl glycoside myconoside, extracted from Balkan endemic Haberlea rhodopensis, has a positive effect on human health, but the exact molecular mechanism of its action is still unknown. The cell membrane and its associated junctional complex are the first targets of exogenous compound action. We aimed to study the effect of myconoside on membrane organization and cytoskeleton components involved in the maintenance of cell polarity in the MDCKII cell line. By fluorescent spectroscopy and microscopy, we found that at low concentrations, myconoside increases the cell viability by enhancing membrane lipid order and adherent junctions. The opposite effect is observed in high myconoside doses. We hypothesized that the cell morphological and physicochemical changes of the analyzed cell compartments are directly related to cell viability and cell apical-basal polarity. Our finding contributes to a better understanding of the beneficial application of phytochemical myconoside in pharmacology and medicine.
Collapse
|
24
|
Wang Q, Cao Y, Shen L, Xiao T, Cao R, Wei S, Tang M, Du L, Wu H, Wu B, Yu Y, Wang S, Wen M, OuYang B. Regulation of PD-L1 through direct binding of cholesterol to CRAC motifs. SCIENCE ADVANCES 2022; 8:eabq4722. [PMID: 36026448 PMCID: PMC9417176 DOI: 10.1126/sciadv.abq4722] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 07/12/2022] [Indexed: 05/24/2023]
Abstract
Cholesterol, an essential molecule for cell structure, function, and viability, plays crucial roles in the development, progression, and survival of cancer cells. Earlier studies have shown that cholesterol-lowering drugs can inhibit the high expression of programmed-death ligand 1 (PD-L1) that contributes to immunoevasion in cancer cells. However, the regulatory mechanism of cell surface PD-L1 abundance by cholesterol is still controversial. Here, using nuclear magnetic resonance and biochemical techniques, we demonstrated that cholesterol can directly bind to the transmembrane domain of PD-L1 through two cholesterol-recognition amino acid consensus (CRAC) motifs, forming a sandwich-like architecture and stabilizing PD-L1 to prevent downstream degradation. Mutations at key binding residues prohibit PD-L1-cholesterol interactions, decreasing the cellular abundance of PD-L1. Our results reveal a unique regulatory mechanism that controls the stability of PD-L1 in cancer cells, providing an alternative method to overcome PD-L1-mediated immunoevasion in cancers.
Collapse
Affiliation(s)
- Qian Wang
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yunlei Cao
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lijuan Shen
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Taoran Xiao
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ruiyu Cao
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shukun Wei
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Meng Tang
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lingyu Du
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Hongyi Wu
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bin Wu
- National Facility for Protein Science Shanghai, ZhangJiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Yang Yu
- National Facility for Protein Science Shanghai, ZhangJiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Shuqing Wang
- School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Maorong Wen
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Bo OuYang
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
25
|
New Antimicrobial Peptide with Two CRAC Motifs: Activity against Escherichia coli and Bacillus subtilis. Microorganisms 2022; 10:microorganisms10081538. [PMID: 36013956 PMCID: PMC9412426 DOI: 10.3390/microorganisms10081538] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/21/2022] [Accepted: 07/27/2022] [Indexed: 02/04/2023] Open
Abstract
Due to the emergence of multiple antibiotic resistance in many pathogens, the studies on new antimicrobial peptides (AMPs) have become a priority scientific direction in fundamental and applied biology. Diverse mechanisms underlie the antibacterial action of AMPs. Among them are the effects that AMPs cause on bacterial cell membranes. In this work, we studied the antibacterial activity of a peptide named P4 with the following sequence RTKLWEMLVELGNMDKAVKLWRKLKR that was constructed from two alpha-helical fragments of the influenza virus protein M1 and containing two cholesterol-recognizing amino-acid consensus (CRAC) motifs. Previously we have shown that 50 μM of peptide P4 is toxic to cultured mouse macrophages. In the present work, we have found that peptide P4 inhibits the growth of E. coli and B. subtilis strains at concentrations that are significantly lower than the cytotoxic concentration that was found for macrophages. The half-maximal inhibitory concentration (IC50) for B. subtilis and E. coli cells were 0.07 ± 0.01 μM and 1.9 ± 0.4 μM, respectively. Scramble peptide without CRAC motifs did not inhibit the growth of E. coli cells and was not cytotoxic for macrophages but had an inhibitory effect on the growth of B. subtilis cells (IC50 0.4 ± 0.2 μM). A possible involvement of CRAC motifs and membrane sterols in the mechanism of the antimicrobial action of the P4 peptide is discussed. We assume that in the case of the Gram-negative bacterium E. coli, the mechanism of the toxic action of peptide P4 is related to the interaction of CRAC motifs with sterols that are present in the bacterial membrane, whereas in the case of the Gram-positive bacterium B. subtilis, which lacks sterols, the toxic action of peptide P4 is based on membrane permeabilization through the interaction of the peptide cationic domain and anionic lipids of the bacterial membrane. Whatever the mechanism can be, we report antimicrobial activity of the peptide P4 against the representatives of Gram-positive (B. subtilis) and Gram-negative (E. coli) bacteria.
Collapse
|
26
|
Kotlyarov S. High-Density Lipoproteins: A Role in Inflammation in COPD. Int J Mol Sci 2022; 23:8128. [PMID: 35897703 PMCID: PMC9331387 DOI: 10.3390/ijms23158128] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/19/2022] [Accepted: 07/21/2022] [Indexed: 02/04/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a widespread disease associated with high rates of disability and mortality. COPD is characterized by chronic inflammation in the bronchi as well as systemic inflammation, which contributes significantly to the clinically heterogeneous course of the disease. Lipid metabolism disorders are common in COPD, being a part of its pathogenesis. High-density lipoproteins (HDLs) are not only involved in lipid metabolism, but are also part of the organism's immune and antioxidant defense. In addition, HDL is a versatile transport system for endogenous regulatory agents and is also involved in the removal of exogenous substances such as lipopolysaccharide. These functions, as well as information about lipoprotein metabolism disorders in COPD, allow a broader assessment of their role in the pathogenesis of heterogeneous and comorbid course of the disease.
Collapse
Affiliation(s)
- Stanislav Kotlyarov
- Department of Nursing, Ryazan State Medical University, 390026 Ryazan, Russia
| |
Collapse
|
27
|
Lee MS, Tuohy PJ, Kim CY, Lichauco K, Parrish HL, Van Doorslaer K, Kuhns MS. Enhancing and inhibitory motifs regulate CD4 activity. eLife 2022; 11:e79508. [PMID: 35861317 PMCID: PMC9333989 DOI: 10.7554/elife.79508] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 07/20/2022] [Indexed: 11/15/2022] Open
Abstract
CD4+ T cells use T cell receptor (TCR)-CD3 complexes, and CD4, to respond to peptide antigens within MHCII molecules (pMHCII). We report here that, through ~435 million years of evolution in jawed vertebrates, purifying selection has shaped motifs in the extracellular, transmembrane, and intracellular domains of eutherian CD4 that enhance pMHCII responses, and covary with residues in an intracellular motif that inhibits responses. Importantly, while CD4 interactions with the Src kinase, Lck, are viewed as key to pMHCII responses, our data indicate that CD4-Lck interactions derive their importance from the counterbalancing activity of the inhibitory motif, as well as motifs that direct CD4-Lck pairs to specific membrane compartments. These results have implications for the evolution and function of complex transmembrane receptors and for biomimetic engineering.
Collapse
Affiliation(s)
- Mark S Lee
- Department of Immunobiology, The University of Arizona College of MedicineTucsonUnited States
| | - Peter J Tuohy
- Department of Immunobiology, The University of Arizona College of MedicineTucsonUnited States
| | - Caleb Y Kim
- Department of Immunobiology, The University of Arizona College of MedicineTucsonUnited States
| | - Katrina Lichauco
- Department of Immunobiology, The University of Arizona College of MedicineTucsonUnited States
| | - Heather L Parrish
- Department of Immunobiology, The University of Arizona College of MedicineTucsonUnited States
| | - Koenraad Van Doorslaer
- Department of Immunobiology, The University of Arizona College of MedicineTucsonUnited States
- School of Animal and Comparative Biomedical Sciences, University of ArizonaTucsonUnited States
- Cancer Biology Graduate Interdisciplinary Program and Genetics Graduate Interdisciplinary Program, The University of ArizonaTucsonUnited States
- The BIO-5 Institute, The University of ArizonaTucsonUnited States
- The University of Arizona Cancer CenterTucsonUnited States
| | - Michael S Kuhns
- Department of Immunobiology, The University of Arizona College of MedicineTucsonUnited States
- Cancer Biology Graduate Interdisciplinary Program and Genetics Graduate Interdisciplinary Program, The University of ArizonaTucsonUnited States
- The BIO-5 Institute, The University of ArizonaTucsonUnited States
- The University of Arizona Cancer CenterTucsonUnited States
- The Arizona Center on Aging, The University of Arizona College of MedicineTucsonUnited States
| |
Collapse
|
28
|
Lee AG. The role of cholesterol binding in the control of cholesterol by the Scap-Insig system. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2022; 51:385-399. [PMID: 35717507 PMCID: PMC9233655 DOI: 10.1007/s00249-022-01606-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 05/26/2022] [Accepted: 06/05/2022] [Indexed: 12/02/2022]
Abstract
Scap and Insig, two proteins embedded in the membrane of the endoplasmic reticulum (ER), regulate the synthesis of cholesterol in animal cells by forming a dimer in the presence of high concentrations of cholesterol. Cryo-electron microscopic structures for the Scap-Insig dimer show a sterol-binding site at the dimer interface, but none of the structures include cholesterol itself. Here, a molecular docking approach developed to characterise cholesterol binding to the transmembrane (TM) regions of membrane proteins is used to characterise cholesterol binding to sites on the TM surface of the dimer and to the interfacial binding site. Binding of cholesterol is also observed at sites on the extra-membranous luminal domains of Scap, but the properties of these sites suggest that they will be unoccupied in vivo. Comparing the structure of Scap in the dimer with that predicted by AlphaFold for monomeric Scap suggests that dimer formation could result in relocation of TM helix 7 of Scap and of the loop between TM6 and 7, and that this could be the key change on Scap that signals that there is a high concentration of cholesterol in the ER.
Collapse
Affiliation(s)
- Anthony G Lee
- School of Biological Sciences, University of Southampton, Southampton, SO17 1BJ, UK.
| |
Collapse
|
29
|
Clarke A, Groschner K, Stockner T. Exploring TRPC3 Interaction with Cholesterol through Coarse-Grained Molecular Dynamics Simulations. Biomolecules 2022; 12:890. [PMID: 35883446 PMCID: PMC9313397 DOI: 10.3390/biom12070890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/21/2022] [Accepted: 06/23/2022] [Indexed: 02/04/2023] Open
Abstract
Transient receptor potential canonical 3 (TRPC3) channel belongs to the superfamily of transient receptor potential (TRP) channels which mediate Ca2+ influx into the cell. These channels constitute essential elements of cellular signalling and have been implicated in a wide range of diseases. TRPC3 is primarily gated by lipids and its surface expression has been shown to be dependent on cholesterol, yet a comprehensive exploration of its interaction with this lipid has thus far not emerged. Here, through 80 µs of coarse-grained molecular dynamics simulations, we show that cholesterol interacts with multiple elements of the transmembrane machinery of TRPC3. Through our approach, we identify an annular binding site for cholesterol on the pre-S1 helix and a non-annular site at the interface between the voltage-sensor-like domain and pore domains. Here, cholesterol interacts with exposed polar residues and possibly acts to stabilise the domain interface.
Collapse
Affiliation(s)
- Amy Clarke
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Waehringerstr., 13A, 1090 Vienna, Austria;
| | - Klaus Groschner
- Gottfried Schatz Research Center, Division of Biophysics, Medical University of Graz, 8010 Graz, Austria;
| | - Thomas Stockner
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Waehringerstr., 13A, 1090 Vienna, Austria;
| |
Collapse
|
30
|
Casadó-Anguera V, Casadó V. Unmasking allosteric binding sites: Novel targets for GPCR drug discovery. Expert Opin Drug Discov 2022; 17:897-923. [PMID: 35649692 DOI: 10.1080/17460441.2022.2085684] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
INTRODUCTION Unexpected non-apparent and hidden allosteric binding sites are non-classical and non-apparent allosteric centers in 3-D X-ray protein structures until orthosteric or allosteric ligands bind to them. The orthosteric center of one protomer that modulates binding centers of the other protomers within an oligomer is also an unexpected allosteric site. Furthermore, another partner protein can also produce these effects, acting as an unexpected allosteric modulator. AREAS COVERED This review summarizes both classical and non-classical allosterism. The authors focus on G protein-coupled receptor (GPCR) oligomers as a paradigm of allosteric molecules. Moreover, they show several examples of unexpected allosteric sites such as hidden allosteric sites in a protomer that appear after the interaction with other molecules and the allosterism exerted between orthosteric sites within GPCR oligomer, emphasizing on the allosteric modulations that can occur between binding sites. EXPERT OPINION The study of these new non-classical allosteric sites will expand the diversity of allosteric control on the function of orthosteric sites within proteins, whether GPCRs or other receptors, enzymes or transporters. Moreover, the design of new drugs targeting these hidden allosteric sites or already known orthosteric sites acting as allosteric sites in protein homo- or hetero-oligomers will increase the therapeutic potential of allosterism.
Collapse
Affiliation(s)
- Verònica Casadó-Anguera
- Laboratory of Molecular Neuropharmacology, Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Universitat de Barcelona, and Institute of Biomedicine of the Universitat de Barcelona, Barcelona, Spain.,Laboratory of Neuropharmacology-Neurophar, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Vicent Casadó
- Laboratory of Molecular Neuropharmacology, Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Universitat de Barcelona, and Institute of Biomedicine of the Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
31
|
Vesga-Jiménez DJ, Martin C, Barreto GE, Aristizábal-Pachón AF, Pinzón A, González J. Fatty Acids: An Insight into the Pathogenesis of Neurodegenerative Diseases and Therapeutic Potential. Int J Mol Sci 2022; 23:2577. [PMID: 35269720 PMCID: PMC8910658 DOI: 10.3390/ijms23052577] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/12/2022] [Accepted: 01/20/2022] [Indexed: 12/13/2022] Open
Abstract
One of the most common lipids in the human body is palmitic acid (PA), a saturated fatty acid with essential functions in brain cells. PA is used by cells as an energy source, besides being a precursor of signaling molecules and protein tilting across the membrane. Although PA plays physiological functions in the brain, its excessive accumulation leads to detrimental effects on brain cells, causing lipotoxicity. This mechanism involves the activation of toll-like receptors (TLR) and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) pathways, with the consequent release of pro-inflammatory cytokines, increased production of reactive oxygen species (ROS), endoplasmic reticulum (ER) stress, and autophagy impairment. Importantly, some of the cellular changes induced by PA lead to an augmented susceptibility to the development of Alzheimer's and Parkinson´s diseases. Considering the complexity of the response to PA and the intrinsic differences of the brain, in this review, we provide an overview of the molecular and cellular effects of PA on different brain cells and their possible relationships with neurodegenerative diseases (NDs). Furthermore, we propose the use of other fatty acids, such as oleic acid or linoleic acid, as potential therapeutic approaches against NDs, as these fatty acids can counteract PA's negative effects on cells.
Collapse
Affiliation(s)
- Diego Julián Vesga-Jiménez
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogota 110231, Colombia; (D.J.V.-J.); (A.F.A.-P.)
- Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Atlanta, GA 30329, USA;
| | - Cynthia Martin
- Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Atlanta, GA 30329, USA;
| | - George E. Barreto
- Department of Biological Sciences, University of Limerick, V94 T9PX Limerick, Ireland;
- Health Research Institute, University of Limerick, V94 T9PX Limerick, Ireland
| | - Andrés Felipe Aristizábal-Pachón
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogota 110231, Colombia; (D.J.V.-J.); (A.F.A.-P.)
| | - Andrés Pinzón
- Laboratorio de Bioinformática y Biología de Sistemas, Universidad Nacional de Colombia, Bogota 111321, Colombia;
| | - Janneth González
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogota 110231, Colombia; (D.J.V.-J.); (A.F.A.-P.)
| |
Collapse
|
32
|
Endothelial Cell Plasma Membrane Biomechanics Mediates Effects of Pro-Inflammatory Factors on Endothelial Mechanosensors: Vicious Circle Formation in Atherogenic Inflammation. MEMBRANES 2022; 12:membranes12020205. [PMID: 35207126 PMCID: PMC8877251 DOI: 10.3390/membranes12020205] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/31/2022] [Accepted: 02/03/2022] [Indexed: 02/01/2023]
Abstract
Chronic low-grade vascular inflammation and endothelial dysfunction significantly contribute to the pathogenesis of cardiovascular diseases. In endothelial cells (ECs), anti-inflammatory or pro-inflammatory signaling can be induced by different patterns of the fluid shear stress (SS) exerted by blood flow on ECs. Laminar blood flow with high magnitude is anti-inflammatory, while disturbed flow and laminar flow with low magnitude is pro-inflammatory. Endothelial mechanosensors are the key upstream signaling proteins in SS-induced pro- and anti-inflammatory responses. Being transmembrane proteins, mechanosensors, not only experience fluid SS but also become regulated by the biomechanical properties of the lipid bilayer and the cytoskeleton. We review the apparent effects of pro-inflammatory factors (hypoxia, oxidative stress, hypercholesterolemia, and cytokines) on the biomechanics of the lipid bilayer and the cytoskeleton. An analysis of the available data suggests that the formation of a vicious circle may occur, in which pro-inflammatory cytokines enhance and attenuate SS-induced pro-inflammatory and anti-inflammatory signaling, respectively.
Collapse
|
33
|
Nieto-Garai JA, Lorizate M, Contreras FX. Shedding light on membrane rafts structure and dynamics in living cells. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2022; 1864:183813. [PMID: 34748743 DOI: 10.1016/j.bbamem.2021.183813] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 10/21/2021] [Accepted: 10/25/2021] [Indexed: 12/12/2022]
Abstract
Cellular membranes are fundamental building blocks regulating an extensive repertoire of biological functions. These structures contain lipids and membrane proteins that are known to laterally self-aggregate in the plane of the membrane, forming defined membrane nanoscale domains essential for protein activity. Membrane rafts are described as heterogeneous, dynamic, and short-lived cholesterol- and sphingolipid-enriched membrane nanodomains (10-200 nm) induced by lipid-protein and lipid-lipid interactions. Those membrane nanodomains have been extensively characterized using model membranes and in silico methods. However, despite the development of advanced fluorescence microscopy techniques, undoubted nanoscale visualization by imaging techniques of membrane rafts in the membrane of unperturbed living cells is still uncompleted, increasing the skepticism about their existence. Here, we broadly review recent biochemical and microscopy techniques used to investigate membrane rafts in living cells and we enumerate persistent open questions to answer before unlocking the mystery of membrane rafts in living cells.
Collapse
Affiliation(s)
- Jon Ander Nieto-Garai
- Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940 Bilbao, Spain.
| | - Maier Lorizate
- Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940 Bilbao, Spain; Instituto Biofisika (UPV/EHU, CSIC), Barrio Sarriena s/n, 48940 Bilbao, Spain
| | - F-Xabier Contreras
- Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940 Bilbao, Spain; Instituto Biofisika (UPV/EHU, CSIC), Barrio Sarriena s/n, 48940 Bilbao, Spain; IKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Spain.
| |
Collapse
|
34
|
Kwon OH, Cho YY, Lee JH, Chung S. O-GlcNAcylation Inhibits Endocytosis of Amyloid Precursor Protein by Decreasing Its Localization in Lipid Raft Microdomains. MEMBRANES 2021; 11:membranes11120909. [PMID: 34940409 PMCID: PMC8704492 DOI: 10.3390/membranes11120909] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/16/2021] [Accepted: 11/19/2021] [Indexed: 12/27/2022]
Abstract
Like protein phosphorylation, O-GlcNAcylation is a common post-translational protein modification. We already reported that O-GlcNAcylation of amyloid precursor protein (APP) in response to insulin signaling reduces neurotoxic amyloid-β (Aβ) production via inhibition of APP endocytosis. Internalized APP is delivered to endosomes and lysosomes where Aβ is produced. However, the molecular mechanism involved in the effect of APP O-GlcNAcylation on APP trafficking remains unknown. To investigate the relationship between APP O-GlcNAcylation and APP endocytosis, we tested the effects of insulin on neuroblastoma SH-SY5Y cells overexpressing APP and BACE1, and cultured rat hippocampal neurons. The present study showed that APP O-GlcNAcylation translocated APP from lipid raft to non-raft microdomains in the plasma membrane by using immunocytochemistry and discontinuous sucrose gradients method. By using the biotinylation method, we also found that APP preferentially underwent endocytosis from lipid rafts and that the amount of internalized APP from lipid rafts was specifically reduced by O-GlcNAcylation. These results indicate that O-GlcNAcylation can regulate lipid raft-dependent APP endocytosis via translocation of APP into non-raft microdomains. Our findings showed a new functional role of O-GlcNAcylation for the regulation of APP trafficking, offering new mechanistic insight for Aβ production.
Collapse
Affiliation(s)
- Oh-Hoon Kwon
- Department of Physiology, Sungkyunkwan University School of Medicine, Suwon 16419, Korea; (O.-H.K.); (Y.Y.C.)
| | - Yoon Young Cho
- Department of Physiology, Sungkyunkwan University School of Medicine, Suwon 16419, Korea; (O.-H.K.); (Y.Y.C.)
| | - Jung Hee Lee
- Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea;
| | - Sungkwon Chung
- Department of Physiology, Sungkyunkwan University School of Medicine, Suwon 16419, Korea; (O.-H.K.); (Y.Y.C.)
- Correspondence:
| |
Collapse
|
35
|
Kotlyarov S, Kotlyarova A. The Role of ABC Transporters in Lipid Metabolism and the Comorbid Course of Chronic Obstructive Pulmonary Disease and Atherosclerosis. Int J Mol Sci 2021; 22:6711. [PMID: 34201488 PMCID: PMC8269124 DOI: 10.3390/ijms22136711] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/12/2021] [Accepted: 06/18/2021] [Indexed: 12/11/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) ranks among the leading causes of morbidity and mortality worldwide. COPD rarely occurs in isolation and is often combined with various diseases. It is considered that systemic inflammation underlies the comorbid course of COPD. The data obtained in recent years have shown the importance of violations of the cross-links of lipid metabolism and the immune response, which are links in the pathogenesis of both COPD and atherosclerosis. The role of lipid metabolism disorders in the pathogenesis of the comorbid course of COPD and atherosclerosis and the participation of ATP-binding cassette (ABC) transporters in these processes is discussed in this article. It is known that about 20 representatives of a large family of ABC transporters provide lipid homeostasis of cells by moving lipids inside the cell and in its plasma membrane, as well as removing lipids from the cell. It was shown that some representatives of the ABC-transporter family are involved in various links of the pathogenesis of COPD and atherosclerosis, which can determine their comorbid course.
Collapse
Affiliation(s)
- Stanislav Kotlyarov
- Department of Nursing, Ryazan State Medical University, 390026 Ryazan, Russia
| | - Anna Kotlyarova
- Department of Pharmacology and Pharmacy, Ryazan State Medical University, 390026 Ryazan, Russia;
| |
Collapse
|
36
|
Lee AG. Interfacial binding sites for cholesterol on GABA A receptors and competition with neurosteroids. Biophys J 2021; 120:2710-2722. [PMID: 34022235 DOI: 10.1016/j.bpj.2021.05.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 04/06/2021] [Accepted: 05/13/2021] [Indexed: 01/17/2023] Open
Abstract
γ-Aminobutyric acid type A (GABAA) receptors in the brain are located in the outer membranes of brain cells where the concentration of cholesterol is high. Of the 25 available high-resolution structures available for GABAA receptors, none were determined in the presence of cholesterol, but four include resolved molecules of cholesterol hemisuccinate (CHS). Here, a molecular docking procedure is used to sweep the transmembrane (TM) surfaces of the receptors for cholesterol binding sites. Cholesterol docking poses determined in this way match 89% of the resolved CHS when CHS molecules deemed unlikely to represent typical bound cholesterols are excluded. The receptors are pentameric, and their TM surfaces consist of a set of five facets, each including pairs of TM helices from two adjacent subunits. Each facet contains hydrophobic hollows running from one side of the membrane to the other, within which are six potential binding sites for cholesterol, three on each side of the membrane. High-resolution structures of GABAA receptors with bound neurosteroids show that neurosteroids bind in these cholesterol binding sites, so the binding of neurosteroids and cholesterol will be competitive.
Collapse
Affiliation(s)
- Anthony G Lee
- School of Biological Sciences, University of Southampton, Southampton, United Kingdom.
| |
Collapse
|
37
|
Itaya H, Kasahara K, Xie Q, Yano Y, Matsuzaki K, Takahashi T. All-Atom Molecular Dynamics Elucidating Molecular Mechanisms of Single-Transmembrane Model Peptide Dimerization in a Lipid Bilayer. ACS OMEGA 2021; 6:11458-11465. [PMID: 34056301 PMCID: PMC8153988 DOI: 10.1021/acsomega.1c00482] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 04/08/2021] [Indexed: 06/12/2023]
Abstract
Protein-protein interactions between transmembrane helices are essential elements for membrane protein structures and functions. To understand the effects of peptide sequences and lipid compositions on these interactions, single-molecule experiments using model systems comprising artificial peptides and membranes have been extensively performed. However, their dynamic behavior at the atomic level remains largely unclear. In this study, we applied the all-atom molecular dynamics (MD) method to simulate the interactions of single-transmembrane helical peptide dimers in membrane environments, which has previously been analyzed by single-molecule experiments. The simulations were performed with two peptides (Ala- and Leu-based artificially designed peptides, termed "host peptide", and the host peptide added with the GXXXG motif, termed "GXXXG peptide"), two membranes (pure-POPC and POPC mixed with 30% cholesterols), and two dimer directions (parallel and antiparallel), consistent with those in the previous experiment. As a result, the MD simulations with parallel dimers reproduced the experimentally observed tendency that introducing cholesterols weakened the interactions in the GXXXG dimer and facilitated those in the host dimer. Our simulation suggested that the host dimer formed hydrogen bonds but the GXXXG dimer did not. However, some discrepancies were also observed between the experiments and simulations. Limitations in the space and time scales of simulations restrict the large-scale undulation and peristaltic motions of the membranes, resulting in differences in lateral pressure profiles. This effect could cause a discrepancy in the rotation angles of helices against the membrane normal.
Collapse
Affiliation(s)
- Hayato Itaya
- Graduate
School of Life Sciences, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu, Shiga 525-8577, Japan
| | - Kota Kasahara
- College
of Life Sciences, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu, Shiga 525-8577, Japan
| | - Qilin Xie
- College
of Pharmaceutical Sciences, Ritsumeikan
University, 1-1-1 Noji-Higashi, Kusatsu, Shiga 525-8577, Japan
| | - Yoshiaki Yano
- Graduate
School of Pharmaceutical Sciences, Kyoto
University, 46-29 Yoshida-Shimo-Adachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Katsumi Matsuzaki
- Graduate
School of Pharmaceutical Sciences, Kyoto
University, 46-29 Yoshida-Shimo-Adachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Takuya Takahashi
- College
of Life Sciences, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu, Shiga 525-8577, Japan
| |
Collapse
|
38
|
Capone R, Tiwari A, Hadziselimovic A, Peskova Y, Hutchison JM, Sanders CR, Kenworthy AK. The C99 domain of the amyloid precursor protein resides in the disordered membrane phase. J Biol Chem 2021; 296:100652. [PMID: 33839158 PMCID: PMC8113881 DOI: 10.1016/j.jbc.2021.100652] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 04/02/2021] [Accepted: 04/07/2021] [Indexed: 12/11/2022] Open
Abstract
Processing of the amyloid precursor protein (APP) via the amyloidogenic pathway is associated with the etiology of Alzheimer's disease. The cleavage of APP by β-secretase to generate the transmembrane 99-residue C-terminal fragment (C99) and subsequent processing of C99 by γ-secretase to yield amyloid-β (Aβ) peptides are essential steps in this pathway. Biochemical evidence suggests that amyloidogenic processing of C99 occurs in cholesterol- and sphingolipid-enriched liquid-ordered phase membrane rafts. However, direct evidence that C99 preferentially associates with these rafts has remained elusive. Here, we tested this by quantifying the affinity of C99-GFP for raft domains in cell-derived giant plasma membrane vesicles (GPMVs). We found that C99 was essentially excluded from ordered domains in vesicles from HeLa cells, undifferentiated SH-SY5Y cells, or SH-SY5Y-derived neurons; instead, ∼90% of C99 partitioned into disordered domains. The strong association of C99 with disordered domains occurred independently of its cholesterol-binding activity or homodimerization, or of the presence of the familial Alzheimer disease Arctic mutation (APP E693G). Finally, through biochemical studies we confirmed previous results, which showed that C99 is processed in the plasma membrane by α-secretase, in addition to the well-known γ-secretase. These findings suggest that C99 itself lacks an intrinsic affinity for raft domains, implying that either i) amyloidogenic processing of the protein occurs in disordered regions of the membrane, ii) processing involves a marginal subpopulation of C99 found in rafts, or iii) as-yet-unidentified protein-protein interactions with C99 in living cells drive this protein into membrane rafts to promote its cleavage therein.
Collapse
Affiliation(s)
- Ricardo Capone
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee, USA; Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, USA; Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Ajit Tiwari
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | | | - Yelena Peskova
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, Virginia, USA
| | - James M Hutchison
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee, USA
| | - Charles R Sanders
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee, USA; Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, USA; Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Anne K Kenworthy
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA.
| |
Collapse
|
39
|
Marlow B, Kuenze G, Li B, Sanders CR, Meiler J. Structural determinants of cholesterol recognition in helical integral membrane proteins. Biophys J 2021; 120:1592-1604. [PMID: 33640379 DOI: 10.1016/j.bpj.2021.02.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 01/12/2021] [Accepted: 02/08/2021] [Indexed: 12/20/2022] Open
Abstract
Cholesterol is an integral component of mammalian membranes. It has been shown to modulate membrane fluidity and dynamics and alter integral membrane protein function. However, understanding the molecular mechanisms of how cholesterol impacts protein function is complicated by limited and conflicting structural data. Because of the nature of the crystallization and cryo-EM structure determination, it is difficult to distinguish between specific and biologically relevant interactions and a nonspecific association. The only widely recognized search algorithm for cholesterol-integral-membrane-protein interaction sites is sequence based, i.e., searching for the so-called "Cholesterol Recognition/interaction Amino acid Consensus" motif. Although these motifs are present in numerous integral membrane proteins, there is inconclusive evidence to support their necessity or sufficiency for cholesterol binding. Here, we leverage the increasing number of experimental cholesterol-integral-membrane-protein structures to systematically analyze putative interaction sites based on their spatial arrangement and evolutionary conservation. This analysis creates three-dimensional representations of general cholesterol interaction sites that form clusters across multiple integral membrane protein classes. We also classify cholesterol-integral-membrane-protein interaction sites as either likely-specific or nonspecific. Information gleaned from our characterization will eventually enable a structure-based approach to predict and design cholesterol-integral-membrane-protein interaction sites.
Collapse
Affiliation(s)
- Brennica Marlow
- Center for Structural Biology, Vanderbilt University, Nashville, Tennessee; Chemical and Physical Biology Program, Vanderbilt University, Nashville, Tennessee
| | - Georg Kuenze
- Center for Structural Biology, Vanderbilt University, Nashville, Tennessee; Department of Chemistry, Vanderbilt University, Nashville, Tennessee; Institute for Drug Discovery, Leipzig University Medical School, Leipzig, Germany
| | - Bian Li
- Center for Structural Biology, Vanderbilt University, Nashville, Tennessee; Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee
| | - Charles R Sanders
- Center for Structural Biology, Vanderbilt University, Nashville, Tennessee; Department of Biochemistry, Vanderbilt University, Nashville, Tennessee
| | - Jens Meiler
- Center for Structural Biology, Vanderbilt University, Nashville, Tennessee; Chemical and Physical Biology Program, Vanderbilt University, Nashville, Tennessee; Department of Chemistry, Vanderbilt University, Nashville, Tennessee; Institute for Drug Discovery, Leipzig University Medical School, Leipzig, Germany.
| |
Collapse
|
40
|
Lemel L, Nieścierowicz K, García-Fernández MD, Darré L, Durroux T, Busnelli M, Pezet M, Rébeillé F, Jouhet J, Mouillac B, Domene C, Chini B, Cherezov V, Moreau CJ. The ligand-bound state of a G protein-coupled receptor stabilizes the interaction of functional cholesterol molecules. J Lipid Res 2021; 62:100059. [PMID: 33647276 PMCID: PMC8050779 DOI: 10.1016/j.jlr.2021.100059] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 02/11/2021] [Indexed: 12/30/2022] Open
Abstract
Cholesterol is a major component of mammalian plasma membranes that not only affects the physical properties of the lipid bilayer but also is the function of many membrane proteins including G protein-coupled receptors. The oxytocin receptor (OXTR) is involved in parturition and lactation of mammals and in their emotional and social behaviors. Cholesterol acts on OXTR as an allosteric modulator inducing a high-affinity state for orthosteric ligands through a molecular mechanism that has yet to be determined. Using the ion channel-coupled receptor technology, we developed a functional assay of cholesterol modulation of G protein-coupled receptors that is independent of intracellular signaling pathways and operational in living cells. Using this assay, we discovered a stable binding of cholesterol molecules to the receptor when it adopts an orthosteric ligand-bound state. This stable interaction preserves the cholesterol-dependent activity of the receptor in cholesterol-depleted membranes. This mechanism was confirmed using time-resolved FRET experiments on WT OXTR expressed in CHO cells. Consequently, a positive cross-regulation sequentially occurs in OXTR between cholesterol and orthosteric ligands.
Collapse
Affiliation(s)
- Laura Lemel
- Univ. Grenoble Alpes, CNRS, CEA, IBS, Grenoble, France
| | | | | | - Leonardo Darré
- Functional Genomics Laboratory and Biomolecular Simulations Laboratory, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Thierry Durroux
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Marta Busnelli
- CNR, Institute of Neuroscience, U28 and NeuroMI Center for Neuroscience, University of Milano-Bicocca, Vedano al Lambro (MB), Italy
| | - Mylène Pezet
- Institute for Advanced Biosciences, Inserm U 1209, CNRS UMR 5309, Grenoble Alpes University, Grenoble, France
| | - Fabrice Rébeillé
- Laboratoire de Physiologie Cellulaire Végétale, Univ. Grenoble Alpes, CNRS, CEA, INRAE, Grenoble, France
| | - Juliette Jouhet
- Laboratoire de Physiologie Cellulaire Végétale, Univ. Grenoble Alpes, CNRS, CEA, INRAE, Grenoble, France
| | - Bernard Mouillac
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Carmen Domene
- Department of Chemistry, University of Bath, Bath, United Kingdom; Chemistry Research Laboratory, University of Oxford, Oxford, United Kingdom
| | - Bice Chini
- CNR, Institute of Neuroscience, U28 and NeuroMI Center for Neuroscience, University of Milano-Bicocca, Vedano al Lambro (MB), Italy
| | - Vadim Cherezov
- Bridge Institute, Department of Chemistry, University of Southern California, Los Angeles, CA, USA
| | | |
Collapse
|
41
|
ISLAM AKMA, NAKATANI M, NAKAJIMA T, KOHDA T, MUKAMOTO M. The cytotoxicity and molecular mechanisms of the Clostridium perfringens NetB toxin. J Vet Med Sci 2021; 83:187-194. [PMID: 33342969 PMCID: PMC7972886 DOI: 10.1292/jvms.20-0623] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 12/02/2020] [Indexed: 11/22/2022] Open
Abstract
The necrotic enteritis toxin B-like (NetB) toxin secreted by Clostridium perfringens is a key virulence agent in the pathogenesis of avian necrotic enteritis, a disease that causes significant economic loss to the poultry industry worldwide. NetB was purified from Clostridium perfringens type G (CNEOP004) that was isolated from chickens with necrotic enteritis in Japan. EC50 of this purified NetB toward chicken liver-derived LMH cells was 0.63 µg/ml. In vivo pathogenicity of NetB to chicks produced characteristic lesions of necrotic enteritis. Analysis of the localization of the NetB monomer and oligomer molecules on LMH cells showed that both molecules of the toxin were localized in non-lipid raft regions. Moreover, removal of cholesterol with the cholesterol depletion assay carried out in LMH cells detected both oligomers and monomers of the NetB molecule. These data suggest that the NetB toxin may recognize membrane molecules different from cholesterol in non-raft region. Furthermore, NetB-binding molecules on LMH cell membranes using the toxin overlay assay with immunoblotting showed that protein molecules of different molecular sizes were bound to NetB on non-lipid raft fractions. Further studies are necessary to characterize these protein molecules to examine their specific association with NetB binding and oligomerization.
Collapse
Affiliation(s)
- AKM Azharul ISLAM
- Laboratory of Veterinary Epidemiology, Osaka Prefecture
University, 1-58 Rinku-Ourai-Kita, Izumisano, Osaka 598-8531, Japan
| | - Mitsuki NAKATANI
- Laboratory of Veterinary Epidemiology, Osaka Prefecture
University, 1-58 Rinku-Ourai-Kita, Izumisano, Osaka 598-8531, Japan
| | - Takayuki NAKAJIMA
- Laboratory of Veterinary Anatomy, Osaka Prefecture
University, 1-58 Rinku-Ourai-Kita, Izumisano, Osaka 598-8531, Japan
| | - Tomoko KOHDA
- Laboratory of Veterinary Epidemiology, Osaka Prefecture
University, 1-58 Rinku-Ourai-Kita, Izumisano, Osaka 598-8531, Japan
| | - Masafumi MUKAMOTO
- Laboratory of Veterinary Epidemiology, Osaka Prefecture
University, 1-58 Rinku-Ourai-Kita, Izumisano, Osaka 598-8531, Japan
| |
Collapse
|
42
|
Elkins MR, Bandara A, Pantelopulos GA, Straub JE, Hong M. Direct Observation of Cholesterol Dimers and Tetramers in Lipid Bilayers. J Phys Chem B 2021; 125:1825-1837. [DOI: 10.1021/acs.jpcb.0c10631] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Matthew R. Elkins
- Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, Massachusetts 02139, United States
| | - Asanga Bandara
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
| | - George A. Pantelopulos
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
| | - John E. Straub
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
| | - Mei Hong
- Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
43
|
Nieto‐Garai JA, Arboleya A, Otaegi S, Chojnacki J, Casas J, Fabriàs G, Contreras F, Kräusslich H, Lorizate M. Cholesterol in the Viral Membrane is a Molecular Switch Governing HIV-1 Env Clustering. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2003468. [PMID: 33552873 PMCID: PMC7856888 DOI: 10.1002/advs.202003468] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/13/2020] [Indexed: 05/07/2023]
Abstract
HIV-1 entry requires the redistribution of envelope glycoproteins (Env) into a cluster and the presence of cholesterol (chol) in the viral membrane. However, the molecular mechanisms underlying the specific role of chol in infectivity and the driving force behind Env clustering remain unknown. Here, gp41 is demonstrated to directly interact with chol in the viral membrane via residues 751-854 in the cytoplasmic tail (CT751-854). Super-resolution stimulated emission depletion (STED) nanoscopy analysis of Env distribution further demonstrates that both truncation of gp41 CT751-854 and depletion of chol leads to dispersion of Env clusters in the viral membrane and inhibition of virus entry. This work reveals a direct interaction of gp41 CT with chol and indicates that this interaction is an important orchestrator of Env clustering.
Collapse
Affiliation(s)
- Jon Ander Nieto‐Garai
- Instituto Biofisika (UPV/EHU, CSIC)University of the Basque CountryLeioaE‐48940Spain
- Fundación Biofísica Bizkaia/Biofisika Bizkaia Fundazioa (FBB)Barrio Sarriena s/nLeioaE‐48940Spain
| | - Aroa Arboleya
- Instituto Biofisika (UPV/EHU, CSIC)University of the Basque CountryLeioaE‐48940Spain
- Fundación Biofísica Bizkaia/Biofisika Bizkaia Fundazioa (FBB)Barrio Sarriena s/nLeioaE‐48940Spain
| | - Sara Otaegi
- Instituto Biofisika (UPV/EHU, CSIC)University of the Basque CountryLeioaE‐48940Spain
- Department of Biochemistry and Molecular BiologyFaculty of Science and TechnologyUniversity of the Basque CountryLeioaE‐48940Spain
| | | | - Josefina Casas
- Research Unit on BioActive Molecules. Department of Biological ChemistryInstitute for Advanced Chemistry of Catalonia (IQAC‐CSIC)BarcelonaCatalonia08034Spain
- Liver and Digestive Diseases Networking Biomedical Research Center (CIBEREHD) ISCIIMadrid28029Spain
| | - Gemma Fabriàs
- Research Unit on BioActive Molecules. Department of Biological ChemistryInstitute for Advanced Chemistry of Catalonia (IQAC‐CSIC)BarcelonaCatalonia08034Spain
- Liver and Digestive Diseases Networking Biomedical Research Center (CIBEREHD) ISCIIMadrid28029Spain
| | - F‐Xabier Contreras
- Instituto Biofisika (UPV/EHU, CSIC)University of the Basque CountryLeioaE‐48940Spain
- Department of Biochemistry and Molecular BiologyFaculty of Science and TechnologyUniversity of the Basque CountryLeioaE‐48940Spain
- IkerbasqueBasque Foundation for ScienceBilbao48013Spain
| | - Hans‐Georg Kräusslich
- Department of Infectious DiseasesVirologyUniversitätsklinikum HeidelbergHeidelberg69120Germany
| | - Maier Lorizate
- Instituto Biofisika (UPV/EHU, CSIC)University of the Basque CountryLeioaE‐48940Spain
- Department of Biochemistry and Molecular BiologyFaculty of Science and TechnologyUniversity of the Basque CountryLeioaE‐48940Spain
| |
Collapse
|
44
|
Baker C, Wagner K, Wagner P, Officer DL, Mawad D. Biofunctional conducting polymers: synthetic advances, challenges, and perspectives towards their use in implantable bioelectronic devices. ADVANCES IN PHYSICS: X 2021. [DOI: 10.1080/23746149.2021.1899850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Affiliation(s)
- Carly Baker
- ARC Centre of Excellence for Electromaterials Science and Intelligent Polymer Research Institute, AIIM Faculty, Innovation Campus, University of Wollongong, North Wollongong, Australia
| | - Klaudia Wagner
- ARC Centre of Excellence for Electromaterials Science and Intelligent Polymer Research Institute, AIIM Faculty, Innovation Campus, University of Wollongong, North Wollongong, Australia
| | - Pawel Wagner
- ARC Centre of Excellence for Electromaterials Science and Intelligent Polymer Research Institute, AIIM Faculty, Innovation Campus, University of Wollongong, North Wollongong, Australia
| | - David L. Officer
- ARC Centre of Excellence for Electromaterials Science and Intelligent Polymer Research Institute, AIIM Faculty, Innovation Campus, University of Wollongong, North Wollongong, Australia
| | - Damia Mawad
- School of Materials Science and Engineering, UNSW Science, University of New South Wales, Sydney, Australia
| |
Collapse
|
45
|
Aisenbrey C, Rifi O, Bechinger B. Structure, membrane topology and influence of cholesterol of the membrane proximal region: transmembrane helical anchor sequence of gp41 from HIV. Sci Rep 2020; 10:22278. [PMID: 33335248 PMCID: PMC7746737 DOI: 10.1038/s41598-020-79327-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 11/30/2020] [Indexed: 11/13/2022] Open
Abstract
During the first steps of HIV infection the Env subunit gp41 is thought to establish contact between the membranes and to be the main driver of fusion. Here we investigated in liquid crystalline membranes the structure and cholesterol recognition of constructs made of a gp41 external region carrying a cholesterol recognition amino acid consensus (CRAC) motif and a hydrophobic membrane anchoring sequence. CD- und ATR-FTIR spectroscopies indicate that the constructs adopt a high degree of helical secondary structure in membrane environments. Furthermore, 15N and 2H solid-state NMR spectra of gp41 polypeptides reconstituted into uniaxially oriented bilayers agree with the CRAC domain being an extension of the transmembrane helix. Upon addition of cholesterol the CRAC NMR spectra remain largely unaffected when being associated with the native gp41 transmembrane sequence but its topology changes when anchored in the membrane by a hydrophobic model sequence. The 2H solid-state NMR spectra of deuterated cholesterol are indicative of a stronger influence of the model sequence on this lipid when compared to the native gp41 sequence. These observations are suggestive of a strong coupling between the transmembrane and the membrane proximal region of gp41 possibly enforced by oligomerization of the transmembrane helical region.
Collapse
Affiliation(s)
- Christopher Aisenbrey
- Institut de chimie de Strasbourg, UMR7177, University of Strasbourg/CNRS, 4, Rue Blaise Pascal, 67070, Strasbourg, France
| | - Omar Rifi
- Institut de chimie de Strasbourg, UMR7177, University of Strasbourg/CNRS, 4, Rue Blaise Pascal, 67070, Strasbourg, France
| | - Burkhard Bechinger
- Institut de chimie de Strasbourg, UMR7177, University of Strasbourg/CNRS, 4, Rue Blaise Pascal, 67070, Strasbourg, France.
- Institut Universitaire de France, Paris, France.
| |
Collapse
|
46
|
Wang Y, Yu Z, Xiao W, Lu S, Zhang J. Allosteric binding sites at the receptor-lipid bilayer interface: novel targets for GPCR drug discovery. Drug Discov Today 2020; 26:690-703. [PMID: 33301977 DOI: 10.1016/j.drudis.2020.12.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 10/19/2020] [Accepted: 12/01/2020] [Indexed: 01/01/2023]
Abstract
As a superfamily of membrane receptors, G-protein-coupled receptors (GPCRs) have significant roles in human physiological processes, including cell proliferation, metabolism, and neuromodulation. GPCRs are vital targets of therapeutic drugs, and their allosteric regulation represents a novel direction for drug discovery. Given the numerous breakthroughs in structural biology, diverse allosteric sites on GPCRs have been identified within the extracellular and intracellular loops, and the seven core transmembrane helices. However, a unique type of allosteric site has also been discovered at the interface of the receptor-lipid bilayer, similar to the β2-adrenergic receptor. Here, we review recent identifications of these allosteric sites and the detailed modulator-target interactions within the interface for each modulator to highlight the role of lipids in GPCR allosteric drug discovery.
Collapse
Affiliation(s)
- Ying Wang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200025, China
| | - Zhengtian Yu
- Nutshell Biotechnology Co., Ltd., Shanghai, China
| | - Wen Xiao
- Nutshell Biotechnology Co., Ltd., Shanghai, China
| | - Shaoyong Lu
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200025, China; Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China.
| | - Jian Zhang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200025, China; Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China.
| |
Collapse
|
47
|
Lee H. Vitamin E acetate as linactant in the pathophysiology of EVALI. Med Hypotheses 2020; 144:110182. [PMID: 33254504 PMCID: PMC7422838 DOI: 10.1016/j.mehy.2020.110182] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/25/2020] [Accepted: 08/11/2020] [Indexed: 11/11/2022]
Abstract
The recent identification of Vitamin E acetate as one of the causal agents for the e-cigarette, or vaping, product use associated lung injury (EVALI) is a major milestone. In membrane biophysics, Vitamin E is a linactant and a potent modulator of lateral phase separation that effectively reduces the line tension at the two-dimensional phase boundaries and thereby exponentially increases the surface viscosity of the pulmonary surfactant. Disrupted dynamics of respiratory compression-expansion cycling may result in an extensive hypoxemia, leading to an acute respiratory distress entailing the formation of intraalveolar lipid-laden macrophages. Supplementation of pulmonary surfactants which retain moderate level of cholesterol and controlled hypothermia for patients are recommended when the hypothesis that the line-active property of the vitamin derivative drives the pathogenesis of EVALI holds.
Collapse
Affiliation(s)
- Hanjun Lee
- Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, United States.
| |
Collapse
|
48
|
Dunina-Barkovskaya AY, Vishnyakova KS. Modulation of the Cholesterol-Dependent Activity of Macrophages IC-21 by CRAC Peptides with Substituted Motif-Forming Amino Acids. BIOCHEMISTRY (MOSCOW) SUPPLEMENT. SERIES A, MEMBRANE AND CELL BIOLOGY 2020; 14:331-343. [PMID: 33288988 PMCID: PMC7709805 DOI: 10.1134/s1990747820040054] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 05/28/2020] [Accepted: 05/29/2020] [Indexed: 12/16/2022]
Abstract
The activity of many membrane proteins, such as receptors, ionic channels, transporters, and enzymes, is cholesterol dependent; however, mechanisms of the cholesterol-dependent regulation of protein functions remain obscure. Recent studies suggest that membrane proteins can directly interact with cholesterol owing to the presence of the cholesterol-recognizing amino-acid consensus (CRAC) motifs. One of the ways to verify and further develop this notion is a design of CRAC-containing peptides and investigation of their effects on cholesterol-dependent cell functions. Previously we showed that a newly constructed peptide RTKLWEMLVELGNMDKAVKLWRKLKR (peptide P4) containing two CRAC motifs modulates cholesterol-dependent interactions of cultured macrophages IC-21 with 2-μm particles. In this work, in order to clarify the role of CRAC-forming amino acids, we employed the same experimental system to test the activity of peptides closely related to P4 but with modified CRAC motifs. We found that peptide STKLSEMLSELGNMDKASKLSRKLSR (Mut2) analogous to P4, except that all CRAC-forming amino acids (V, W, K/R) were substituted by serine, did not produce any effect in the concentration range 0.5-50 μM corresponding to the range of the P4 activity. Neither was effective peptide RTKLSEMLVELGNMDKAVKLSRKLKR (Mut3), in which only aromatic amino acids (W) of the CRAC motifs were substituted. Peptide STKLWEMLVELGNMDKAVKLWRKLSR (Mut4), in which only cationic amino acids (R/K) in the CRAC motifs were changed, produced almost the same effect as that of peptide P4 with a bell-shape dose-response curve. At low concentrations (1-4 μM) Mut4 notably increased the number of beads per cell, at higher concentrations this parameter diminished, and at 50 μM Mut4 produced a robust toxic effect. Finally, peptide EWGMAVLWERNRKLKKDLKVLKMLRT (Mut1) composed of the same amino acid residues as P4 but in a random order ("scramble") and possessing one CRAC motif, different from that in P4, produced a moderate stimulation at 4-10 μM but was not toxic at 50 μM. As in the case of peptide P4, the effects of Mut4 and Mut1 depended on the cholesterol content in the cell membrane: after the incubation of cells with cholesterol-extracting agent methyl-β-cyclodextrin stimulatory effects produced by Mut4 and Mut1 at low doses were suppressed. Our results indicate that CRAC motifs play an important role in the mechanisms of the peptide-induced modulations of cholesterol-dependent cell functions in the experimental system used and that of the three motif-forming amino acids, critical is the presence of the aromatic amino acid (W). Further research is required to comprehend the molecular mechanisms of interactions of CRAC-containing peptides with cell membrane components that lead to modulation of cell functions. We anticipate that CRAC-containing peptides may provide a basis for the development of new tools for directed regulation of the activity of target cholesterol-dependent membrane proteins and for the design of new antimicrobial and immunomodulating drugs in particular.
Collapse
Affiliation(s)
- A. Ya. Dunina-Barkovskaya
- Belozersky Institute of Physico-chemical Biology, Moscow Lomonosov State University, 119992 Moscow, Russia
| | - Kh. S. Vishnyakova
- Engelgardt Institute of Molecular Biology, Russian Academy of Sciences, 119191 Moscow, Russia
| |
Collapse
|
49
|
Cho YY, Kwon OH, Chung S. Preferred Endocytosis of Amyloid Precursor Protein from Cholesterol-Enriched Lipid Raft Microdomains. Molecules 2020; 25:molecules25235490. [PMID: 33255194 PMCID: PMC7727664 DOI: 10.3390/molecules25235490] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 11/19/2020] [Accepted: 11/20/2020] [Indexed: 12/20/2022] Open
Abstract
Amyloid precursor protein (APP) at the plasma membrane is internalized via endocytosis and delivered to endo/lysosomes, where neurotoxic amyloid-β (Aβ) is produced via β-, γ-secretases. Hence, endocytosis plays a key role in the processing of APP and subsequent Aβ generation. β-, γ-secretases as well as APP are localized in cholesterol-enriched lipid raft microdomains. However, it is still unclear whether lipid rafts are the site where APP undergoes endocytosis and whether cholesterol levels affect this process. In this study, we found that localization of APP in lipid rafts was increased by elevated cholesterol level. We also showed that increasing or decreasing cholesterol levels increased or decreased APP endocytosis, respectively. When we labeled cell surface APP, APP localized in lipid rafts preferentially underwent endocytosis compared to nonraft-localized APP. In addition, APP endocytosis from lipid rafts was regulated by cholesterol levels. Our results demonstrate for the first time that cholesterol levels regulate the localization of APP in lipid rafts affecting raft-dependent APP endocytosis. Thus, regulating the microdomain localization of APP could offer a new therapeutic strategy for Alzheimer’s disease.
Collapse
|
50
|
Kurth M, Lolicato F, Sandoval-Perez A, Amaya-Espinosa H, Teslenko A, Sinning I, Beck R, Brügger B, Aponte-Santamaría C. Cholesterol Localization around the Metabotropic Glutamate Receptor 2. J Phys Chem B 2020; 124:9061-9078. [PMID: 32954729 DOI: 10.1021/acs.jpcb.0c05264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The metabotropic glutamate receptor (mGluR) 2 plays a key role in the central nervous system. mGluR2 has been shown to be regulated by its surrounding lipid environment, especially by cholesterol, by an unknown mechanism. Here, using a combination of biochemical approaches, photo-cross-linking experiments, and molecular dynamics simulations we show the interaction of cholesterol with at least two, but potentially five more, preferential sites on the mGluR2 transmembrane domain. Our simulations demonstrate that surface matching, rather than electrostatic interactions with specific amino acids, is the main factor defining cholesterol localization. Moreover, the cholesterol localization observed here is similar to the sterol-binding pattern previously described in silico for other members of the mGluR family. Biochemical assays suggest little influence of cholesterol on trafficking or dimerization of mGluR2. Nevertheless, simulations revealed a significant reduction of residue-residue contacts together with an alteration in the internal mechanical stress at the cytoplasmic side of the helical bundle when cholesterol was present in the membrane. These alterations may be related to destabilization of the basal state of mGluR2. Due to the high sequence conservation of the transmembrane domains of mGluRs, the molecular interaction of cholesterol and mGluR2 described here is also likely to be relevant for other members of the mGLuR family.
Collapse
Affiliation(s)
- Markus Kurth
- Biochemistry Center (BZH), Heidelberg University, Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| | - Fabio Lolicato
- Biochemistry Center (BZH), Heidelberg University, Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| | - Angelica Sandoval-Perez
- Max Planck Tandem Group in Computational Biophysics, University of Los Andes, Bogotá, Colombia
| | - Helman Amaya-Espinosa
- Max Planck Tandem Group in Computational Biophysics, University of Los Andes, Bogotá, Colombia
| | - Alexandra Teslenko
- Biochemistry Center (BZH), Heidelberg University, Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| | - Irmgard Sinning
- Biochemistry Center (BZH), Heidelberg University, Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| | - Rainer Beck
- Biochemistry Center (BZH), Heidelberg University, Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| | - Britta Brügger
- Biochemistry Center (BZH), Heidelberg University, Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| | - Camilo Aponte-Santamaría
- Max Planck Tandem Group in Computational Biophysics, University of Los Andes, Bogotá, Colombia.,Interdisciplinary Center for Scientific Computing, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|