1
|
Phogat S, Yadav J, Chaudhary D, Jaiwal R, Jaiwal PK. Synthesis of an Adjuvant-Free Single Polypeptide-Based Tuberculosis Subunit Vaccine that Elicits In Vivo Immunogenicity in Rats. Mol Biotechnol 2025:10.1007/s12033-025-01431-7. [PMID: 40175786 DOI: 10.1007/s12033-025-01431-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Accepted: 03/07/2025] [Indexed: 04/04/2025]
Abstract
A novel tuberculosis subunit vaccine specific for Mycobacterium tuberculosis dual antigens, culture filtrate protein-10 (CFP-10) and antigen 85B (Ag85B) conjugated with cholera toxin non-toxic B subunit (CTB), was expressed as a single polypeptide in high amounts and cost-effectively in Escherichia coli. The recovery and purification conditions for the recombinant fusion protein were established. This simple peptide vaccine required no exogenous adjuvant as it contained CTB, a potent immune modulator. The vaccine's physiochemical, structural, and immunological properties were determined using the in-silico tools. It was highly antigenic, non-allergenic, and non-toxic. Its BlastP search with human proteomes excluded the chances of autoimmune reactions. The tertiary structure model (3D) was validated by Ramachandran plot assessment. The 3D structure docking with Toll-like receptors, TLR-1, 2, 4, and 6, showed that the binding affinity between the vaccine peptide and TLRs was high, and their complex was stable, indicating a strong immune response. The in-silico immune simulation revealed the vaccine-induced both innate and adaptive immune responses. In-vivo validation of the immunogenicity of CTB.CFP10.Ag85B in Wistar rats revealed higher activation of IgG immune response compared to either antigen protein. Similar results were also obtained using the C-ImmSim simulation online server. A comparison of immunogenicity of CTB.CFP10.Ag85B with the only available TB vaccine, Bacillus Calmette-Guérin (BCG) or as a booster after vaccination of Wistar rats with BCG, indicated that the IgG levels were the highest in rats vaccinated with BCG, followed by a booster dose of CTB.CFP10.Ag85B fusion protein. The fusion protein would be a safe potential vaccine booster candidate in BCG-primed individuals against TB.
Collapse
Affiliation(s)
- Supriya Phogat
- Department of Zoology, M. D. University, Rohtak, 124001, India
- Centre for Biotechnology, M. D. University, Rohtak, 124001, India
| | - Jyoti Yadav
- Department of Zoology, M. D. University, Rohtak, 124001, India
| | | | - Ranjana Jaiwal
- Department of Zoology, M. D. University, Rohtak, 124001, India
| | - Pawan K Jaiwal
- Centre for Biotechnology, M. D. University, Rohtak, 124001, India.
| |
Collapse
|
2
|
Aderemi AV, Snee M, Tunnicliffe RB, Golovanova M, Cain KM, Munro AW, Waltho JP, Leys D. Expression and purification of Mycobacterium tuberculosis F 420-dependent glucose-6-phosphate dehydrogenase enzyme using Escherichia coli. Protein Expr Purif 2025; 228:106650. [PMID: 39778697 DOI: 10.1016/j.pep.2024.106650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/12/2024] [Accepted: 12/21/2024] [Indexed: 01/11/2025]
Abstract
Since their discovery in Mycobacterium tuberculosis (Mtb), F420-dependent enzymes have been identified as both important drug targets and potential industrial biocatalysts, including for bioremediation of otherwise recalcitrant substrates. Mtb-FGD1, utilizes glucose 6-phosphate (G6P) as an electron donor for the reduction of F420. Current expression systems for Mtb-FGD1 use Mycobacterium smegmatis as host, because of the tendency for it to form inclusion bodies in E. coli. However, large scale recombinant protein production using M. smegmatis is slow and costly and the organism is not generally recognized as safe. Here, we report a faster, cheaper and safer approach for the expression of fully functional Mtb-FGD1 in E. coli using cold-adapted GroEL/ES as chaperones. Our approach yielded ∼70 mg of protein per litre (L) of culture. The purified enzyme catalysed the reduction of F420 to F420.H2 in the presence of G6P, and the re-oxidation of the F420.H2 to F420 when coupled to Tfu-FNO, which is a thermostable oxidoreductase that utilizes F420 for the reversible oxidation of NADPH. This latter finding provides opportunity for the utilization of Mtb-FGD1 as an industrial biocatalyst or in the detoxification of environmental contaminants such as malachite green, picrate and aflatoxin.
Collapse
Affiliation(s)
- Adewale Victor Aderemi
- Manchester Institute of Biotechnology, Department of Chemistry, University of Manchester, 131 Princess St, Manchester, M1 7DN, United Kingdom; Osun State University, Osogbo, Osun State, Nigeria
| | - Matthew Snee
- Manchester Institute of Biotechnology, Department of Chemistry, University of Manchester, 131 Princess St, Manchester, M1 7DN, United Kingdom
| | - Richard B Tunnicliffe
- Biomolecular Analysis Core Facility, Faculty of Biology, Medicine and Health, Michael Smith Building, University of Manchester, Manchester, M13 9PT, United Kingdom
| | - Marina Golovanova
- Manchester Institute of Biotechnology, Department of Chemistry, University of Manchester, 131 Princess St, Manchester, M1 7DN, United Kingdom
| | - Kathleen M Cain
- Manchester Institute of Biotechnology, Department of Chemistry, University of Manchester, 131 Princess St, Manchester, M1 7DN, United Kingdom
| | - Andrew W Munro
- Manchester Institute of Biotechnology, Department of Chemistry, University of Manchester, 131 Princess St, Manchester, M1 7DN, United Kingdom
| | - Jonathan P Waltho
- Manchester Institute of Biotechnology, Department of Chemistry, University of Manchester, 131 Princess St, Manchester, M1 7DN, United Kingdom
| | - David Leys
- Manchester Institute of Biotechnology, Department of Chemistry, University of Manchester, 131 Princess St, Manchester, M1 7DN, United Kingdom.
| |
Collapse
|
3
|
Rai R, Paroha R, Rai S, Singh AK, Chaurasia R, Agarwal N, Pandey MK, Chaurasiya SK. Cloning, expression, purification, and characterization of glutamate decarboxylase (Rv3432c) from Mycobacterium tuberculosis. Int Microbiol 2025:10.1007/s10123-025-00637-8. [PMID: 39954146 DOI: 10.1007/s10123-025-00637-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 01/24/2025] [Accepted: 01/29/2025] [Indexed: 02/17/2025]
Abstract
Glutamate decarboxylase (Gad), a pyridoxal 5'-phosphate (PLP)-dependent enzyme, catalyzes the conversion of glutamate to γ-aminobutyric acid (GABA), consuming a proton in the process and thereby contributing to intracellular pH homeostasis in bacteria. However, the presence and function of the Gad-dependent mechanism in mycobacteria remain largely unexplored. This study aimed to characterize Gad activity in Mycobacterium tuberculosis (Mtb). We detected Gad activity in live cells of both Mtb and Mycobacterium smegmatis (MS). Gad activity and GABA was also detected in cell lysates of Mtb and MS. The gadB gene from Mtb was cloned, expressed, and GadB protein was purified under native conditions using MS as an expression host. Initial attempts to express GadB in Escherichia coli (E. coli) resulted in the overexpressed protein being present in the insoluble fraction and was enzymatically inactive when purified under denaturing conditions. Subsequently, an acetamide-inducible expression system was employed in MS for successful overexpression and purification of recombinant GadB. 6 × His-GadB was purified using immobilized metal affinity chromatography, and its molecular weight was determined to be ~ 51.2 kDa by SDS-PAGE. The purified 6 × His-GadB enzyme was active at both neutral and acidic pH. Its activity was found to be PLP-dependent, with optimal activity at pH 7.2 and 50°C. These findings suggest that Gad is expressed in Mtb both in normal and in acidic medium, supporting the possible existence of a Gad-dependent acid resistance mechanism in Mtb.
Collapse
Affiliation(s)
- Rupal Rai
- Molecular Signalling Lab, Department of Biological Sciences and Engineering, Maulana Azad National Institute of Technology Bhopal, Bhopal, M.P, India
| | - Ruchi Paroha
- Microbiology and Immunology Department, UTMB, Galveston, TX, USA
| | | | - Anirudh K Singh
- School of Sciences, SAM Global University, Raisen, M.P, India
| | - Rashmi Chaurasia
- Department of Basic Science, IES College of Technology, Bhopal, M.P, India
| | | | - Megha Katare Pandey
- Translational Medicine, All India Institute of Medical Sciences, Bhopal, M.P, India
| | - Shivendra K Chaurasiya
- Molecular Signalling Lab, Department of Biological Sciences and Engineering, Maulana Azad National Institute of Technology Bhopal, Bhopal, M.P, India.
| |
Collapse
|
4
|
Li DN, Liu XY, Xu JB, Shi K, Li JM, Diao NC, Zong Y, Zeng FL, Du R. Mycobacterium tuberculosis Rv1048c affects the biological characteristics of recombinant Mycobacterium smegmatis. Sci Rep 2024; 14:29749. [PMID: 39613837 DOI: 10.1038/s41598-024-81405-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 11/26/2024] [Indexed: 12/01/2024] Open
Abstract
Tuberculosis is a serious, infectious, zoonotic disease caused by Mycobacterium tuberculosis. Infections are transmitted in humans and livestock via aerosols. Rv1048c is a hypothetical unknown protein in the standard strain of Mycobacterium tuberculosis H37Rv. Rv1048c exists only in pathogenic Mycobacterium tuberculosis and is highly conserved; however its function is still unclear. The recombinant Mycobacterium smegmatis strain Ms_Rv1048c, with heterologous expression of the Rv1048c gene, was constructed by using the pMV261 expression plasmid. The biological characteristics of the recombinant bacteria were studied, such as their growth pattern, drug resistance, and virulence. Expression of Rv1048c significantly reduced the growth rate of the strain, enhanced its ability to form a biofilm, and reduced its tolerance to sodium dodecyl sulfate, H2O2, and various anti-tuberculosis drugs, and reduced the viability of infected RAW264.7 macrophages. Rv1048c also significantly reduced the level of early pro-inflammatory factors in infected RAW264.7 cells. Rv1048c protein is considered to be a virulence protein that might regulate the growth of M. tuberculosis strains. The results of the present study indicate that Rv1048c plays an important role in Mycobacterial infection.
Collapse
Affiliation(s)
- Dan-Ni Li
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Xin-Yue Liu
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Jin-Biao Xu
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
| | - Kun Shi
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
- College of Food and Medicine, Liaoning Agricultural Technical College, Yingkou, China
| | - Jian-Ming Li
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
- College of Food and Medicine, Liaoning Agricultural Technical College, Yingkou, China
| | - Nai-Chao Diao
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
- College of Food and Medicine, Liaoning Agricultural Technical College, Yingkou, China
| | - Ying Zong
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
- College of Food and Medicine, Liaoning Agricultural Technical College, Yingkou, China
| | - Fan-Li Zeng
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China.
- College of Food and Medicine, Liaoning Agricultural Technical College, Yingkou, China.
- Jilin Province Sika Deer Efficient Breeding and Product Development Technology Engineering Research Center, Changchun, China.
| | - Rui Du
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China.
- College of Food and Medicine, Liaoning Agricultural Technical College, Yingkou, China.
- Jilin Province Sika Deer Efficient Breeding and Product Development Technology Engineering Research Center, Changchun, China.
| |
Collapse
|
5
|
Qin Q, Liu X, Wang X, Zhou L, Wan H, Yin Q, Chen D. Facile Synthesis of Aptamer-Functionalized Polydopamine-Coated Magnetic Graphene Oxide Nanocomposites for Highly Efficient Purification of His-Tagged Proteins. J Sep Sci 2024; 47:e202400471. [PMID: 39319600 DOI: 10.1002/jssc.202400471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 08/02/2024] [Accepted: 09/10/2024] [Indexed: 09/26/2024]
Abstract
Recombinant proteins hold significant importance in numerous disciplines. As the demand for expressing and purifying these proteins grows, the scientific community is in dire need of a simple yet versatile methodology that can efficiently purify these proteins. Aptamers as synthetic nucleic acid-based ligands with high affinity have shown promise in this regard, as they can capture targets through molecular recognition. In this study, novel aptamer-functionalized polydopamine-coated magnetic graphene oxide nanocomposites were facilely prepared, achieving an impressive average aptamer coverage density (45 nmol/mg). These nanocomposites exhibited a uniform structure and robust magnetic responsiveness. The findings indicated that they possess several advantages, such as rapid adsorption, substantial capacity (171.4 mg/g), and excellent reusability. Notably, due to the inherent properties of nucleic acids, the immobilized aptamer-magnetic beads can be utilized repeatedly with high purification efficiency. Finally, the nanocomposites were further employed to purify His-tagged proteins from actual samples. Remarkably, they were able to selectively and efficiently isolate His-tagged retinoid X receptor alpha protein from complex Escherichia coli lysate. The purified His-tagged retinoid X receptor alpha protein was analyzed using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. This confirmed the efficacy of developed nanocomposites, reinforcing their vast potential for purification of His-tagged recombinant proteins.
Collapse
Affiliation(s)
- Qian Qin
- College of Medical Laboratory, Dalian Medical University, Dalian, China
| | - Xiaolong Liu
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Xun Wang
- College of Medical Imaging, Dalian Medical University, Dalian, China
| | - Lina Zhou
- Instrumental Analysis Center, Dalian University of Technology, Dalian, China
| | - Huihui Wan
- Instrumental Analysis Center, Dalian University of Technology, Dalian, China
| | - Qingxin Yin
- Instrumental Analysis Center, Dalian University of Technology, Dalian, China
| | - Di Chen
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
6
|
Smiejkowska N, Oorts L, Van Calster K, De Vooght L, Geens R, Mattelaer HP, Augustyns K, Strelkov SV, Lamprecht D, Temmerman K, Sterckx YGJ, Cappoen D, Cos P. A high-throughput target-based screening approach for the identification and assessment of Mycobacterium tuberculosis mycothione reductase inhibitors. Microbiol Spectr 2024; 12:e0372323. [PMID: 38315026 PMCID: PMC10913476 DOI: 10.1128/spectrum.03723-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 12/21/2023] [Indexed: 02/07/2024] Open
Abstract
The World Health Organization's goal to combat tuberculosis (TB) is hindered by the emergence of anti-microbial resistance, therefore necessitating the exploration of new drug targets. Multidrug regimens are indispensable in TB therapy as they provide synergetic bactericidal effects, shorten treatment duration, and reduce the risk of resistance development. The research within our European RespiriTB consortium explores Mycobacterium tuberculosis energy metabolism to identify new drug candidates that synergize with bedaquiline, with the aim of discovering more efficient combination drug regimens. In this study, we describe the development and validation of a luminescence-coupled, target-based assay for the identification of novel compounds inhibiting Mycobacterium tuberculosis mycothione reductase (MtrMtb), an enzyme with a role in the protection against oxidative stress. Recombinant MtrMtb was employed for the development of a highly sensitive, robust high-throughput screening (HTS) assay by coupling enzyme activity to a bioluminescent readout. Its application in a semi-automated setting resulted in the screening of a diverse library of ~130,000 compounds, from which 19 hits were retained after an assessment of their potency, selectivity, and specificity. The selected hits formed two clusters and four fragment molecules, which were further evaluated in whole-cell and intracellular infection assays. The established HTS discovery pipeline offers an opportunity to deliver novel MtrMtb inhibitors and lays the foundation for future efforts in developing robust biochemical assays for the identification and triaging of inhibitors from high-throughput library screens. IMPORTANCE The growing anti-microbial resistance poses a global public health threat, impeding progress toward eradicating tuberculosis. Despite decades of active research, there is still a dire need for the discovery of drugs with novel modes of action and exploration of combination drug regimens. Within the European RespiriTB consortium, we explore Mycobacterium tuberculosis energy metabolism to identify new drug candidates that synergize with bedaquiline, with the aim of discovering more efficient combination drug regimens. In this study, we present the development of a high-throughput screening pipeline that led to the identification of M. tuberculosis mycothione reductase inhibitors.
Collapse
Affiliation(s)
- Natalia Smiejkowska
- Laboratory of Microbiology, Parasitology and Hygiene, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Wilrijk, Antwerp, Belgium
- Laboratory of Medical Biochemistry, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Wilrijk, Antwerp, Belgium
| | - Lauren Oorts
- Laboratory of Microbiology, Parasitology and Hygiene, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Wilrijk, Antwerp, Belgium
| | - Kevin Van Calster
- Laboratory of Microbiology, Parasitology and Hygiene, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Wilrijk, Antwerp, Belgium
| | - Linda De Vooght
- Laboratory of Microbiology, Parasitology and Hygiene, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Wilrijk, Antwerp, Belgium
| | - Rob Geens
- Laboratory of Medical Biochemistry, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Wilrijk, Antwerp, Belgium
| | - Henri-Philippe Mattelaer
- Laboratory of Medicinal Chemistry, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Wilrijk, Antwerp, Belgium
| | - Koen Augustyns
- Laboratory of Medicinal Chemistry, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Wilrijk, Antwerp, Belgium
| | - Sergei V. Strelkov
- Biocrystallography, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | | | | | - Yann G.-J. Sterckx
- Laboratory of Medical Biochemistry, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Wilrijk, Antwerp, Belgium
| | - Davie Cappoen
- Laboratory of Microbiology, Parasitology and Hygiene, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Wilrijk, Antwerp, Belgium
| | - Paul Cos
- Laboratory of Microbiology, Parasitology and Hygiene, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Wilrijk, Antwerp, Belgium
| |
Collapse
|
7
|
Kumar A, Boradia VM, Mahajan A, Kumaran S, Raje M, Raje CI. Mycobacterium tuberculosis H37Rv enolase (Rv1023)- expression, characterization and effect of host dependent modifications on protein functionality. Biochimie 2023; 214:102-113. [PMID: 37385399 DOI: 10.1016/j.biochi.2023.06.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 06/21/2023] [Accepted: 06/27/2023] [Indexed: 07/01/2023]
Abstract
Mycobacterium tuberculosis enolase is an essential glycolytic enzyme that catalyzes the conversion of 2, phosphoglycerate (PGA) to phosphoenol pyruvate (PEP). It is also a crucial link between glycolysis and the tricarboxylic acid (TCA) pathway. The depletion of PEP has recently been associated with the emergence of non-replicating drug resistant bacteria. Enolase is also known to exhibit multiple alternate functions, such as promoting tissue invasion via its role as a plasminogen (Plg) receptor. In addition, proteomic studies have identified the presence of enolase in the Mtb degradosome and in biofilms. However, the precise role in these processes has not been elaborated. The enzyme was recently identified as a target for 2-amino thiazoles - a novel class of anti-mycobacterials. In vitro assays and characterization of this enzyme were unsuccessful due to the inability to obtain functional recombinant protein. In the present study, we report the expression and characterization of enolase using Mtb H37Ra as a host strain. Our study demonstrates that the enzyme activity and alternate functions of this protein are significantly impacted by the choice of expression host (Mtb H37Ra or E. coli). Detailed analysis of the protein from each source revealed subtle differences in the post-translational modifications. Lastly, our study confirms the role of enolase in Mtb biofilm formation and describes the potential for inhibiting this process.
Collapse
Affiliation(s)
- Ajay Kumar
- Department of Biotechnology National Institute of Pharmaceutical Education and Research (NIPER), Phase X, Sector 67, SAS Nagar, Punjab, 160062, India
| | - Vishant Mahendra Boradia
- Department of Biotechnology National Institute of Pharmaceutical Education and Research (NIPER), Phase X, Sector 67, SAS Nagar, Punjab, 160062, India
| | - Apurwa Mahajan
- Council of Scientific and Industrial Research -Institute of Microbial Technology (CSIR-IMTECH), Sector 39 A, Chandigarh, 160036, India
| | - S Kumaran
- Council of Scientific and Industrial Research -Institute of Microbial Technology (CSIR-IMTECH), Sector 39 A, Chandigarh, 160036, India
| | - Manoj Raje
- Council of Scientific and Industrial Research -Institute of Microbial Technology (CSIR-IMTECH), Sector 39 A, Chandigarh, 160036, India
| | - Chaaya Iyengar Raje
- Department of Biotechnology National Institute of Pharmaceutical Education and Research (NIPER), Phase X, Sector 67, SAS Nagar, Punjab, 160062, India.
| |
Collapse
|
8
|
Zhao D, Song YH, Li D, Zhang R, Xu JB, Shi K, Li JM, Leng X, Zong Y, Zeng FL, Gong QL, Du R. Mycobacterium tuberculosis Rv3435c regulates inflammatory cytokines and promotes the intracellular survival of recombinant Mycobacteria. Acta Trop 2023; 246:106974. [PMID: 37355194 DOI: 10.1016/j.actatropica.2023.106974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 05/14/2023] [Accepted: 06/18/2023] [Indexed: 06/26/2023]
Abstract
Mycobacterium tuberculosis is a pathogenic bacterium that is parasitic in macrophages and show high adaptation to the host's immune response. It can also trigger a complex immune response in the host. This relies on proteins encoded by a series of M. tuberculosis-encoded virulence genes. We found that the M. tuberculosis Rv3435c gene is highly conserved among pathogenic mycobacteria, and might be a virulence gene. To explore the gene function of Rv3435c, we used Mycobacterium smegmatis to construct a recombinant mycobacterium expressing Rv3435c heterologously. The results that Rv3435c is a cell wall-related protein that changes bacterial and colony morphology, inhibits the growth rate of recombinant mycobacteria, and enhances their resistance to various stresses. We also found that the fatty acid levels of the recombinant strain changed. Simultaneously, Rv3435c can inhibit the expression and secretion of inflammatory factors and host cell apoptosis, and enhance the survival of recombinant bacteria in macrophages. Experimental data indicated that Rv3435c might play an important role in Mycobacterium tuberculosis infection.
Collapse
Affiliation(s)
- Dan Zhao
- College of Chinese Medicine Materials, Jilin Agricultural University, Changchun, Jilin Province, 130118, P.R. China; College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin Province, 130118, P.R. China; Ginseng and Antler Products Testing Center of the Ministry of Agricultural PRC, Jilin Agricultural University, Changchun, Jilin Province, 130118, P.R. China
| | - Yu-Hao Song
- College of Chinese Medicine Materials, Jilin Agricultural University, Changchun, Jilin Province, 130118, P.R. China; College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin Province, 130118, P.R. China
| | - Dong Li
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin Province, 130118, P.R. China
| | - Rui Zhang
- College of Chinese Medicine Materials, Jilin Agricultural University, Changchun, Jilin Province, 130118, P.R. China
| | - Jin-Biao Xu
- College of Chinese Medicine Materials, Jilin Agricultural University, Changchun, Jilin Province, 130118, P.R. China
| | - Kun Shi
- College of Chinese Medicine Materials, Jilin Agricultural University, Changchun, Jilin Province, 130118, P.R. China; Laboratory of Production and Product Application of Sika Deer of Jilin Province, Jilin Agricultural University, Changchun, Jilin Province, 130118, P.R. China
| | - Jian-Ming Li
- College of Chinese Medicine Materials, Jilin Agricultural University, Changchun, Jilin Province, 130118, P.R. China; Laboratory of Production and Product Application of Sika Deer of Jilin Province, Jilin Agricultural University, Changchun, Jilin Province, 130118, P.R. China
| | - Xue Leng
- College of Chinese Medicine Materials, Jilin Agricultural University, Changchun, Jilin Province, 130118, P.R. China; Laboratory of Production and Product Application of Sika Deer of Jilin Province, Jilin Agricultural University, Changchun, Jilin Province, 130118, P.R. China
| | - Ying Zong
- College of Chinese Medicine Materials, Jilin Agricultural University, Changchun, Jilin Province, 130118, P.R. China; Laboratory of Production and Product Application of Sika Deer of Jilin Province, Jilin Agricultural University, Changchun, Jilin Province, 130118, P.R. China
| | - Fan-Li Zeng
- College of Chinese Medicine Materials, Jilin Agricultural University, Changchun, Jilin Province, 130118, P.R. China; Laboratory of Production and Product Application of Sika Deer of Jilin Province, Jilin Agricultural University, Changchun, Jilin Province, 130118, P.R. China.
| | - Qing-Long Gong
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin Province, 130118, P.R. China; Laboratory of Production and Product Application of Sika Deer of Jilin Province, Jilin Agricultural University, Changchun, Jilin Province, 130118, P.R. China.
| | - Rui Du
- College of Chinese Medicine Materials, Jilin Agricultural University, Changchun, Jilin Province, 130118, P.R. China; Laboratory of Production and Product Application of Sika Deer of Jilin Province, Jilin Agricultural University, Changchun, Jilin Province, 130118, P.R. China.
| |
Collapse
|
9
|
Kristensen SS, Lukassen MV, Siebenhaar S, Diep DB, Morth JP, Mathiesen G. Lactiplantibacillus plantarum as a novel platform for production and purification of integral membrane proteins using RseP as the benchmark. Sci Rep 2023; 13:14361. [PMID: 37658186 PMCID: PMC10474122 DOI: 10.1038/s41598-023-41559-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 08/28/2023] [Indexed: 09/03/2023] Open
Abstract
The present study describes a detailed procedure for expressing and purifying the integral membrane protein RseP using the pSIP system and Lactiplantibacillus plantarum as an expression host. RseP is a membrane-bound site-2-protease and a known antibacterial target in multiple human pathogens. In the present study, we screened five RseP orthologs from Gram-positive bacteria and found RseP from Enterococcus faecium (EfmRseP) to yield the highest protein levels. The production conditions were optimized and EfmRseP was purified by immobilized metal ion affinity chromatography followed by size-exclusion chromatography. The purification resulted in an overall yield of approximately 1 mg of pure protein per 3 g of wet-weight cell pellet. The structural integrity of the purified protein was confirmed using circular dichroism. We further assessed the expression and purification of RseP from E. faecium in the Gram-negative Escherichia coli. Detection of soluble protein failed in two of the three E. coli strains tested. Purification of EfmRseP expressed in E. coli C43(DE3) resulted in a protein with lower purity compared to EfmRseP expressed in L. plantarum. To our knowledge, this is the first time L. plantarum and the pSIP expression system have been applied for the production of membrane proteins.
Collapse
Affiliation(s)
- Sofie S Kristensen
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), Ås, Norway.
| | - Marie V Lukassen
- Department of Biotechnology and Biomedicine, Technical University of Denmark (DTU), Kongens Lyngby, Denmark
| | - Suzana Siebenhaar
- Department of Biotechnology and Biomedicine, Technical University of Denmark (DTU), Kongens Lyngby, Denmark
| | - Dzung B Diep
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - J Preben Morth
- Department of Biotechnology and Biomedicine, Technical University of Denmark (DTU), Kongens Lyngby, Denmark.
| | - Geir Mathiesen
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), Ås, Norway.
| |
Collapse
|
10
|
Xie W, Wang L, Luo D, Soni V, Rosenn EH, Wang Z. Mycobacterium smegmatis, a Promising Vaccine Vector for Preventing TB and Other Diseases: Vaccinomics Insights and Applications. Vaccines (Basel) 2023; 11:1302. [PMID: 37631870 PMCID: PMC10459588 DOI: 10.3390/vaccines11081302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/17/2023] [Accepted: 07/27/2023] [Indexed: 08/27/2023] Open
Abstract
Mycobacterium smegmatis (M.sm) is frequently used as an alternative model organism in Mycobacterium tuberculosis (M.tb) studies. While containing high sequence homology with M.tb, it is considered non-pathogenic in humans. As such it has been used to study M.tb and other infections in vivo and more recently been explored for potential therapeutic applications. A body of previous research has highlighted the potential of using genetically modified M.sm displaying rapid growth and unique immunostimulatory characteristics as an effective vaccine vector. Novel systems biology techniques can further serve to optimize these delivery constructs. In this article, we review recent advancements in vaccinomics tools that support the efficacy of a M.sm-based vaccine vector. Moreover, the integration of systems biology and molecular omics techniques in these pioneering studies heralds a potential accelerated pipeline for the development of next-generation recombinant vaccines against rapidly developing diseases.
Collapse
Affiliation(s)
- Weile Xie
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
- Shanghai Collaborative Innovation Center of Agri-Seeds/School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Longlong Wang
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
- Shanghai Collaborative Innovation Center of Agri-Seeds/School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Dan Luo
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
- Shanghai Collaborative Innovation Center of Agri-Seeds/School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Vijay Soni
- Division of Infectious Diseases, Weill Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Eric H. Rosenn
- School of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Zhe Wang
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
- Shanghai Collaborative Innovation Center of Agri-Seeds/School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
11
|
Kadhim BA, Alqaseer K, Al-Ganahi SA. Identification and characterization of a novel lytic peptidoglycan transglycosylase (MltC) in Shigella dysenteriae. Braz J Microbiol 2023:10.1007/s42770-023-00957-9. [PMID: 36973582 DOI: 10.1007/s42770-023-00957-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 03/20/2023] [Indexed: 03/29/2023] Open
Abstract
Shigellosis remains a worldwide health problem due to the lack of vaccines and the emergence of antibiotic-resistant strains. Shigella (S.) dysenteriae has rigid peptidoglycan (PG), and its tight regulation of biosynthesis and remodeling is essential for bacterial integrity. Lytic transglycosylases are highly conserved PG autolysins in bacteria that play essential roles in bacterial growth. However, their precise functions are obscure. We aimed to identify, clone, and express MltC, a unique autolysin in Escherichia (E.) coli C41 strain. The purification of recombinant MltC protein was performed using affinity chromatography and size-exclusion chromatography methods. The PG enzymatic activity of MltC was investigated using Zymogram and Fluorescein isothiocyanate (FITC)-labeled PG assays. Also, we aimed to detect its localization in bacterial fractions (cytoplasm and membrane) by western blot using specific polyclonal anti-MltC antibodies and its probable partners using immunoprecipitation and mass spectrometry applications. Purified MltC showed autolysin activity. Native MltC showed various locations in S. dysenteriae cells during different growth phases. In the Lag and early stationary phases, MltC was not found in cytoplasm and membrane fractions. However, it was detected in cytoplasm and membrane fractions during the exponential phase. In the late stationary phase, MltC was expressed in the membrane fraction only. Different candidate protein partners of MltC were identified that could be essential for bacterial growth and pathogenicity. This is the first study to suggest that MltC is indeed autolysin and could be a new drug target for the treatment of shigellosis by understanding its biological functions.
Collapse
Affiliation(s)
- Baleegh A Kadhim
- Department of Biology, College of Science, University of Al-Qadisiyah, Al Diwaniyah, Iraq.
| | - Kawther Alqaseer
- Department of Basic Science, College of Nursing, University of Kufa, Kufa, Iraq
| | - Sura A Al-Ganahi
- Department of Biology, College of Science, University of Al-Qadisiyah, Al Diwaniyah, Iraq
| |
Collapse
|
12
|
Fang J, Dong C, Xiong S. Mycobacterium tuberculosis Rv0790c inhibits the cellular autophagy at its early stage and facilitates mycobacterial survival. Front Cell Infect Microbiol 2022; 12:1014897. [DOI: 10.3389/fcimb.2022.1014897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 10/25/2022] [Indexed: 11/11/2022] Open
Abstract
Rv0790c is predicted to be a conserved hypothetical protein encoded by Mycobacterium tuberculosis (Mtb). However, its function in Mtb infection remains largely unknown. In this study, we found that Rv0790c promoted bacillary survival of M. smegmatis (Ms), both in vitro and in vivo. The bacillary burden of Ms exogenously expressing Rv0790c increased, whereas in Rv0790c-knockouts the bacillary burden decreased in infected macrophages. Multiple cellular processes were analyzed to explore the underlying mechanisms. We found that neither inflammatory regulation nor apoptotic induction were responsible for the promotion of bacillary survival mediated by Rv0790c. Interestingly, we found that Rv0790c facilitates mycobacterial survival through cellular autophagy at its early stage. Immunoprecipitation assay of autophagy initiation-related proteins indicated that Rv0790c interacted with mTOR and enhanced its activity, as evidenced by the increased phosphorylation level of mTOR downstream substrates, ULK-1, at Ser757 and P70S6K, at Thr389. Our study uncovers a novel autophagy suppressor encoded by mycobacterial Rv0790c, which inhibits the early stage of cellular autophagy induction upon Mtb infection and takes an important role in maintaining intracellular mycobacterial survival. It may aid in understanding the mechanism of Mtb evasion of host cellular degradation, as well as hold the potential to develop new targets for the prevention and treatment of tuberculosis.
Collapse
|
13
|
Paliwal D, Thom M, Hussein A, Ravishankar D, Wilkes A, Charleston B, Jones IM. Towards Reverse Vaccinology for Bovine TB: High Throughput Expression of Full Length Recombinant Mycobacterium bovis Proteins. Front Mol Biosci 2022; 9:889667. [PMID: 36032666 PMCID: PMC9402895 DOI: 10.3389/fmolb.2022.889667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 06/06/2022] [Indexed: 11/13/2022] Open
Abstract
Bovine tuberculosis caused by Mycobacterium bovis, is a significant global pathogen causing economic loss in livestock and zoonotic TB in man. Several vaccine approaches are in development including reverse vaccinology which uses an unbiased approach to select open reading frames (ORF) of potential vaccine candidates, produce them as recombinant proteins and assesses their immunogenicity by direct immunization. To provide feasibility data for this approach we have cloned and expressed 123 ORFs from the M. bovis genome, using a mixture of E. coli and insect cell expression. We used a concatenated open reading frames design to reduce the number of clones required and single chain fusion proteins for protein pairs known to interact, such as the members of the PPE-PE family. Over 60% of clones showed soluble expression in one or the other host and most allowed rapid purification of the tagged bTB protein from the host cell background. The catalogue of recombinant proteins represents a resource that may be suitable for test immunisations in the development of an effective bTB vaccine.
Collapse
Affiliation(s)
- Deepa Paliwal
- School of Biological Sciences, University of Reading, Reading, United Kingdom
| | | | - Areej Hussein
- School of Biological Sciences, University of Reading, Reading, United Kingdom
| | | | - Alex Wilkes
- School of Biological Sciences, University of Reading, Reading, United Kingdom
| | | | - Ian M. Jones
- School of Biological Sciences, University of Reading, Reading, United Kingdom
- *Correspondence: Ian M. Jones,
| |
Collapse
|
14
|
Rola A, Potok P, Wieczorek R, Mos M, Gumienna-Kontecka E, Potocki S. Coordination Properties of the Zinc Domains of BigR4 and SmtB Proteins in Nickel Systems─Designation of Key Donors. Inorg Chem 2022; 61:9454-9468. [PMID: 35696675 PMCID: PMC9241078 DOI: 10.1021/acs.inorgchem.2c00319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
![]()
The increasing number
of antibiotic-resistant pathogens has become
one of the foremost health problems of modern times. One of the most
lethal and multidrug-resistant bacteria is Mycobacterium
tuberculosis (Mtb), which causes tuberculosis (TB).
TB continues to engulf health systems due to the significant development
of bacterial multidrug-resistant strains. Mammalian immune system
response to mycobacterial infection includes, but is not limited to,
increasing the concentration of zinc(II) and other divalent metal
ions in phagosome vesicles up to toxic levels. Metal ions are necessary
for the survival and virulence of bacteria but can be highly toxic
to organisms if their concentrations are not strictly controlled.
Therefore, understanding the mechanisms of how bacteria use metal
ions to maintain their optimum concentrations and survive under lethal
environmental conditions is essential. The mycobacterial SmtB protein,
one of the metal-dependent transcription regulators of the ArsR/SmtB
family, dissociates from DNA in the presence of high concentrations
of metals, activating the expression of metal efflux proteins. In
this work, we explore the properties of α5 metal-binding domains
of SmtB/BigR4 proteins (the latter being the SmtB homolog from nonpathogenic Mycobacterium smegmatis), and two mutants of BigR4
as ligands for nickel(II) ions. The study focuses on the specificity
of metal–ligand interactions and describes the effect of mutations
on the coordination properties of the studied systems. The results
of this research reveal that the Ni(II)-BigR4 α5 species are
more stable than the Ni(II)-SmtB α5 complexes. His mutations,
exchanging one of the histidines for alanine, cause a decrease in
the stability of Ni(II) complexes. Surprisingly, the lack of His102
resulted also in increased involvement of acidic amino acids in the
coordination. The results of this study may help to understand the
role of critical mycobacterial virulence factor—SmtB in metal
homeostasis. Although SmtB prefers Zn(II) binding, it may also bind
metal ions that prefer other coordination modes, for example, Ni(II).
We characterized the properties of such complexes in order to understand
the nature of mycobacterial SmtB when acting as a ligand for metal
ions, given that nickel and zinc ArsR family proteins possess analogous
metal-binding motifs. This may provide an introduction to the design
of a new antimicrobial strategy against the pathogenic bacterium M. tuberculosis. The
histidine-rich α5 domains of SmtB (L4, Mycobacterium
tuberculosis) and BigR4 (L1, Mycobacterium
smegmatis) were studied as ligands
for Ni(II). Point mutation analysis of L1 revealed that His102 and
106 preferably bind metal ions. The general Ni(II)-binding motif for
both of the ligands was established as HX3HX3DX3HX2ED. L1 forms more
stable complexes than L4 due to the stabilizing effect of arginine
residues.
Collapse
Affiliation(s)
- Anna Rola
- Faculty of Chemistry, University of Wroclaw, 14 Joliot-Curie Street, Wroclaw 50-383, Poland
| | - Paulina Potok
- Faculty of Chemistry, University of Wroclaw, 14 Joliot-Curie Street, Wroclaw 50-383, Poland
| | - Robert Wieczorek
- Faculty of Chemistry, University of Wroclaw, 14 Joliot-Curie Street, Wroclaw 50-383, Poland
| | - Magdalena Mos
- WMG, International Manufacturing Centre, University of Warwick, Coventry CV4 7AL, U.K
| | | | - Sławomir Potocki
- Faculty of Chemistry, University of Wroclaw, 14 Joliot-Curie Street, Wroclaw 50-383, Poland
| |
Collapse
|
15
|
Grāve K, Bennett MD, Högbom M. High-throughput strategy for identification of Mycobacterium tuberculosis membrane protein expression conditions using folding reporter GFP. Protein Expr Purif 2022; 198:106132. [PMID: 35750296 DOI: 10.1016/j.pep.2022.106132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/09/2022] [Accepted: 06/10/2022] [Indexed: 10/18/2022]
Abstract
Mycobacterium tuberculosis membrane protein biochemistry and structural biology studies are often hampered by challenges in protein expression and selection for well-expressing protein candidates, suitable for further investigation. Here we present a folding reporter GFP (frGFP) assay, adapted for M. tuberculosis membrane protein screening in Escherichia coli Rosetta 2 (DE3) and Mycobacterium smegmatis mc [2]4517. This method allows protein expression condition screening for multiple protein targets simultaneously by monitoring frGFP fluorescence in growing cells. We discuss the impact of common protein expression conditions on 42 essential M. tuberculosis H37Rv helical transmembrane proteins and establish the grounds for their further analysis. We have found that the basal expression of the lac operon in the T7-promoter expression system generally leads to high recombinant protein yield in M. smegmatis, and we suggest that a screening condition without the inducer is included in routine protein expression tests. In addition to the general observations, we describe conditions allowing high-level expression of more than 25 essential M. tuberculosis membrane proteins, containing 2 to 13 transmembrane helices. We hope that these findings will stimulate M. tuberculosis membrane protein research and aid the efforts in drug development against tuberculosis.
Collapse
Affiliation(s)
- Kristīne Grāve
- Department of Biochemistry and Biophysics, Stockholm University. Svante Arrhenius väg 16C, SE-10691, Stockholm, Sweden
| | - Matthew D Bennett
- Department of Biochemistry and Biophysics, Stockholm University. Svante Arrhenius väg 16C, SE-10691, Stockholm, Sweden
| | - Martin Högbom
- Department of Biochemistry and Biophysics, Stockholm University. Svante Arrhenius väg 16C, SE-10691, Stockholm, Sweden.
| |
Collapse
|
16
|
Investigating a putative transcriptional regulatory protein encoded by Rv1719 gene of Mycobacterium tuberculosis. Protein J 2022; 41:424-433. [PMID: 35715720 DOI: 10.1007/s10930-022-10062-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/03/2022] [Indexed: 10/18/2022]
Abstract
Mycobacterium tuberculosis, the causative agent of tuberculosis, demonstrates immense plasticity with which it adapts to a highly dynamic and hostile host environment. This is facilitated by a web of signalling pathways constantly modulated by a multitude of proteins that regulate the flow of genetic information inside the pathogen. Transcription factors (TFs) belongs to one such family of proteins that modulate the signalling by regulating the abundance of proteins at the transcript level. In the current study, we have characterized the putative transcriptional regulatory protein encoded by the Rv1719 gene of Mycobacterium tuberculosis. This TF belongs to the IclR family of proteins with orthologs found in both bacterial and archaeal species. We cloned the Rv1719 gene into the pET28a expression vector and performed heterologous expression of the recombinant protein with E coli as the host. Further, optimization of the purification protocol by affinity chromatography and characterization of proteins for their functional viability has been demonstrated using various biochemical and/or biophysical approaches. Scale-up of purification yielded approximately 30 mg of ~ 28 kDa protein per litre of culture. In-silico protein domain analysis of Rv1719 protein predicted the presence of the helix-turn-helix (HTH) domain suggesting its ability to bind DNA sequence and modulate transcription; a hallmark of a transcriptional regulatory protein. Further, by performing electrophoretic mobility shift assay (EMSA) we demonstrated that the protein binds to a specific DNA fragment harboring the probable binding site of one of the predicted promoters.
Collapse
|
17
|
Boldrin F, Cioetto Mazzabò L, Lanéelle MA, Rindi L, Segafreddo G, Lemassu A, Etienne G, Conflitti M, Daffé M, Garzino Demo A, Manganelli R, Marrakchi H, Provvedi R. LysX2 is a Mycobacterium tuberculosis membrane protein with an extracytoplasmic MprF-like domain. BMC Microbiol 2022; 22:85. [PMID: 35365094 PMCID: PMC8974105 DOI: 10.1186/s12866-022-02493-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 03/11/2022] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Aminoacyl-phosphatidylglycerol (aaPG) synthases are bacterial enzymes that usually catalyze transfer of aminoacyl residues to the plasma membrane phospholipid phosphatidylglycerol (PG). The result is introduction of positive charges onto the cytoplasmic membrane, yielding reduced affinity towards cationic antimicrobial peptides, and increased resistance to acidic environments. Therefore, these enzymes represent an important defense mechanism for many pathogens, including Staphylococcus aureus and Mycobacterium tuberculosis (Mtb), which are known to encode for lysyl-(Lys)-PG synthase MprF and LysX, respectively. Here, we used a combination of bioinformatic, genetic and bacteriological methods to characterize a protein encoded by the Mtb genome, Rv1619, carrying a domain with high similarity to MprF-like domains, suggesting that this protein could be a new aaPG synthase family member. However, unlike homologous domains of MprF and LysX that are positioned in the cytoplasm, we predicted that the MprF-like domain in LysX2 is in the extracytoplasmic region. RESULTS Using genetic fusions to the Escherichia coli proteins PhoA and LacZ of LysX2, we confirmed this unique membrane topology, as well as LysX and MprF as benchmarks. Expression of lysX2 in Mycobacterium smegmatis increased cell resistance to human β-defensin 2 and sodium nitrite, enhanced cell viability and delayed biofilm formation in acidic pH environment. Remarkably, MtLysX2 significantly reduced the negative charge on the bacterial surface upon exposure to an acidic environment. Additionally, we found LysX2 orthologues in major human pathogens and in rapid-growing mycobacteria frequently associated with human infections, but not in environmental and non-pathogenic mycobacteria. CONCLUSIONS Overall, our data suggest that LysX2 is a prototype of a new class within the MprF-like protein family that likely enhances survival of the pathogenic species through its catalytic domain which is exposed to the extracytoplasmic side of the cell membrane and is required to decrease the negative charge on the bacterial surface through a yet uncharacterized mechanism.
Collapse
Affiliation(s)
| | | | - Marie-Antoinette Lanéelle
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Laura Rindi
- Department of Translational Research, University of Pisa, Pisa, Italy
| | - Greta Segafreddo
- Department of Molecular Medicine, University of Padua, Padua, Italy
| | - Anne Lemassu
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Gilles Etienne
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Marta Conflitti
- Department of Molecular Medicine, University of Padua, Padua, Italy
| | - Mamadou Daffé
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Alfredo Garzino Demo
- Department of Molecular Medicine, University of Padua, Padua, Italy
- Department of Microbiology and Immunology, School of Medicine, University of Maryland, Baltimore, Maryland, USA
| | | | - Hedia Marrakchi
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | | |
Collapse
|
18
|
Aseev LV, Koledinskaya LS, Bychenko OS, Boni IV. Regulation of Ribosomal Protein Synthesis in Mycobacteria: The Autogenous Control of rpsO. Int J Mol Sci 2021; 22:9679. [PMID: 34575857 PMCID: PMC8470358 DOI: 10.3390/ijms22189679] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/02/2021] [Accepted: 09/03/2021] [Indexed: 01/23/2023] Open
Abstract
The autogenous regulation of ribosomal protein (r-protein) synthesis plays a key role in maintaining the stoichiometry of ribosomal components in bacteria. In this work, taking the rpsO gene as a classic example, we addressed for the first time the in vivo regulation of r-protein synthesis in the mycobacteria M. smegmatis (Msm) and M. tuberculosis (Mtb). We used a strategy based on chromosomally integrated reporters under the control of the rpsO regulatory regions and the ectopic expression of Msm S15 to measure its impact on the reporter expression. Because the use of E. coli as a host appeared inefficient, a fluorescent reporter system was developed by inserting Msm or Mtb rpsO-egfp fusions into the Msm chromosome and expressing Msm S15 or E. coli S15 in trans from a novel replicative shuttle vector, pAMYC. The results of the eGFP expression measurements in Msm cells provided evidence that the rpsO gene in Msm and Mtb was feedback-regulated at the translation level. The mutagenic analysis showed that the folding of Msm rpsO 5'UTR in a pseudoknot appeared crucial for repression by both Msm S15 and E. coli S15, thus indicating a striking resemblance of the rpsO feedback control in mycobacteria and in E. coli.
Collapse
Affiliation(s)
| | | | | | - Irina V. Boni
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia; (L.V.A.); (L.S.K.); (O.S.B.)
| |
Collapse
|
19
|
Jia L, Sha S, Yang S, Taj A, Ma Y. Effect of Protein O-Mannosyltransferase (MSMEG_5447) on M. smegmatis and Its Survival in Macrophages. Front Microbiol 2021; 12:657726. [PMID: 34276591 PMCID: PMC8278756 DOI: 10.3389/fmicb.2021.657726] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 05/31/2021] [Indexed: 12/12/2022] Open
Abstract
Protein O-mannosyltransferase (PMT) catalyzes an initial step of protein O-mannosylation of Mycobacterium tuberculosis (Mtb) and plays a crucial role for Mtb survival in the host. To better understand the role of PMT in the host innate immune response during mycobacterial infection, in this study, we utilized Mycobacterium smegmatis pmt (MSMEG_5447) gene knockout strain, ΔM5447, to infect THP-1 cells. Our results revealed that the lack of MSMEG_5447 not only impaired the growth of M. smegmatis in 7H9 medium but also reduced the resistance of M. smegmatis against lysozyme and acidic stress in vitro. Macrophage infection assay showed that ΔM5447 displayed attenuated growth in macrophages at 24 h post-infection. The production of TNF-α and IL-6 and the activation of transcription factor NF-κB were decreased in ΔM5447-infected macrophages, which were further confirmed by transcriptomic analysis. Moreover, ΔM5447 failed to inhibit phagosome–lysosome fusion in macrophages. These findings revealed that PMT played a role in modulating the innate immune responses of the host, which broaden our understanding for functions of protein O-mannosylation in mycobacterium–host interaction.
Collapse
Affiliation(s)
- Liqiu Jia
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Shanshan Sha
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Shufeng Yang
- Department of Microbiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Ayaz Taj
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Yufang Ma
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China.,Department of Microbiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| |
Collapse
|
20
|
Label-Free Comparative Proteomics of Differentially Expressed Mycobacterium tuberculosis Protein in Rifampicin-Related Drug-Resistant Strains. Pathogens 2021; 10:pathogens10050607. [PMID: 34063426 PMCID: PMC8157059 DOI: 10.3390/pathogens10050607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/28/2021] [Accepted: 05/10/2021] [Indexed: 11/26/2022] Open
Abstract
Rifampicin (RIF) is one of the most important first-line anti-tuberculosis (TB) drugs, and more than 90% of RIF-resistant (RR) Mycobacterium tuberculosis clinical isolates belong to multidrug-resistant (MDR) and extensively drug-resistant (XDR) TB. In order to identify specific candidate target proteins as diagnostic markers or drug targets, differential protein expression between drug-sensitive (DS) and drug-resistant (DR) strains remains to be investigated. In the present study, a label-free, quantitative proteomics technique was performed to compare the proteome of DS, RR, MDR, and XDR clinical strains. We found iniC, Rv2141c, folB, and Rv2561 were up-regulated in both RR and MDR strains, while fadE9, espB, espL, esxK, and Rv3175 were down-regulated in the three DR strains when compared to the DS strain. In addition, lprF, mce2R, mce2B, and Rv2627c were specifically expressed in the three DR strains, and 41 proteins were not detected in the DS strain. Functional category showed that these differentially expressed proteins were mainly involved in the cell wall and cell processes. When compared to the RR strain, Rv2272, smtB, lpqB, icd1, and folK were up-regulated, while esxK, PPE19, Rv1534, rpmI, ureA, tpx, mpt64, frr, Rv3678c, esxB, esxA, and espL were down-regulated in both MDR and XDR strains. Additionally, nrp, PPE3, mntH, Rv1188, Rv1473, nadB, PPE36, and sseA were specifically expressed in both MDR and XDR strains, whereas 292 proteins were not identified when compared to the RR strain. When compared between MDR and XDR strains, 52 proteins were up-regulated, while 45 proteins were down-regulated in the XDR strain. 316 proteins were especially expressed in the XDR strain, while 92 proteins were especially detected in the MDR strain. Protein interaction networks further revealed the mechanism of their involvement in virulence and drug resistance. Therefore, these differentially expressed proteins are of great significance for exploring effective control strategies of DR-TB.
Collapse
|
21
|
High Throughput Expression Screening of Arabinofuranosyltransferases from Mycobacteria. Processes (Basel) 2021. [DOI: 10.3390/pr9040629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Studies on membrane proteins can help to develop new drug targets and treatments for a variety of diseases. However, membrane proteins continue to be among the most challenging targets in structural biology. This uphill endeavor can be even harder for membrane proteins from Mycobacterium species, which are notoriously difficult to express in heterologous systems. Arabinofuranosyltransferases are involved in mycobacterial cell wall synthesis and thus potential targets for antituberculosis drugs. A set of 96 mycobacterial genes coding for Arabinofuranosyltransferases was selected, of which 17 were successfully expressed in E. coli and purified by metal-affinity chromatography. We herein present an efficient high-throughput strategy to screen in microplates a large number of targets from Mycobacteria and select the best conditions for large-scale protein production to pursue functional and structural studies. This methodology can be applied to other targets, is cost and time effective and can be implemented in common laboratories.
Collapse
|
22
|
Mycobacterium tuberculosis MmsA (Rv0753c) Interacts with STING and Blunts the Type I Interferon Response. mBio 2020; 11:mBio.03254-19. [PMID: 33262262 PMCID: PMC7733952 DOI: 10.1128/mbio.03254-19] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
It is unclear how the type I IFN response is regulated by mycobacterial determinants. Here, we characterized the previously unreported role of M. tuberculosis MmsA in immunological regulation of type I IFN response by targeting the central adaptor STING in the DNA sensing pathway. We identified STING-interacting MmsA by coimmunoprecipitation-mass spectrometry-based (IP-MS) proteomic analysis and showed MmsA interacting with STING and autophagy receptor p62 via its N terminus and C terminus, respectively. We also showed that MmsA downregulated type I IFN by promoting p62-mediated STING degradation. Moreover, the MmsA mutant R138W is potentially associated with the virulence of M. tuberculosis clinical strains owing to the modulation of STING protein. Our results provide novel insights into the regulatory mechanism of type I IFN response manipulated by mycobacterial MmsA and the additional cross talk between autophagy and STING in M. tuberculosis infection, wherein a protein from microbial pathogens induces autophagic degradation of host innate immune molecules. Type I interferon (IFN) plays an important role in Mycobacterium tuberculosis persistence and disease pathogenesis. M. tuberculosis has evolved a number of mechanisms to evade host immune surveillance. However, it is unclear how the type I IFN response is tightly regulated by the M. tuberculosis determinants. Stimulator of interferon genes (STING) is an essential adaptor for type I IFN production triggered by M. tuberculosis genomic DNA or cyclic dinucleotides upon infection. To investigate how the type I IFN response is regulated by M. tuberculosis determinants, immunoprecipitation-mass spectrometry-based (IP-MS) proteomic analysis was performed to screen proteins interacting with STING in the context of M. tuberculosis infection. Among the many predicted candidates interacting with STING, the M. tuberculosis coding protein Rv0753c (MmsA) was identified. We confirmed that MmsA binds and colocalizes with STING, and the N-terminal regions of MmsA (amino acids [aa] 1 to 251) and STING (aa 1 TO 190) are responsible for MmsA-STING interaction. Type I IFN production was impaired with exogenous expression of MmsA in RAW264.7 cells. MmsA inhibited the STING-TBK1-IRF3 pathway, as evidenced by reduced STING levelS and subsequent IRF3 activation. Furthermore, MmsA facilitated p62-mediated STING autophagic degradation by binding p62 with its C terminus (aa 252 to 455), which may account for the negative regulation of M. tuberculosis MmsA in STING-mediated type I IFN production. Additionally, the M. tuberculosismmsA R138W mutation, detected in a hypervirulent clinical isolate, enhanced the degradation of STING, implying the important relevance of MmsA in disease outcome. Together, we report a novel mechanism where M. tuberculosis MmsA serves as an antagonist of type I IFN response by targeting STING with p62-mediated autophagic degradation.
Collapse
|
23
|
Lammens EM, Nikel PI, Lavigne R. Exploring the synthetic biology potential of bacteriophages for engineering non-model bacteria. Nat Commun 2020; 11:5294. [PMID: 33082347 PMCID: PMC7576135 DOI: 10.1038/s41467-020-19124-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 09/25/2020] [Indexed: 12/26/2022] Open
Abstract
Non-model bacteria like Pseudomonas putida, Lactococcus lactis and other species have unique and versatile metabolisms, offering unique opportunities for Synthetic Biology (SynBio). However, key genome editing and recombineering tools require optimization and large-scale multiplexing to unlock the full SynBio potential of these bacteria. In addition, the limited availability of a set of characterized, species-specific biological parts hampers the construction of reliable genetic circuitry. Mining of currently available, diverse bacteriophages could complete the SynBio toolbox, as they constitute an unexplored treasure trove for fully adapted metabolic modulators and orthogonally-functioning parts, driven by the longstanding co-evolution between phage and host.
Collapse
Affiliation(s)
- Eveline-Marie Lammens
- Department of Biosystems, Laboratory of Gene Technology, KU Leuven, Kasteelpark Arenberg 21 box 2462, 3001, Leuven, BE, Belgium
| | - Pablo Ivan Nikel
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800 Kgs, Lyngby, DK, Denmark
| | - Rob Lavigne
- Department of Biosystems, Laboratory of Gene Technology, KU Leuven, Kasteelpark Arenberg 21 box 2462, 3001, Leuven, BE, Belgium.
| |
Collapse
|
24
|
Beckham KSH, Staack S, Wilmanns M, Parret AHA. The pMy vector series: A versatile cloning platform for the recombinant production of mycobacterial proteins in Mycobacterium smegmatis. Protein Sci 2020; 29:2528-2537. [PMID: 33006405 PMCID: PMC7679961 DOI: 10.1002/pro.3962] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 09/22/2020] [Accepted: 09/29/2020] [Indexed: 12/16/2022]
Abstract
Structural and biophysical characterization of molecular mechanisms of disease‐causing pathogens, such as Mycobacterium tuberculosis, often requires recombinant expression of large amounts highly pure protein. For the production of mycobacterial proteins, overexpression in the fast‐growing and non‐pathogenic species Mycobacterium smegmatis has several benefits over the standard Escherichia coli expression strains. However, unlike for E. coli, the range of expression vectors currently available is limited. Here we describe the development of the pMy vector series, a set of expression plasmids for recombinant production of single proteins and protein complexes in M. smegmatis. By incorporating an alternative selection marker, we show that these plasmids can also be used for co‐expression studies. All vectors in the pMy vector series are available in the Addgene repository (www.addgene.com).
Collapse
Affiliation(s)
| | - Sonja Staack
- Hamburg Unit, European Molecular Biology Laboratory, Hamburg, Germany
| | - Matthias Wilmanns
- Hamburg Unit, European Molecular Biology Laboratory, Hamburg, Germany.,University Hamburg Clinical Centre Hamburg-Eppendorf, Hamburg, Germany
| | | |
Collapse
|
25
|
Wong CF, Lau AM, Harikishore A, Saw WG, Shin J, Ragunathan P, Bhushan S, Ngan SFC, Sze SK, Bates RW, Dick T, Grüber G. A systematic assessment of mycobacterial F 1 -ATPase subunit ε's role in latent ATPase hydrolysis. FEBS J 2020; 288:818-836. [PMID: 32525613 DOI: 10.1111/febs.15440] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 05/05/2020] [Accepted: 06/03/2020] [Indexed: 12/20/2022]
Abstract
In contrast to most bacteria, the mycobacterial F1 FO -ATP synthase (α3 :β3 :γ:δ:ε:a:b:b':c9 ) does not perform ATP hydrolysis-driven proton translocation. Although subunits α, γ and ε of the catalytic F1 -ATPase component α3 :β3 :γ:ε have all been implicated in the suppression of the enzyme's ATPase activity, the mechanism remains poorly defined. Here, we brought the central stalk subunit ε into focus by generating the recombinant Mycobacterium smegmatis F1 -ATPase (MsF1 -ATPase), whose 3D low-resolution structure is presented, and its ε-free form MsF1 αβγ, which showed an eightfold ATP hydrolysis increase and provided a defined system to systematically study the segments of mycobacterial ε's suppression of ATPase activity. Deletion of four amino acids at ε's N terminus, mutant MsF1 αβγεΔ2-5 , revealed similar ATP hydrolysis as MsF1 αβγ. Together with biochemical and NMR solution studies of a single, double, triple and quadruple N-terminal ε-mutants, the importance of the first N-terminal residues of mycobacterial ε in structure stability and latency is described. Engineering ε's C-terminal mutant MsF1 αβγεΔ121 and MsF1 αβγεΔ103-121 with deletion of the C-terminal residue D121 and the two C-terminal ɑ-helices, respectively, revealed the requirement of the very C terminus for communication with the catalytic α3 β3 -headpiece and its function in ATP hydrolysis inhibition. Finally, we applied the tools developed during the study for an in silico screen to identify a novel subunit ε-targeting F-ATP synthase inhibitor.
Collapse
Affiliation(s)
- Chui-Fann Wong
- School of Biological Sciences, Nanyang Technological University, Singapore City, Singapore
| | - Aik-Meng Lau
- School of Biological Sciences, Nanyang Technological University, Singapore City, Singapore
| | - Amaravadhi Harikishore
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore City, Singapore
| | - Wuan-Geok Saw
- School of Biological Sciences, Nanyang Technological University, Singapore City, Singapore
| | - Joon Shin
- School of Biological Sciences, Nanyang Technological University, Singapore City, Singapore
| | - Priya Ragunathan
- School of Biological Sciences, Nanyang Technological University, Singapore City, Singapore
| | - Shashi Bhushan
- School of Biological Sciences, Nanyang Technological University, Singapore City, Singapore.,NTU Institute of Structural Biology, Nanyang Technological University, Singapore City, Singapore
| | - So-Fong Cam Ngan
- School of Biological Sciences, Nanyang Technological University, Singapore City, Singapore
| | - Siu Kwan Sze
- School of Biological Sciences, Nanyang Technological University, Singapore City, Singapore
| | - Roderick W Bates
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore City, Singapore
| | - Thomas Dick
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, USA.,Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore City, Singapore.,Department of Medical Sciences, Hackensack Meridian School of Medicine at Seton Hall University, Nutley, NJ, USA
| | - Gerhard Grüber
- School of Biological Sciences, Nanyang Technological University, Singapore City, Singapore
| |
Collapse
|
26
|
Rohwerder T, Rohde MT, Jehmlich N, Purswani J. Actinobacterial Degradation of 2-Hydroxyisobutyric Acid Proceeds via Acetone and Formyl-CoA by Employing a Thiamine-Dependent Lyase Reaction. Front Microbiol 2020; 11:691. [PMID: 32351493 PMCID: PMC7176365 DOI: 10.3389/fmicb.2020.00691] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 03/25/2020] [Indexed: 11/13/2022] Open
Abstract
The tertiary branched short-chain 2-hydroxyisobutyric acid (2-HIBA) has been associated with several metabolic diseases and lysine 2-hydroxyisobutyrylation seems to be a common eukaryotic as well as prokaryotic post-translational modification in proteins. In contrast, the underlying 2-HIBA metabolism has thus far only been detected in a few microorganisms, such as the betaproteobacterium Aquincola tertiaricarbonis L108 and the Bacillus group bacterium Kyrpidia tusciae DSM 2912. In these strains, 2-HIBA can be specifically activated to the corresponding CoA thioester by the 2-HIBA-CoA ligase (HCL) and is then isomerized to 3-hydroxybutyryl-CoA in a reversible and B12-dependent mutase reaction. Here, we demonstrate that the actinobacterial strain Actinomycetospora chiangmaiensis DSM 45062 degrades 2-HIBA and also its precursor 2-methylpropane-1,2-diol via acetone and formic acid by employing a thiamine pyrophosphate-dependent lyase. The corresponding gene is located directly upstream of hcl, which has previously been found only in operonic association with the 2-hydroxyisobutyryl-CoA mutase genes in other bacteria. Heterologous expression of the lyase gene from DSM 45062 in E. coli established a 2-hydroxyisobutyryl-CoA lyase activity in the latter. In line with this, analysis of the DSM 45062 proteome reveals a strong induction of the lyase-HCL gene cluster on 2-HIBA. Acetone is likely degraded via hydroxylation to acetol catalyzed by a MimABCD-related binuclear iron monooxygenase and formic acid appears to be oxidized to CO2 by selenium-dependent dehydrogenases. The presence of the lyase-HCL gene cluster in isoprene-degrading Rhodococcus strains and Pseudonocardia associated with tropical leafcutter ant species points to a role in degradation of biogenic short-chain ketones and highly branched organic compounds.
Collapse
Affiliation(s)
- Thore Rohwerder
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - Maria-Teresa Rohde
- Institut für Chemie - Biophysikalische Chemie, Martin-Luther-Universität Halle-Wittenberg, Halle (Saale), Germany
| | - Nico Jehmlich
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - Jessica Purswani
- Institute of Water Research, University of Granada, Granada, Spain
| |
Collapse
|
27
|
Seniya SP, Yadav P, Jain V. Construction of E. coli-Mycobacterium shuttle vectors with a variety of expression systems and polypeptide tags for gene expression in mycobacteria. PLoS One 2020; 15:e0230282. [PMID: 32160243 PMCID: PMC7065818 DOI: 10.1371/journal.pone.0230282] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Accepted: 02/25/2020] [Indexed: 01/23/2023] Open
Abstract
Cloning and expression of a desired gene is indispensable in molecular biology studies. Expression vectors, in this regard, should offer much needed flexibility and choice of cloning strategies for both in vivo and in vitro protein expression experiments. Furthermore, availability of option to choose from various reporter tags allows one to be flexible during designing of an experiment in a more relevant manner. Thus, the need of a versatile expression system cannot be ignored. Although several different expression vectors are available for gene expression in mycobacteria, they lack the required versatility of expression and the inclusion of reporter tags. We here present the construction of a set of nine E. coli-Mycobacterium shuttle plasmids, which offer a combination of three mycobacterial promoter systems (heat shock inducible-hsp60, tetracycline-, and acetamide-inducible) along with three polypeptide tags (Green Fluorescent Protein (GFP), Glutathione S-transferase (GST) and hexa-histidine tag). These vectors offer the cloning of a target gene in all the nine given vectors in parallel, thus allowing the generation of recombinant plasmids that will express the target gene from different promoters with different tags. Here, while the hexa-histidine and GST tags can be used for protein purification and pull-down experiments, the GFP-tag can be used for protein localization within the cell. Additionally, the vectors also offer the choice of positioning of the reporter tag either at the N-terminus or at the C-terminus of the expressed protein, which is achieved by cloning of the gene at any of the two blunt-end restriction enzyme sites available in the vector. We believe that these plasmids will be extremely useful in the gene expression studies in mycobacteria by offering the choices of promoters and reporters. Our work also paves the way to developing more such plasmids with other tags and promoters that may find use in mycobacterial biology.
Collapse
Affiliation(s)
- Surya Pratap Seniya
- Microbiology and Molecular Biology Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Bhopal, India
| | - Priya Yadav
- Microbiology and Molecular Biology Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Bhopal, India
| | - Vikas Jain
- Microbiology and Molecular Biology Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Bhopal, India
- * E-mail:
| |
Collapse
|
28
|
Maya-Hoyos M, Rosales C, Novoa-Aponte L, Castillo E, Soto CY. The P-type ATPase CtpF is a plasma membrane transporter mediating calcium efflux in Mycobacterium tuberculosis cells. Heliyon 2019; 5:e02852. [PMID: 31788573 PMCID: PMC6879984 DOI: 10.1016/j.heliyon.2019.e02852] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 10/29/2019] [Accepted: 11/08/2019] [Indexed: 11/25/2022] Open
Abstract
Among the 12 P-type ATPases encoded by the genome of Mycobacterium tuberculosis (Mtb), CtpF responds to the greatest number of stress conditions, including oxidative stress, hypoxia, and infection. CtpF is the mycobacterial homolog of the sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) of higher eukaryotes. Its expression is regulated by the global regulator of latency, DosR. However, the role that CtpF plays in the mycobacterial plasma membrane remains unknown. In this study, different functional analyses showed that CtpF is associated with calcium pumping from mycobacterial cells. Specifically, Mtb CtpF expression in Mycobacterium smegmatis cells prevents Ca2+ accumulation compared with wild type (WT) cells. In addition, plasma membrane vesicles from recombinant membranes, in which the direction of ion transport is inverted, accumulate more Ca2+ compared with vesicles obtained from the WT strain. This findings support the hypothesis that CtpF contributes to calcium efflux from mycobacterial cells. Accordingly, Mtb cells defective in ctpF (MtbΔctpF) accumulate more Ca2+ compared with WT cells, while the Ca2+-dependent ATPase activity is significantly lower in the mutant cells. Interestingly, the deletion of ctpF in Mtb impairs the tolerance of the bacteria to oxidative and nitrosative stress. Overall, our results indicate that CtpF is associated with calcium pumping from mycobacterial cells and the response to oxidative stress.
Collapse
Affiliation(s)
| | | | | | | | - Carlos Y. Soto
- Chemistry Department, Faculty of Sciences, Universidad Nacional de Colombia, Ciudad Universitaria, Bogotá, Colombia
| |
Collapse
|
29
|
Stedman A, Chambers MA, Gutierrez-Merino J. Secretion and functional expression of Mycobacterium bovis antigens MPB70 and MPB83 in lactic acid bacteria. Tuberculosis (Edinb) 2019; 117:24-30. [PMID: 31378264 DOI: 10.1016/j.tube.2019.05.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 05/21/2019] [Accepted: 05/28/2019] [Indexed: 01/23/2023]
Abstract
The aim of this study was to determine the reliability of lactic acid bacteria (LAB) as heterologous hosts for the expression of MPB70 and MPB83, two Mycobacterium bovis antigens that possess diagnostics and immunogenic properties, respectively. We therefore generated recombinant cells of Lactococcus lactis and Lactobacillus plantarum that carried hybrid genes encoding MPB70 and MPB83 fused to signal peptides that are specifically recognized by LAB. Only L. lactis was able to secrete MPB70 using the L. lactis signal peptide Usp45, and to produce MPB83 as an immunogenic membrane protein following its expression with the signal peptide of the L. plantarum lipoprotein prsA. Inactivated cells of MPB83-expressing L. lactis cultures enhanced NF-κB activation in macrophages. Our results show that L. lactis is a reliable host for the secretion and functional expression of antigens that are naturally produced by M. bovis, the causative agent of bovine tuberculosis (bTB). This represents the first step on a long process to establishing whether recombinant LAB could serve as a food-grade platform for potential diagnostic tools and/or vaccine interventions for use against bTB, a chronic disease that primarily affects cattle but also humans and a wide range of domestic and wild animals.
Collapse
Affiliation(s)
- Anna Stedman
- School of Biosciences and Medicine, University of Surrey, Guildford, GU2 7XH, UK; The Pirbright Institute, Ash Road, Woking, Surrey, GU24 0NF, UK.
| | - Mark A Chambers
- Department of Bacteriology, Animal and Plant Health Agency, Addlestone, KT15 3NB, UK; School of Veterinary Medicine, University of Surrey, Guildford, GU2 7AL, UK.
| | | |
Collapse
|
30
|
Das K, Garnica O, Dhandayuthapani S. Utility of OhrR-Ohr system for the expression of recombinant proteins in mycobacteria and for the delivery of M. tuberculosis antigens to the phagosomal compartment. Tuberculosis (Edinb) 2019; 116S:S19-S27. [PMID: 31078419 DOI: 10.1016/j.tube.2019.04.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 11/19/2018] [Indexed: 10/26/2022]
Abstract
We have recently reported that in vitro and intracellular organic peroxide stress oxidizes OhrR of Mycobacterium smegmatis and that the oxidized OhrR consequently derepresses the expression of Ohr. Here we demonstrate that the OhrR-Ohr system is highly useful for the expression of recombinant mycobacterial proteins and also for the delivery of Mycobacterium tuberculosis (Mtb) antigens to the phagosomal compartments. Recombinant M. smegmatis strains, which bear plasmid constructs to express Ohr2-T85BCFP and Ohr2-MtrA, showed expression of fusion proteins upon induction with t-butyl hydroperoxide (t-BHP) in a dose dependent manner. The M. smegmatis expressed Ohr2-T85BCFP fusion could be affinity purified by adding a 9x histidine tag to the C-terminal end of the fusion protein. Further, mouse bone marrow derived macrophages (BMDMs) infected with either recombinant M. smegmatis or BCG strains with ohr2-T85BCFP construct showed expression of T85BCFP protein without any exogenously added inducer. In addition, BMDMs infected with either recombinant BCG or Mtb with ohr2-T85BCFP construct could effectively deliver the antigens to T-cells at higher levels than strains bearing the control plasmid alone. Altogether, these results suggest that the OhrR-Ohr system is a novel inducible system to study the biology and pathogenesis of mycobacteria.
Collapse
Affiliation(s)
- Kishore Das
- Center of Emphasis in Infectious Diseases and Department of Biomedical Sciences, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, 79905, USA
| | - Omar Garnica
- Center of Emphasis in Infectious Diseases and Department of Biomedical Sciences, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, 79905, USA
| | - Subramanian Dhandayuthapani
- Center of Emphasis in Infectious Diseases and Department of Biomedical Sciences, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, 79905, USA; Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA.
| |
Collapse
|
31
|
Chen C, Chen K, Su T, Zhang B, Li G, Pan J, Si M. Myo-inositol-1-phosphate synthase (Ino-1) functions as a protection mechanism in Corynebacterium glutamicum under oxidative stress. Microbiologyopen 2018; 8:e00721. [PMID: 30270521 PMCID: PMC6528642 DOI: 10.1002/mbo3.721] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Revised: 08/06/2018] [Accepted: 08/07/2018] [Indexed: 11/12/2022] Open
Abstract
Reactive oxygen species (ROS) generated in aerobic metabolism and oxidative stress lead to macromolecules damage, such as to proteins, lipids, and DNA, which can be eliminated by the redox buffer mycothiol (AcCys-GlcN-Ins, MSH). Myo-inositol-phosphate synthase (Ino-1) catalyzes the first committed step in the synthesis of MSH, thus playing a critical role in the growth of the organism. Although Ino-1s have been systematically studied in eukaryotes, their physiological and biochemical functions remain largely unknown in bacteria. In this study, we report that Ino-1 plays an important role in oxidative stress resistance in the gram-positive Actinobacteria Corynebacterium glutamicum. Deletion of the ino-1 gene resulted in a decrease in cell viability, an increase in ROS production, and the aggravation of protein carbonylation levels under various stress conditions. The physiological roles of Ino-1 in the resistance to oxidative stresses were corroborated by the absence of MSH in the Δino-1 mutant. In addition, we found that the homologous expression of Ino-1 in C. glutamicum yielded a functionally active protein, while when expressed in Escherichia coliBL21(DE3), it lacked measurable activity. An examination of the molecular mass (Mr) suggested that Ino-1 expressed in E. coliBL21(DE3) was not folded in a catalytically competent conformation. Together, the results unequivocally showed that Ino-1 was important for the mediation of oxidative resistance by C. glutamicum.
Collapse
Affiliation(s)
- Can Chen
- College of Life Sciences, Qufu Normal University, Qufu, Shandong, China.,Institute of Food and Drug Inspection, College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan, China.,Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Keqi Chen
- Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Tao Su
- College of Life Sciences, Qufu Normal University, Qufu, Shandong, China
| | - Bing Zhang
- Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Guizhi Li
- College of Life Sciences, Qufu Normal University, Qufu, Shandong, China
| | - Junfeng Pan
- Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Meiru Si
- College of Life Sciences, Qufu Normal University, Qufu, Shandong, China
| |
Collapse
|
32
|
Radhakrishnan A, Furze CM, Ahangar MS, Fullam E. A GFP-strategy for efficient recombinant protein overexpression and purification in Mycobacterium smegmatis. RSC Adv 2018; 8:33087-33095. [PMID: 30319771 PMCID: PMC6180428 DOI: 10.1039/c8ra06237d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 09/14/2018] [Indexed: 12/02/2022] Open
Abstract
One of the major obstacles to obtaining a complete structural and functional understanding of proteins encoded by the Mycobacterium tuberculosis (Mtb) pathogen is due to significant difficulties in producing recombinant mycobacterial proteins. Recent advances that have utilised the closely related Mycobacterium smegmatis species as a native host have been effective. Here we have developed a method for the rapid screening of both protein production and purification strategies of mycobacterial proteins in whole M. smegmatis cells following green fluorescent protein (GFP) fluorescence as an indicator. We have adapted the inducible T7-promoter based pYUB1062 shuttle vector by the addition of a tobacco etch virus (TEV) cleavable C-terminal GFP enabling the target protein to be produced as a GFP-fusion with a poly-histidine tag for affinity purification. We illustrate the advantages of a fluorescent monitoring approach with the production and purification of the mycobacterial N-acetylglucosamine-6-phosphate deacetylase (NagA)-GFP fusion protein. The GFP system described here will accelerate the production of mycobacterial proteins that can be used to understand the molecular mechanisms of Mtb proteins and facilitate drug discovery efforts. A GFP-strategy to monitor protein expression and purification in Mycobacterium smegmatis to overcome the obstacle of producing recombinant mycobacterial proteins.![]()
Collapse
Affiliation(s)
- Anjana Radhakrishnan
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK. ; Tel: +44 (0)2476 574239
| | - Christopher M Furze
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK. ; Tel: +44 (0)2476 574239
| | - Mohd Syed Ahangar
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK. ; Tel: +44 (0)2476 574239
| | - Elizabeth Fullam
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK. ; Tel: +44 (0)2476 574239
| |
Collapse
|
33
|
Yamada H, Yamaguchi M, Igarashi Y, Chikamatsu K, Aono A, Murase Y, Morishige Y, Takaki A, Chibana H, Mitarai S. Mycolicibacterium smegmatis, Basonym Mycobacterium smegmatis, Expresses Morphological Phenotypes Much More Similar to Escherichia coli Than Mycobacterium tuberculosis in Quantitative Structome Analysis and CryoTEM Examination. Front Microbiol 2018; 9:1992. [PMID: 30258411 PMCID: PMC6145149 DOI: 10.3389/fmicb.2018.01992] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 08/07/2018] [Indexed: 01/05/2023] Open
Abstract
A series of structome analyses, that is, quantitative and three-dimensional structural analysis of a whole cell at the electron microscopic level, have already been achieved individually in Exophiala dermatitidis, Saccharomyces cerevisiae, Mycobacterium tuberculosis, Myojin spiral bacteria, and Escherichia coli. In these analyses, sample cells were processed through cryo-fixation and rapid freeze-substitution, resulting in the exquisite preservation of ultrastructures on the serial ultrathin sections examined by transmission electron microscopy. In this paper, structome analysis of non pathogenic Mycolicibacterium smegmatis, basonym Mycobacterium smegmatis, was performed. As M. smegmatis has often been used in molecular biological experiments and experimental tuberculosis as a substitute of highly pathogenic M. tuberculosis, it has been a task to compare two species in the same genus, Mycobacterium, by structome analysis. Seven M. smegmatis cells cut into serial ultrathin sections, and, totally, 220 serial ultrathin sections were examined by transmission electron microscopy. Cell profiles were measured, including cell length, diameter of cell and cytoplasm, surface area of outer membrane and plasma membrane, volume of whole cell, periplasm, and cytoplasm, and total ribosome number and density per 0.1 fl cytoplasm. These data are based on direct measurement and enumeration of exquisitely preserved single cell structures in the transmission electron microscopy images, and are not based on the calculation or assumptions from biochemical or molecular biological indirect data. All measurements in M. smegmatis, except cell length, are significantly higher than those of M. tuberculosis. In addition, these data may explain the more rapid growth of M. smegmatis than M. tuberculosis and contribute to the understanding of their structural properties, which are substantially different from M. tuberculosis, relating to the expression of antigenicity, acid-fastness, and the mechanism of drug resistance in relation to the ratio of the targets to the corresponding drugs. In addition, data obtained from cryo-transmission electron microscopy examination were used to support the validity of structome analysis. Finally, our data strongly support the most recent establishment of the novel genus Mycolicibacterium, into which basonym Mycobacterium smegmatis has been classified.
Collapse
Affiliation(s)
- Hiroyuki Yamada
- Department of Mycobacterium Reference and Research, The Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Kiyose, Japan
| | | | - Yuriko Igarashi
- Department of Mycobacterium Reference and Research, The Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Kiyose, Japan
| | - Kinuyo Chikamatsu
- Department of Mycobacterium Reference and Research, The Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Kiyose, Japan
| | - Akio Aono
- Department of Mycobacterium Reference and Research, The Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Kiyose, Japan
| | - Yoshiro Murase
- Department of Mycobacterium Reference and Research, The Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Kiyose, Japan
| | - Yuta Morishige
- Department of Mycobacterium Reference and Research, The Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Kiyose, Japan
| | - Akiko Takaki
- Department of Mycobacterium Reference and Research, The Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Kiyose, Japan
| | - Hiroji Chibana
- Medical Mycology Research Center, Chiba University, Chiba, Japan
| | - Satoshi Mitarai
- Department of Mycobacterium Reference and Research, The Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Kiyose, Japan
- Department of Basic Mycobacteriology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| |
Collapse
|
34
|
Peebo K, Neubauer P. Application of Continuous Culture Methods to Recombinant Protein Production in Microorganisms. Microorganisms 2018; 6:E56. [PMID: 29933583 PMCID: PMC6164559 DOI: 10.3390/microorganisms6030056] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 05/28/2018] [Accepted: 06/19/2018] [Indexed: 11/17/2022] Open
Abstract
Depending on the environmental conditions, cells adapt their metabolism and specific growth rate. Rearrangements occur on many different levels such as macromolecular composition, gene and protein expression, morphology and metabolic flux patterns. As the interplay of these processes also determines the output of a recombinant protein producing system, having control over specific growth rate of the culture is advantageous. Continuous culture methods were developed to grow cells in a constant environment and have been used for decades to study basic microbial physiology in a controlled and reproducible manner. Our review summarizes the uses of continuous cultures in cell physiology studies and process development, with a focus on recombinant protein-producing microorganisms.
Collapse
Affiliation(s)
- Karl Peebo
- Center of Food and Fermentation Technologies, Akadeemia tee 15a, 12618 Tallinn, Estonia.
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, 12618 Tallinn, Estonia.
| | - Peter Neubauer
- Department of Bioprocess Engineering, Technische Universität Berlin, Ackerstraβe 76, ACK24, D-13355 Berlin, Germany.
| |
Collapse
|
35
|
Magaña Vergara C, Kallenberg CJL, Rogasch M, Hübner CG, Song Y. A versatile vector for mycobacterial protein production with a functional minimized acetamidase regulon. Protein Sci 2017; 26:2302-2311. [PMID: 28857325 PMCID: PMC5654848 DOI: 10.1002/pro.3288] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Revised: 06/09/2017] [Accepted: 08/22/2017] [Indexed: 11/10/2022]
Abstract
Recombinant protein expression is a prerequisite for diverse investigations of proteins at the molecular level. For targets from Mycobacterium tuberculosis it is favorable to use M. smegmatis as an expression host, a species from the same genus. In the respective shuttle vectors, target gene expression is controlled by the complex tetra-cistronic acetamidase regulon. As a result, the size of those vectors is large, rendering them of limited use, especially when the target proteins are expressed from multi-cistronic operons. Therefore, in the current work we present a versatile new expression vector in which the acetamidase regulon has been minimized by deleting the two genes amiD and amiS. We assessed the functional properties of the resulting vector pMyCA and compared it with those of the existing vector pMyNT that contains the full-length acetamidase regulon. We analyzed the growth features and protein expression patterns of M. smegmatis cultures transformed with both vectors. In addition, we created mCherry expression constructs to spectroscopically monitor the expression properties of both vectors. Our experiments showed that the minimized vector exhibited several advantages over the pMyNT vector. First, the overall yield of expressed protein is higher due to the higher yield of bacterial mass. Second, the heterologous expression was regulated more tightly, offering an expression tool for diverse target proteins. Third, it is suitable for large multi-protein complexes that are expressed from multi-cistronic operons. Additionally, our results propose a new understanding of the regulation mechanism of the acetamidase regulon with the potential to construct more optimized vectors in the future.
Collapse
Affiliation(s)
| | | | - Miriam Rogasch
- Institute of Physics, University of Luebeck, Ratzeburger Allee 160Luebeck23562Germany
| | | | - Young‐Hwa Song
- Institute of Physics, University of Luebeck, Ratzeburger Allee 160Luebeck23562Germany
| |
Collapse
|
36
|
Jung J, Bashiri G, Johnston JM, Baker EN. Mass spectral determination of phosphopantetheinylation specificity for carrier proteins in Mycobacterium tuberculosis. FEBS Open Bio 2016; 6:1220-1226. [PMID: 28203522 PMCID: PMC5302061 DOI: 10.1002/2211-5463.12140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 07/20/2016] [Accepted: 09/22/2016] [Indexed: 11/06/2022] Open
Abstract
Phosphopantetheinyl transferases (PPTases) are key elements in the modular syntheses performed by multienzyme systems such as polyketide synthases. PPTases transfer phosphopantetheine derivatives from Coenzyme A to carrier proteins (CPs), thus orchestrating substrate supply. We describe an efficient mass spectrometry-based protocol for determining CP specificity for a particular PPTase in organisms possessing several candidate PPTases. We show that the CPs MbtL and PpsC, both involved in synthesis of essential metabolites in Mycobacterium tuberculosis, are exclusively activated by the type 2 PPTase PptT and not the type 1 AcpS. The assay also enables conclusive identification of the reactive serine on each CP.
Collapse
Affiliation(s)
- James Jung
- Maurice Wilkins Centre for Molecular Biodiscovery and School of Biological Sciences The University of Auckland New Zealand; Present address: W. M. Keck Structural Biology Laboratory Cold Spring Harbor Laboratory 1 Bungtown Road Cold Spring Harbor NY 11724 USA
| | - Ghader Bashiri
- Maurice Wilkins Centre for Molecular Biodiscovery and School of Biological Sciences The University of Auckland New Zealand
| | - Jodie M Johnston
- Maurice Wilkins Centre for Molecular Biodiscovery and School of Biological Sciences The University of Auckland New Zealand
| | - Edward N Baker
- Maurice Wilkins Centre for Molecular Biodiscovery and School of Biological Sciences The University of Auckland New Zealand
| |
Collapse
|
37
|
Milewski MC, Broger T, Kirkpatrick J, Filomena A, Komadina D, Schneiderhan-Marra N, Wilmanns M, Parret AHA. A standardized production pipeline for high profile targets from Mycobacterium tuberculosis. Proteomics Clin Appl 2016; 10:1049-1057. [PMID: 27400835 PMCID: PMC5095800 DOI: 10.1002/prca.201600033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 05/23/2016] [Accepted: 07/07/2016] [Indexed: 01/21/2023]
Abstract
Purpose Tuberculosis is still a major threat to global health. New tools and strategies to produce disease‐related proteins are quintessential for the development of novel vaccines and diagnostic markers. Experimental design To obtain recombinant proteins from Mycobacterium tuberculosis (Mtb) for use in clinical applications, a standardized procedure was developed that includes subcloning, protein expression in Mycobacterium smegmatis and protein purification using chromatography. The potential for the different protein targets to serve as diagnostic markers for tuberculosis was established using multiplex immunoassays. Results Twelve soluble proteins from Mtb, including one protein complex, were purified to near‐homogeneity following recombinant expression in M. smegmatis. Protein purity was assessed both by size exclusion chromatography and MS. Multiplex serological testing of the final protein preparations showed that all but one protein displayed a clear antibody response in serum samples from 278 tuberculosis patients. Conclusion and clinical relevance The established workflow comprises a simple, cost‐effective, and scalable pipeline for production of soluble proteins from Mtb and can be used to prioritize immunogenic proteins suitable for use as diagnostic markers.
Collapse
Affiliation(s)
- Morlin C Milewski
- European Molecular Biology Laboratory (EMBL), Hamburg Unit, Hamburg, Germany
| | - Tobias Broger
- Foundation for Innovative New Diagnostics (FIND), Geneva, Switzerland
| | - Joanna Kirkpatrick
- European Molecular Biology Laboratory (EMBL), Proteomics Core Facility, Heidelberg, Germany
| | - Angela Filomena
- Natural and Medical Sciences Institute, University of Tübingen, Reutlingen, Germany
| | - Dana Komadina
- European Molecular Biology Laboratory (EMBL), Hamburg Unit, Hamburg, Germany
| | | | - Matthias Wilmanns
- European Molecular Biology Laboratory (EMBL), Hamburg Unit, Hamburg, Germany.,University of Hamburg Clinical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Annabel H A Parret
- European Molecular Biology Laboratory (EMBL), Hamburg Unit, Hamburg, Germany.
| |
Collapse
|
38
|
Jirgis ENM, Bashiri G, Bulloch EMM, Johnston JM, Baker EN. Structural Views along the Mycobacterium tuberculosis MenD Reaction Pathway Illuminate Key Aspects of Thiamin Diphosphate-Dependent Enzyme Mechanisms. Structure 2016; 24:1167-77. [PMID: 27291649 DOI: 10.1016/j.str.2016.04.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 04/19/2016] [Accepted: 04/27/2016] [Indexed: 01/19/2023]
Abstract
Menaquinone (MQ) is an essential component of the respiratory chains of many pathogenic organisms, including Mycobacterium tuberculosis (Mtb). The first committed step in MQ biosynthesis is catalyzed by 2-succinyl-5-enolpyruvyl-6-hydroxy-3-cyclohexadiene-1-carboxylate synthase (MenD), a thiamin diphosphate (ThDP)-dependent enzyme. Catalysis proceeds through two covalent intermediates as the substrates 2-oxoglutarate and isochorismate are successively added to the cofactor before final cleavage of the product. We have determined a series of crystal structures of Mtb-MenD that map the binding of both substrates, visualizing each step in the MenD catalytic cycle, including both intermediates. ThDP binding induces a marked asymmetry between the coupled active sites of each dimer, and possible mechanisms of communication can be identified. The crystal structures also reveal conformational features of the two intermediates that facilitate reaction but prevent premature product release. These data fully map chemical space to inform early-stage drug discovery targeting MenD.
Collapse
Affiliation(s)
- Ehab N M Jirgis
- Maurice Wilkins Centre for Molecular Biodiscovery, School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland 1010, New Zealand
| | - Ghader Bashiri
- Maurice Wilkins Centre for Molecular Biodiscovery, School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland 1010, New Zealand
| | - Esther M M Bulloch
- Maurice Wilkins Centre for Molecular Biodiscovery, School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland 1010, New Zealand
| | - Jodie M Johnston
- Maurice Wilkins Centre for Molecular Biodiscovery, School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland 1010, New Zealand.
| | - Edward N Baker
- Maurice Wilkins Centre for Molecular Biodiscovery, School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland 1010, New Zealand.
| |
Collapse
|
39
|
Huang X, Hernick M. Recombinant expression of a functional myo-inositol-1-phosphate synthase (MIPS) in Mycobacterium smegmatis. Protein J 2016; 34:380-90. [PMID: 26420670 DOI: 10.1007/s10930-015-9632-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Myo-inositol-1-phosphate synthase (MIPS, E.C. 5.5.1.4) catalyzes the first step in inositol production-the conversion of glucose-6-phosphate (Glc-6P) to myo-inositol-1-phosphate. While the three dimensional structure of MIPS from Mycobacterium tuberculosis has been solved, biochemical studies examining the in vitro activity have not been reported to date. Herein we report the in vitro activity of mycobacterial MIPS expressed in E. coli and Mycobacterium smegmatis. Recombinant expression in E. coli yields a soluble protein capable of binding the NAD(+) cofactor; however, it has no significant activity with the Glc-6P substrate. In contrast, recombinant expression in M. smegmatis mc(2)4517 yields a functionally active protein. Examination of structural data suggests that MtMIPS expressed in E. coli adopts a fold that is missing a key helix containing two critical (conserved) Lys side chains, which likely explains the inability of the E. coli expressed protein to bind and turnover the Glc-6P substrate. Recombinant expression in M. smegmatis may yield a protein that adopts a fold in which this key helix is formed enabling proper positioning of important side chains, thereby allowing for Glc-6P substrate binding and turnover. Detailed mechanistic studies may be feasible following optimization of the recombinant MIPS expression protocol in M. smegmatis.
Collapse
Affiliation(s)
- Xinyi Huang
- Department of Biochemistry, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Marcy Hernick
- Department of Biochemistry, Virginia Tech, Blacksburg, VA, 24061, USA. .,Department of Pharmaceutical Sciences, Appalachian College of Pharmacy, Oakwood, VA, 24631, USA.
| |
Collapse
|
40
|
Ankisettypalli K, Cheng JJY, Baker EN, Bashiri G. PdxH proteins of mycobacteria are typical members of the classical pyridoxine/pyridoxamine 5'-phosphate oxidase family. FEBS Lett 2016; 590:453-60. [PMID: 26823273 DOI: 10.1002/1873-3468.12080] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 01/19/2016] [Accepted: 01/20/2016] [Indexed: 11/08/2022]
Abstract
Pyridoxal 5'-phosphate (PLP) biosynthesis is essential for the survival and virulence of Mycobacterium tuberculosis (Mtb). PLP functions as a cofactor for 58 putative PLP-binding proteins encoded by the Mtb genome and could also act as a potential antioxidant. De novo biosynthesis of PLP in Mtb takes place through the 'deoxyxylulose 5'-phosphate (DXP)-independent' pathway, whereas PdxH enzymes, possessing pyridoxine/pyridoxamine 5'-phosphate oxidase (PNPOx) activity, are involved in the PLP salvage pathway. In this study, we demonstrate that the annotated PdxH enzymes from various mycobacterial species are bona fide members of the classical PNPOx enzyme family, capable of producing PLP using both pyridoxine 5'-phosphate (PNP) and pyridoxamine 5'-phosphate (PMP) substrates.
Collapse
Affiliation(s)
- Karthik Ankisettypalli
- Structural Biology Laboratory and Maurice Wilkins Centre for Molecular Biodiscovery, School of Biological Sciences, The University of Auckland, New Zealand
| | - Jasmin Jo-Yu Cheng
- Structural Biology Laboratory and Maurice Wilkins Centre for Molecular Biodiscovery, School of Biological Sciences, The University of Auckland, New Zealand
| | - Edward N Baker
- Structural Biology Laboratory and Maurice Wilkins Centre for Molecular Biodiscovery, School of Biological Sciences, The University of Auckland, New Zealand
| | - Ghader Bashiri
- Structural Biology Laboratory and Maurice Wilkins Centre for Molecular Biodiscovery, School of Biological Sciences, The University of Auckland, New Zealand
| |
Collapse
|