1
|
Lou D, Xiao S, Cui J, Duan J, Duan H, Cao Y, Wang D, Zhou B, Tan J. Discovery and characterization of the first hyperthermophilic 3-quinuclidinone reductase from hot-spring metagenomes. Int J Biol Macromol 2025; 307:141706. [PMID: 40043990 DOI: 10.1016/j.ijbiomac.2025.141706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 02/18/2025] [Accepted: 03/01/2025] [Indexed: 03/14/2025]
Abstract
Extremozymes play an essential part in the biosynthesis of pharmaceuticals (intermediates). In this study, a mixed assembly was performed for five metagenomes from hot springs. Via a series of procedures, including homology analysis, heterologous expression, and catalytic property characterization, the first hyperthermophilic 3-quinuclidinone reductase (SbQR) was successfully identified. The SbQR exhibits an optimal temperature of ≥95 °C and demonstrates remarkable thermal stability, with over 80 % of its activity retained following a 48-hour incubation at 50 °C. At particular concentrations, Mg2+, Na+, and Mn2+ can substantially enhance the enzymatic activity. However, no significant influence of K+ on the activity of SbQR was detected within the concentration range of 0-400 mM. Employing AlphaFold2, the three-dimensional structure of SbQR was predicted, which presents the typical traits of the Rossmann fold and is classified as a member of the short-chain dehydrogenases/reductases (SDR) superfamily. Molecular dynamics simulations were carried out and the results showed that when the temperature was increased to 390 K, the flexibility of residues 90-104 and the C-terminal increased significantly. This increase might lead to the destruction of the three-dimensional structure of the enzyme. In conclusion, this study identified the first hyperthermophilic 3-quinuclidinone reductase, providing a potential biocatalyst for the biopreparation of (R)-3-quinuclidinol.
Collapse
Affiliation(s)
- Deshuai Lou
- Chongqing Key Laboratory of Functional Substances from Distinctive Medicinal Plants in the Three Gorges Reservoir Area, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, China
| | - Shengyan Xiao
- School of Food Science and Pharmaceutical Engineering, Zaozhuang University, Shandong 277160, China
| | - Jinghao Cui
- Chongqing Key Laboratory of Functional Substances from Distinctive Medicinal Plants in the Three Gorges Reservoir Area, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, China
| | - Jingfa Duan
- Chongqing Key Laboratory of Functional Substances from Distinctive Medicinal Plants in the Three Gorges Reservoir Area, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, China
| | - Hongtao Duan
- Chongqing Key Laboratory of Functional Substances from Distinctive Medicinal Plants in the Three Gorges Reservoir Area, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, China
| | - Yangyang Cao
- Chongqing Key Laboratory of Functional Substances from Distinctive Medicinal Plants in the Three Gorges Reservoir Area, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, China
| | - Dong Wang
- School of Information Science and Engineering, University of Jinan, Jinan 250022, China; Shandong Provincial Key Laboratory of Network Based Intelligent Computing, Jinan 250022, China.
| | - Bingpu Zhou
- Chongqing Key Laboratory of Functional Substances from Distinctive Medicinal Plants in the Three Gorges Reservoir Area, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, China
| | - Jun Tan
- Chongqing Key Laboratory of Functional Substances from Distinctive Medicinal Plants in the Three Gorges Reservoir Area, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, China.
| |
Collapse
|
2
|
Shijing T, Yinping P, Qiong Y, Deshuai L, Liancai Z, Jun T, Shaoyong L, Bochu W. Synthesis of TUDCA from chicken bile: immobilized dual-enzymatic system for producing artificial bear bile substitute. Microb Cell Fact 2024; 23:326. [PMID: 39623449 PMCID: PMC11613824 DOI: 10.1186/s12934-024-02592-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 11/12/2024] [Indexed: 12/06/2024] Open
Abstract
Bear bile, a valuable animal-derived medicinal substance primarily composed of tauroursodeoxycholic acid (TUDCA), is widely distributed in the medicinal market across various countries due to its significant therapeutic potential. Given the extreme cruelty involved in bear bile extraction, researchers are focusing on developing synthetic bear bile powder as a more humane alternative. This review presents an industrially practical and environmentally friendly process for producing an artificial substitute for bear bile powder using inexpensive and readily available chicken bile powder through an immobilized 7α-,7β-HSDH dual-enzymatic syste. Current technology has facilitated the industrial production of TUDCA from Tauodeoxycholic acid (TCDCA) using chicken bile powder. The review begins by examining the chemical composition, structure, and properties of bear bile, followed by an outline of the pharmacological mechanisms and manufacturing methods of TUDCA, covering chemical synthesis and biotransformation methods, and a discussion on their respective advantages and disadvantages. Finally, the process of converting chicken bile powder into bear bile powder using an immobilized 7α-Hydroxysteroid Dehydrogenases(7α-HSDH) with 7β- Hydroxysteroid Dehydrogenases (7β-HSDH) dual-enzyme system is thoroughly explained. The main objective of this review is to propose a comprehensive strategy for the complete synthesis of artificial bear bile from chicken bile within a controlled laboratory setting.
Collapse
Affiliation(s)
- Tang Shijing
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, No. 174, Shapingba Main Street, Chongqing, 400030, People's Republic of China
| | - Pan Yinping
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, No. 174, Shapingba Main Street, Chongqing, 400030, People's Republic of China
| | - Yang Qiong
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, No. 174, Shapingba Main Street, Chongqing, 400030, People's Republic of China
| | - Lou Deshuai
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological & Chemical Engineering, Chongqing University of Education, Chongqing, 400067, People's Republic of China
| | - Zhu Liancai
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, No. 174, Shapingba Main Street, Chongqing, 400030, People's Republic of China.
| | - Tan Jun
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological & Chemical Engineering, Chongqing University of Education, Chongqing, 400067, People's Republic of China
| | - Liu Shaoyong
- Shanghai Kaibao Pharmaceutical Co., LTD., Shanghai, 200030, People's Republic of China
| | - Wang Bochu
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, No. 174, Shapingba Main Street, Chongqing, 400030, People's Republic of China.
| |
Collapse
|
3
|
McMillan AS, Theriot CM. Bile acids impact the microbiota, host, and C. difficile dynamics providing insight into mechanisms of efficacy of FMTs and microbiota-focused therapeutics. Gut Microbes 2024; 16:2393766. [PMID: 39224076 PMCID: PMC11376424 DOI: 10.1080/19490976.2024.2393766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024] Open
Abstract
Clostridioides difficile is a major nosocomial pathogen, causing significant morbidity and mortality worldwide. Antibiotic usage, a major risk factor for Clostridioides difficile infection (CDI), disrupts the gut microbiota, allowing C. difficile to proliferate and cause infection, and can often lead to recurrent CDI (rCDI). Fecal microbiota transplantation (FMT) and live biotherapeutic products (LBPs) have emerged as effective treatments for rCDI and aim to restore colonization resistance provided by a healthy gut microbiota. However, much is still unknown about the mechanisms mediating their success. Bile acids, extensively modified by gut microbes, affect C. difficile's germination, growth, and toxin production while also shaping the gut microbiota and influencing host immune responses. Additionally, microbial interactions, such as nutrient competition and cross-feeding, contribute to colonization resistance against C. difficile and may contribute to the success of microbiota-focused therapeutics. Bile acids as well as other microbial mediated interactions could have implications for other diseases being treated with microbiota-focused therapeutics. This review focuses on the intricate interplay between bile acid modifications, microbial ecology, and host responses with a focus on C. difficile, hoping to shed light on how to move forward with the development of new microbiota mediated therapeutic strategies to combat rCDI and other intestinal diseases.
Collapse
Affiliation(s)
- Arthur S. McMillan
- Genetics Program, Department of Biological Sciences, College of Science, North Carolina State University, Raleigh, NC, USA
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Casey M. Theriot
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
4
|
Lou D, Cao Y, Duan H, Tan J, Li B, Zhou Y, Wang D. Characterization of a Novel Thermostable 7α-Hydroxysteroid Dehydrogenase. Protein Pept Lett 2024; 31:153-160. [PMID: 38288819 DOI: 10.2174/0109298665279004231229100320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/21/2023] [Accepted: 12/23/2023] [Indexed: 05/30/2024]
Abstract
BACKGROUND 7α-Hydroxysteroid dehydrogenase (7α-HSDH) plays a pivotal role in vivo in the biotransformation of secondary bile acids and has great potential in industrial biosynthesis due to its broad substrate specificity. In this study, we expressed and characterized a novel thermostable 7α-HSDH (named Sa 7α-HSDH). METHODS The DNA sequence was derived from the black bear gut microbiome metagenomic sequencing data, and the coding sequence of Sa 7α-HSDH was chemically synthesized. The heterologous expression of the enzyme was carried out using the pGEX-6p-1 vector. Subsequently, the activity of the purified enzyme was studied by measuring the absorbance change at 340 nm. Finally, the three-dimensional structure was predicted with AlphaFold2. RESULTS Coenzyme screening results confirmed it to be NAD(H) dependent. Substrate specificity test revealed that Sa 7α-HSDH could catalyze taurochenodeoxycholic acid (TCDCA) with catalytic efficiency (kcat/Km) 3.81 S-1 mM-1. The optimum temperature of Sa 7α-HSDH was measured to be 75°C, confirming that it belongs to thermophilic enzymes. Additionally, its thermostability was assessed using an accelerated stability test over 32 hours. The catalytic activity of Sa 7α-HSDH remained largely unchanged for the first 24 hours and retained over 90% of its functionality after 32 hours at 50°C. Sa 7α-HSDH exhibited maximal activity at pH 10. The effect of metal ions-K+, Na+, Mg2+ and Cu2+-on the enzymatic activity of Sa 7α-HSDH was investigated. Only Mg2+ was observed to enhance the enzyme's activity by 27% at a concentration of 300 mM. Neither K+ nor Na+ had a significant influence on activity. Only Cu2+ was found to reduce enzyme activity. CONCLUSION We characterized the thermostable 7α-HSDH, which provides a promising biocatalyst for bioconversion of steroids at high reaction temperatures.
Collapse
Affiliation(s)
- Deshuai Lou
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing, 400067, China
| | - Yangyang Cao
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing, 400067, China
| | - Hongtao Duan
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing, 400067, China
| | - Jun Tan
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing, 400067, China
| | - Binyan Li
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing, 400067, China
| | - Yuanjun Zhou
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing, 400067, China
| | - Dong Wang
- School of Information Science and Engineering, University of Jinan, Jinan, 250022, China
- Shandong Provincial Key Laboratory of Network Based Intelligent Computing, Jinan, 250022, China
| |
Collapse
|
5
|
Song P, Zhang X, Feng W, Xu W, Wu C, Xie S, Yu S, Fu R. Biological synthesis of ursodeoxycholic acid. Front Microbiol 2023; 14:1140662. [PMID: 36910199 PMCID: PMC9998936 DOI: 10.3389/fmicb.2023.1140662] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 02/13/2023] [Indexed: 03/14/2023] Open
Abstract
Ursodeoxycholic acid (UDCA) is a fundamental treatment drug for numerous hepatobiliary diseases that also has adjuvant therapeutic effects on certain cancers and neurological diseases. Chemical UDCA synthesis is environmentally unfriendly with low yields. Biological UDCA synthesis by free-enzyme catalysis or whole-cell synthesis using inexpensive and readily available chenodeoxycholic acid (CDCA), cholic acid (CA), or lithocholic acid (LCA) as substrates is being developed. The free enzyme-catalyzed one-pot, one-step/two-step method uses hydroxysteroid dehydrogenase (HSDH); whole-cell synthesis, mainly uses engineered bacteria (mainly Escherichia coli) expressing the relevant HSDHs. To further develop these methods, HSDHs with specific coenzyme dependence, high enzyme activity, good stability, and high substrate loading concentration, P450 monooxygenase with C-7 hydroxylation activity and engineered strain harboring HSDHs must be exploited.
Collapse
Affiliation(s)
- Peng Song
- College of Life Sciences, Liaocheng University, Liaocheng, China
- Jiangxi Zymerck Biotechnology Co., Ltd., Nanchang, China
| | - Xue Zhang
- College of Life Sciences, Liaocheng University, Liaocheng, China
| | - Wei Feng
- College of Life Sciences, Liaocheng University, Liaocheng, China
| | - Wei Xu
- College of Life Sciences, Liaocheng University, Liaocheng, China
| | - Chaoyun Wu
- Jiangxi Zymerck Biotechnology Co., Ltd., Nanchang, China
| | - Shaoqing Xie
- Jiangxi Zymerck Biotechnology Co., Ltd., Nanchang, China
| | - Sisi Yu
- Jiangxi Zymerck Biotechnology Co., Ltd., Nanchang, China
| | - Rongzhao Fu
- Jiangxi Zymerck Biotechnology Co., Ltd., Nanchang, China
| |
Collapse
|
6
|
Hasan MN, Chen J, Matye D, Wang H, Luo W, Gu L, Clayton YD, Du Y, Li T. Combining ASBT inhibitor and FGF15 treatments enhances therapeutic efficacy against cholangiopathy in female but not male Cyp2c70 KO mice. J Lipid Res 2023; 64:100340. [PMID: 36737039 PMCID: PMC9986646 DOI: 10.1016/j.jlr.2023.100340] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 02/05/2023] Open
Abstract
Therapeutic reduction of hydrophobic bile acids exposure is considered beneficial in cholestasis. The Cyp2c70 KO mice lack hydrophilic muricholic acids and have a human-like hydrophobic bile acid pool resulting in hepatobiliary injury. This study investigates if combining an apical sodium-dependent bile acid transporter inhibitor GSK2330672 (GSK) and fibroblast growth factor-15 (FGF15) overexpression, via simultaneous inhibition of bile acid synthesis and gut bile acid uptake, achieves enhanced therapeutic efficacy in alleviating hepatobiliary injury in Cyp2c70 KO mice. The effects of GSK, adeno-associated virus (AAV)-FGF15, and the combined treatment on bile acid metabolism and cholangiopathy were compared in Cyp2c70 KO mice. In female Cyp2c70 KO mice with more severe cholangiopathy than male Cyp2c70 KO mice, the combined treatment was more effective in reversing portal inflammation, ductular reaction, and fibrosis than AAV-FGF15, while GSK was largely ineffective. The combined treatment reduced bile acid pool by ∼80% compared to ∼50% reduction by GSK or AAV-FGF15, and enriched tauro-conjugated ursodeoxycholic acid in the bile. Interestingly, the male Cyp2c70 KO mice treated with AAV-FGF15 or GSK showed attenuated cholangiopathy and portal fibrosis but the combined treatment was ineffective despite reducing bile acid pool. Both male and female Cyp2c70 KO mice showed impaired gut barrier integrity. AAV-FGF15 and the combined treatment, but not GSK, reduced gut exposure to lithocholic acid and improved gut barrier function. In conclusion, the combined treatment improved therapeutic efficacy against cholangiopathy than either single treatment in the female but not male Cyp2c70 KO mice by reducing bile acid pool size and hydrophobicity.
Collapse
Affiliation(s)
- Mohammad Nazmul Hasan
- Harold Hamm Diabetes Center, Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Jianglei Chen
- Harold Hamm Diabetes Center, Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - David Matye
- Harold Hamm Diabetes Center, Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Huaiwen Wang
- Laboratory for Molecular Biology and Cytometry Research, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Wenyi Luo
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Lijie Gu
- Harold Hamm Diabetes Center, Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Yung Dai Clayton
- Harold Hamm Diabetes Center, Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Yanhong Du
- Harold Hamm Diabetes Center, Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Tiangang Li
- Harold Hamm Diabetes Center, Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| |
Collapse
|
7
|
A Novel NADP(H)-Dependent 7alpha-HSDH: Discovery and Construction of Substrate Selectivity Mutant by C-Terminal Truncation. Catalysts 2022. [DOI: 10.3390/catal12070781] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2022] Open
Abstract
7α-Hydroxysteroid dehydrogenase (7α-HSDH) plays an important role in the biosynthesis of tauroursodeoxycholic acid (TUDCA) using complex substrate chicken bile powder as raw material. However, chicken bile powder contains 4.74% taurocholic acid (TCA), and a new by-product tauroursocholic acid (TUCA) will be produced, having the risk of causing colorectal cancer. Here, we obtained a novel NADP(H)-dependent 7α-HSDH with good thermostability from Ursus thibetanus gut microbiota (named St-2-2). St-2-2 could catalyze taurochenodeoxycholic acid (TCDCA) and TCA with the catalytic activity of 128.13 and 269.39 U/mg, respectively. Interestingly, by a structure-based C-terminal truncation strategy, St-2-2△C10 only remained catalytic activity on TCDCA (14.19 U/mg) and had no activity on TCA. As a result, it can selectively catalyze TCDCA in waste chicken bile powder. MD simulation and structural analysis indicated that enhanced surface hydrophilicity and improved C-terminal rigidity affected the entry and exit of substrates. Hydrogen bond interactions between different subunits and interaction changes in Phe249 of the C-terminal loop inverted the substrate catalytic activity. This is the first report on substrate selectivity of 7α-HSDH by C-terminal truncation strategy and it can be extended to other 7α-HSDHs (J-1-1, S1-a-1).
Collapse
|
8
|
Favale N, Costa S, Scapoli C, Carrieri A, Sabbioni S, Tamburini E, Benazzo A, Bernacchia G. Reconstruction of Acinetobacter johnsonii ICE_NC genome using hybrid de novo genome assemblies and identification of the 12α-hydroxysteroid dehydrogenase gene. J Appl Microbiol 2022; 133:1506-1519. [PMID: 35686660 PMCID: PMC9540589 DOI: 10.1111/jam.15657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 05/28/2022] [Accepted: 06/02/2022] [Indexed: 11/26/2022]
Abstract
AIMS The role of a Acinetobacter johnsonii strain, isolated from a soil sample, in the biotransformation of bile acids (BAs) was already described but the enzymes responsible for these transformations were only partially purified and molecularly characterized. METHODS AND RESULTS This study describes the use of hybrid de novo assemblies, that combine long-read Oxford Nanopore and short-read Illumina sequencing strategies, to reconstruct the entire genome of A. johnsonii ICE_NC strain and to identify the coding region for a 12α-hydroxysteroid dehydrogenase (12α-HSDH), involved in BAs metabolism. The de novo assembly of the A. johnsonii ICE_NC genome was generated using Canu and Unicycler, both strategies yielded a circular chromosome of about 3.6 Mb and one 117 kb long plasmid. Gene annotation was performed on the final assemblies and the gene for 12α-HSDH was detected on the plasmid. CONCLUSIONS Our findings illustrate the added value of long read sequencing in addressing the challenges of whole genome characterization and plasmid reconstruction in bacteria. These approaches also allowed the identification of the A. johnsonii ICE_NC gene for the 12α-HSDH enzyme, whose activity was confirmed at the biochemical level. SIGNIFICANCE AND IMPACT OR THE STUDY At present, this is the first report on the characterization of a 12α-HSDH gene in an A. johnsonii strain able to biotransform cholic acid into ursodeoxycholic acid, a promising therapeutic agent for several diseases.
Collapse
Affiliation(s)
- Nicoletta Favale
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Stefania Costa
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy.,Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, Italy
| | - Chiara Scapoli
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Alberto Carrieri
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Silvia Sabbioni
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Elena Tamburini
- Department of Environmental Sciences and Prevention, University of Ferrara, Ferrara, Italy
| | - Andrea Benazzo
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Giovanni Bernacchia
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| |
Collapse
|
9
|
He T, Yang X. Catalyst-free addition/sulfonyl-assisted nucleophilic N–F hydrolysis of α-methylstyrenes with N,N-Difluorobenzenesulfonamides. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.132863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
10
|
Lou D, Liu X, Tan J. An Overview of 7α- and 7β-Hydroxysteroid Dehydrogenases: Structure, Specificity and Practical Application. Protein Pept Lett 2021; 28:1206-1219. [PMID: 34397319 DOI: 10.2174/0929866528666210816114032] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 05/27/2021] [Accepted: 06/17/2021] [Indexed: 11/22/2022]
Abstract
7α-Hydroxysteroid dehydrogenase and 7β-hydroxysteroid dehydrogenase are key enzymes involved in bile acid metabolism. They catalyze the epimerization of a hydroxyl group through 7-keto bile acid intermediates. Basic research of the two enzymes has focused on exploring new enzymes and the structure-function relationship. The application research focused on the in vitro biosynthesis of bile acid drugs and the exploration and improvement of their catalytic ability based on molecular engineering. This article summarized the primary and advanced structural characteristics, specificities, biochemical properties, and applications of the two enzymes. The emphasis is also given to obtaining of novel 7α-hydroxysteroid dehydrogenase and 7β-hydroxysteroid dehydrogenase that are thermally stable and active in the presence of organic solvents, high substrate concentration, and extreme pH values. To achieve these goals, enzyme redesigning based on protein engineering and genomics may be the most useful approaches.
Collapse
Affiliation(s)
- Deshuai Lou
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, China
| | - Xi Liu
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, China
| | - Jun Tan
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, China
| |
Collapse
|