1
|
Shino Y, Muraki N, Kobatake Y, Kamishina H, Kato R, Furukawa Y. Disulfide-mediated oligomerization of mutant Cu/Zn-superoxide dismutase associated with canine degenerative myelopathy. Protein Sci 2024; 33:e5210. [PMID: 39548731 PMCID: PMC11568243 DOI: 10.1002/pro.5210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 09/27/2024] [Accepted: 10/23/2024] [Indexed: 11/18/2024]
Abstract
A homozygous E40K mutation in the gene coding canine Cu/Zn-superoxide dismutase (cSOD1) causes degenerative myelopathy (DM) in dogs. A pathological hallmark of DM with the cSOD1 mutation is the aggregation of mutant cSOD1 proteins in neurons. The amino acid substitution E40K disrupts a salt bridge between Glu40 and Lys91 and is considered to destabilize the native state of cSOD1; however, the mechanism by which mutant cSOD1 aggregates remains unclear. Here, we show that mutant cSOD1 losing a copper and zinc ion forms oligomers crosslinked via disulfide bonds. The E40K substitution was found to result in the increased solvent exposure of the Cys7 side chain, which then attacked the disulfide bond (Cys57-Cys146) in cSOD1 to form disulfide-linked oligomers. We also successfully prevented the Cys7 exposure and thus the oligomerization of mutant cSOD1 by a fragment antibody that specifically recognizes the region around the mutation site. The fragment antibody covered the β-plug region, reinforcing the interactions compromised by the E40K substitution and thus contributing to the maintenance of the structural integrity of the β-barrel core of cSOD1. Taken together, we propose that the Cys7 exposure in cSOD1 upon the salt bridge disruption plays a central role in the aggregation mechanism of DM-associated mutant cSOD1.
Collapse
Grants
- JP21am0101083 Japan Agency for Medical Research and Development
- 19H05765 The Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- 22H02768 The Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- 22K19389 The Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- 23EXC334 Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences
- Japan Agency for Medical Research and Development
- Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences
Collapse
Affiliation(s)
- Yuki Shino
- Department of ChemistryKeio UniversityYokohamaJapan
| | | | - Yui Kobatake
- Joint Department of Veterinary Medicine, Faculty of Applied Biological ScienceGifu UniversityGifuJapan
- Center for One Medicine Innovative Translational Research (COMIT)Gifu UniversityGifuJapan
| | | | - Ryuichi Kato
- Structural Biology Research Center, Photon FactoryInstitute of Materials Structure Science, High Energy Accelerator Research Organization (KEK)IbarakiJapan
| | | |
Collapse
|
2
|
Hashimoto K, Watanabe S, Akutsu M, Muraki N, Kamishina H, Furukawa Y, Yamanaka K. Intrinsic structural vulnerability in the hydrophobic core induces species-specific aggregation of canine SOD1 with degenerative myelopathy-linked E40K mutation. J Biol Chem 2023:104798. [PMID: 37156398 DOI: 10.1016/j.jbc.2023.104798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 04/27/2023] [Accepted: 04/30/2023] [Indexed: 05/10/2023] Open
Abstract
Canine degenerative myelopathy (DM), a fatal neurodegenerative disease in dogs, shares clinical and genetic features with amyotrophic lateral sclerosis (ALS), a human motor neuron disease. Mutations in the SOD1 gene encoding Cu/Zn superoxide dismutase (SOD1) cause canine DM and a subset of inherited human ALS. The most frequent DM causative mutation is homozygous E40K mutation which induces the aggregation of canine SOD1 but not of human SOD1. However, the mechanism through which canine E40K mutation induces species-specific aggregation of SOD1 remains unknown. By screening human/canine chimeric SOD1s, we identified that the humanized mutation of the 117th residue (M117L), encoded by exon 4, significantly reduced aggregation propensity of canine SOD1E40K. Conversely, introducing a mutation of leucine 117 to methionine, a residue homologous to canine, promoted E40K-dependent aggregation in human SOD1. M117L mutation improved protein stability and reduced cytotoxicity of canine SOD1E40K. Furthermore, crystal structural analysis of canine SOD1 proteins revealed that M117L increased the packing within the hydrophobic core of the β-barrel structure, contributing to the increased protein stability. Our findings indicate that the structural vulnerability derived intrinsically from Met 117 in the hydrophobic core of the β-barrel structure induces E40K-dependent species-specific aggregation in canine SOD1.
Collapse
Affiliation(s)
- Kei Hashimoto
- Department of Neuroscience and Pathobiology, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Aichi, Japan; Department of Neuroscience and Pathobiology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Seiji Watanabe
- Department of Neuroscience and Pathobiology, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Aichi, Japan; Department of Neuroscience and Pathobiology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan.
| | - Masato Akutsu
- Department of Chemistry, Keio University, Yokohama, Kanagawa, Japan
| | - Norifumi Muraki
- Department of Chemistry, Keio University, Yokohama, Kanagawa, Japan
| | - Hiroaki Kamishina
- Life Science Research Center, Gifu University, Gifu, Japan; Kyoto AR Advanced Veterinary Medical Center, Kyoto, Japan
| | | | - Koji Yamanaka
- Department of Neuroscience and Pathobiology, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Aichi, Japan; Department of Neuroscience and Pathobiology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan; Institute for Glyco-core Research (iGCORE), Nagoya University, Aichi, Japan; Center for One Medicine Innovative Translational Research (COMIT), Nagoya University, Nagoya, Japan.
| |
Collapse
|
3
|
Wakayama K, Kimura S, Kobatake Y, Kamishina H, Nishii N, Takashima S, Honda R, Kamatari YO. Molecular Mechanisms of Aggregation of Canine SOD1 E40K Amyloidogenic Mutant Protein. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010156. [PMID: 36615350 PMCID: PMC9822309 DOI: 10.3390/molecules28010156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/17/2022] [Accepted: 12/21/2022] [Indexed: 12/29/2022]
Abstract
Canine degenerative myelopathy (DM) is a human amyotrophic lateral sclerosis (ALS)-like neurodegenerative disease. It is a unique, naturally occurring animal model of human ALS. Canine DM is associated with the aggregation of canine superoxide dismutase 1 (cSOD1), which is similar to human ALS. Almost 100% of cases in dogs are familial, and the E40K mutation in cSOD1 is a major causative mutation of DM. Therefore, it is important to understand the molecular mechanisms underlying cSOD1(E40K) aggregation. To address this, we first analyzed the structural model of wild type cSOD1. Interactions were evident between amino acid E40 and K91. Therefore, the mutation at residue E40 causes loss of the interaction and may destabilize the native structure of cSOD1. Differential scanning fluorimetry revealed that the E40K mutant was less stable than the wild type. Moreover, stability could be recovered by the E40K and K91E double mutation. Acceleration of amyloid fibril formation in vitro and aggregate formation in cells of cSOD1(E40K) was also suppressed by the introduction of this double mutation in thioflavin T fluorescence assay results and in transfectant cells, respectively. These results clearly show the importance of the interaction between amino acid residues E40 and K91 in cSOD1 for the stability of the native structure and aggregation.
Collapse
Affiliation(s)
- Kento Wakayama
- Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Shintaro Kimura
- Life Science Research Center, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129, USA
| | - Yui Kobatake
- Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Hiroaki Kamishina
- Life Science Research Center, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
- Kyoto AR, 33 Sayama-Nakamichi, Kumiyama, Kuze, Kyoto 613-0036, Japan
| | - Naohito Nishii
- Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
- The United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Satoshi Takashima
- Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Ryo Honda
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Yuji O. Kamatari
- Life Science Research Center, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
- Institute for Glyco-Core Research (iGCORE), Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
- Correspondence: ; Tel.: +81-58-293-3900
| |
Collapse
|
4
|
Sea KW, Taylor AB, Thomas ST, Liba A, Bergman IB, Holloway SP, Cao X, Gralla EB, Valentine JS, Hart PJ, Galaleldeen A. A pH Switch Controls Zinc Binding in Tomato Copper-Zinc Superoxide Dismutase. Biochemistry 2021; 60:1597-1608. [PMID: 33961402 PMCID: PMC8754426 DOI: 10.1021/acs.biochem.1c00133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Copper-zinc superoxide dismutase (SOD1) is a major antioxidant metalloenzyme that protects cells from oxidative damage by superoxide anions (O2-). Structural, biophysical, and other characteristics have in the past been compiled for mammalian SOD1s and for the highly homologous fungal and bovine SOD1s. Here, we characterize the biophysical properties of a plant SOD1 from tomato chloroplasts and present several of its crystal structures. The most unusual of these structures is a structure at low pH in which tSOD1 harbors zinc in the copper-binding site but contains no metal in the zinc-binding site. The side chain of D83, normally a zinc ligand, adopts an alternate rotameric conformation to form an unusual bidentate hydrogen bond with the side chain of D124, precluding metal binding in the zinc-binding site. This alternate conformation of D83 appears to be responsible for the previously observed pH-dependent loss of zinc from the zinc-binding site of SOD1. Titrations of cobalt into apo tSOD1 at a similar pH support the lack of an intact zinc-binding site. Further characterization of tSOD1 reveals that it is a weaker dimer relative to human SOD1 and that it can be activated in vivo through a copper chaperone for the SOD1-independent mechanism.
Collapse
Affiliation(s)
- Kevin W. Sea
- Department of Agriculture and Natural Resources, Santa Rosa Junior College, Santa Rosa, California 95401
| | - Alexander B. Taylor
- Department of Biochemistry and the X-ray Crystallography Core Laboratory, The University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229
| | - Susan T. Thomas
- Department of Biochemistry and the X-ray Crystallography Core Laboratory, The University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229
| | - Amir Liba
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, California 90095
| | - Isabelle B. Bergman
- Department of Biological Sciences, St. Mary’s University, San Antonio, TX 78228
| | - Stephen P. Holloway
- Department of Biochemistry and the X-ray Crystallography Core Laboratory, The University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229
| | - Xiaohang Cao
- Department of Biochemistry and the X-ray Crystallography Core Laboratory, The University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229
| | - Edith B. Gralla
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, California 90095
| | - Joan S. Valentine
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, California 90095
| | - P. John Hart
- Department of Biochemistry and the X-ray Crystallography Core Laboratory, The University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229
- Geriatric Research, Education and Clinical Center, Department of Veterans Affairs, South Texas Veterans Health Care System, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229
| | - Ahmad Galaleldeen
- Department of Biochemistry and the X-ray Crystallography Core Laboratory, The University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229
- Department of Biological Sciences, St. Mary’s University, San Antonio, TX 78228
| |
Collapse
|
5
|
Ayers JI, Xu G, Dillon K, Lu Q, Chen Z, Beckman J, Moreno-Romero AK, Zamora DL, Galaleldeen A, Borchelt DR. Variation in the vulnerability of mice expressing human superoxide dismutase 1 to prion-like seeding: a study of the influence of primary amino acid sequence. Acta Neuropathol Commun 2021; 9:92. [PMID: 34016165 PMCID: PMC8139116 DOI: 10.1186/s40478-021-01191-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 05/03/2021] [Indexed: 11/24/2022] Open
Abstract
Misfolded forms of superoxide dismutase 1 (SOD1) with mutations associated with familial amyotrophic lateral sclerosis (fALS) exhibit prion characteristics, including the ability to act as seeds to accelerate motor neuron disease in mouse models. A key feature of infectious prion seeding is that the efficiency of transmission is governed by the primary sequence of prion protein (PrP). Isologous seeding, where the sequence of the PrP in the seed matches that of the host, is generally much more efficient than when there is a sequence mis-match. Here, we used paradigms in which mutant SOD1 seeding homogenates were injected intraspinally in newborn mice or into the sciatic nerve of adult mice, to assess the influence of SOD1 primary sequence on seeding efficiency. We observed a spectrum of seeding efficiencies depending upon both the SOD1 expressed by mice injected with seeds and the origin of the seed preparations. Mice expressing WT human SOD1 or the disease variant G37R were resistant to isologous seeding. Mice expressing G93A SOD1 were also largely resistant to isologous seeding, with limited success in one line of mice that express at low levels. By contrast, mice expressing human G85R-SOD1 were highly susceptible to isologous seeding but resistant to heterologous seeding by homogenates from paralyzed mice over-expressing mouse SOD1-G86R. In other seeding experiments with G85R SOD1:YFP mice, we observed that homogenates from paralyzed animals expressing the H46R or G37R variants of human SOD1 were less effective than seeds prepared from mice expressing the human G93A variant. These sequence mis-match effects were less pronounced when we used purified recombinant SOD1 that had been fibrilized in vitro as the seeding preparation. Collectively, our findings demonstrate diversity in the abilities of ALS variants of SOD1 to initiate or sustain prion-like propagation of misfolded conformations that produce motor neuron disease.
Collapse
|
6
|
Tompa DR, Muthusamy S, Srikanth S, Kadhirvel S. Molecular dynamics of far positioned surface mutations of Cu/Zn SOD1 promotes altered structural stability and metal-binding site: Structural clues to the pathogenesis of amyotrophic lateral sclerosis. J Mol Graph Model 2020; 100:107678. [PMID: 32768728 DOI: 10.1016/j.jmgm.2020.107678] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 06/18/2020] [Accepted: 06/26/2020] [Indexed: 10/23/2022]
Abstract
Cu/Zn superoxide dismutase (SOD1) mutations are associated to the motor neuron disorder, amyotrophic lateral sclerosis (ALS), which is characterized by aggregates of the misfolded proteins. The distribution of mutations all over the three-dimensional structure of SOD1 makes it complex to determine the exact molecular mechanism underlying SOD1 destabilization and the associated ALS pathology. In this study, we have examined structure and dynamics of SOD1 protein upon two ALS associated point mutations at the surface residue Glu100 (E100G and E100K), which is located far from the Cu and Zn sites and dimer interface. The molecular dynamics simulations were performed for these mutants for 50ns using GROMACS package. Our results indicate that the mutations result in structural destabilization by affecting the gate keeping role of Glu100 and loss of electrostatic interactions on the protein surface which stabilizes the β-barrel structure of the native form. Further, these mutations could increase the fluctuations in the zinc-binding loop (loop IV), primarily due to loss of hydrogen bond between Asp101 and Arg79. The relaxed conformation of Arg79 further affects the native conformation of His80 and Asp83, that results in altered zinc site geometry and the structure of the substrate channel. Our results clearly suggest that, similar to the mutations located at metal sites/dimer interface/disulfide regions, the mutations at the far positioned site (Glu100) also induce significant conformational changes that could affect the metallation and structure of SOD1 molecule, resulting in formation of toxic intermediate species that cause ALS.
Collapse
Affiliation(s)
- Dharma Rao Tompa
- Biomolecular Crystallography Laboratory, Department of Bioinformatics, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, 613401, Tamil Nadu, India
| | - Sureshan Muthusamy
- Biomolecular Crystallography Laboratory, Department of Bioinformatics, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, 613401, Tamil Nadu, India
| | - Srimari Srikanth
- Biomolecular Crystallography Laboratory, Department of Bioinformatics, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, 613401, Tamil Nadu, India
| | - Saraboji Kadhirvel
- Biomolecular Crystallography Laboratory, Department of Bioinformatics, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, 613401, Tamil Nadu, India.
| |
Collapse
|
7
|
Changes in hydrophobicity mainly promotes the aggregation tendency of ALS associated SOD1 mutants. Int J Biol Macromol 2020; 145:904-913. [PMID: 31669277 DOI: 10.1016/j.ijbiomac.2019.09.181] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 09/24/2019] [Accepted: 09/26/2019] [Indexed: 12/19/2022]
Abstract
Protein misfolding and aggregation due to mutations, are associated with fatal neurodegenerative disorders. The mutations in Cu/Zn superoxide dismutase (SOD1) causing its misfolding and aggregation are found linked to the motor neuron disorder, amyotrophic lateral sclerosis. Since the mutations are scattered throughout SOD1 structure, determining the exact molecular mechanism underlying the ALS pathology remains unresolved. In this study, we have investigated the major molecular factors that mainly contribute to SOD1 destabilization, intrinsic disorder, and misfolding using sequence and structural information. We have analysed 153 ALS causing SOD1 point mutants for aggregation tendency using four different aggregation prediction tools, viz., Aggrescan3D (A3D), CamSol, GAP and Zyggregator. Our results suggest that 74-79 mutants are susceptible to aggregation, due to distorted native interactions originated at the mutation site. Majority of the aggregation prone mutants are located in the buried regions of SOD1 molecule. Further, the mutations at the hydrophobic amino acids primarily promote the aggregation tendency of SOD1 protein through different destabilizing mechanisms including changes in hydrophobic free energy, loss of electrostatic interactions in the protein's surface and loss of hydrogen bonds that bridges the protein core and surface.
Collapse
|
8
|
McAlary L, Harrison JA, Aquilina JA, Fitzgerald SP, Kelso C, Benesch JL, Yerbury JJ. Trajectory Taken by Dimeric Cu/Zn Superoxide Dismutase through the Protein Unfolding and Dissociation Landscape Is Modulated by Salt Bridge Formation. Anal Chem 2019; 92:1702-1711. [DOI: 10.1021/acs.analchem.9b01699] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Luke McAlary
- Illawarra Health and Medical Research Institute, Wollongong, New South Wales 2522, Australia
- Molecular Horizons and School of Chemistry and Molecular Bioscience, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, New South Wales 2522, Australia
| | - Julian A. Harrison
- Molecular Horizons and School of Chemistry and Molecular Bioscience, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, New South Wales 2522, Australia
| | - J. Andrew Aquilina
- Illawarra Health and Medical Research Institute, Wollongong, New South Wales 2522, Australia
- Molecular Horizons and School of Chemistry and Molecular Bioscience, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, New South Wales 2522, Australia
| | | | - Celine Kelso
- Molecular Horizons and School of Chemistry and Molecular Bioscience, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, New South Wales 2522, Australia
| | - Justin L.P. Benesch
- Department of Chemistry, Physical and Theoretical Chemistry Department, University of Oxford, Oxford OX1 3QZ, U.K
| | - Justin J. Yerbury
- Illawarra Health and Medical Research Institute, Wollongong, New South Wales 2522, Australia
- Molecular Horizons and School of Chemistry and Molecular Bioscience, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, New South Wales 2522, Australia
| |
Collapse
|
9
|
Abstract
Few proteins have come under such intense scrutiny as superoxide dismutase-1 (SOD1). For almost a century, scientists have dissected its form, function and then later its malfunction in the neurodegenerative disease amyotrophic lateral sclerosis (ALS). We now know SOD1 is a zinc and copper metalloenzyme that clears superoxide as part of our antioxidant defence and respiratory regulation systems. The possibility of reduced structural integrity was suggested by the first crystal structures of human SOD1 even before deleterious mutations in the sod1 gene were linked to the ALS. This concept evolved in the intervening years as an impressive array of biophysical studies examined the characteristics of mutant SOD1 in great detail. We now recognise how ALS-related mutations perturb the SOD1 maturation processes, reduce its ability to fold and reduce its thermal stability and half-life. Mutant SOD1 is therefore predisposed to monomerisation, non-canonical self-interactions, the formation of small misfolded oligomers and ultimately accumulation in the tell-tale insoluble inclusions found within the neurons of ALS patients. We have also seen that several post-translational modifications could push wild-type SOD1 down this toxic pathway. Recently we have come to view ALS as a prion-like disease where both the symptoms, and indeed SOD1 misfolding itself, are transmitted to neighbouring cells. This raises the possibility of intervention after the initial disease presentation. Several small-molecule and biologic-based strategies have been devised which directly target the SOD1 molecule to change the behaviour thought to be responsible for ALS. Here we provide a comprehensive review of the many biophysical advances that sculpted our view of SOD1 biology and the recent work that aims to apply this knowledge for therapeutic outcomes in ALS.
Collapse
|
10
|
Tompa DR, Kadhirvel S. Far positioned ALS associated mutants of Cu/Zn SOD forms partially metallated, destabilized misfolding intermediates. Biochem Biophys Res Commun 2019; 516:494-499. [PMID: 31230748 DOI: 10.1016/j.bbrc.2019.06.086] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 06/16/2019] [Indexed: 11/18/2022]
Abstract
Loss of stability of proteins is associated with their misfolding and aggregation which results in disease. Despite of the higher stability of Cu/Zn superoxide dismutase (SOD1), the point mutations destabilize its structure, results in oligomerization and the aggregation of SOD1 which is closely associated with the motor neuron disorder, amyotrophic lateral sclerosis. In the present study, we analyzed the role of two SOD1 mutants V14G and E100G which are located far away from the metal sites, dimer interface and disulfide region. The SOD1 mutants were recombinantly produced and their activity, structure and stability were investigated using biochemical methods, CD and DSC methods. In comparison with wild-type SOD1, the mutants exhibited reduced activity and the CD data showed comparable secondary structures composition. However, the stability studies using chemical and thermal denaturation methods showed the mutants are destabilized. Interestingly, our DSC data strongly suggested the destabilization of the mutants is due to the partial metalation of Cu/Zn ions. This observation emphasizes that although the mutations V14G and E100G are located away from the metal sites, they could affect the metal binding similar to metal binding region mutants, which are more susceptible to misfold and aggregate.
Collapse
Affiliation(s)
- Dharma Rao Tompa
- Biomolecular Crystallography Laboratory, Department of Bioinformatics, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, 613401, Tamil Nadu, India
| | - Saraboji Kadhirvel
- Biomolecular Crystallography Laboratory, Department of Bioinformatics, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, 613401, Tamil Nadu, India.
| |
Collapse
|
11
|
Experimental Mutations in Superoxide Dismutase 1 Provide Insight into Potential Mechanisms Involved in Aberrant Aggregation in Familial Amyotrophic Lateral Sclerosis. G3-GENES GENOMES GENETICS 2019; 9:719-728. [PMID: 30622123 PMCID: PMC6404617 DOI: 10.1534/g3.118.200787] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Mutations in more than 80 different positions in superoxide dismutase 1 (SOD1) have been associated with amyotrophic lateral sclerosis (fALS). There is substantial evidence that a common consequence of these mutations is to induce the protein to misfold and aggregate. How these mutations perturb native structure to heighten the propensity to misfold and aggregate is unclear. In the present study, we have mutagenized Glu residues at positions 40 and 133 that are involved in stabilizing the β-barrel structure of the native protein and a critical Zn binding domain, respectively, to examine how specific mutations may cause SOD1 misfolding and aggregation. Mutations associated with ALS as well as experimental mutations were introduced into these positions. We used an assay in which mutant SOD1 was fused to yellow fluorescent protein (SOD1:YFP) to visualize the formation of cytosolic inclusions by mutant SOD1. We then used existing structural data on SOD1, to predict how different mutations might alter local 3D conformation. Our findings reveal an association between mutant SOD1 aggregation and amino acid substitutions that are predicted to introduce steric strain, sometimes subtly, in the 3D conformation of the peptide backbone.
Collapse
|
12
|
Crosby K, Crown AM, Roberts BL, Brown H, Ayers JI, Borchelt DR. Loss of charge mutations in solvent exposed Lys residues of superoxide dismutase 1 do not induce inclusion formation in cultured cell models. PLoS One 2018; 13:e0206751. [PMID: 30399166 PMCID: PMC6219784 DOI: 10.1371/journal.pone.0206751] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 10/18/2018] [Indexed: 12/14/2022] Open
Abstract
Mutations in superoxide dismutase 1 (SOD1) associated with familial amyotrophic lateral sclerosis (fALS) induce the protein to misfold and aggregate. Missense mutations at more than 80 different amino acid positions have been associated with disease. How these mutations heighten the propensity of SOD1 to misfold and aggregate is unclear. With so many mutations, it is possible that more than one mechanism of aggregation may be involved. Of many possible mechanisms to explain heightened aggregation, one that has been suggested is that mutations that eliminate charged amino acids could diminish repulsive forces that would inhibit aberrant protein:protein interactions. Mutations at twenty-one charged residues in SOD1 have been associated with fALS, but of the 11 Lys residues in the protein, only 1 has been identified as mutated in ALS patients. Here, we examined whether loss of positively charged surface Lys residues in SOD1 would induce misfolding and formation of intracellular inclusions. We mutated four different Lys residues (K30, K36, K75, K91) in SOD1 that are not particularly well conserved, and expressed these variants as fusion proteins with yellow fluorescent protein (YFP) to assess inclusion formation. We also assessed whether these mutations induced binding to a conformation-restricted SOD1 antibody, designated C4F6, which recognizes non-natively folded protein. Although we observed some mutations to cause enhanced C4F6 binding, we did not observe that mutations that reduce charge at these positions caused the protein to form intracellular inclusions. Our findings may have implications for the low frequency of mutations at Lys residues SOD1 in ALS patients.
Collapse
Affiliation(s)
- Keith Crosby
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, Florida, United States of America
| | - Anthony M. Crown
- College of Arts and Sciences, University of Florida, Gainesville, Florida, United States of America
| | - Brittany L. Roberts
- College of Arts and Sciences, University of Florida, Gainesville, Florida, United States of America
| | - Hilda Brown
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, Florida, United States of America
- SantaFe HealthCare Alzheimer’s Disease Research Center, McKnight Brain Institute, University of Florida, Gainesville, Florida, United States of America
| | - Jacob I. Ayers
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, Florida, United States of America
| | - David R. Borchelt
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, Florida, United States of America
- College of Arts and Sciences, University of Florida, Gainesville, Florida, United States of America
- SantaFe HealthCare Alzheimer’s Disease Research Center, McKnight Brain Institute, University of Florida, Gainesville, Florida, United States of America
- * E-mail:
| |
Collapse
|
13
|
Massenzio F, Peña-Altamira E, Petralla S, Virgili M, Zuccheri G, Miti A, Polazzi E, Mengoni I, Piffaretti D, Monti B. Microglial overexpression of fALS-linked mutant SOD1 induces SOD1 processing impairment, activation and neurotoxicity and is counteracted by the autophagy inducer trehalose. Biochim Biophys Acta Mol Basis Dis 2018; 1864:3771-3785. [PMID: 30315929 DOI: 10.1016/j.bbadis.2018.10.013] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 10/05/2018] [Accepted: 10/08/2018] [Indexed: 12/12/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal motor neuron disease. Mutations in the gene encoding copper/zinc superoxide dismutase-1 (SOD1) are responsible for most familiar cases, but the role of mutant SOD1 protein dysfunction in non-cell autonomous neurodegeneration, especially in relation to microglial activation, is still unclear. Here, we focused our study on microglial cells, which release SOD1 also through exosomes. We observed that in rat primary microglia the overexpression of the most-common SOD1 mutations linked to fALS (G93A and A4V) leads to SOD1 intracellular accumulation, which correlates to autophagy dysfunction and microglial activation. In primary contact co-cultures, fALS mutant SOD1 overexpression by microglial cells appears to be neurotoxic by itself. Treatment with the autophagy-inducer trehalose reduced mutant SOD1 accumulation in microglial cells, decreased microglial activation and abrogated neurotoxicity in the co-culture model. These data suggest that i) the alteration of the autophagic pathway due to mutant SOD1 overexpression is involved in microglial activation and neurotoxicity; ii) the induction of autophagy with trehalose reduces microglial SOD1 accumulation through proteasome degradation and activation, leading to neuroprotection. Our results provide a novel contribution towards better understanding key cellular mechanisms in non-cell autonomous ALS neurodegeneration.
Collapse
Affiliation(s)
- Francesca Massenzio
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | | | - Sabrina Petralla
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Marco Virgili
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Giampaolo Zuccheri
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy; Interdepartmental Center for Industrial Research on Life and Health Sciences at the University of Bologna, Italy; S3 Center of the Institute of Nanoscience of the National Research Council (C.N.R.), Italy
| | - Andrea Miti
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Elisabetta Polazzi
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Ilaria Mengoni
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Deborah Piffaretti
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Barbara Monti
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy.
| |
Collapse
|
14
|
Paré B, Lehmann M, Beaudin M, Nordström U, Saikali S, Julien JP, Gilthorpe JD, Marklund SL, Cashman NR, Andersen PM, Forsberg K, Dupré N, Gould P, Brännström T, Gros-Louis F. Misfolded SOD1 pathology in sporadic Amyotrophic Lateral Sclerosis. Sci Rep 2018; 8:14223. [PMID: 30242181 PMCID: PMC6155098 DOI: 10.1038/s41598-018-31773-z] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 08/15/2018] [Indexed: 11/30/2022] Open
Abstract
Aggregation of mutant superoxide dismutase 1 (SOD1) is a pathological hallmark of a subset of familial ALS patients. However, the possible role of misfolded wild type SOD1 in human ALS is highly debated. To ascertain whether or not misfolded SOD1 is a common pathological feature in non-SOD1 ALS, we performed a blinded histological and biochemical analysis of post mortem brain and spinal cord tissues from 19 sporadic ALS, compared with a SOD1 A4V patient as well as Alzheimer’s disease (AD) and non-neurological controls. Multiple conformation- or misfolded-specific antibodies for human SOD1 were compared. These were generated independently by different research groups and were compared using standardized conditions. Five different misSOD1 staining patterns were found consistently in tissue sections from SALS cases and the SOD1 A4V patient, but were essentially absent in AD and non-neurological controls. We have established clear experimental protocols and provide specific guidelines for working, with conformational/misfolded SOD1-specific antibodies. Adherence to these guidelines will aid in the comparison of the results of future studies and better interpretation of staining patterns. This blinded, standardized and unbiased approach provides further support for a possible pathological role of misSOD1 in SALS.
Collapse
Affiliation(s)
- Bastien Paré
- Laval University Experimental Organogenesis Research Center/LOEX, Division of Regenerative Medicine, CHU de Québec Research Center - Enfant-Jésus Hospital, Québec, Canada.,Department of Surgery, Faculty of Medicine, Laval University, Québec, Canada
| | - Manuela Lehmann
- Department of Pharmacology and Clinical Neuroscience, Umeå University, Umeå, Sweden
| | - Marie Beaudin
- Neuroscience Division of the CHU de Québec and Department of Medicine of the Faculty of Medicine, Laval University, Québec, QC, Canada
| | - Ulrika Nordström
- Department of Pharmacology and Clinical Neuroscience, Umeå University, Umeå, Sweden
| | - Stephan Saikali
- Department of Medical Biology, Division of Anatomic Pathology and Neuropathology, CHU de Québec, Hôpital de l'Enfant-Jésus, Québec, Canada
| | - Jean-Pierre Julien
- Department of Psychiatry and Neuroscience, Laval University, Québec City, Québec, Canada.,Centre de Recherche CERVO, Québec City, Québec, Canada
| | - Jonathan D Gilthorpe
- Department of Pharmacology and Clinical Neuroscience, Umeå University, Umeå, Sweden
| | - Stefan L Marklund
- Department of Medical Biosciences, Clinical Chemistry, Umeå University, Umeå, Sweden
| | - Neil R Cashman
- Department of Medicine (Neurology), Brain Research Center, University of British Columbia, Vancouver, BC, Canada
| | - Peter M Andersen
- Department of Pharmacology and Clinical Neuroscience, Umeå University, Umeå, Sweden
| | - Karin Forsberg
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
| | - Nicolas Dupré
- Neuroscience Division of the CHU de Québec and Department of Medicine of the Faculty of Medicine, Laval University, Québec, QC, Canada
| | - Peter Gould
- Department of Medical Biology, Division of Anatomic Pathology and Neuropathology, CHU de Québec, Hôpital de l'Enfant-Jésus, Québec, Canada
| | - Thomas Brännström
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
| | - François Gros-Louis
- Laval University Experimental Organogenesis Research Center/LOEX, Division of Regenerative Medicine, CHU de Québec Research Center - Enfant-Jésus Hospital, Québec, Canada. .,Department of Surgery, Faculty of Medicine, Laval University, Québec, Canada.
| |
Collapse
|
15
|
Alemasov NA, Ivanisenko NV, Ramachandran S, Ivanisenko VA. Molecular mechanisms underlying the impact of mutations in SOD1 on its conformational properties associated with amyotrophic lateral sclerosis as revealed with molecular modelling. BMC STRUCTURAL BIOLOGY 2018; 18:1. [PMID: 29431095 PMCID: PMC5808480 DOI: 10.1186/s12900-018-0080-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Background So far, little is known about the molecular mechanisms of amyotrophic lateral sclerosis onset and progression caused by SOD1 mutations. One of the hypotheses is based on SOD1 misfolding resulting from mutations and subsequent deposition of its cytotoxic aggregates. This hypothesis is complicated by the fact that known SOD1 mutations of similar clinical effect could be distributed over the whole protein structure. Results In this work, a measure of hydrogen bond stability in conformational states was studied with elastic network analysis of 35 SOD1 mutants. Twenty-eight hydrogen bonds were detected in nine of 35 mutants with their stability being significantly different from that with the wild-type. These hydrogen bonds were formed by the amino acid residues known from the literature to be located in contact between SOD1 aggregates. Additionally, residues disposed between copper binding sites of both protein subunits were found from the models to form a stiff core, which can be involved in mechanical impulse transduction between these active centres. Conclusions The modelling highlights that both stability of the copper binding site and stability of the dimer can play an important role in ALS progression. Electronic supplementary material The online version of this article (10.1186/s12900-018-0080-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nikolay A Alemasov
- The Federal Research Center Institute of Cytology and Genetics, The Siberian Branch of the Russian Academy of Sciences, 630090, Novosibirsk, Russia.
| | - Nikita V Ivanisenko
- The Federal Research Center Institute of Cytology and Genetics, The Siberian Branch of the Russian Academy of Sciences, 630090, Novosibirsk, Russia.,Novosibirsk State University, 630090, Novosibirsk, Russia
| | - Srinivasan Ramachandran
- Functional Genomics Unit, Council of Scientific and Industrial Research-Institute of Genomics and Integrative Biology (CSIR-IGIB), South Campus, New Delhi, 110025, India.,Academy of Scientific and Innovative Research, CSIR-IGIB, South Campus, New Delhi, 110025, India
| | - Vladimir A Ivanisenko
- The Federal Research Center Institute of Cytology and Genetics, The Siberian Branch of the Russian Academy of Sciences, 630090, Novosibirsk, Russia
| |
Collapse
|
16
|
Kumar V, Rahman S, Choudhry H, Zamzami MA, Sarwar Jamal M, Islam A, Ahmad F, Hassan MI. Computing disease-linked SOD1 mutations: deciphering protein stability and patient-phenotype relations. Sci Rep 2017; 7:4678. [PMID: 28680046 PMCID: PMC5498623 DOI: 10.1038/s41598-017-04950-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 05/24/2017] [Indexed: 11/13/2022] Open
Abstract
Protein stability is a requisite in the field of biotechnology, cell biology and drug design. To understand effects of amino acid substitutions, computational models are preferred to save time and expenses. As a systemically important, highly abundant, stable protein, the knowledge of Cu/Zn Superoxide dismutase1 (SOD1) is important, making it a suitable test case for genotype-phenotype correlation in understanding ALS. Here, we report performance of eight protein stability calculators (PoPMuSiC 3.1, I-Mutant 2.0, I-Mutant 3.0, CUPSAT, FoldX, mCSM, BeatMusic and ENCoM) against 54 experimental stability changes due to mutations of SOD1. Four different high-resolution structures were used to test structure sensitivity that may affect protein calculations. Bland-Altman plot was also used to assess agreement between stability analyses. Overall, PoPMuSiC and FoldX emerge as the best methods in this benchmark. The relative performance of all the eight methods was very much structure independent, and also displayed less structural sensitivity. We also analyzed patient's data in relation to experimental and computed protein stabilities for mutations of human SOD1. Correlation between disease phenotypes and stability changes suggest that the changes in SOD1 stability correlate with ALS patient survival times. Thus, the results clearly demonstrate the importance of protein stability in SOD1 pathogenicity.
Collapse
Affiliation(s)
- Vijay Kumar
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Safikur Rahman
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, 712-749, South Korea
| | - Hani Choudhry
- Department of Biochemistry, Cancer Metabolism and Epigenetic Unit, Faculty of Science, Center of Innovation in Personalized Medicine, Cancer and Mutagenesis Unit, King Fahd Center for Medical Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mazin A Zamzami
- Department of Biochemistry, Cancer Metabolism and Epigenetic Unit, Faculty of Science, Cancer and Mutagenesis Unit, King Fahd Center for Medical Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammad Sarwar Jamal
- King Fahd Medical Research Center, King Abdulaziz University, P.O. Box 80216, Jeddah, 21589, Saudi Arabia
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Faizan Ahmad
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025, India.
| |
Collapse
|
17
|
Healy EF. A prion-like mechanism for the propagated misfolding of SOD1 from in silico modeling of solvated near-native conformers. PLoS One 2017; 12:e0177284. [PMID: 28472188 PMCID: PMC5417709 DOI: 10.1371/journal.pone.0177284] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 04/25/2017] [Indexed: 12/11/2022] Open
Abstract
A prion-like mechanism has been developed to explain the observed promotion of amyloid aggregation caused by conversion of structurally intact SOD1 to a misfolded form. Superoxide dismutase [Cu-Zn], or SOD1, is a homo-dimeric protein that functions as an antioxidant by scavenging for superoxide. The misfolding and aggregation of SOD1 is linked to inherited, or familial, amyotrophic lateral sclerosis (FALS), a progressive and fatal neurodegenerative disease. Aberrant SOD1 folding has also been strongly implicated in disease causation for sporadic ALS, or SALS, which accounts for ~90% of ALS cases. Studies have found that mutant, misfolded SOD1 can convert wtSOD1 in a prion-like fashion, and that misfolded wtSOD1 can be propagated by release and uptake of protein aggregates. Here it is demonstrated that enervating the SOD1 electrostatic loop can lead to an experimentally observed gain of interaction (GOI) responsible for the formation of SOD1 amyloid-like filaments. This enervation is caused in turn by the formation of transient, non-obligate oligomers between pathogenic SOD1 mutants and wt SOD1.
Collapse
Affiliation(s)
- Eamonn F. Healy
- Department of Chemistry, St. Edward’s University, Austin, Texas, United States of America
| |
Collapse
|
18
|
McAlary L, Aquilina JA, Yerbury JJ. Susceptibility of Mutant SOD1 to Form a Destabilized Monomer Predicts Cellular Aggregation and Toxicity but Not In vitro Aggregation Propensity. Front Neurosci 2016; 10:499. [PMID: 27867347 PMCID: PMC5095133 DOI: 10.3389/fnins.2016.00499] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 10/20/2016] [Indexed: 12/13/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by the rapid and progressive degeneration of upper and lower motor neurons in the spinal cord, brain stem and motor cortex. The first gene linked to ALS was the gene encoding the free radical scavenging enzyme superoxide dismutase-1 (SOD1) that currently has over 180, mostly missense, ALS-associated mutations identified. SOD1-associated fALS patients show remarkably broad mean survival times (<1 year to ~17 years death post-diagnosis) that are mutation dependent. A hallmark of SOD1-associated ALS is the deposition of SOD1 into large insoluble aggregates in motor neurons. This is thought to be a consequence of mutation induced structural destabilization and/or oxidative damage leading to the misfolding and aggregation of SOD1 into a neurotoxic species. Here we aim to understand the relationship between SOD1 variant toxicity, structural stability, and aggregation propensity using a combination of cell culture and purified protein assays. Cell based assays indicated that aggregation of SOD1 variants correlate closely to cellular toxicity. However, the relationship between cellular toxicity and disease severity was less clear. We next utilized mass spectrometry to interrogate the structural consequences of metal loss and disulfide reduction on fALS-associated SOD1 variant structure. All variants showed evidence of unfolded, intermediate, and compact conformations, with SOD1G37R, SOD1G93A and SOD1V148G having the greatest abundance of intermediate and unfolded SOD1. SOD1G37R was an informative outlier as it had a high propensity to unfold and form oligomeric aggregates, but it did not aggregate to the same extent as SOD1G93A and SOD1V148G in in vitro aggregation assays. Furthermore, seeding the aggregation of DTT/EDTA-treated SOD1G37R with preformed SOD1G93A fibrils elicited minimal aggregation response, suggesting that the arginine substitution at position-37 blocks the templating of SOD1 onto preformed fibrils. We propose that this difference may be explained by multiple strains of SOD1 aggregate and this may also help explain the slow disease progression observed in patients with SOD1G37R.
Collapse
Affiliation(s)
- Luke McAlary
- Lab 210, Illawarra Health and Medical Research InstituteWollongong, NSW, Australia; Science Medicine and Health Faculty, School of Biological Sciences, University of WollongongWollongong, NSW, Australia
| | - J Andrew Aquilina
- Science Medicine and Health Faculty, School of Biological Sciences, University of Wollongong Wollongong, NSW, Australia
| | - Justin J Yerbury
- Lab 210, Illawarra Health and Medical Research InstituteWollongong, NSW, Australia; Science Medicine and Health Faculty, School of Biological Sciences, University of WollongongWollongong, NSW, Australia
| |
Collapse
|
19
|
Healy EF. A mechanism for propagated SOD1 misfolding from frustration analysis of a G85R mutant protein assembly. Biochem Biophys Res Commun 2016; 478:1634-9. [PMID: 27591900 DOI: 10.1016/j.bbrc.2016.08.172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 08/30/2016] [Indexed: 01/13/2023]
Abstract
Application of landscape theory and the dehydron hypothesis to a crystal structure of a G85R mutant superoxide dismutase (SOD1) tetrameric complex allows for the description of a prion-like hypothesis that serves to explain propagated SOD1 misfolding. We have developed two conformational-change scenarios, one local to the ESL at the complex interface, and a second displacement at the ESL of the otherdimeric subunit. When taken together these provide for a prion-like mechanism that can serve to explain the observed conversion of wtSOD1 to a misfolded form by the G85R mutant.
Collapse
Affiliation(s)
- Eamonn F Healy
- Department of Chemistry, St. Edward's University, Austin, TX 78704, USA.
| |
Collapse
|
20
|
An in silico study of the effect of SOD1 electrostatic loop dynamics on amyloid‑like filament formation. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2016; 45:853-859. [PMID: 27496206 DOI: 10.1007/s00249-016-1163-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 07/14/2016] [Accepted: 07/25/2016] [Indexed: 12/29/2022]
Abstract
Superoxide dismutase [Cu-Zn], or SOD1, is a homo-dimeric protein that functions as an antioxidant by scavenging for superoxides. A wide range of SOD1 variants are linked to inherited, or familial, amyotrophic lateral sclerosis, a progressive and fatal neurodegenerative disease. Aberrant SOD1 oligomerization has been strongly implicated in disease causation, even for sporadic ALS, or SALS, which accounts for ~90 % of ALS cases. Small heat shock proteins (sHSP) have been shown to protect against amyloid fibril formation in vitro, and the sHSP αB-crystallin suppresses in vitro aggregation of SOD1. We are seeking to elucidate the structural features of both SOD1 amyloid formation and αB-crystallin amyloid suppression. Specifically, we have used a flexible docking protocol to refine our model of a SOD1 non-obligate tetramer, postulated to function as a transient desolvating complex. Homology modeling and molecular dynamics (MD) are used to supply the missing structural elements of a previously characterized SOD1 amyloid filament, thereby providing a structural analysis for the observed gain of interaction. This completed filament is then further modified using MD to provide a structural model for protofibril capping of SOD1 filaments by αB-crystallin.
Collapse
|
21
|
Broom HR, Vassall KA, Rumfeldt JAO, Doyle CM, Tong MS, Bonner JM, Meiering EM. Combined Isothermal Titration and Differential Scanning Calorimetry Define Three-State Thermodynamics of fALS-Associated Mutant Apo SOD1 Dimers and an Increased Population of Folded Monomer. Biochemistry 2016; 55:519-33. [PMID: 26710831 DOI: 10.1021/acs.biochem.5b01187] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Many proteins are naturally homooligomers, homodimers most frequently. The overall stability of oligomeric proteins may be described in terms of the stability of the constituent monomers and the stability of their association; together, these stabilities determine the populations of different monomer and associated species, which generally have different roles in the function or dysfunction of the protein. Here we show how a new combined calorimetry approach, using isothermal titration calorimetry to define monomer association energetics together with differential scanning calorimetry to measure total energetics of oligomer unfolding, can be used to analyze homodimeric unmetalated (apo) superoxide dismutase (SOD1) and determine the effects on the stability of structurally diverse mutations associated with amyotrophic lateral sclerosis (ALS). Despite being located throughout the protein, all mutations studied weaken the dimer interface, while concomitantly either decreasing or increasing the marginal stability of the monomer. Analysis of the populations of dimer, monomer, and unfolded monomer under physiological conditions of temperature, pH, and protein concentration shows that all mutations promote the formation of folded monomers. These findings may help rationalize the key roles proposed for monomer forms of SOD1 in neurotoxic aggregation in ALS, as well as roles for other forms of SOD1. Thus, the results obtained here provide a valuable approach for the quantitative analysis of homooligomeric protein stabilities, which can be used to elucidate the natural and aberrant roles of different forms of these proteins and to improve methods for predicting protein stabilities.
Collapse
Affiliation(s)
- Helen R Broom
- Department of Chemistry, University of Waterloo , Waterloo, Ontario N2L 3G1, Canada
| | - Kenrick A Vassall
- Department of Chemistry, University of Waterloo , Waterloo, Ontario N2L 3G1, Canada
| | - Jessica A O Rumfeldt
- Department of Chemistry, University of Waterloo , Waterloo, Ontario N2L 3G1, Canada
| | - Colleen M Doyle
- Department of Chemistry, University of Waterloo , Waterloo, Ontario N2L 3G1, Canada
| | - Ming Sze Tong
- Department of Chemistry, University of Waterloo , Waterloo, Ontario N2L 3G1, Canada
| | - Julia M Bonner
- Department of Chemistry, University of Waterloo , Waterloo, Ontario N2L 3G1, Canada
| | - Elizabeth M Meiering
- Department of Chemistry, University of Waterloo , Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
22
|
Healy EF. A model for non-obligate oligomer formation in protein aggregration. Biochem Biophys Res Commun 2015; 465:523-7. [PMID: 26282203 PMCID: PMC4564312 DOI: 10.1016/j.bbrc.2015.08.052] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 08/12/2015] [Indexed: 11/30/2022]
Abstract
Using solvent-exposed intramolecular backbone hydrogen bonds as physico-chemical descriptors for protein packing, a role for transient, non-obligate oligomers in the formation of aberrant protein aggregates is presented. Oligomeric models of the both wild type (wt) and select mutant variants of superoxide dismutase (SOD1) are proposed to provide a structural basis for investigating the etiology of Amyotrophic Lateral Sclerosis (ALS).
Collapse
Affiliation(s)
- Eamonn F Healy
- Department of Chemistry, St. Edward's University, Austin, TX 78704, USA.
| |
Collapse
|
23
|
Davidov G, Müller FD, Baumgartner J, Bitton R, Faivre D, Schüler D, Zarivach R. Crystal structure of the magnetobacterial protein MtxA C-terminal domain reveals a new sequence-structure relationship. Front Mol Biosci 2015; 2:25. [PMID: 26052516 PMCID: PMC4439547 DOI: 10.3389/fmolb.2015.00025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 05/04/2015] [Indexed: 01/07/2023] Open
Abstract
Magnetotactic bacteria (MTB) are a diverse group of aquatic bacteria that have the magnetotaxis ability to align themselves along the geomagnetic field lines and to navigate to a microoxic zone at the bottom of chemically stratified natural water. This special navigation is the result of a unique linear assembly of a specialized organelle, the magnetosome, which contains a biomineralized magnetic nanocrystal enveloped by a cytoplasmic membrane. The Magnetospirillum gryphiswaldense MtxA protein (MGR_0208) was suggested to play a role in bacterial magnetotaxis due to its gene location in an operon together with putative signal transduction genes. Since no homology is found for MtxA, and to better understand the role and function of MtxA in MTBés magnetotaxis, we initiated structural and functional studies of MtxA via X-ray crystallography and deletion mutagenesis. Here, we present the crystal structure of the MtxA C-terminal domain and provide new insights into its sequence-structure relationship.
Collapse
Affiliation(s)
- Geula Davidov
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the NegevBeer Sheva, Israel
| | - Frank D. Müller
- Department of Microbiology, University of BayreuthBayreuth, Germany
| | - Jens Baumgartner
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces (MPI)Potsdam, Germany
| | - Ronit Bitton
- Department of Chemical Engineering, Ilse Katz Institute for Nanoscale Science and Technology, Ben Gurion University of the NegevBeer-Sheva, Israel
| | - Damien Faivre
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces (MPI)Potsdam, Germany
| | - Dirk Schüler
- Department of Microbiology, University of BayreuthBayreuth, Germany
| | - Raz Zarivach
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the NegevBeer Sheva, Israel,*Correspondence: Raz Zarivach, Department of Life Sciences, Ben Gurion University of the Negev, PO Box. 653, Beer-Sheva 84105, Israel
| |
Collapse
|
24
|
Hennig J, Andrésen C, Museth AK, Lundström P, Tibell LAE, Jonsson BH. Local Destabilization of the Metal-Binding Region in Human Copper–Zinc Superoxide Dismutase by Remote Mutations Is a Possible Determinant for Progression of ALS. Biochemistry 2015; 54:323-33. [DOI: 10.1021/bi500606j] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Janosch Hennig
- Division
of Molecular Biotechnology, Department of Physics, Chemistry and Biology, Linköping University, SE-581 83, Linköping, Sweden
- Institute
of Structural Biology, Helmholtz Zentrum München GmbH, DE-85764 Neuherberg, Germany
- Chair
of Biomolecular NMR Spectroscopy, Department of Chemistry, Technische Universität München, DE-85748 Garching, Germany
| | - Cecilia Andrésen
- Division
of Molecular Biotechnology, Department of Physics, Chemistry and Biology, Linköping University, SE-581 83, Linköping, Sweden
| | - A. Katrine Museth
- Division
of Molecular Biotechnology, Department of Physics, Chemistry and Biology, Linköping University, SE-581 83, Linköping, Sweden
- Division
of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Patrik Lundström
- Division
of Molecular Biotechnology, Department of Physics, Chemistry and Biology, Linköping University, SE-581 83, Linköping, Sweden
| | - Lena A. E. Tibell
- Department
of Science and Technology, Linköping University, SE-601 74, Norrköping, Sweden
| | - Bengt-Harald Jonsson
- Division
of Molecular Biotechnology, Department of Physics, Chemistry and Biology, Linköping University, SE-581 83, Linköping, Sweden
| |
Collapse
|
25
|
Sea K, Sohn SH, Durazo A, Sheng Y, Shaw BF, Cao X, Taylor AB, Whitson LJ, Holloway SP, Hart PJ, Cabelli DE, Gralla EB, Valentine JS. Insights into the role of the unusual disulfide bond in copper-zinc superoxide dismutase. J Biol Chem 2014; 290:2405-18. [PMID: 25433341 DOI: 10.1074/jbc.m114.588798] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The functional and structural significance of the intrasubunit disulfide bond in copper-zinc superoxide dismutase (SOD1) was studied by characterizing mutant forms of human SOD1 (hSOD) and yeast SOD1 lacking the disulfide bond. We determined x-ray crystal structures of metal-bound and metal-deficient hC57S SOD1. C57S hSOD1 isolated from yeast contained four zinc ions per protein dimer and was structurally very similar to wild type. The addition of copper to this four-zinc protein gave properly reconstituted 2Cu,2Zn C57S hSOD, and its spectroscopic properties indicated that the coordination geometry of the copper was remarkably similar to that of holo wild type hSOD1. In contrast, the addition of copper and zinc ions to apo C57S human SOD1 failed to give proper reconstitution. Using pulse radiolysis, we determined SOD activities of yeast and human SOD1s lacking disulfide bonds and found that they were enzymatically active at ∼10% of the wild type rate. These results are contrary to earlier reports that the intrasubunit disulfide bonds in SOD1 are essential for SOD activity. Kinetic studies revealed further that the yeast mutant SOD1 had less ionic attraction for superoxide, possibly explaining the lower rates. Saccharomyces cerevisiae cells lacking the sod1 gene do not grow aerobically in the absence of lysine, but expression of C57S SOD1 increased growth to 30-50% of the growth of cells expressing wild type SOD1, supporting that C57S SOD1 retained a significant amount of activity.
Collapse
Affiliation(s)
- Kevin Sea
- From the Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, the Department of Wine Studies, Santa Rosa Junior College, Santa Rosa, California 95401,
| | - Se Hui Sohn
- From the Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, LG Chem, Ltd., Yuseong-gu, Daejeon 305-380, Korea
| | - Armando Durazo
- From the Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, the Department of Chemical and Environmental Engineering, University of Arizona, Tucson, Arizona 85721
| | - Yuewei Sheng
- From the Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095
| | - Bryan F Shaw
- From the Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, the Department of Chemistry and Biochemistry, Baylor University, Waco, Texas 76798
| | - Xiaohang Cao
- the Department of Biochemistry, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229
| | - Alexander B Taylor
- the Department of Biochemistry, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229
| | - Lisa J Whitson
- the Department of Biochemistry, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229
| | - Stephen P Holloway
- the Department of Biochemistry, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229
| | - P John Hart
- the Department of Biochemistry, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229, the Department of Veterans Affairs, South Texas Veterans Health Care System, San Antonio, Texas 78229, and
| | - Diane E Cabelli
- the Chemistry Department, Brookhaven National Laboratory, Upton, New York 11973
| | - Edith Butler Gralla
- From the Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095
| | - Joan Selverstone Valentine
- From the Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, the Department of Bioinspired Science, Ewha Womans University, Seoul 120-750, Korea
| |
Collapse
|
26
|
Estácio SG, Leal SS, Cristóvão JS, Faísca PFN, Gomes CM. Calcium binding to gatekeeper residues flanking aggregation-prone segments underlies non-fibrillar amyloid traits in superoxide dismutase 1 (SOD1). BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1854:118-26. [PMID: 25463043 DOI: 10.1016/j.bbapap.2014.11.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 11/14/2014] [Accepted: 11/18/2014] [Indexed: 12/26/2022]
Abstract
Calcium deregulation is a central feature among neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS). Calcium accumulates in the spinal and brain stem motor neurons of ALS patients triggering multiple pathophysiological processes which have been recently shown to include direct effects on the aggregation cascade of superoxide dismutase 1 (SOD1). SOD1 is a Cu/Zn enzyme whose demetallated form is implicated in ALS protein deposits, contributing to toxic gain of function phenotypes. Here we undertake a combined experimental and computational study aimed at establishing the molecular details underlying the regulatory effects of Ca(2+) over SOD1 aggregation potential. Isothermal titration calorimetry indicates entropy driven low affinity association of Ca(2+) ions to apo SOD1, at pH7.5 and 37°C. Molecular dynamics simulations denote a noticeable loss of native structure upon Ca(2+) association that is especially prominent at the zinc-binding and electrostatic loops, whose decoupling is known to expose the central SOD1 β-barrel triggering aggregation. Structural mapping of the preferential apo SOD1 Ca(2+) binding locations reveals that among the most frequent ligands for Ca(2+) are negatively-charged gatekeeper residues located in boundary positions with respect to segments highly prone to edge-to-edge aggregation. Calcium interactions thus diminish gatekeeping roles of these residues, by shielding repulsive interactions via stacking between aggregating β-sheets, partly blocking fibril formation and promoting amyloidogenic oligomers such as those found in ALS inclusions. Interestingly, many fALS mutations occur at these positions, disclosing how Ca(2+) interactions recreate effects similar to those of genetic defects, a finding with relevance to understand sporadic ALS pathomechanisms.
Collapse
Affiliation(s)
- Sílvia G Estácio
- Centro de Física da Matéria Condensada, Universidade de Lisboa, Lisboa, Portugal; Departamento de Física, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal.
| | - Sónia S Leal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Joana S Cristóvão
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Patrícia F N Faísca
- Centro de Física da Matéria Condensada, Universidade de Lisboa, Lisboa, Portugal; Departamento de Física, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal.
| | - Cláudio M Gomes
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal.
| |
Collapse
|
27
|
Ayers JI, Xu G, Pletnikova O, Troncoso JC, Hart PJ, Borchelt DR. Conformational specificity of the C4F6 SOD1 antibody; low frequency of reactivity in sporadic ALS cases. Acta Neuropathol Commun 2014; 2:55. [PMID: 24887207 PMCID: PMC4035506 DOI: 10.1186/2051-5960-2-55] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 04/27/2014] [Indexed: 12/22/2022] Open
Abstract
Greater than 160 missense mutations in copper-zinc superoxide dismutase-1 (SOD1) can cause amyotrophic lateral sclerosis (ALS). These mutations produce conformational changes that reveal novel antibody binding epitopes. A monoclonal antibody, clone C4F6 - raised against the ALS variant G93A of SOD1, has been identified as specifically recognizing a conformation shared by many ALS mutants of SOD1. Attempts to determine whether non-mutant SOD1 adopts a C4F6-reactive conformation in spinal tissues of sporadic ALS (sALS) patients has produced inconsistent results. To define the epitope recognized by C4F6, we tested its binding to a panel of recombinant ALS-SOD1 proteins expressed in cultured cells, producing data to suggest that the C4F6 epitope minimally contains amino acids 90-93, which are normally folded into a tight hairpin loop. Multiple van der Waals interactions between the 90-93 loop and a loop formed by amino acids 37-42, particularly a leucine at position 38, form a stable structure termed the β-plug. Based on published modeling predictions, we suggest that the binding of C4F6 to multiple ALS mutants of SOD1 occurs when the local structure within the β-plug, including the loop at 90-93, is destabilized. In using the antibody to stain tissues from transgenic mice or humans, the specificity of the antibody for ALS mutant SOD1 was influenced by antigen retrieval protocols. Using conditions that showed the best discrimination between normal and misfolded mutant SOD1 in cell and mouse models, we could find no obvious difference in C4F6 reactivity to spinal motor neurons between sALS and controls tissues.
Collapse
|
28
|
Sheng Y, Abreu IA, Cabelli DE, Maroney MJ, Miller AF, Teixeira M, Valentine JS. Superoxide dismutases and superoxide reductases. Chem Rev 2014; 114:3854-918. [PMID: 24684599 PMCID: PMC4317059 DOI: 10.1021/cr4005296] [Citation(s) in RCA: 674] [Impact Index Per Article: 61.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Indexed: 11/30/2022]
Affiliation(s)
- Yuewei Sheng
- Department
of Chemistry and Biochemistry, University
of California Los Angeles, Los
Angeles, California 90095, United States
| | - Isabel A. Abreu
- Instituto
de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157, Oeiras, Portugal
- Instituto
de Biologia Experimental e Tecnológica, Av. da República,
Qta. do Marquês, Estação Agronómica Nacional,
Edificio IBET/ITQB, 2780-157, Oeiras, Portugal
| | - Diane E. Cabelli
- Chemistry
Department, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Michael J. Maroney
- Department
of Chemistry, University of Massachusetts
Amherst, Amherst, Massachusetts 01003, United States
| | - Anne-Frances Miller
- Department
of Chemistry, University of Kentucky, Lexington, Kentucky 40506-0055, United States
| | - Miguel Teixeira
- Instituto
de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157, Oeiras, Portugal
| | - Joan Selverstone Valentine
- Department
of Chemistry and Biochemistry, University
of California Los Angeles, Los
Angeles, California 90095, United States
- Department
of Bioinspired Sciences, Ewha Womans University, Seoul 120-750, Republic of Korea
| |
Collapse
|
29
|
Rotunno MS, Bosco DA. An emerging role for misfolded wild-type SOD1 in sporadic ALS pathogenesis. Front Cell Neurosci 2013; 7:253. [PMID: 24379756 PMCID: PMC3863749 DOI: 10.3389/fncel.2013.00253] [Citation(s) in RCA: 174] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2013] [Accepted: 11/25/2013] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder that targets motor neurons, leading to paralysis and death within a few years of disease onset. While several genes have been linked to the inheritable, or familial, form of ALS, much less is known about the cause(s) of sporadic ALS, which accounts for ~90% of ALS cases. Due to the clinical similarities between familial and sporadic ALS, it is plausible that both forms of the disease converge on a common pathway and, therefore, involve common factors. Recent evidence suggests the Cu,Zn-superoxide dismutase (SOD1) protein to be one such factor that is common to both sporadic and familial ALS. In 1993, mutations were uncovered in SOD1 that represent the first known genetic cause of familial ALS. While the exact mechanism of mutant-SOD1 toxicity is still not known today, most evidence points to a gain of toxic function that stems, at least in part, from the propensity of this protein to misfold. In the wild-type SOD1 protein, non-genetic perturbations such as metal depletion, disruption of the quaternary structure, and oxidation, can also induce SOD1 to misfold. In fact, these aforementioned post-translational modifications cause wild-type SOD1 to adopt a “toxic conformation” that is similar to familial ALS-linked SOD1 variants. These observations, together with the detection of misfolded wild-type SOD1 within human post-mortem sporadic ALS samples, have been used to support the controversial hypothesis that misfolded forms of wild-type SOD1 contribute to sporadic ALS pathogenesis. In this review, we present data from the literature that both support and contradict this hypothesis. We also discuss SOD1 as a potential therapeutic target for both familial and sporadic ALS.
Collapse
Affiliation(s)
- Melissa S Rotunno
- Department of Neurology, University of Massachusetts Medical Center Worcester, MA, USA
| | - Daryl A Bosco
- Department of Neurology, University of Massachusetts Medical Center Worcester, MA, USA
| |
Collapse
|
30
|
Prudencio M, Lelie H, Brown HH, Whitelegge JP, Valentine JS, Borchelt DR. A novel variant of human superoxide dismutase 1 harboring amyotrophic lateral sclerosis-associated and experimental mutations in metal-binding residues and free cysteines lacks toxicity in vivo. J Neurochem 2012; 121:475-85. [PMID: 22332887 PMCID: PMC3705958 DOI: 10.1111/j.1471-4159.2012.07690.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Mutations in superoxide dismutase 1 (SOD1) cause familial amyotrophic lateral sclerosis. The Cu-binding capacity of SOD1 has spawned hypotheses that implicate metal-mediated production of reactive species as a potential mechanism of toxicity. In past experiments, we have tested such hypotheses by mutating residues in SOD1 that normally coordinate the binding of Cu, finding that such mutants retain the capacity to induce motor neuron disease. We now describe the lack of disease in mice that express a variant of human SOD1 in which residues that coordinate the binding of Cu and Zn have been mutated (SODMD). SODMD encodes three disease-causing and four experimental mutations that ultimately eliminate all histidines involved in the binding of metals; and includes one disease-causing and one experimental mutation that eliminate secondary metal binding at C6 and C111. We show that the combined effect of these mutations produces a protein that is unstable but does not aggregate on its own, is not toxic, and does not induce disease when co-expressed with high levels of wild-type SOD1. In cell culture models, we determine that the combined mutation of C6 and C111 to G and S, respectively, dramatically reduces the aggregation propensity of SODMD and may account for the lack of toxicity for this mutant.
Collapse
Affiliation(s)
- Mercedes Prudencio
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, McKnight Brain Institute, University of Florida, Gainesville, Florida 32610
| | - Herman Lelie
- Department of Chemistry and Biochemistry, University of California at Los Angeles, Los Angeles, CA 90024
| | - Hilda H. Brown
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, McKnight Brain Institute, University of Florida, Gainesville, Florida 32610
| | - Julian P. Whitelegge
- The Pasarow Mass Spectrometry Laboratory, The NPI-Semel Institute, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90024
| | - Joan S. Valentine
- Department of Chemistry and Biochemistry, University of California at Los Angeles, Los Angeles, CA 90024
| | - David R. Borchelt
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, McKnight Brain Institute, University of Florida, Gainesville, Florida 32610
| |
Collapse
|
31
|
Lee JU, Lee WJ, Park HS, Lee SY. Calculation of the Absolute Rate of Human Cu/Zn Superoxide Dismutases from Atomic-Level Molecular Dynamics Simulations. B KOREAN CHEM SOC 2012. [DOI: 10.5012/bkcs.2012.33.3.862] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
32
|
Chang DTH, Yao TJ, Fan CY, Chiang CY, Bai YH. AH-DB: collecting protein structure pairs before and after binding. Nucleic Acids Res 2012; 40:D472-8. [PMID: 22084200 PMCID: PMC3245139 DOI: 10.1093/nar/gkr940] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Revised: 10/10/2011] [Accepted: 10/12/2011] [Indexed: 01/29/2023] Open
Abstract
This work presents the Apo-Holo DataBase (AH-DB, http://ahdb.ee.ncku.edu.tw/ and http://ahdb.csbb.ntu.edu.tw/), which provides corresponding pairs of protein structures before and after binding. Conformational transitions are commonly observed in various protein interactions that are involved in important biological functions. For example, copper-zinc superoxide dismutase (SOD1), which destroys free superoxide radicals in the body, undergoes a large conformational transition from an 'open' state (apo structure) to a 'closed' state (holo structure). Many studies have utilized collections of apo-holo structure pairs to investigate the conformational transitions and critical residues. However, the collection process is usually complicated, varies from study to study and produces a small-scale data set. AH-DB is designed to provide an easy and unified way to prepare such data, which is generated by identifying/mapping molecules in different Protein Data Bank (PDB) entries. Conformational transitions are identified based on a refined alignment scheme to overcome the challenge that many structures in the PDB database are only protein fragments and not complete proteins. There are 746,314 apo-holo pairs in AH-DB, which is about 30 times those in the second largest collection of similar data. AH-DB provides sophisticated interfaces for searching apo-holo structure pairs and exploring conformational transitions from apo structures to the corresponding holo structures.
Collapse
Affiliation(s)
- Darby Tien-Hao Chang
- Department of Electrical Engineering, National Cheng Kung University, Tainan 70101, Taiwan.
| | | | | | | | | |
Collapse
|
33
|
Schuyler AD, Carlson HA, Feldman EL. Computational methods for identifying a layered allosteric regulatory mechanism for ALS-causing mutations of Cu-Zn superoxide dismutase 1. Proteins 2011; 79:417-27. [PMID: 21104697 PMCID: PMC3058251 DOI: 10.1002/prot.22892] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The most prominent form of familial amyotrophic lateral sclerosis (fALS, Lou Gehrig's Disease) is caused by mutations of Cu-Zn superoxide dismutase 1 (SOD1). SOD1 maintains antioxidant activity under fALS causing mutations, suggesting that the mutations introduce a new, toxic, function. There are 100+ such known mutations that are chemically diverse and spatially distributed across the structure. The common phenotype leads us to propose an allosteric regulatory mechanism hypothesis: SOD1 mutants alter the correlated dynamics of the structure and differentially signal across an inherent allosteric network, thereby driving the disease mechanism at varying rates of efficiency. Two recently developed computational methods for identifying allosteric control sites are applied to the wild type crystal structure, 4 fALS mutant crystal structures, 20 computationally generated fALS mutants and 1 computationally generated non-fALS mutant. The ensemble of mutant structures is used to generate an ensemble of dynamics, from which two allosteric control networks are identified. One network is connected to the catalytic site and thus may be involved in the natural antioxidant function. The second allosteric control network has a locus bordering the dimer interface and thus may serve as a mechanism to modulate dimer stability. Though the toxic function of mutated SOD1 is unknown and likely due to several contributing factors, this study explains how diverse mutations give rise to a common function. This new paradigm for allostery controlled function has broad implications across allosteric systems and may lead to the identification of the key chemical activity of SOD1-linked ALS.
Collapse
Affiliation(s)
- Adam D Schuyler
- Department of Molecular, Microbial and Structural Biology, University of Connecticut Health Center, Farmington, Connecticut 06030, USA.
| | | | | |
Collapse
|
34
|
Seetharaman SV, Taylor AB, Holloway S, Hart PJ. Structures of mouse SOD1 and human/mouse SOD1 chimeras. Arch Biochem Biophys 2010; 503:183-90. [PMID: 20727846 PMCID: PMC3037271 DOI: 10.1016/j.abb.2010.08.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2010] [Revised: 08/13/2010] [Accepted: 08/16/2010] [Indexed: 10/19/2022]
Abstract
Mutations in human copper-zinc superoxide dismutase (SOD1) cause an inherited form of amyotrophic lateral sclerosis (ALS). Inclusions enriched in pathogenic SOD1 accumulate in the spinal cords of transgenic mice expressing these proteins, but endogenous mouse SOD1 is not found as a component of these aggregates. In the accompanying paper, Karch and colleagues analyze aggregation propensities of human/mouse SOD1 chimeras in cell culture and identify two sequence elements in the human enzyme that seem to enhance its aggregation relative to the mouse enzyme. Here, we report the first structure of mouse SOD1 along with those of SOD1 chimeras in which residues 1-80 come from human SOD1 and residues 81-153 come from mouse SOD1 and vice versa. Taken together, the structural and cell-based data suggest a model in which residues Q42 and Q123 in mouse SOD1 modulate non-native SOD1-SOD1 intermolecular interactions at edge strands in the SOD1 Greek key β-barrel.
Collapse
Affiliation(s)
- Sai V. Seetharaman
- Department of Biochemistry, The University of Texas Health Science Center, San Antonio, TX 78229 U.S.A
| | - Alexander B. Taylor
- Department of Biochemistry, The University of Texas Health Science Center, San Antonio, TX 78229 U.S.A
- X-ray Crystallography Core Laboratory, The University of Texas Health Science Center, San Antonio, TX 78229 U.S.A
| | - Stephen Holloway
- Department of Biochemistry, The University of Texas Health Science Center, San Antonio, TX 78229 U.S.A
| | - P. John Hart
- Department of Biochemistry, The University of Texas Health Science Center, San Antonio, TX 78229 U.S.A
- X-ray Crystallography Core Laboratory, The University of Texas Health Science Center, San Antonio, TX 78229 U.S.A
- Geriatric Research, Education, and Clinical Center, Department of Veterans Affairs, South Texas Veterans Health Care System, San Antonio TX, 78229 U.S.A
| |
Collapse
|
35
|
Seetharaman SV, Winkler DD, Taylor AB, Cao X, Whitson LJ, Doucette PA, Valentine JS, Schirf V, Demeler B, Carroll MC, Culotta VC, Hart PJ. Disrupted zinc-binding sites in structures of pathogenic SOD1 variants D124V and H80R. Biochemistry 2010; 49:5714-25. [PMID: 20515040 PMCID: PMC3037816 DOI: 10.1021/bi100314n] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Mutations in human copper-zinc superoxide dismutase (SOD1) cause an inherited form of the fatal neurodegenerative disease amyotrophic lateral sclerosis (ALS). Here, we present structures of the pathogenic SOD1 variants D124V and H80R, both of which demonstrate compromised zinc-binding sites. The disruption of the zinc-binding sites in H80R SOD1 leads to conformational changes in loop elements, permitting non-native SOD1-SOD1 interactions that mediate the assembly of these proteins into higher-order filamentous arrays. Analytical ultracentrifugation sedimentation velocity experiments indicate that these SOD1 variants are more prone to monomerization than the wild-type enzyme. Although D124V and H80R SOD1 proteins appear to have fully functional copper-binding sites, inductively coupled plasma mass spectrometery (ICP-MS) and anomalous scattering X-ray diffraction analyses reveal that zinc (not copper) occupies the copper-binding sites in these variants. The absence of copper in these proteins, together with the results of covalent thiol modification experiments in yeast strains with and without the gene encoding the copper chaperone for SOD1 (CCS), suggests that CCS may not fully act on newly translated forms of these polypeptides. Overall, these findings lend support to the hypothesis that immature mutant SOD1 species contribute to toxicity in SOD1-linked ALS.
Collapse
Affiliation(s)
- Sai V. Seetharaman
- Department of Biochemistry, The University of Texas Health Science Center, San Antonio, TX 78229
- X-ray Crystallography Core Laboratory, The University of Texas Health Science Center, San Antonio, TX 78229
| | - Duane D. Winkler
- Department of Biochemistry, The University of Texas Health Science Center, San Antonio, TX 78229
- X-ray Crystallography Core Laboratory, The University of Texas Health Science Center, San Antonio, TX 78229
| | - Alexander B. Taylor
- Department of Biochemistry, The University of Texas Health Science Center, San Antonio, TX 78229
- X-ray Crystallography Core Laboratory, The University of Texas Health Science Center, San Antonio, TX 78229
| | - Xiaohang Cao
- Department of Biochemistry, The University of Texas Health Science Center, San Antonio, TX 78229
- X-ray Crystallography Core Laboratory, The University of Texas Health Science Center, San Antonio, TX 78229
| | - Lisa J. Whitson
- Department of Biochemistry, The University of Texas Health Science Center, San Antonio, TX 78229
- X-ray Crystallography Core Laboratory, The University of Texas Health Science Center, San Antonio, TX 78229
| | - Peter A. Doucette
- Department of Chemistry and Biochemistry, The University of California, Los Angeles, CA 90095
| | - Joan S. Valentine
- Department of Chemistry and Biochemistry, The University of California, Los Angeles, CA 90095
| | - Virgil Schirf
- Department of Biochemistry, The University of Texas Health Science Center, San Antonio, TX 78229
| | - Borries Demeler
- Department of Biochemistry, The University of Texas Health Science Center, San Antonio, TX 78229
| | - Mark C. Carroll
- Department of Environmental Health Sciences, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205
| | - Valeria C. Culotta
- Department of Environmental Health Sciences, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205
| | - P. John Hart
- Department of Biochemistry, The University of Texas Health Science Center, San Antonio, TX 78229
- X-ray Crystallography Core Laboratory, The University of Texas Health Science Center, San Antonio, TX 78229
- Geriatric Research, Education, and Clinical Center, Department of Veterans Affairs, South Texas Veterans Health Care System, San Antonio TX, 78229 U.S.A
| |
Collapse
|
36
|
Perry J, Shin D, Getzoff E, Tainer J. The structural biochemistry of the superoxide dismutases. BIOCHIMICA ET BIOPHYSICA ACTA 2010; 1804:245-62. [PMID: 19914407 PMCID: PMC3098211 DOI: 10.1016/j.bbapap.2009.11.004] [Citation(s) in RCA: 350] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2009] [Revised: 11/04/2009] [Accepted: 11/05/2009] [Indexed: 01/11/2023]
Abstract
The discovery of superoxide dismutases (SODs), which convert superoxide radicals to molecular oxygen and hydrogen peroxide, has been termed the most important discovery of modern biology never to win a Nobel Prize. Here, we review the reasons this discovery has been underappreciated, as well as discuss the robust results supporting its premier biological importance and utility for current research. We highlight our understanding of SOD function gained through structural biology analyses, which reveal important hydrogen-bonding schemes and metal-binding motifs. These structural features create remarkable enzymes that promote catalysis at faster than diffusion-limited rates by using electrostatic guidance. These architectures additionally alter the redox potential of the active site metal center to a range suitable for the superoxide disproportionation reaction and protect against inhibition of catalysis by molecules such as phosphate. SOD structures may also control their enzymatic activity through product inhibition; manipulation of these product inhibition levels has the potential to generate therapeutic forms of SOD. Markedly, structural destabilization of the SOD architecture can lead to disease, as mutations in Cu,ZnSOD may result in familial amyotrophic lateral sclerosis, a relatively common, rapidly progressing and fatal neurodegenerative disorder. We describe our current understanding of how these Cu,ZnSOD mutations may lead to aggregation/fibril formation, as a detailed understanding of these mechanisms provides new avenues for the development of therapeutics against this so far untreatable neurodegenerative pathology.
Collapse
Affiliation(s)
- J.J.P. Perry
- Skaggs Institute for Chemical Biology and Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
- The School of Biotechnology, Amrita University, Kollam, Kerala 690525, India
| | - D.S. Shin
- Skaggs Institute for Chemical Biology and Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - E.D. Getzoff
- Skaggs Institute for Chemical Biology and Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - J.A. Tainer
- Skaggs Institute for Chemical Biology and Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
- Life Sciences Division, Department of Molecular Biology, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| |
Collapse
|
37
|
Shaw BF, Moustakas DT, Whitelegge JP, Faull KF. Taking Charge of Proteins. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2010; 79:127-64. [DOI: 10.1016/s1876-1623(10)79004-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
38
|
Galaleldeen A, Strange RW, Whitson LJ, Antonyuk SV, Narayana N, Taylor AB, Schuermann JP, Holloway SP, Hasnain SS, Hart PJ. Structural and biophysical properties of metal-free pathogenic SOD1 mutants A4V and G93A. Arch Biochem Biophys 2009; 492:40-7. [PMID: 19800308 PMCID: PMC2787720 DOI: 10.1016/j.abb.2009.09.020] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2009] [Revised: 09/25/2009] [Accepted: 09/27/2009] [Indexed: 02/06/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal, progressive neurodegenerative disease characterized by the destruction of motor neurons in the spinal cord and brain. A subset of ALS cases are linked to dominant mutations in copper-zinc superoxide dismutase (SOD1). The pathogenic SOD1 variants A4V and G93A have been the foci of multiple studies aimed at understanding the molecular basis for SOD1-linked ALS. The A4V variant is responsible for the majority of familial ALS cases in North America, causing rapidly progressing paralysis once symptoms begin and the G93A SOD1 variant is overexpressed in often studied murine models of the disease. Here we report the three-dimensional structures of metal-free A4V and of metal-bound and metal-free G93A SOD1. In the metal-free structures, the metal-binding loop elements are observed to be severely disordered, suggesting that these variants may share mechanisms of aggregation proposed previously for other pathogenic SOD1 proteins.
Collapse
Affiliation(s)
- Ahmad Galaleldeen
- Department of Biochemistry and the X-ray Crystallography Core Laboratory, The University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Museth AK, Brorsson AC, Lundqvist M, Tibell LAE, Jonsson BH. The ALS-associated mutation G93A in human copper-zinc superoxide dismutase selectively destabilizes the remote metal binding region. Biochemistry 2009; 48:8817-29. [PMID: 19655787 DOI: 10.1021/bi900703v] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
More than 100 distinct mutations in the gene (SOD1) for human copper-zinc superoxide dismutase (CuZnSOD) have been associated with familial amyotrophic lateral sclerosis (fALS). Studies of these mutant proteins, which often have been performed under far from physiological conditions, have indicated effects on protein stabilities, catalytic activity, and metal binding affinities but with no common pattern. Also, with the knowledge that ALS is a late onset disease it is apparent that protein interactions which contribute to the disorder might, in the natural cellular milieu, depend on a delicate balance between intrinsic protein properties. In this study, we have used experimental conditions as near as possible to the in vivo conditions to reduce artifacts emanating from the experimental setup. Using 1H-15N HSQC NMR spectroscopy, we have analyzed hydrogen exchange at the amide groups of wild-type (wt) CuZnSOD and the fALS-associated G93A SOD variant in their fully metalated states. From analyses of the exchange pattern, we have characterized the local dynamics at 64% of all positions in detail in both the wt and G93A protein. The results show that the G93A mutation had no effect on the dynamics at a majority of the investigated positions. However, the mutation results in local destabilization at the site of the mutation and also in stabilization at a few positions that were apparently scattered over the entire protein surface. Most remarkably, the mutation selectively destabilized the remote metal binding region. The results indicate that the metal binding region may affect the intermolecular protein-protein interactions which cause formation of protein aggregates.
Collapse
Affiliation(s)
- Anna Katrine Museth
- Division of Molecular Biotechnology, Department of Physics, Chemistry and Biology, Linköping University, SE-581 83 Linköping, Sweden
| | | | | | | | | |
Collapse
|
40
|
Tiwari A, Liba A, Sohn SH, Seetharaman SV, Bilsel O, Matthews CR, Hart PJ, Valentine JS, Hayward LJ. Metal deficiency increases aberrant hydrophobicity of mutant superoxide dismutases that cause amyotrophic lateral sclerosis. J Biol Chem 2009; 284:27746-58. [PMID: 19651777 PMCID: PMC2785702 DOI: 10.1074/jbc.m109.043729] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2009] [Indexed: 11/06/2022] Open
Abstract
The mechanisms by which mutant variants of Cu/Zn-superoxide dismutase (SOD1) cause familial amyotrophic lateral sclerosis are not clearly understood. Evidence to date suggests that altered conformations of amyotrophic lateral sclerosis mutant SOD1s trigger perturbations of cellular homeostasis that ultimately cause motor neuron degeneration. In this study we correlated the metal contents and disulfide bond status of purified wild-type (WT) and mutant SOD1 proteins to changes in electrophoretic mobility and surface hydrophobicity as detected by 1-anilinonaphthalene-8-sulfonic acid (ANS) fluorescence. As-isolated WT and mutant SOD1s were copper-deficient and exhibited mobilities that correlated with their expected negative charge. However, upon disulfide reduction and demetallation at physiological pH, both WT and mutant SOD1s underwent a conformational change that produced a slower mobility indicative of partial unfolding. Furthermore, although ANS did not bind appreciably to the WT holoenzyme, incubation of metal-deficient WT or mutant SOD1s with ANS increased the ANS fluorescence and shifted its peak toward shorter wavelengths. This increased interaction with ANS was greater for the mutant SOD1s and could be reversed by the addition of metal ions, especially Cu(2+), even for SOD1 variants incapable of forming the disulfide bond. Overall, our findings support the notion that misfolding associated with metal deficiency may facilitate aberrant interactions of SOD1 with itself or with other cellular constituents and may thereby contribute to neuronal toxicity.
Collapse
Affiliation(s)
- Ashutosh Tiwari
- From the Department of Neurology, University of Massachusetts Medical School, Worcester, Massachusetts 01655
| | - Amir Liba
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095
| | - Se Hui Sohn
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095
| | - Sai V. Seetharaman
- Department of Biochemistry, University of Texas Health Science Center, San Antonio, Texas 78229, and
| | - Osman Bilsel
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01655
| | - C. Robert Matthews
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01655
| | - P. John Hart
- Department of Biochemistry, University of Texas Health Science Center, San Antonio, Texas 78229, and
| | | | - Lawrence J. Hayward
- From the Department of Neurology, University of Massachusetts Medical School, Worcester, Massachusetts 01655
| |
Collapse
|
41
|
Seetharaman SV, Prudencio M, Karch C, Holloway SP, Borchelt DR, Hart PJ. Immature copper-zinc superoxide dismutase and familial amyotrophic lateral sclerosis. Exp Biol Med (Maywood) 2009; 234:1140-54. [PMID: 19596823 PMCID: PMC2850267 DOI: 10.3181/0903-mr-104] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Mutations in human copper-zinc superoxide dismutase (SOD1) cause an inherited form of amyotrophic lateral sclerosis (ALS, Lou Gehrig's disease, motor neuron disease). Insoluble forms of mutant SOD1 accumulate in neural tissues of human ALS patients and in spinal cords of transgenic mice expressing these polypeptides, suggesting that SOD1-linked ALS is a protein misfolding disorder. Understanding the molecular basis for how the pathogenic mutations give rise to SOD1 folding intermediates, which may themselves be toxic, is therefore of keen interest. A critical step on the SOD1 folding pathway occurs when the copper chaperone for SOD1 (CCS) modifies the nascent SOD1 polypeptide by inserting the catalytic copper cofactor and oxidizing its intrasubunit disulfide bond. Recent studies reveal that pathogenic SOD1 proteins coming from cultured cells and from the spinal cords of transgenic mice tend to be metal-deficient and/or lacking the disulfide bond, raising the possibility that the disease-causing mutations may enhance levels of SOD1-folding intermediates by preventing or hindering CCS-mediated SOD1 maturation. This mini-review explores this hypothesis by highlighting the structural and biophysical properties of the pathogenic SOD1 mutants in the context of what is currently known about CCS structure and action. Other hypotheses as to the nature of toxicity inherent in pathogenic SOD1 proteins are not covered.
Collapse
Affiliation(s)
- Sai V. Seetharaman
- Department of Biochemistry and the X-ray Crystallography Core Laboratory, The University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229
| | - Mercedes Prudencio
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, Florida 32610
| | - Celeste Karch
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, Florida 32610
| | - Stephen P. Holloway
- Department of Biochemistry and the X-ray Crystallography Core Laboratory, The University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229
| | - David R. Borchelt
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, Florida 32610
| | - P. John Hart
- Department of Biochemistry and the X-ray Crystallography Core Laboratory, The University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229
- Geriatric Research, Education, and Clinical Center, Department of Veterans Affairs, South Texas Veterans Health Care System, The University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229
| |
Collapse
|
42
|
Molnar KS, Karabacak NM, Johnson JL, Wang Q, Tiwari A, Hayward LJ, Coales SJ, Hamuro Y, Agar JN. A common property of amyotrophic lateral sclerosis-associated variants: destabilization of the copper/zinc superoxide dismutase electrostatic loop. J Biol Chem 2009; 284:30965-73. [PMID: 19635794 DOI: 10.1074/jbc.m109.023945] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
At least 119 mutations in the gene encoding copper/zinc superoxide dismutase (SOD1) cause amyotrophic lateral sclerosis by an unidentified toxic gain of function. We compared the dynamic properties of 13 as-isolated, partially metallated, SOD1 variant enzymes using hydrogen-deuterium exchange. We identified a shared property of these familial amyotrophic lateral sclerosis-related SOD1 variants, namely structural and dynamic change affecting the electrostatic loop (loop VII) of SOD1. Furthermore, SOD1 variants that have severely compromised metal binding affinities demonstrated additional structural and dynamic changes to the zinc-binding loop (loop IV) of SOD1. Although the biological consequences of increased loop VII mobility are not fully understood, this common property is consistent with the hypotheses that SOD1 mutations exert toxicity via aggregation or aberrant association with other cellular constituents.
Collapse
Affiliation(s)
- Kathleen S Molnar
- Department of Chemistry, Volen Center, Brandeis University, Waltham, Massachusetts 02454, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Chattopadhyay M, Valentine JS. Aggregation of copper-zinc superoxide dismutase in familial and sporadic ALS. Antioxid Redox Signal 2009; 11:1603-14. [PMID: 19271992 PMCID: PMC2842589 DOI: 10.1089/ars.2009.2536] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2009] [Accepted: 03/07/2009] [Indexed: 01/26/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive, fatal neurodegenerative disease characterized by the selective death of motor neurons. While the most common form of ALS is sporadic and has no known cause, a small subset of cases is familial because of underlying genetic mutations. The best-studies example of familial ALS is that caused by mutations in the protein copper-zinc superoxide dismutase. The formation of SOD1-rich inclusions in the spinal cord is an early and prominent feature of SOD1-linked familial ALS in human patients and animal models of this disease. These inclusions have been shown to consist of SOD1-rich fibrils, suggesting that the conversion of soluble SOD1 into amyloid fibrils may play an important role in the etiology of familial ALS. SOD1 is also present in inclusions found in spinal cords of sporadic ALS patients, allowing speculations to arise regarding a possible involvement of SOD1 in the sporadic form of this disease. We here review the recent research on the significance, causes, and mechanisms of SOD1 fibril formation from a biophysical perspective.
Collapse
Affiliation(s)
- Madhuri Chattopadhyay
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California, USA
| | | |
Collapse
|
44
|
Winkler DD, Schuermann JP, Cao X, Holloway SP, Borchelt DR, Carroll MC, Proescher JB, Culotta VC, Hart PJ. Structural and biophysical properties of the pathogenic SOD1 variant H46R/H48Q. Biochemistry 2009; 48:3436-47. [PMID: 19227972 PMCID: PMC2757159 DOI: 10.1021/bi8021735] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Over 100 mutations in the gene encoding human copper-zinc superoxide dismutase (SOD1) cause an inherited form of the fatal neurodegenerative disease amyotrophic lateral sclerosis (ALS). Two pathogenic SOD1 mutations, His46Arg (H46R) and His48Gln (H48Q), affect residues that act as copper ligands in the wild type enzyme. Transgenic mice expressing a human SOD1 variant containing both mutations develop paralytic disease akin to ALS. Here we show that H46R/H48Q SOD1 possesses multiple characteristics that distinguish it from the wild type. These properties include the following: (1) an ablated copper-binding site, (2) a substantially weakened affinity for zinc, (3) a binding site for a calcium ion, (4) the ability to form stable heterocomplexes with the copper chaperone for SOD1 (CCS), and (5) compromised CCS-mediated oxidation of the intrasubunit disulfide bond in vivo. The results presented here, together with data on pathogenic SOD1 proteins coming from cell culture and transgenic mice, suggest that incomplete posttranslational modification of nascent SOD1 polypeptides via CCS may be a characteristic shared by familial ALS SOD1 mutants, leading to a population of destabilized, off-pathway folding intermediates that are toxic to motor neurons.
Collapse
Affiliation(s)
- Duane D. Winkler
- Department of Biochemistry, the University of Texas Health Science Center, San Antonio, TX 78229-3900
- X-ray Crystallography Core Laboratory, the University of Texas Health Science Center, San Antonio, TX 78229-3900
| | - Jonathan P. Schuermann
- Department of Biochemistry, the University of Texas Health Science Center, San Antonio, TX 78229-3900
- X-ray Crystallography Core Laboratory, the University of Texas Health Science Center, San Antonio, TX 78229-3900
| | - Xiaohang Cao
- Department of Biochemistry, the University of Texas Health Science Center, San Antonio, TX 78229-3900
- X-ray Crystallography Core Laboratory, the University of Texas Health Science Center, San Antonio, TX 78229-3900
| | - Stephen P. Holloway
- Department of Biochemistry, the University of Texas Health Science Center, San Antonio, TX 78229-3900
- X-ray Crystallography Core Laboratory, the University of Texas Health Science Center, San Antonio, TX 78229-3900
| | - David R. Borchelt
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, Florida 32610
| | - Mark C. Carroll
- Department of Environmental Health Sciences, Bloomberg School of Public Health, The Johns Hopkins University, Baltimore, MD 21218
| | - Jody B. Proescher
- Department of Environmental Health Sciences, Bloomberg School of Public Health, The Johns Hopkins University, Baltimore, MD 21218
| | - Valeria C. Culotta
- Department of Environmental Health Sciences, Bloomberg School of Public Health, The Johns Hopkins University, Baltimore, MD 21218
| | - P. John Hart
- Department of Biochemistry, the University of Texas Health Science Center, San Antonio, TX 78229-3900
- X-ray Crystallography Core Laboratory, the University of Texas Health Science Center, San Antonio, TX 78229-3900
- Geriatric Research, Education, and Clinical Center, Department of Veterans Affairs, South Texas Veterans Health Care System, Audie Murphy Division, San Antonio, TX 78229 U.S.A
| |
Collapse
|
45
|
Structural and dynamic aspects related to oligomerization of apo SOD1 and its mutants. Proc Natl Acad Sci U S A 2009; 106:6980-5. [PMID: 19369197 DOI: 10.1073/pnas.0809845106] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The structural and dynamical properties of the metal-free form of WT human superoxide dismutase 1 (SOD1) and its familial amyotrophic lateral sclerosis (fALS)-related mutants, T54R and I113T, were characterized both in solution, through NMR, and in the crystal, through X-ray diffraction. We found that all 3 X-ray structures show significant structural disorder in 2 loop regions that are, at variance, well defined in the fully-metalated structures. Interestingly, the apo state crystallizes only at low temperatures, whereas all 3 proteins in the metalated form crystallize at any temperature, suggesting that crystallization selects one of the most stable conformations among the manifold adopted by the apo form in solution. Indeed, NMR experiments show that the protein in solution is highly disordered, sampling a large range of conformations. The large conformational variability of the apo state allows the free reduced cysteine Cys-6 to become highly solvent accessible in solution, whereas it is essentially buried in the metalated state and the crystal structures. Such solvent accessibility, together with that of Cys-111, accounts for the tendency to oligomerization of the metal-free state. The present results suggest that the investigation of the solution state coupled with that of the crystal state can provide major insights into SOD1 pathway toward oligomerization in relation to fALS.
Collapse
|
46
|
Soares DC, Barlow PN, Porteous DJ, Devon RS. An interrupted beta-propeller and protein disorder: structural bioinformatics insights into the N-terminus of alsin. J Mol Model 2008; 15:113-22. [PMID: 19023603 DOI: 10.1007/s00894-008-0381-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2008] [Accepted: 11/05/2008] [Indexed: 12/11/2022]
Abstract
Defects in the human ALS2 gene, which encodes the 1,657-amino-acid residue protein alsin, are linked to several related motor neuron diseases. We created a structural model for the N-terminal 690-residue region of alsin through comparative modelling based on regulator of chromosome condensation 1 (RCC1). We propose that this alsin region contains seven RCC1-like repeats in a seven-bladed beta-propeller structure. The propeller is formed by a double clasp arrangement containing two segments (residues 1-218 and residues 525-690). The 306-residue insert region, predicted to lie within blade 5 and to be largely disordered, is poorly conserved across species. Surface patches of evolutionary conservation probably indicate locations of binding sites. Both disease-causing missense mutations-Cys157Tyr and Gly540Glu-are buried in the propeller and likely to be structurally disruptive. This study aids design of experimental studies by highlighting the importance of construct length, will enhance interpretation of protein-protein interactions, and enable rational site-directed mutagenesis.
Collapse
Affiliation(s)
- Dinesh C Soares
- Medical Genetics Section, Molecular Medicine Centre, Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Crewe Road, Edinburgh EH42XU, UK.
| | | | | | | |
Collapse
|
47
|
Cao X, Antonyuk SV, Seetharaman SV, Whitson LJ, Taylor AB, Holloway SP, Strange RW, Doucette PA, Valentine JS, Tiwari A, Hayward LJ, Padua S, Cohlberg JA, Hasnain SS, Hart PJ. Structures of the G85R variant of SOD1 in familial amyotrophic lateral sclerosis. J Biol Chem 2008; 283:16169-77. [PMID: 18378676 PMCID: PMC2414278 DOI: 10.1074/jbc.m801522200] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2008] [Indexed: 12/11/2022] Open
Abstract
Mutations in the gene encoding human copper-zinc superoxide dismutase (SOD1) cause a dominant form of the progressive neurodegenerative disease amyotrophic lateral sclerosis. Transgenic mice expressing the human G85R SOD1 variant develop paralytic symptoms concomitant with the appearance of SOD1-enriched proteinaceous inclusions in their neural tissues. The process(es) through which misfolding or aggregation of G85R SOD1 induces motor neuron toxicity is not understood. Here we present structures of the human G85R SOD1 variant determined by single crystal x-ray diffraction. Alterations in structure of the metal-binding loop elements relative to the wild type enzyme suggest a molecular basis for the metal ion deficiency of the G85R SOD1 protein observed in the central nervous system of transgenic mice and in purified recombinant G85R SOD1. These findings support the notion that metal-deficient and/or disulfide-reduced mutant SOD1 species contribute to toxicity in SOD1-linked amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- Xiaohang Cao
- Department of Biochemistry and
the X-ray Crystallography Core Laboratory and the
Geriatric Research,
Education, and Clinical Center, Department of Veterans Affairs, South Texas
Veterans Health Care System, The University of Texas Health Science Center,
San Antonio, Texas 78229, Molecular
Biophysics Group, Science and Technology Facilities Council, Daresbury
Laboratory, Warrington, Cheshire WA44AD, United Kingdom,
Department of Chemistry and
Biochemistry, University of California, Los Angeles, California 90095,
Department of Neurology, University of
Massachusetts Medical School, Worcester, Massachusetts 01655, and
Department of Chemistry and Biochemistry,
California State University, Long Beach, California 90840
| | - Svetlana V. Antonyuk
- Department of Biochemistry and
the X-ray Crystallography Core Laboratory and the
Geriatric Research,
Education, and Clinical Center, Department of Veterans Affairs, South Texas
Veterans Health Care System, The University of Texas Health Science Center,
San Antonio, Texas 78229, Molecular
Biophysics Group, Science and Technology Facilities Council, Daresbury
Laboratory, Warrington, Cheshire WA44AD, United Kingdom,
Department of Chemistry and
Biochemistry, University of California, Los Angeles, California 90095,
Department of Neurology, University of
Massachusetts Medical School, Worcester, Massachusetts 01655, and
Department of Chemistry and Biochemistry,
California State University, Long Beach, California 90840
| | - Sai V. Seetharaman
- Department of Biochemistry and
the X-ray Crystallography Core Laboratory and the
Geriatric Research,
Education, and Clinical Center, Department of Veterans Affairs, South Texas
Veterans Health Care System, The University of Texas Health Science Center,
San Antonio, Texas 78229, Molecular
Biophysics Group, Science and Technology Facilities Council, Daresbury
Laboratory, Warrington, Cheshire WA44AD, United Kingdom,
Department of Chemistry and
Biochemistry, University of California, Los Angeles, California 90095,
Department of Neurology, University of
Massachusetts Medical School, Worcester, Massachusetts 01655, and
Department of Chemistry and Biochemistry,
California State University, Long Beach, California 90840
| | - Lisa J. Whitson
- Department of Biochemistry and
the X-ray Crystallography Core Laboratory and the
Geriatric Research,
Education, and Clinical Center, Department of Veterans Affairs, South Texas
Veterans Health Care System, The University of Texas Health Science Center,
San Antonio, Texas 78229, Molecular
Biophysics Group, Science and Technology Facilities Council, Daresbury
Laboratory, Warrington, Cheshire WA44AD, United Kingdom,
Department of Chemistry and
Biochemistry, University of California, Los Angeles, California 90095,
Department of Neurology, University of
Massachusetts Medical School, Worcester, Massachusetts 01655, and
Department of Chemistry and Biochemistry,
California State University, Long Beach, California 90840
| | - Alexander B. Taylor
- Department of Biochemistry and
the X-ray Crystallography Core Laboratory and the
Geriatric Research,
Education, and Clinical Center, Department of Veterans Affairs, South Texas
Veterans Health Care System, The University of Texas Health Science Center,
San Antonio, Texas 78229, Molecular
Biophysics Group, Science and Technology Facilities Council, Daresbury
Laboratory, Warrington, Cheshire WA44AD, United Kingdom,
Department of Chemistry and
Biochemistry, University of California, Los Angeles, California 90095,
Department of Neurology, University of
Massachusetts Medical School, Worcester, Massachusetts 01655, and
Department of Chemistry and Biochemistry,
California State University, Long Beach, California 90840
| | - Stephen P. Holloway
- Department of Biochemistry and
the X-ray Crystallography Core Laboratory and the
Geriatric Research,
Education, and Clinical Center, Department of Veterans Affairs, South Texas
Veterans Health Care System, The University of Texas Health Science Center,
San Antonio, Texas 78229, Molecular
Biophysics Group, Science and Technology Facilities Council, Daresbury
Laboratory, Warrington, Cheshire WA44AD, United Kingdom,
Department of Chemistry and
Biochemistry, University of California, Los Angeles, California 90095,
Department of Neurology, University of
Massachusetts Medical School, Worcester, Massachusetts 01655, and
Department of Chemistry and Biochemistry,
California State University, Long Beach, California 90840
| | - Richard W. Strange
- Department of Biochemistry and
the X-ray Crystallography Core Laboratory and the
Geriatric Research,
Education, and Clinical Center, Department of Veterans Affairs, South Texas
Veterans Health Care System, The University of Texas Health Science Center,
San Antonio, Texas 78229, Molecular
Biophysics Group, Science and Technology Facilities Council, Daresbury
Laboratory, Warrington, Cheshire WA44AD, United Kingdom,
Department of Chemistry and
Biochemistry, University of California, Los Angeles, California 90095,
Department of Neurology, University of
Massachusetts Medical School, Worcester, Massachusetts 01655, and
Department of Chemistry and Biochemistry,
California State University, Long Beach, California 90840
| | - Peter A. Doucette
- Department of Biochemistry and
the X-ray Crystallography Core Laboratory and the
Geriatric Research,
Education, and Clinical Center, Department of Veterans Affairs, South Texas
Veterans Health Care System, The University of Texas Health Science Center,
San Antonio, Texas 78229, Molecular
Biophysics Group, Science and Technology Facilities Council, Daresbury
Laboratory, Warrington, Cheshire WA44AD, United Kingdom,
Department of Chemistry and
Biochemistry, University of California, Los Angeles, California 90095,
Department of Neurology, University of
Massachusetts Medical School, Worcester, Massachusetts 01655, and
Department of Chemistry and Biochemistry,
California State University, Long Beach, California 90840
| | - Joan Selverstone Valentine
- Department of Biochemistry and
the X-ray Crystallography Core Laboratory and the
Geriatric Research,
Education, and Clinical Center, Department of Veterans Affairs, South Texas
Veterans Health Care System, The University of Texas Health Science Center,
San Antonio, Texas 78229, Molecular
Biophysics Group, Science and Technology Facilities Council, Daresbury
Laboratory, Warrington, Cheshire WA44AD, United Kingdom,
Department of Chemistry and
Biochemistry, University of California, Los Angeles, California 90095,
Department of Neurology, University of
Massachusetts Medical School, Worcester, Massachusetts 01655, and
Department of Chemistry and Biochemistry,
California State University, Long Beach, California 90840
| | - Ashutosh Tiwari
- Department of Biochemistry and
the X-ray Crystallography Core Laboratory and the
Geriatric Research,
Education, and Clinical Center, Department of Veterans Affairs, South Texas
Veterans Health Care System, The University of Texas Health Science Center,
San Antonio, Texas 78229, Molecular
Biophysics Group, Science and Technology Facilities Council, Daresbury
Laboratory, Warrington, Cheshire WA44AD, United Kingdom,
Department of Chemistry and
Biochemistry, University of California, Los Angeles, California 90095,
Department of Neurology, University of
Massachusetts Medical School, Worcester, Massachusetts 01655, and
Department of Chemistry and Biochemistry,
California State University, Long Beach, California 90840
| | - Lawrence J. Hayward
- Department of Biochemistry and
the X-ray Crystallography Core Laboratory and the
Geriatric Research,
Education, and Clinical Center, Department of Veterans Affairs, South Texas
Veterans Health Care System, The University of Texas Health Science Center,
San Antonio, Texas 78229, Molecular
Biophysics Group, Science and Technology Facilities Council, Daresbury
Laboratory, Warrington, Cheshire WA44AD, United Kingdom,
Department of Chemistry and
Biochemistry, University of California, Los Angeles, California 90095,
Department of Neurology, University of
Massachusetts Medical School, Worcester, Massachusetts 01655, and
Department of Chemistry and Biochemistry,
California State University, Long Beach, California 90840
| | - Shelby Padua
- Department of Biochemistry and
the X-ray Crystallography Core Laboratory and the
Geriatric Research,
Education, and Clinical Center, Department of Veterans Affairs, South Texas
Veterans Health Care System, The University of Texas Health Science Center,
San Antonio, Texas 78229, Molecular
Biophysics Group, Science and Technology Facilities Council, Daresbury
Laboratory, Warrington, Cheshire WA44AD, United Kingdom,
Department of Chemistry and
Biochemistry, University of California, Los Angeles, California 90095,
Department of Neurology, University of
Massachusetts Medical School, Worcester, Massachusetts 01655, and
Department of Chemistry and Biochemistry,
California State University, Long Beach, California 90840
| | - Jeffrey A. Cohlberg
- Department of Biochemistry and
the X-ray Crystallography Core Laboratory and the
Geriatric Research,
Education, and Clinical Center, Department of Veterans Affairs, South Texas
Veterans Health Care System, The University of Texas Health Science Center,
San Antonio, Texas 78229, Molecular
Biophysics Group, Science and Technology Facilities Council, Daresbury
Laboratory, Warrington, Cheshire WA44AD, United Kingdom,
Department of Chemistry and
Biochemistry, University of California, Los Angeles, California 90095,
Department of Neurology, University of
Massachusetts Medical School, Worcester, Massachusetts 01655, and
Department of Chemistry and Biochemistry,
California State University, Long Beach, California 90840
| | - S. Samar Hasnain
- Department of Biochemistry and
the X-ray Crystallography Core Laboratory and the
Geriatric Research,
Education, and Clinical Center, Department of Veterans Affairs, South Texas
Veterans Health Care System, The University of Texas Health Science Center,
San Antonio, Texas 78229, Molecular
Biophysics Group, Science and Technology Facilities Council, Daresbury
Laboratory, Warrington, Cheshire WA44AD, United Kingdom,
Department of Chemistry and
Biochemistry, University of California, Los Angeles, California 90095,
Department of Neurology, University of
Massachusetts Medical School, Worcester, Massachusetts 01655, and
Department of Chemistry and Biochemistry,
California State University, Long Beach, California 90840
| | - P. John Hart
- Department of Biochemistry and
the X-ray Crystallography Core Laboratory and the
Geriatric Research,
Education, and Clinical Center, Department of Veterans Affairs, South Texas
Veterans Health Care System, The University of Texas Health Science Center,
San Antonio, Texas 78229, Molecular
Biophysics Group, Science and Technology Facilities Council, Daresbury
Laboratory, Warrington, Cheshire WA44AD, United Kingdom,
Department of Chemistry and
Biochemistry, University of California, Los Angeles, California 90095,
Department of Neurology, University of
Massachusetts Medical School, Worcester, Massachusetts 01655, and
Department of Chemistry and Biochemistry,
California State University, Long Beach, California 90840
| |
Collapse
|
48
|
Roberts BR, Tainer JA, Getzoff ED, Malencik DA, Anderson SR, Bomben VC, Meyers KR, Karplus PA, Beckman JS. Structural characterization of zinc-deficient human superoxide dismutase and implications for ALS. J Mol Biol 2007; 373:877-90. [PMID: 17888947 PMCID: PMC2175016 DOI: 10.1016/j.jmb.2007.07.043] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2007] [Revised: 07/16/2007] [Accepted: 07/19/2007] [Indexed: 11/21/2022]
Abstract
Over 130 mutations to copper, zinc superoxide dismutase (SOD) are implicated in the selective death of motor neurons found in 25% of patients with familial amyotrophic lateral sclerosis (ALS). Despite their widespread distribution, ALS mutations appear positioned to cause structural and misfolding defects. Such defects decrease SOD's affinity for zinc, and loss of zinc from SOD is sufficient to induce apoptosis in motor neurons in vitro. To examine the importance of the zinc site in the structure and pathogenesis of human SOD, we determined the 2.0-A-resolution crystal structure of a designed zinc-deficient human SOD, in which two zinc-binding ligands have been mutated to hydrogen-bonding serine residues. This structure revealed a 9 degrees twist of the subunits, which opens the SOD dimer interface and represents the largest intersubunit rotational shift observed for a human SOD variant. Furthermore, the electrostatic loop and zinc-binding subloop were partly disordered, the catalytically important Arg143 was rotated away from the active site, and the normally rigid intramolecular Cys57-Cys146 disulfide bridge assumed two conformations. Together, these changes allow small molecules greater access to the catalytic copper, consistent with the observed increased redox activity of zinc-deficient SOD. Moreover, the dimer interface is weakened and the Cys57-Cys146 disulfide is more labile, as demonstrated by the increased aggregation of zinc-deficient SOD in the presence of a thiol reductant. However, equimolar Cu,Zn SOD rapidly forms heterodimers with zinc-deficient SOD (t1/2 approximately 15 min) and prevents aggregation. The stabilization of zinc-deficient SOD as a heterodimer with Cu,Zn SOD may contribute to the dominant inheritance of ALS mutations. These results have general implications for the importance of framework stability on normal metalloenzyme function and specific implications for the role of zinc ion in the fatal neuropathology associated with SOD mutations.
Collapse
Affiliation(s)
- Blaine R. Roberts
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon 97331, USA
| | - John A. Tainer
- Department of Molecular Biology and Skaggs Institute for Chemical Biology, The Scripps Research Institute, MB4, 10550 North Torrey Pines Road, La Jolla, CA 92037 USA
| | - Elizabeth D. Getzoff
- Department of Molecular Biology and Skaggs Institute for Chemical Biology, The Scripps Research Institute, MB4, 10550 North Torrey Pines Road, La Jolla, CA 92037 USA
| | - Dean A. Malencik
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon 97331, USA
| | - Sonia R. Anderson
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon 97331, USA
| | - Valerie C. Bomben
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon 97331, USA
| | - Kathrin R. Meyers
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon 97331, USA
| | - P. Andrew Karplus
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon 97331, USA
| | - Joseph S. Beckman
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon 97331, USA
- Linus Pauling Institute, Environmental Health Science Center, Oregon State University, Corvallis, Oregon 97331, USA
| |
Collapse
|
49
|
Strange RW, Yong CW, Smith W, Hasnain SS. Molecular dynamics using atomic-resolution structure reveal structural fluctuations that may lead to polymerization of human Cu-Zn superoxide dismutase. Proc Natl Acad Sci U S A 2007; 104:10040-4. [PMID: 17548825 PMCID: PMC1885824 DOI: 10.1073/pnas.0703857104] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mutations of the gene encoding Cu-Zn superoxide dismutase (SOD1) cause 20% of the familial cases of the progressive neurodegenerative disease ALS. A growing body of evidence suggests that in familial ALS (FALS) it is the molecular behavior of the metal-depleted SOD1 dimer that leads to a gain of toxic properties by misfolding, unfolding, and aggregation. Structural studies have so far provided static snapshots on the behavior of the wild-type enzyme and some of the FALS mutants. New approaches are required to map out the structural trajectories of the molecule. Here, using our 1.15-A resolution structure of fully metallated human SOD1 and highly parallelized molecular dynamics code on a high-performance capability computer, we have undertaken molecular dynamics calculations to 4,000 ps to reveal the first stages of misfolding caused by metal deletion. Large spatial and temporal fluctuations of the "electrostatic" and "Zn-binding" loops adjacent to the metal-binding sites are observed in the apo-enzyme relative to the fully metallated dimer. These early misfolding events expose the beta-barrels of the dimer to the external environment, allowing close interactions with adjacent molecules. Protection of the beta-edge of the protein can be partially restored by incorporating a single Zn molecule per dimer. These calculations reveal an essential step in the formation of the experimentally observed self-aggregations of metal-depleted FALS mutant SOD1. This result also has implications for the role of demetallated wild-type SOD1 in sporadic cases of ALS, for which the molecular cause still remains undiscovered.
Collapse
Affiliation(s)
| | - Chin W. Yong
- Department of Computational Science and Engineering, Science and Technology Facilities Council, Daresbury Laboratory, Warrington, Cheshire WA4 4AD, United Kingdom
| | - William Smith
- Department of Computational Science and Engineering, Science and Technology Facilities Council, Daresbury Laboratory, Warrington, Cheshire WA4 4AD, United Kingdom
| | - S. Samar Hasnain
- Molecular Biophysics Group and
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
50
|
Wang J, Caruano-Yzermans A, Rodriguez A, Scheurmann JP, Slunt HH, Cao X, Gitlin J, Hart PJ, Borchelt DR. Disease-associated mutations at copper ligand histidine residues of superoxide dismutase 1 diminish the binding of copper and compromise dimer stability. J Biol Chem 2007; 282:345-52. [PMID: 17092942 PMCID: PMC2757151 DOI: 10.1074/jbc.m604503200] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
A subset of superoxide dismutase 1 (Cu/Zn-SOD1) mutants that cause familial amyotrophic lateral sclerosis (FALS) have heightened reactivity with (-)ONOO and H(2)O(2) in vitro. This reactivity requires a copper ion bound in the active site and is a suggested mechanism of motor neuron injury. However, we have found that transgenic mice that express SOD1-H46R/H48Q, which combines natural FALS mutations at ligands for copper and which is inactive, develop motor neuron disease. Using a direct radioactive copper incorporation assay in transfected cells and the established tools of single crystal x-ray diffraction, we now demonstrate that this variant does not stably bind copper. We find that single mutations at copper ligands, including H46R, H48Q, and a quadruple mutant H46R/H48Q/H63G/H120G, also diminish the binding of radioactive copper. Further, using native polyacrylamide gel electrophoresis and a yeast two-hybrid assay, the binding of copper was found to be related to the formation of the stable dimeric enzyme. Collectively, our data demonstrate a relationship between copper and assembly of SOD1 into stable dimers and also define disease-causing SOD1 mutants that are unlikely to robustly produce toxic radicals via copper-mediated chemistry.
Collapse
Affiliation(s)
- Jiou Wang
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland 21205
| | - Amy Caruano-Yzermans
- Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Angela Rodriguez
- Department of Biochemistry, South Texas Veterans Health Care System, The University of Texas San Antonio Health Sciences Center, San Antonio, Texas 78229
| | - Jonathan P. Scheurmann
- Department of Biochemistry, South Texas Veterans Health Care System, The University of Texas San Antonio Health Sciences Center, San Antonio, Texas 78229
| | - Hilda H. Slunt
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland 21205
- Department of Neuroscience, Santa Fe Health Alzheimer’s Disease Research Center, McKnight Brain Institute, University of Florida, Gainesville, Florida 32611
| | - Xiaohang Cao
- Department of Biochemistry, South Texas Veterans Health Care System, The University of Texas San Antonio Health Sciences Center, San Antonio, Texas 78229
| | - Jonathan Gitlin
- Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri 63110
| | - P. John Hart
- Department of Biochemistry, South Texas Veterans Health Care System, The University of Texas San Antonio Health Sciences Center, San Antonio, Texas 78229
- X-ray Crystallography Core Laboratory, South Texas Veterans Health Care System, The University of Texas San Antonio Health Sciences Center, San Antonio, Texas 78229
- Geriatric Research, Education, and Clinical Center, Department of Veteran’s Affairs, South Texas Veterans Health Care System, The University of Texas San Antonio Health Sciences Center, San Antonio, Texas 78229
| | - David R. Borchelt
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland 21205
- Department of Neuroscience, Johns Hopkins University, Baltimore, Maryland 21205
- Department of Neuroscience, Santa Fe Health Alzheimer’s Disease Research Center, McKnight Brain Institute, University of Florida, Gainesville, Florida 32611
| |
Collapse
|