1
|
Gilbert S, Péant B, Mes-Masson AM, Saad F. IKKe Inhibitor Amlexanox Promotes Olaparib Sensitivity through the C/EBP-b-Mediated Transcription of Rad51 in Castrate-Resistant Prostate Cancer. Cancers (Basel) 2022; 14:cancers14153684. [PMID: 35954347 PMCID: PMC9367422 DOI: 10.3390/cancers14153684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 07/22/2022] [Accepted: 07/26/2022] [Indexed: 11/25/2022] Open
Abstract
Simple Summary Most men with advanced hormone-sensitive prostate cancer (HSPC) treated with androgen deprivation therapy will develop castrate resistant prostate cancer (CRPC), a lethal form of prostate cancer (PC). Our group has previously shown that IKKε expression is stronger in CRPC tumors and correlates with aggressive PC. Moreover, we have shown that IKKε depletion or inhibition (BX795, Amlexanox) decrease CRPC cell proliferation and tumor volume in an in vivo mouse model. We also demonstrate that IKKε inhibitors specifically target CRPC to induce a senescent phenotype as well as DNA damage and genomic instability. In this study, we demonstrated that IKKε depletion or inhibition block C/EBP-β recruitment on Rad51 promoter to decrease promoter activity. We have also shown that Amlexanox treatment sensitizes CRPC cells to Olaparib in vitro and in mouse models. Taken together, targeting IKKε with Amlexanox combined with Olaparib may lead to additional effective therapeutic strategies in the management of patients with CRPC. Abstract The progression of prostate cancer (PC) is often characterized by the development of castrate-resistant PC (CRPC). Patients with CRPC are treated with a variety of agents including new generation hormonal therapies or chemotherapy. However, as the cancer develops more resistance mechanisms, these drugs eventually become less effective and finding new therapeutic approaches is critical to improving patient outcomes. Previously, we have shown that IKKε depletion and IKKε inhibitors, BX795 and Amlexanox, decrease CRPC cell proliferation in vitro and in vivo and that IKKε inhibitors induce a senescence phenotype accompanied by increased DNA damage and genomic instability in CRPC cells. Here, we describe a new role for IKKε in DNA damage repair involving Rad51 and examine the therapeutic potential of Amlexanox combined with the PARP inhibitor Olaparib in CRPC cell lines. Combining Amlexanox with Olaparib decreased CRPC cell proliferation and enhanced DNA damage through the inhibition of Olaparib-induced Rad51 recruitment and expression in CRPC cells or IKKε-depleted PC-3 cells. We demonstrated that Rad51 promoter activity, measured by luciferase assay, was decreased with Amlexanox treatment or IKKε depletion and that Amlexanox treatment decreased the occupancy of transcription factor C/EBP-β on the Rad51 promoter. Our mouse model also showed that Amlexanox combined with Olaparib inhibited tumor growth of CRPC xenografts. Our study highlights a new role for IKKε in DNA damage repair through the regulation of Rad51 transcription and provides a rationale for the combination of Amlexanox and Olaparib in the treatment of patients with CRPC.
Collapse
Affiliation(s)
- Sophie Gilbert
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM) et Institut du Cancer de Montréal, Montréal, QC H2X 0A9, Canada; (S.G.); (B.P.); (F.S.)
| | - Benjamin Péant
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM) et Institut du Cancer de Montréal, Montréal, QC H2X 0A9, Canada; (S.G.); (B.P.); (F.S.)
| | - Anne-Marie Mes-Masson
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM) et Institut du Cancer de Montréal, Montréal, QC H2X 0A9, Canada; (S.G.); (B.P.); (F.S.)
- Department of Medicine, Université de Montréal, Montréal, QC H3C 3J7, Canada
- Correspondence: ; Tel.: +1-514-890-8000 (ext. 25496)
| | - Fred Saad
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM) et Institut du Cancer de Montréal, Montréal, QC H2X 0A9, Canada; (S.G.); (B.P.); (F.S.)
- Department of Surgery, Université de Montréal, Montréal, QC H3C 3J7, Canada
| |
Collapse
|
2
|
Gilbert S, Péant B, Malaquin N, Tu V, Fleury H, Leclerc-Desaulniers K, Rodier F, Mes-Masson AM, Saad F. Targeting IKKε in Androgen-Independent Prostate Cancer Causes Phenotypic Senescence and Genomic Instability. Mol Cancer Ther 2022; 21:407-418. [PMID: 34965959 PMCID: PMC9377745 DOI: 10.1158/1535-7163.mct-21-0519] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 10/12/2021] [Accepted: 12/17/2021] [Indexed: 01/07/2023]
Abstract
Advanced prostate cancer will often progress to a lethal, castration-resistant state. We previously demonstrated that IKKε expression correlated with the aggressiveness of prostate cancer disease. Here, we address the potential of IKKε as a therapeutic target in prostate cancer. We examined cell fate decisions (proliferation, cell death, and senescence) in IKKε-depleted PC-3 cells, which exhibited delayed cell proliferation and a senescent phenotype, but did not undergo cell death. Using IKKε/TBK1 inhibitors, BX795 and Amlexanox, we measured their effects on cell fate decisions in androgen-sensitive prostate cancer and androgen-independent prostate cancer cell lines. Cell-cycle analyses revealed a G2-M cell-cycle arrest and a higher proportion of cells with 8N DNA content in androgen-independent prostate cancer cells only. Androgen-independent prostate cancer cells also displayed increased senescence-associated (SA)-β-galactosidase activity; increased γH2AX foci; genomic instability; and altered p15, p16, and p21 expression. In our mouse model, IKKε inhibitors also decreased tumor growth of androgen-independent prostate cancer xenografts but not 22Rv1 androgen-sensitive prostate cancer xenografts. Our study suggests that targeting IKKε with BX795 or Amlexanox in androgen-independent prostate cancer cells induces a senescence phenotype and demonstrates in vivo antitumor activity. These results strengthen the potential of exploiting IKKε as a therapeutic target.
Collapse
Affiliation(s)
- Sophie Gilbert
- Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM) et Institut du cancer de Montréal, Montréal, Quebec, Canada
| | - Benjamin Péant
- Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM) et Institut du cancer de Montréal, Montréal, Quebec, Canada
| | - Nicolas Malaquin
- Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM) et Institut du cancer de Montréal, Montréal, Quebec, Canada
| | - Véronique Tu
- Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM) et Institut du cancer de Montréal, Montréal, Quebec, Canada
| | - Hubert Fleury
- Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM) et Institut du cancer de Montréal, Montréal, Quebec, Canada
| | - Kim Leclerc-Desaulniers
- Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM) et Institut du cancer de Montréal, Montréal, Quebec, Canada
| | - Francis Rodier
- Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM) et Institut du cancer de Montréal, Montréal, Quebec, Canada.,Département de Radiologie, Radio-oncologie et Médicine Nucléaire, Université de Montréal, Montreal, Quebec, Canada
| | - Anne-Marie Mes-Masson
- Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM) et Institut du cancer de Montréal, Montréal, Quebec, Canada.,Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada.,Corresponding Author: Anne-Marie Mes-Masson, Centre de recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM) et Institut du cancer de Montréal, 900 Saint Denis Street, Montreal, Quebec H2X 0A9, Canada. Phone: 514-890-8000, ext. 25496; E-mail:
| | - Fred Saad
- Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM) et Institut du cancer de Montréal, Montréal, Quebec, Canada.,Department of Surgery, Université de Montréal, Montreal, Quebec, Canada
| |
Collapse
|
3
|
Xu R, Jones W, Wilcz-Villega E, Costa AS, Rajeeve V, Bentham RB, Bryson K, Nagano A, Yaman B, Olendo Barasa S, Wang Y, Chelala C, Cutillas P, Szabadkai G, Frezza C, Bianchi K. The breast cancer oncogene IKKε coordinates mitochondrial function and serine metabolism. EMBO Rep 2020; 21:e48260. [PMID: 32783398 PMCID: PMC7116048 DOI: 10.15252/embr.201948260] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 06/29/2020] [Accepted: 07/09/2020] [Indexed: 12/25/2022] Open
Abstract
IκB kinase ε (IKKε) is a key molecule at the crossroads of inflammation and cancer. Known to regulate cytokine secretion via NFκB and IRF3, the kinase is also a breast cancer oncogene, overexpressed in a variety of tumours. However, to what extent IKKε remodels cellular metabolism is currently unknown. Here, we used metabolic tracer analysis to show that IKKε orchestrates a complex metabolic reprogramming that affects mitochondrial metabolism and consequently serine biosynthesis independently of its canonical signalling role. We found that IKKε upregulates the serine biosynthesis pathway (SBP) indirectly, by limiting glucose‐derived pyruvate utilisation in the TCA cycle, inhibiting oxidative phosphorylation. Inhibition of mitochondrial function induces activating transcription factor 4 (ATF4), which in turn drives upregulation of the expression of SBP genes. Importantly, pharmacological reversal of the IKKε‐induced metabolic phenotype reduces proliferation of breast cancer cells. Finally, we show that in a highly proliferative set of ER negative, basal breast tumours, IKKε and PSAT1 are both overexpressed, corroborating the link between IKKε and the SBP in the clinical context.
Collapse
Affiliation(s)
- Ruoyan Xu
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London, UK
| | - William Jones
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London, UK
| | - Ewa Wilcz-Villega
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London, UK
| | - Ana Sh Costa
- Medical Research Council Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Cambridge, UK.,Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Vinothini Rajeeve
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London, UK
| | - Robert B Bentham
- Department of Cell and Developmental Biology, Consortium for Mitochondrial Research, University College London, London, UK.,Francis Crick Institute, London, UK
| | - Kevin Bryson
- Department of Computer Sciences, University College London, London, UK
| | - Ai Nagano
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London, UK
| | - Busra Yaman
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London, UK
| | - Sheila Olendo Barasa
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London, UK
| | - Yewei Wang
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London, UK
| | - Claude Chelala
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London, UK
| | - Pedro Cutillas
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Gyorgy Szabadkai
- Department of Cell and Developmental Biology, Consortium for Mitochondrial Research, University College London, London, UK.,Francis Crick Institute, London, UK.,Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Christian Frezza
- Medical Research Council Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Cambridge, UK
| | - Katiuscia Bianchi
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London, UK
| |
Collapse
|
4
|
Bainbridge A, Walker S, Smith J, Patterson K, Dutt A, Ng YM, Thomas HD, Wilson L, McCullough B, Jones D, Maan A, Banks P, McCracken SR, Gaughan L, Robson CN, Coffey K. IKBKE activity enhances AR levels in advanced prostate cancer via modulation of the Hippo pathway. Nucleic Acids Res 2020; 48:5366-5382. [PMID: 32324216 PMCID: PMC7261174 DOI: 10.1093/nar/gkaa271] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 04/04/2020] [Accepted: 04/08/2020] [Indexed: 12/20/2022] Open
Abstract
Resistance to androgen receptor (AR) targeting therapeutics in prostate cancer (PC) is a significant clinical problem. Mechanisms by which this is accomplished include AR amplification and expression of AR splice variants, demonstrating that AR remains a key therapeutic target in advanced disease. For the first time we show that IKBKE drives AR signalling in advanced PC. Significant inhibition of AR regulated gene expression was observed upon siRNA-mediated IKBKE depletion or pharmacological inhibition due to inhibited AR gene expression in multiple cell line models including a LNCaP derivative cell line resistant to the anti-androgen, enzalutamide (LNCaP-EnzR). Phenotypically, this resulted in significant inhibition of proliferation, migration and colony forming ability suggesting that targeting IKBKE could circumvent resistance to AR targeting therapies. Indeed, pharmacological inhibition in the CWR22Rv1 xenograft mouse model reduced tumour size and enhanced survival. Critically, this was validated in patient-derived explants where enzymatic inactivation of IKBKE reduced cell proliferation and AR expression. Mechanistically, we provide evidence that IKBKE regulates AR levels via Hippo pathway inhibition to reduce c-MYC levels at cis-regulatory elements within the AR gene. Thus, IKBKE is a therapeutic target in advanced PC suggesting repurposing of clinically tested IKBKE inhibitors could be beneficial to castrate resistant PC patients.
Collapse
Affiliation(s)
- Alex Bainbridge
- Solid Tumour Target Discovery Laboratory, Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Scott Walker
- Solid Tumour Target Discovery Laboratory, Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Joseph Smith
- Solid Tumour Target Discovery Laboratory, Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Kathryn Patterson
- Solid Tumour Target Discovery Laboratory, Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Aparna Dutt
- Solid Tumour Target Discovery Laboratory, Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Yi Min Ng
- Solid Tumour Target Discovery Laboratory, Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Huw D Thomas
- Drug Discovery, Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Laura Wilson
- Solid Tumour Target Discovery Laboratory, Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Benjamin McCullough
- Solid Tumour Target Discovery Laboratory, Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Dominic Jones
- Solid Tumour Target Discovery Laboratory, Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Arussa Maan
- Solid Tumour Target Discovery Laboratory, Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Peter Banks
- Bio Screening Facility, Newcastle University, Cookson Building, The Medical School, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Stuart R McCracken
- Solid Tumour Target Discovery Laboratory, Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Luke Gaughan
- Solid Tumour Target Discovery Laboratory, Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Craig N Robson
- Solid Tumour Target Discovery Laboratory, Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Kelly Coffey
- Solid Tumour Target Discovery Laboratory, Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| |
Collapse
|
5
|
Möller M, Wasel J, Schmetzer J, Weiß U, Meissner M, Schiffmann S, Weigert A, Möser CV, Niederberger E. The Specific IKKε/TBK1 Inhibitor Amlexanox Suppresses Human Melanoma by the Inhibition of Autophagy, NF-κB and MAP Kinase Pathways. Int J Mol Sci 2020; 21:E4721. [PMID: 32630674 PMCID: PMC7369692 DOI: 10.3390/ijms21134721] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 06/29/2020] [Accepted: 06/30/2020] [Indexed: 12/13/2022] Open
Abstract
Inhibitor-kappaB kinase epsilon (IKKε) and TANK-binding kinase 1 (TBK1) are non-canonical IκB kinases, both described as contributors to tumor growth and metastasis in different cancer types. Several hints indicate that they are also involved in the pathogenesis of melanoma; however, the impact of their inhibition as a potential therapeutic measure in this "difficult-to-treat" cancer type has not been investigated so far. We assessed IKKε and TBK1 expression in human malignant melanoma cells, primary tumors and the metastasis of melanoma patients. Both kinases were expressed in the primary tumor and in metastasis and showed a significant overexpression in tumor cells in comparison to melanocytes. The pharmacological inhibition of IKKε/TBK1 by the approved drug amlexanox reduced cell proliferation, migration and invasion. Amlexanox did not affect the cell cycle progression nor apoptosis induction but significantly suppressed autophagy in melanoma cells. The analysis of potential functional downstream targets revealed that NF-кB and ERK pathways might be involved in kinase-mediated effects. In an in vivo xenograft model in nude mice, amlexanox treatment significantly reduced tumor growth. In conclusion, amlexanox was able to suppress tumor progression potentially by the inhibition of autophagy as well as NF-кB and MAP kinase pathways and might therefore constitute a promising candidate for melanoma therapy.
Collapse
Affiliation(s)
- Moritz Möller
- Pharmazentrum frankfurt/ZAFES, Institute of Clinical Pharmacology, Faculty of Medicine, Goethe-University Frankfurt, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany; (M.M.); (J.W.); (J.S.); (U.W.); (C.V.M.)
| | - Julia Wasel
- Pharmazentrum frankfurt/ZAFES, Institute of Clinical Pharmacology, Faculty of Medicine, Goethe-University Frankfurt, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany; (M.M.); (J.W.); (J.S.); (U.W.); (C.V.M.)
| | - Julia Schmetzer
- Pharmazentrum frankfurt/ZAFES, Institute of Clinical Pharmacology, Faculty of Medicine, Goethe-University Frankfurt, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany; (M.M.); (J.W.); (J.S.); (U.W.); (C.V.M.)
| | - Ulrike Weiß
- Pharmazentrum frankfurt/ZAFES, Institute of Clinical Pharmacology, Faculty of Medicine, Goethe-University Frankfurt, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany; (M.M.); (J.W.); (J.S.); (U.W.); (C.V.M.)
| | - Markus Meissner
- Department of Dermatology, Venereology and Allergology, Faculty of Medicine, Goethe-University Frankfurt, Theodor Stern Kai 7, 60590 Frankfurt, Germany;
| | - Susanne Schiffmann
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Branch for Translational Medicine and Pharmacology TMP, Theodor Stern-Kai 7, 60590 Frankfurt am Main, Germany;
| | - Andreas Weigert
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany;
| | - Christine V. Möser
- Pharmazentrum frankfurt/ZAFES, Institute of Clinical Pharmacology, Faculty of Medicine, Goethe-University Frankfurt, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany; (M.M.); (J.W.); (J.S.); (U.W.); (C.V.M.)
| | - Ellen Niederberger
- Pharmazentrum frankfurt/ZAFES, Institute of Clinical Pharmacology, Faculty of Medicine, Goethe-University Frankfurt, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany; (M.M.); (J.W.); (J.S.); (U.W.); (C.V.M.)
| |
Collapse
|
6
|
Yin M, Wang X, Lu J. Advances in IKBKE as a potential target for cancer therapy. Cancer Med 2020; 9:247-258. [PMID: 31733040 PMCID: PMC6943080 DOI: 10.1002/cam4.2678] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 10/20/2019] [Accepted: 10/22/2019] [Indexed: 12/16/2022] Open
Abstract
IKBKE (inhibitor of nuclear factor kappa-B kinase subunit epsilon), a member of the nonclassical IKK family, plays an important role in the regulation of inflammatory reactions, activation and proliferation of immune cells, and metabolic diseases. Recent studies have demonstrated that IKBKE plays a crucial regulatory role in malignant tumor development. In recent years, IKBKE, an important oncoprotein in several kinds of tumors, has been widely found to regulate a variety of cytokines and signaling pathways. IKBKE promotes the growth, proliferation, invasion, and drug resistance of various cancers. This paper makes a detailed review that focuses on the recent discoveries of IKBKE in the malignant tumors, and puts forward that IKBKE is becoming an important therapeutic target for clinical treatment, which has been more and more realized.
Collapse
Affiliation(s)
- Min Yin
- Department of OncologyJinan Fifth People's HospitalJinanPR China
| | - Xin Wang
- Department of OncologyRenmin Hospital of Wuhan UniversityHubei ProvinceWuhanPR China
- Department of Radiation OncologyShandong Cancer Hospital Affiliated to Shandong UniversityShandong Academy of Medical ScienceJinanPR China
| | - Jie Lu
- Department of NeurosurgeryThe First Affiliated Hospital of Shandong First Medical UniversityJinanPR China
| |
Collapse
|
7
|
Péant B, Gilbert S, Le Page C, Poisson A, L'Ecuyer E, Boudhraa Z, Bienz MN, Delvoye N, Saad F, Mes-Masson AM. IκB-Kinase-epsilon (IKKε) over-expression promotes the growth of prostate cancer through the C/EBP-β dependent activation of IL-6 gene expression. Oncotarget 2017; 8:14487-14501. [PMID: 27577074 PMCID: PMC5362420 DOI: 10.18632/oncotarget.11629] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 08/20/2016] [Indexed: 01/13/2023] Open
Abstract
The inflammatory cytokine IL-6 has been shown to induce the nuclear translocation of androgen receptors in prostate cancer cells and to activate the androgen receptors in a ligand-independent manner, suggesting it may contribute to the development of a castrate-resistant phenotype. Elevated IL-6 serum levels have also been associated with metastasis-related morbidity in prostate cancer patients. We have previously established that over-expression of I-kappa-B-kinase-epsilon (IKKε also named IKKi or IκBKε) in hormone-sensitive prostate cancer cell lines induces IL-6 secretion. We have also reported that prostate cancer cell lines lacking androgen receptor expression exhibit high constitutive IKKε expression and IL-6 secretion. In the present study, we validated the impact of IKKε depletion on the in vitro proliferation of castrate-resistant prostate cancer cells, and characterized how IKKε depletion affects tumor growth and IL-6 tumor secretion in vivo through a mouse xenograft-based approach. We observed a significant growth delay in IKKε-silenced PC-3 cells injected in SCID mice fed with a doxycycline-supplemented diet in comparison with mice fed with a normal diet. We also found a decrease in IL-6 secretion levels that strongly correlated with tumor growth inhibition. Finally, using constructs with various IL-6-mutated promoters, we demonstrated that IKKε over-expression induces a NF-κB-independent stimulation of the IL-6 gene promoter through the activation and nuclear accumulation of the transcription factor C/EBP-β. Our study demonstrates the pro-proliferative role of the oncogene IKKε in castrate-resistant prostate cancer cell lines, involving the phosphorylation and nuclear translocation of C/EBP-β that initiates IL-6 gene expression.
Collapse
Affiliation(s)
- Benjamin Péant
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM)/Institut du Cancer de Montréal, Montreal, Canada
| | - Sophie Gilbert
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM)/Institut du Cancer de Montréal, Montreal, Canada
| | - Cécile Le Page
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM)/Institut du Cancer de Montréal, Montreal, Canada
| | - Alexis Poisson
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM)/Institut du Cancer de Montréal, Montreal, Canada
| | - Emilie L'Ecuyer
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM)/Institut du Cancer de Montréal, Montreal, Canada
| | - Zied Boudhraa
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM)/Institut du Cancer de Montréal, Montreal, Canada
| | - Marc Nicolas Bienz
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM)/Institut du Cancer de Montréal, Montreal, Canada
| | - Nathalie Delvoye
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM)/Institut du Cancer de Montréal, Montreal, Canada
| | - Fred Saad
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM)/Institut du Cancer de Montréal, Montreal, Canada.,Department of Surgery, Hôpital Saint Luc (CHUM), Montreal, Canada.,Department of Surgery, Université de Montréal, Montreal, Canada
| | - Anne-Marie Mes-Masson
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM)/Institut du Cancer de Montréal, Montreal, Canada.,Department of Medicine, Université de Montréal, Montreal, Canada
| |
Collapse
|
8
|
Williams V, Grosset AA, Zamorano Cuervo N, St-Pierre Y, Sylvestre MP, Gaboury L, Grandvaux N. Detection of IKKε by immunohistochemistry in primary breast cancer: association with EGFR expression and absence of lymph node metastasis. BMC Cancer 2017; 17:356. [PMID: 28532474 PMCID: PMC5441089 DOI: 10.1186/s12885-017-3321-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 05/03/2017] [Indexed: 01/04/2023] Open
Abstract
Background IKKε is an oncogenic kinase that was found amplified and overexpressed in a substantial percentage of human breast cancer cell lines and primary tumors using genomic and gene expression analyses. Molecular studies have provided the rational for a key implication of IKKε in breast cancer cells proliferation and invasiveness through the phosphorylation of several substrates. Methods Here, we performed immunohistochemical detection of IKKε expression on tissue microarrays constituted of 154 characterized human breast cancer tumors. We further determined the association with multiple clinicopathological parameters and 5-years overall, disease-free and distant disease free survival. Results We observed expression of IKKε in 60.4% of the breast cancer tumors. IKKε expression status showed no association with a panel of markers used for molecular classification of the tumors, including ER/PR/HER2 status, or with the molecular subtypes. However, IKKε expression was inversely associated with lymph node metastasis status (p = 0.0032). Additionally, we identified a novel association between IKKε and EGFR expression (p = 0.0011). Conclusions The unexpected observation of an inverse association between IKKε and lymph node metastasis advocates for larger scale immunohistochemical profiling of primary breast tumors to clarify the role of IKKε in metastasis. This study suggests that breast cancer tumors expressing EGFR and IKKε may be potential targets for drugs aiming at inhibiting IKKε activity or expression.
Collapse
Affiliation(s)
- Virginie Williams
- CRCHUM - Centre de recherche du Centre Hospitalier de l'Université de Montréal, 900 rue Saint-Denis, Montréal, Qc H2X 0A9, Canada.,Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Qc, Montréal, Canada
| | - Andrée-Anne Grosset
- CRCHUM - Centre de recherche du Centre Hospitalier de l'Université de Montréal, 900 rue Saint-Denis, Montréal, Qc H2X 0A9, Canada.,INRS-Institut Armand-Frappier, INRS, 531 Boul. des Prairies, Laval, Qc H7V 1B7, Canada.,IRIC, Université de Montréal, 2900 Boul. Édouard-Montpetit, Montréal, Québec, H3T 1J4, Canada
| | - Natalia Zamorano Cuervo
- CRCHUM - Centre de recherche du Centre Hospitalier de l'Université de Montréal, 900 rue Saint-Denis, Montréal, Qc H2X 0A9, Canada
| | - Yves St-Pierre
- INRS-Institut Armand-Frappier, INRS, 531 Boul. des Prairies, Laval, Qc H7V 1B7, Canada
| | - Marie-Pierre Sylvestre
- CRCHUM - Centre de recherche du Centre Hospitalier de l'Université de Montréal, 900 rue Saint-Denis, Montréal, Qc H2X 0A9, Canada.,Department of Social and Preventive Medicine, Ecole de santé publique, Université de Montréal, Qc, Montréal, Canada
| | - Louis Gaboury
- IRIC, Université de Montréal, 2900 Boul. Édouard-Montpetit, Montréal, Québec, H3T 1J4, Canada
| | - Nathalie Grandvaux
- CRCHUM - Centre de recherche du Centre Hospitalier de l'Université de Montréal, 900 rue Saint-Denis, Montréal, Qc H2X 0A9, Canada. .,Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Qc, Montréal, Canada.
| |
Collapse
|
9
|
Zubair H, Azim S, Srivastava SK, Ahmad A, Bhardwaj A, Khan MA, Patel GK, Arora S, Carter JE, Singh S, Singh AP. Glucose Metabolism Reprogrammed by Overexpression of IKKε Promotes Pancreatic Tumor Growth. Cancer Res 2016; 76:7254-7264. [PMID: 27923829 DOI: 10.1158/0008-5472.can-16-1666] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 09/19/2016] [Accepted: 10/04/2016] [Indexed: 02/06/2023]
Abstract
Aberrant expression of the kinase IKKε in pancreatic ductal adenocarcinoma (PDAC) has been associated with poor prognosis. In this study, we define a pathobiologic function for IKKε in reprogramming glucose metabolism and driving progression in PDAC. Silencing IKKε in PDAC cells, which overexpressed it endogenously, was sufficient to reduce malignant cell growth, clonogenic potential, glucose consumption, lactate secretion, and expression of genes involved in glucose metabolism, without impacting the basal oxygen consumption rate. IKKε silencing also attenuated c-Myc in a manner associated with diminished signaling through an AKT/GSK3β/c-MYC phosphorylation cascade that promoted MYC nuclear accumulation. In an orthotopic mouse model, IKKε-silenced PDAC exhibited a relative reduction in glucose uptake, tumorigenicity, and metastasis. Overall, our findings offer a preclinical mechanistic rationale to target IKKε to improve the therapeutic management of PDAC in patients. Cancer Res; 76(24); 7254-64. ©2016 AACR.
Collapse
Affiliation(s)
- Haseeb Zubair
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama
| | - Shafquat Azim
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama
| | - Sanjeev Kumar Srivastava
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama
| | - Aamir Ahmad
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama
| | - Arun Bhardwaj
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama
| | - Mohammad Aslam Khan
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama
| | - Girijesh Kumar Patel
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama
| | - Sumit Arora
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama
| | - James Elliot Carter
- Department of Pathology, College of Medicine, University of South Alabama, Mobile, Alabama
| | - Seema Singh
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama.,Department of Biochemistry and Molecular Biology, College of Medicine, University of South Alabama, Mobile, Alabama
| | - Ajay Pratap Singh
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama. .,Department of Biochemistry and Molecular Biology, College of Medicine, University of South Alabama, Mobile, Alabama
| |
Collapse
|
10
|
The protein kinase IKKepsilon contributes to tumour growth and tumour pain in a melanoma model. Biochem Pharmacol 2016; 103:64-73. [PMID: 26793999 DOI: 10.1016/j.bcp.2015.12.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 12/22/2015] [Indexed: 11/24/2022]
Abstract
Inhibitor-kappaB kinase epsilon (IKKε) constitutes a non-canonical I-κB kinase, which amongst others modulates NF-κB activity. IKKε and NF-κB have both been described for their role in cell proliferation and their dysregulation has been associated with tumourigenesis and metastasis in multiple cancer types. Accordingly, overexpression and constitutive activation of NF-κB have also been shown in melanoma, however, the role of IKKε in this cancer type has not been investigated so far. Thus, we determined IKKε expression in malignant melanoma cells and we were able to show a significant overexpression of IKKε in tumour cells in comparison to melanocytes. Inhibition of IKKε either by shRNA or the pharmacological inhibitor amlexanox resulted in reduced cell proliferation associated with a cell cycle block in the G1-phase. Functional analysis indicated that NF-κB, Akt1 and MAPK pathways might be involved in the IKKε-mediated effects. In vivo, we applied a mouse melanoma skin cancer model to assess tumour growth and melanoma-associated pain in IKKε knockout mice as well as C57BL/6 mice after inoculation with IKKε-negative cells. In IKKε knockout mice, tumour growth was not altered as compared to IKKε wild type mice. However, melanoma associated pain was strongly suppressed accompanied by a reduced mRNA expression of a number of pain-relevant genes. In contrast, after inoculation of IKKε-depleted tumour cells, the development of melanoma was almost completely prevented. In conclusion, our data suggest that IKKε in the tumour plays an essential role in tumour initiation and progression while IKKε expression in tumour surrounding tissues contributes to melanoma-associated pain.
Collapse
|
11
|
Bauer D, Redmon N, Mazzio E, Taka E, Reuben JS, Day A, Sadrud-Din S, Flores-Rozas H, Soliman KFA, Darling-Reed S. Diallyl disulfide inhibits TNFα induced CCL2 release through MAPK/ERK and NF-Kappa-B signaling. Cytokine 2015; 75:117-26. [PMID: 26100848 DOI: 10.1016/j.cyto.2014.12.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 08/16/2014] [Accepted: 12/05/2014] [Indexed: 01/08/2023]
Abstract
TNFα receptors are constitutively overexpressed in tumor cells, correlating to sustain elevated NFκB and monocyte chemotactic protein-1 (MCP-1/CCL2) expression. The elevation of CCL2 evokes aggressive forms of malignant tumors marked by tumor associated macrophage (TAM) recruitment, cell proliferation, invasion and angiogenesis. Previously, we have shown that the organo-sulfur compound diallyl disulfide (DADS) found in garlic (Allium sativum) attenuates TNFα induced CCL2 production in MDA-MB-231 cells. In the current study, we explored the signaling pathways responsible for DADS suppressive effect on TNFα mediated CCL2 release using PCR Arrays, RT-PCR and western blots. The data in this study show that TNFα initiates a rise in NFκB mRNA, which is not reversed by DADS. However, TNFα induced heightened expression of IKKε and phosphorylated ERK. The expression of these proteins corresponds to increased CCL2 release that can be attenuated by DADS. CCL2 induction by TNFα was also lessened by inhibitors of p38 (SB202190) and MEK (U0126) but not JNK (SP 600125), all of which were suppressed by DADS. In conclusion, the obtained results indicate that DADS down regulates TNFα invoked CCL2 production primarily through reduction of IKKε and phosphorylated-ERK, thereby impairing MAPK/ERK, and NFκB pathway signaling. Future research will be required to evaluate the effects of DADS on the function and expression of TNFα surface receptors.
Collapse
Affiliation(s)
- D Bauer
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA
| | - N Redmon
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA
| | - E Mazzio
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA
| | - E Taka
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA
| | - J S Reuben
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA
| | - A Day
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA
| | - S Sadrud-Din
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA
| | - H Flores-Rozas
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA
| | - K F A Soliman
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA
| | - S Darling-Reed
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA.
| |
Collapse
|
12
|
Manna S, Singha B, Phyo SA, Gatla HR, Chang TP, Sanacora S, Ramaswami S, Vancurova I. Proteasome inhibition by bortezomib increases IL-8 expression in androgen-independent prostate cancer cells: the role of IKKα. THE JOURNAL OF IMMUNOLOGY 2013; 191:2837-46. [PMID: 23894194 DOI: 10.4049/jimmunol.1300895] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Expression of the proinflammatory and proangiogenic chemokine IL-8, which is regulated at the transcriptional level by NF-κB, is constitutively increased in androgen-independent metastatic prostate cancer and correlates with poor prognosis. Inhibition of NF-κB-dependent transcription was used as an anticancer strategy for the development of the first clinically approved 26S proteasome inhibitor, bortezomib (BZ). Even though BZ has shown remarkable antitumor activity in hematological malignancies, it has been less effective in prostate cancer and other solid tumors; however, the mechanisms have not been fully understood. In this article, we report that proteasome inhibition by BZ unexpectedly increases IL-8 expression in androgen-independent prostate cancer PC3 and DU145 cells, whereas expression of other NF-κB-regulated genes is inhibited or unchanged. The BZ-increased IL-8 expression is associated with increased in vitro p65 NF-κB DNA binding activity and p65 recruitment to the endogenous IL-8 promoter. In addition, proteasome inhibition induces a nuclear accumulation of IκB kinase (IKK)α, and inhibition of IKKα enzymatic activity significantly attenuates the BZ-induced p65 recruitment to IL-8 promoter and IL-8 expression, demonstrating that the induced IL-8 expression is mediated, at least partly, by IKKα. Together, these data provide the first evidence, to our knowledge, for the gene-specific increase of IL-8 expression by proteasome inhibition in prostate cancer cells and suggest that targeting both IKKα and the proteasome may increase BZ effectiveness in treatment of androgen-independent prostate cancer.
Collapse
Affiliation(s)
- Subrata Manna
- Department of Biological Sciences, St. John's University, New York, NY 11439, USA
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Guo Y, Sang W, Zhang W, Fan XT, Chen L, Yan DB, Lu C, He FP. Expression of IKKi in cirrhosis-related hepatocellular carcinoma. Shijie Huaren Xiaohua Zazhi 2013; 21:1333-1338. [DOI: 10.11569/wcjd.v21.i14.1333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To assess the clinical significance of IKKi protein expression in cirrhosis-related hepatocellular carcinoma (HCC).
METHODS: Immunohistochemistry was used to detect IKKi expression in 66 cirrhosis-related HCC specimens and matched tumor-adjacent cirrhosis specimens. The association of IKKi expression with clinical and pathological features of HCC was analyzed.
RESULTS: IKKi expression level was significantly higher in cirrhosis-related HCC than in tumor-adjacent cirrhosis tissue (P = 0.016). IKKi expression in HCC was positively correlated with tumor differentiation (P = 0.019, r = 0.278), age (P = 0.034, r = 0.261), Child - Pugh classification (P = 0.046, r =0 .246) and family history of hepatitis B (P = 0.017, r = 0.292), but was negatively correlated with tumor size (P = 0.011, r = -0.311).
CONCLUSION: Low expression of IKKi in HCC implies that IKKi may prevent the evolution of hepatitis B virus infection-viral hepatitis-cirrhosis-HCC.
Collapse
|
14
|
Dai J, Shen DF, Bian ZY, Zhou H, Gan HW, Zong J, Deng W, Yuan Y, Li F, Wu QQ, Gao L, Zhang R, Ma ZG, Li HL, Tang QZ. IKKi deficiency promotes pressure overload-induced cardiac hypertrophy and fibrosis. PLoS One 2013; 8:e53412. [PMID: 23349709 PMCID: PMC3551922 DOI: 10.1371/journal.pone.0053412] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Accepted: 11/29/2012] [Indexed: 11/19/2022] Open
Abstract
The inducible IκB kinase (IKKi/IKKε) is a recently described serine-threonine IKK-related kinase. Previous studies have reported the role of IKKi in infectious diseases and cancer. However, its role in the cardiac response to pressure overload remains elusive. In this study, we investigated the effects of IKKi deficiency on the development of pathological cardiac hypertrophy using in vitro and in vivo models. First, we developed mouse models of pressure overload cardiac hypertrophy induced by pressure overload using aortic banding (AB). Four weeks after AB, cardiac function was then assessed through echocardiographic and hemodynamic measurements. Western blotting, real-time PCR and histological analyses were used to assess the pathological and molecular mechanisms. We observed that IKKi-deficient mice showed significantly enhanced cardiac hypertrophy, cardiac dysfunction, apoptosis and fibrosis compared with WT mice. Furthermore, we recently revealed that the IKKi-deficient mice spontaneously develop cardiac hypertrophy. Moreover, in vivo experiments showed that IKKi deficiency-induced cardiac hypertrophy was associated with the activation of the AKT and NF-κB signaling pathway in response to AB. In cultured cells, IKKi overexpression suppressed the activation of this pathway. In conclusion, we demonstrate that IKKi deficiency exacerbates cardiac hypertrophy by regulating the AKT and NF-κB signaling pathway.
Collapse
Affiliation(s)
- Jia Dai
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute of Wuhan University, Wuhan, China
| | - Di-Fei Shen
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute of Wuhan University, Wuhan, China
| | - Zhou-Yan Bian
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute of Wuhan University, Wuhan, China
| | - Heng Zhou
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute of Wuhan University, Wuhan, China
| | - Hua-Wen Gan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute of Wuhan University, Wuhan, China
| | - Jing Zong
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute of Wuhan University, Wuhan, China
| | - Wei Deng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute of Wuhan University, Wuhan, China
| | - Yuan Yuan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute of Wuhan University, Wuhan, China
| | - FangFang Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute of Wuhan University, Wuhan, China
| | - Qing-Qing Wu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute of Wuhan University, Wuhan, China
| | - Lu Gao
- Department of Cardiology, Institute of Cardiovascular Disease, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Rui Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute of Wuhan University, Wuhan, China
| | - Zhen-Guo Ma
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute of Wuhan University, Wuhan, China
| | - Hong-Liang Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute of Wuhan University, Wuhan, China
| | - Qi-Zhu Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute of Wuhan University, Wuhan, China
- * E-mail:
| |
Collapse
|
15
|
Verhelst K, Verstrepen L, Carpentier I, Beyaert R. IκB kinase ε (IKKε): a therapeutic target in inflammation and cancer. Biochem Pharmacol 2013; 85:873-80. [PMID: 23333767 PMCID: PMC7111187 DOI: 10.1016/j.bcp.2013.01.007] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 01/04/2013] [Accepted: 01/11/2013] [Indexed: 01/10/2023]
Abstract
The innate immune system forms our first line of defense against invading pathogens and relies for a major part on the activation of two transcription factors, NF-κB and IRF3. Signaling pathways that activate these transcription factors are intertwined at the level of the canonical IκB kinases (IKKα, IKKβ) and non-canonical IKK-related kinases (IKKε, TBK1). Recently, significant progress has been made in understanding the function and mechanism of action of IKKε in immune signaling. In addition, IKKε impacts on cell proliferation and transformation, and is thereby also classified as an oncogene. Studies with IKKε knockout mice have illustrated a key role for IKKε in inflammatory and metabolic diseases. In this review we will highlight the mechanisms by which IKKε impacts on signaling pathways involved in disease development and discuss its potential as a novel therapeutic target.
Collapse
Affiliation(s)
- Kelly Verhelst
- Department for Molecular Biomedical Research, Unit of Molecular Signal Transduction in Inflammation, VIB, Zwijnaarde (Ghent), Belgium
| | | | | | | |
Collapse
|
16
|
Krishnamurthy S, Basu A. Regulation of IKKε Expression by Akt2 Isoform. Genes Cancer 2012; 2:1044-50. [PMID: 22737270 DOI: 10.1177/1947601912444604] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2012] [Accepted: 03/13/2012] [Indexed: 01/12/2023] Open
Abstract
The inhibitor of κ B kinase-ε (IKKε), a breast cancer oncogene, functions as a transforming kinase by activating NF-κB. IKKε is often elevated in breast cancers in the absence of any gene amplification. Because Akt-mediated transformation was shown to require IKKε, we examined if Akt regulates IKKε level in breast cancer cells. Knockdown of Akt2, but not other Akt isoforms, decreased the basal and TNF-induced IKKε protein and mRNA level, and overexpression of Akt2 in MDA-MB-231 cells increased IKKε level. The decrease in IKKε level by Akt2 knockdown was not only restricted to MDA-MB-231 cells but was also observed in several other breast cancer cells, including HCC1937 and MCF-10CA1a cells. Knockdown of p65/RelA subunit of NF-κB decreased IKKε level and attenuated the increase in IKKε caused by Akt2 overexpression, suggesting that Akt2-mediated induction of IKKε involves NF-κB activation. Silencing of IKKε also decreased long-term clonogenic survival of Akt2-overexpressing MDA-MB-231 cells. Taken together, these results demonstrate for the first time that IKKε functions downstream of Akt2 to promote breast cancer cell survival.
Collapse
|