1
|
Apavaloaei A, Zhao Q, Hesnard L, Cahuzac M, Durette C, Larouche JD, Hardy MP, Vincent K, Brochu S, Laverdure JP, Lanoix J, Courcelles M, Gendron P, Lajoie M, Ruiz Cuevas MV, Kina E, Perrault J, Humeau J, Ehx G, Lemieux S, Watson IR, Speiser DE, Bassani-Sternberg M, Thibault P, Perreault C. Tumor antigens preferentially derive from unmutated genomic sequences in melanoma and non-small cell lung cancer. NATURE CANCER 2025:10.1038/s43018-025-00979-2. [PMID: 40405018 DOI: 10.1038/s43018-025-00979-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 04/14/2025] [Indexed: 05/24/2025]
Abstract
Melanoma and non-small cell lung cancer (NSCLC) display exceptionally high mutational burdens. Hence, immune targeting in these cancers has primarily focused on tumor antigens (TAs) predicted to derive from nonsynonymous mutations. Using comprehensive proteogenomic analyses, we identified 589 TAs in cutaneous melanoma (n = 505) and NSCLC (n = 90). Of these, only 1% were derived from mutated sequences, which was explained by a low RNA expression of most nonsynonymous mutations and their localization outside genomic regions proficient for major histocompatibility complex (MHC) class I-associated peptide generation. By contrast, 99% of TAs originated from unmutated genomic sequences specific to cancer (aberrantly expressed tumor-specific antigens (aeTSAs), n = 220), overexpressed in cancer (tumor-associated antigens (TAAs), n = 165) or specific to the cell lineage of origin (lineage-specific antigens (LSAs), n = 198). Expression of aeTSAs was epigenetically regulated, and most were encoded by noncanonical genomic sequences. aeTSAs were shared among tumor samples, were immunogenic and could contribute to the response to immune checkpoint blockade observed in previous studies, supporting their immune targeting across cancers.
Collapse
Affiliation(s)
- Anca Apavaloaei
- Institute for Research in Immunology and Cancer (IRIC), University of Montreal, Montreal, Quebec, Canada
- Department of Medicine, University of Montreal, Montreal, Quebec, Canada
| | - Qingchuan Zhao
- Institute for Research in Immunology and Cancer (IRIC), University of Montreal, Montreal, Quebec, Canada
- Department of Medicine, University of Montreal, Montreal, Quebec, Canada
| | - Leslie Hesnard
- Institute for Research in Immunology and Cancer (IRIC), University of Montreal, Montreal, Quebec, Canada
| | - Maxime Cahuzac
- Institute for Research in Immunology and Cancer (IRIC), University of Montreal, Montreal, Quebec, Canada
| | - Chantal Durette
- Institute for Research in Immunology and Cancer (IRIC), University of Montreal, Montreal, Quebec, Canada
| | - Jean-David Larouche
- Institute for Research in Immunology and Cancer (IRIC), University of Montreal, Montreal, Quebec, Canada
- Department of Medicine, University of Montreal, Montreal, Quebec, Canada
| | - Marie-Pierre Hardy
- Institute for Research in Immunology and Cancer (IRIC), University of Montreal, Montreal, Quebec, Canada
| | - Krystel Vincent
- Institute for Research in Immunology and Cancer (IRIC), University of Montreal, Montreal, Quebec, Canada
| | - Sylvie Brochu
- Institute for Research in Immunology and Cancer (IRIC), University of Montreal, Montreal, Quebec, Canada
| | - Jean-Philippe Laverdure
- Institute for Research in Immunology and Cancer (IRIC), University of Montreal, Montreal, Quebec, Canada
| | - Joël Lanoix
- Institute for Research in Immunology and Cancer (IRIC), University of Montreal, Montreal, Quebec, Canada
| | - Mathieu Courcelles
- Institute for Research in Immunology and Cancer (IRIC), University of Montreal, Montreal, Quebec, Canada
| | - Patrick Gendron
- Institute for Research in Immunology and Cancer (IRIC), University of Montreal, Montreal, Quebec, Canada
| | - Mathieu Lajoie
- Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada
| | - Maria Virginia Ruiz Cuevas
- Institute for Research in Immunology and Cancer (IRIC), University of Montreal, Montreal, Quebec, Canada
- Department of Biochemistry and Molecular Medicine, University of Montreal, Montreal, Quebec, Canada
| | - Eralda Kina
- Institute for Research in Immunology and Cancer (IRIC), University of Montreal, Montreal, Quebec, Canada
- Department of Medicine, University of Montreal, Montreal, Quebec, Canada
| | - Julie Perrault
- Institute for Research in Immunology and Cancer (IRIC), University of Montreal, Montreal, Quebec, Canada
| | - Juliette Humeau
- Institute for Research in Immunology and Cancer (IRIC), University of Montreal, Montreal, Quebec, Canada
- Department of Medicine, University of Montreal, Montreal, Quebec, Canada
| | - Grégory Ehx
- Institute for Research in Immunology and Cancer (IRIC), University of Montreal, Montreal, Quebec, Canada
- Laboratory of Hematology, GIGA Institute, University of Liege, Liege, Belgium
- Walloon Excellence in Life Sciences and Biotechnology (WELBIO) Department, WEL Research Institute, Wavre, Belgium
| | - Sébastien Lemieux
- Institute for Research in Immunology and Cancer (IRIC), University of Montreal, Montreal, Quebec, Canada
- Department of Biochemistry and Molecular Medicine, University of Montreal, Montreal, Quebec, Canada
| | - Ian R Watson
- Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | - Daniel E Speiser
- Department of Oncology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Michal Bassani-Sternberg
- Department of Oncology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
- Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
| | - Pierre Thibault
- Institute for Research in Immunology and Cancer (IRIC), University of Montreal, Montreal, Quebec, Canada.
- Department of Chemistry, University of Montreal, Montreal, Quebec, Canada.
| | - Claude Perreault
- Institute for Research in Immunology and Cancer (IRIC), University of Montreal, Montreal, Quebec, Canada.
- Department of Medicine, University of Montreal, Montreal, Quebec, Canada.
| |
Collapse
|
2
|
Jibon MDK, Islam MA, Hosen ME, Faruqe MO, Zaman R, Acharjee UK, Sikdar B, Tiruneh YK, Khalekuzzaman M, Jawi M, Zaki MEA. In-silico analysis of deleterious non-synonymous SNPs in the human AVPR1a gene linked to autism. BMC Genomics 2025; 26:492. [PMID: 40375167 PMCID: PMC12083178 DOI: 10.1186/s12864-025-11655-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Accepted: 04/29/2025] [Indexed: 05/18/2025] Open
Abstract
Single nucleotide polymorphisms are the most prevalent type of DNA variation occurring at a single nucleotide within the genomic sequence. The AVPR1a gene exhibits genetic polymorphism and is linked to neurological and developmental problems, including autism spectrum disorder. Due to the difficulties of studying all non-synonymous single nucleotide polymorphisms (nsSNPs) of the AVPR1a gene in the general population, our goal is to use a computational approach to identify the most detrimental nsSNPs of the AVPR1a gene. We employed several bioinformatics tools, such as SNPnexus, PROVEAN, PANTHER, PhD-SNP, SNP & GO, and I-Mutant2.0, to detect the 23 most detrimental mutants (R85H, D202N, E54G, H92P, D148Y, C203G, V297M, D148V, S182N, Q108L, R149C, G212V, M145T, G212S, Y140S, F207V, Q108H, W219G, R284W, L93F, P156R, F136C, P107L). Later, we used other bioinformatics tools to perform domain and conservation analysis. We analyzed the consequences of high‑risk nsSNPs on active sites, post-translational modification (PTM) sites, and their functional effects on protein stability. 3D modeling, structure validation, protein-ligand binding affinity prediction, and Protein-protein docking were conducted to verify the presence of five significant substitutions (R284W, Y140S, P107L, R149C, and F207V) and explore the modifications induced due to these mutants. These non-synonymous single nucleotide polymorphisms can potentially be the focus of future investigations into various illnesses caused by AVPR1a malfunction. Employing in-silico methodologies to evaluate AVPR1a gene variants will facilitate the coordination of extensive investigations and the formulation of specific therapeutic approaches for diseases associated with these variations.
Collapse
Affiliation(s)
- Md Delowar Kobir Jibon
- Professor Joardar DNA and Chromosome Research Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Md Asadul Islam
- Professor Joardar DNA and Chromosome Research Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Md Eram Hosen
- Biomedical Science and Molecular Biology, College of Medicine and Dentistry, James Cook University, Townsville, Australia
| | - Md Omar Faruqe
- Department of Computer Science and Engineering, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Rashed Zaman
- Professor Joardar DNA and Chromosome Research Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Uzzal Kumar Acharjee
- Professor Joardar DNA and Chromosome Research Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Biswanath Sikdar
- Professor Joardar DNA and Chromosome Research Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Yewulsew Kebede Tiruneh
- Department of Biology, Biomedical Sciences Stream, Bahir Dar University, P.O.Box=79, Bahir Dar, Ethiopia.
| | - Md Khalekuzzaman
- Professor Joardar DNA and Chromosome Research Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, 6205, Bangladesh.
| | - Motasim Jawi
- Department of Basic Medical Sciences, College of Medicine, University of Jeddah, Jeddah, Saudi Arabia
| | - Magdi E A Zaki
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU) , Riyadh, Saudi Arabia.
| |
Collapse
|
3
|
Cho L, Yoon J, Baek G, Tun W, Kwon HC, Lee D, Choi S, Lee Y, Jeon J, An G. Sucrose induces flowering by degradation of the floral repressor Ghd7 via K48-linked polyubiquitination in rice. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:2683-2700. [PMID: 39417650 PMCID: PMC11622536 DOI: 10.1111/jipb.13790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/20/2024] [Accepted: 09/26/2024] [Indexed: 10/19/2024]
Abstract
Sucrose functions as a signaling molecule in several metabolic pathways as well as in various developmental processes. However, the molecular mechanisms by which sucrose regulates these processes remain largely unknown. In the present study, we demonstrate that sucrose promotes flowering by mediating the stability of a regulatory protein that represses flowering in rice. Exogenous application of sucrose promoted flowering by inducing florigen gene expression. Reduction of sucrose levels in the phloem through genetic modifications, such as the overexpression of the vacuolar invertase OsVIN2 or the mutation of OsSUT2, a sucrose transporter, delayed flowering. Analysis of relative transcript levels of floral regulatory genes showed that sucrose activated Ehd1 upstream of the florigen, with no significant effect on the expression of other upstream genes. Examination of protein stability after sucrose treatment of major floral repressors revealed that the Ghd7 protein was specifically degraded. The Ghd7 protein interacted with the E3 ligase IPA INTERACTING PROTEIN1 (IPI1), and sucrose-induced K48-linked polyubiquitination of Ghd7 via IPI1, leading to protein degradation. Mutants defective in IPI1 delayed flowering, confirming its role in modulating proteins involved in flowering. We conclude that sucrose acts as a signaling molecule to induce flowering by promoting Ghd7 degradation via IPI1.
Collapse
Affiliation(s)
- Lae‐Hyeon Cho
- Department of Plant Bioscience, College of Natural Resources and Life SciencePusan National UniversityMiryang50463Korea
- Life and Industry Convergence Research InstitutePusan National UniversityMiryang50463Korea
| | - Jinmi Yoon
- Department of Biological SciencesInha UniversityIncheon22212Korea
- Department of Biological Sciences and BioengineeringInha University/Industry‐Academia Interactive R&E Center for Bioprocess Innovation, Inha UniversityIncheon22212Korea
| | - Gibeom Baek
- Department of Plant Bioscience, College of Natural Resources and Life SciencePusan National UniversityMiryang50463Korea
| | - Win Tun
- Crop Biotech Institute and Graduate School of Green‐Bio ScienceKyung Hee UniversityYongin17104Korea
| | - Hyeok Chan Kwon
- Department of Biological SciencesInha UniversityIncheon22212Korea
- Department of Biological Sciences and BioengineeringInha University/Industry‐Academia Interactive R&E Center for Bioprocess Innovation, Inha UniversityIncheon22212Korea
| | - Dae‐Woo Lee
- Crop Biotech Institute and Graduate School of Green‐Bio ScienceKyung Hee UniversityYongin17104Korea
| | - Seok‐Hyun Choi
- Crop Biotech Institute and Graduate School of Green‐Bio ScienceKyung Hee UniversityYongin17104Korea
| | - Yang‐Seok Lee
- Crop Biotech Institute and Graduate School of Green‐Bio ScienceKyung Hee UniversityYongin17104Korea
| | - Jong‐Seong Jeon
- Crop Biotech Institute and Graduate School of Green‐Bio ScienceKyung Hee UniversityYongin17104Korea
| | - Gynheung An
- Crop Biotech Institute and Graduate School of Green‐Bio ScienceKyung Hee UniversityYongin17104Korea
| |
Collapse
|
4
|
Nguyen VN, Tran TX, Nguyen TT, Le NQK. Enhancing Arabidopsis thaliana ubiquitination site prediction through knowledge distillation and natural language processing. Methods 2024; 232:65-71. [PMID: 39447942 DOI: 10.1016/j.ymeth.2024.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 09/30/2024] [Accepted: 10/14/2024] [Indexed: 10/26/2024] Open
Abstract
Protein ubiquitination is a critical post-translational modification (PTM) involved in diverse biological processes and plays a pivotal role in regulating physiological mechanisms and disease states. Despite various efforts to develop ubiquitination site prediction tools across species, these tools mainly rely on predefined sequence features and machine learning algorithms, with species-specific variations in ubiquitination patterns remaining poorly understood. This study introduces a novel approach for predicting Arabidopsis thaliana ubiquitination sites using a neural network model based on knowledge distillation and natural language processing (NLP) of protein sequences. Our framework employs a multi-species "Teacher model" to guide a more compact, species-specific "Student model", with the "Teacher" generating pseudo-labels that enhance the "Student" learning and prediction robustness. Cross-validation results demonstrate that our model achieves superior performance, with an accuracy of 86.3 % and an area under the curve (AUC) of 0.926, while independent testing confirmed these results with an accuracy of 86.3 % and an AUC of 0.923. Comparative analysis with established predictors further highlights the model's superiority, emphasizing the effectiveness of integrating knowledge distillation and NLP in ubiquitination prediction tasks. This study presents a promising and efficient approach for ubiquitination site prediction, offering valuable insights for researchers in related fields. The code and resources are available on GitHub: https://github.com/nuinvtnu/KD_ArapUbi.
Collapse
Affiliation(s)
- Van-Nui Nguyen
- University of Information and Communication Technology, Thai Nguyen University, Thai Nguyen, Viet Nam
| | - Thi-Xuan Tran
- University of Economics and Business Administration, Thai Nguyen University, Thai Nguyen, Viet Nam.
| | - Thi-Tuyen Nguyen
- University of Information and Communication Technology, Thai Nguyen University, Thai Nguyen, Viet Nam
| | - Nguyen Quoc Khanh Le
- In-Service Master Program in Artificial Intelligence in Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; AIBioMed Research Group, Taipei Medical University, Taipei 110, Taiwan; Translational Imaging Research Center, Taipei Medical University Hospital, Taipei 110, Taiwan.
| |
Collapse
|
5
|
Uversky VN. On the Roles of Protein Intrinsic Disorder in the Origin of Life and Evolution. Life (Basel) 2024; 14:1307. [PMID: 39459607 PMCID: PMC11509291 DOI: 10.3390/life14101307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/13/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
Obviously, the discussion of different factors that could have contributed to the origin of life and evolution is clear speculation, since there is no way of checking the validity of most of the related hypotheses in practice, as the corresponding events not only already happened, but took place in a very distant past. However, there are a few undisputable facts that are present at the moment, such as the existence of a wide variety of living forms and the abundant presence of intrinsically disordered proteins (IDPs) or hybrid proteins containing ordered domains and intrinsically disordered regions (IDRs) in all living forms. Since it seems that the currently existing living forms originated from a common ancestor, their variety is a result of evolution. Therefore, one could ask a logical question of what role(s) the structureless and highly dynamic but vastly abundant and multifunctional IDPs/IDRs might have in evolution. This study represents an attempt to consider various ideas pertaining to the potential roles of protein intrinsic disorder in the origin of life and evolution.
Collapse
Affiliation(s)
- Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| |
Collapse
|
6
|
Dai DL, Xie C, Zhong LY, Liu SX, Zhang LL, Zhang H, Wu XP, Wu ZM, Kang K, Li Y, Sun YM, Xia TL, Zhang CS, Zhang A, Shi M, Sun C, Chen ML, Zhao GX, Bu GL, Liu YT, Huang KY, Zhao Z, Li SX, Zhang XY, Yuan YF, Wen SJ, Zhang L, Li BK, Zhong Q, Zeng MS. AXIN1 boosts antiviral response through IRF3 stabilization and induced phase separation. Signal Transduct Target Ther 2024; 9:281. [PMID: 39384753 PMCID: PMC11464762 DOI: 10.1038/s41392-024-01978-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 09/02/2024] [Accepted: 09/13/2024] [Indexed: 10/11/2024] Open
Abstract
Axis inhibition protein 1 (AXIN1), a scaffold protein interacting with various critical molecules, plays a vital role in determining cell fate. However, its impact on the antiviral innate immune response remains largely unknown. Here, we identify that AXIN1 acts as an effective regulator of antiviral innate immunity against both DNA and RNA virus infections. In the resting state, AXIN1 maintains the stability of the transcription factor interferon regulatory factor 3 (IRF3) by preventing p62-mediated autophagic degradation of IRF3. This is achieved by recruiting ubiquitin-specific peptidase 35 (USP35), which removes lysine (K) 48-linked ubiquitination at IRF3 K366. Upon virus infection, AXIN1 undergoes a phase separation triggered by phosphorylated TANK-binding kinase 1 (TBK1). This leads to increased phosphorylation of IRF3 and a boost in IFN-I production. Moreover, KYA1797K, a small molecule that binds to the AXIN1 RGS domain, enhances the AXIN1-IRF3 interaction and promotes the elimination of various highly pathogenic viruses. Clinically, patients with HBV-associated hepatocellular carcinoma (HCC) who show reduced AXIN1 expression in pericarcinoma tissues have low overall and disease-free survival rates, as well as higher HBV levels in their blood. Overall, our findings reveal how AXIN1 regulates IRF3 signaling and phase separation-mediated antiviral immune responses, underscoring the potential of the AXIN1 agonist KYA1797K as an effective antiviral agent.
Collapse
Affiliation(s)
- Dan-Ling Dai
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Chu Xie
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Lan-Yi Zhong
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Shang-Xin Liu
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Le-Le Zhang
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Hua Zhang
- Shenzhen Key Laboratory of Systems Medicine for inflammatory diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-sen University, Shenzhen, Guangdong, P. R. China
| | - Xing-Ping Wu
- Department of Clinical Laboratory, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Zhou-Ming Wu
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Kexin Kang
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, P. R. China
| | - Yan Li
- Department of Pathology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Ya-Meng Sun
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Tian-Liang Xia
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Chen-Song Zhang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, P. R. China
| | - Ao Zhang
- Department of Clinical Laboratory, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Ming Shi
- Department of Liver Surgery, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Cong Sun
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Mei-Ling Chen
- Department of Nuclear medicine, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Ge-Xin Zhao
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Guo-Long Bu
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Yuan-Tao Liu
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Kui-Yuan Huang
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, P. R. China
| | - Zheng Zhao
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Shu-Xin Li
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Xiao-Yong Zhang
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, P. R. China
| | - Yun-Fei Yuan
- Department of Liver Surgery, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Shi-Jun Wen
- Medicinal Synthetic Chemistry Center, Department of Experimental Research, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Lingqiang Zhang
- State Key Laboratory of Medical Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, P. R. China
| | - Bin-Kui Li
- Department of Liver Surgery, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China.
| | - Qian Zhong
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China.
| | - Mu-Sheng Zeng
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China.
| |
Collapse
|
7
|
Zhou B, Luo Y, Bi H, Zhang N, Ma M, Dong Z, Ji N, Zhang S, Wang X, Liu Y, Guo X, Wei W, Xie C, Wu L, Wan X, Zheng MH, Zhao B, Li Y, Hu C, Lu Y. Amelioration of nonalcoholic fatty liver disease by inhibiting the deubiquitylating enzyme RPN11. Cell Metab 2024; 36:2228-2244.e7. [PMID: 39146936 DOI: 10.1016/j.cmet.2024.07.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 05/16/2024] [Accepted: 07/17/2024] [Indexed: 08/17/2024]
Abstract
Nonalcoholic fatty liver disease (NAFLD), including its more severe manifestation nonalcoholic steatohepatitis (NASH), is a global public health challenge. Here, we explore the role of deubiquitinating enzyme RPN11 in NAFLD and NASH. Hepatocyte-specific RPN11 knockout mice are protected from diet-induced liver steatosis, insulin resistance, and steatohepatitis. Mechanistically, RPN11 deubiquitinates and stabilizes METTL3 to enhance the m6A modification and expression of acyl-coenzyme A (CoA) synthetase short-chain family member 3 (ACSS3), which generates propionyl-CoA to upregulate lipid metabolism genes via histone propionylation. The RPN11-METTL3-ACSS3-histone propionylation pathway is activated in the livers of patients with NAFLD. Pharmacological inhibition of RPN11 by Capzimin ameliorated NAFLD, NASH, and related metabolic disorders in mice and reduced lipid contents in human hepatocytes cultured in 2D and 3D. These results demonstrate that RPN11 is a novel regulator of NAFLD/NASH and that suppressing RPN11 has therapeutic potential for the treatment.
Collapse
Affiliation(s)
- Bing Zhou
- Institute of Metabolism and Regenerative Medicine, Digestive Endoscopic Center, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Centre for Diabetes, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yunchen Luo
- Department of Endocrinology and Metabolism, Shanghai General Hospital Affiliated to Shanghai Jiao Tong University, Shanghai, China
| | - Hanqi Bi
- Institute of Metabolism and Regenerative Medicine, Digestive Endoscopic Center, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ni Zhang
- MAFLD Research Center, Department of Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Mingyue Ma
- Institute of Metabolism and Regenerative Medicine, Digestive Endoscopic Center, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Centre for Diabetes, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhixia Dong
- Institute of Metabolism and Regenerative Medicine, Digestive Endoscopic Center, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Nana Ji
- Institute of Metabolism and Regenerative Medicine, Digestive Endoscopic Center, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuo Zhang
- Institute of Metabolism and Regenerative Medicine, Digestive Endoscopic Center, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoye Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Yuejun Liu
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiaozhen Guo
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Wei Wei
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Cen Xie
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Ling Wu
- Department of Assisted Reproduction, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Laboratory Animal Science, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xinjian Wan
- Institute of Metabolism and Regenerative Medicine, Digestive Endoscopic Center, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ming-Hua Zheng
- MAFLD Research Center, Department of Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Bing Zhao
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China.
| | - Yao Li
- Department of Laboratory Animal Science, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Cheng Hu
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Centre for Diabetes, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Institute for Metabolic Disease, Fengxian Central Hospital Affiliated to Southern Medical University, Shanghai, China.
| | - Yan Lu
- Institute of Metabolism and Regenerative Medicine, Digestive Endoscopic Center, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
8
|
Qiu C, Zhang L, Yong C, Hu R, Sun Y, Wang B, Fang L, Zhu GJ, Lu Q, Wang J, Ma X, Zhang L, Wan G. Stub1 promotes degradation of the activated Diaph3: A negative feedback regulatory mechanism of the actin nucleator. J Biol Chem 2024; 300:107813. [PMID: 39322015 PMCID: PMC11736009 DOI: 10.1016/j.jbc.2024.107813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 08/30/2024] [Accepted: 09/17/2024] [Indexed: 09/27/2024] Open
Abstract
The formin protein Diaph3 is an actin nucleator that regulates numerous cytoskeleton-dependent cellular processes through the activation of actin polymerization. Expression and activity of Diaph3 is tightly regulated: lack of Diaph3 results in developmental defects and embryonic lethality in mice, while overexpression of Diaph3 causes auditory neuropathy. It is known that Diaph3 homophilic interactions include the intramolecular interaction of its Dia-inhibitory domain (DID)-diaphanous autoregulatory domain (DAD) domains and the intermolecular interactions of DD-DD domains or FH2-FH2 domains. However, the physiological significance of these interactions in Diaph3 protein stability and activity is not fully understood. In this study, we show that FH2-FH2 interaction promotes Diaph3 activity, while DID-DAD and DD-DD interactions inhibit Diaph3 activity through distinct mechanisms. DID-DAD interaction is responsible for the autoinhibition of Diaph3 protein, which is disrupted by binding of Rho GTPases. Interestingly, we find that DID-DAD interaction stabilizes the expression of each DID or DAD domain against proteasomal-mediated degradation. Disruption of DID-DAD interaction by RhoA binding or M1041A mutation causes increased Diaph3 activity and accelerated degradation of the activated Diaph3 protein. Further, the activated Diaph3 is ubiquitinated at K1142/1143/1144 lysine residues by the E3 ligase Stub1. Expression of Stub1 is causally related to the stability and activity of Diaph3. Knockdown of Stub1 in mouse cochlea results in hair cell stereocilia defects, neuronal degeneration, and hearing loss, resembling the phenotypes of mice overexpressing Diaph3. Thus, our study reports a novel regulatory mechanism of Diaph3 protein expression and activity whereby the active but not inactive Diaph3 is readily degraded to prevent excessive actin polymerization.
Collapse
Affiliation(s)
- Cui Qiu
- MOE Key Laboratory of Model Animal for Disease Study, Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), The Affiliated Drum Tower Hospital of Medical School, Model Animal Research Center of Medical School, Nanjing University, Nanjing, China
| | - Linqing Zhang
- MOE Key Laboratory of Model Animal for Disease Study, Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), The Affiliated Drum Tower Hospital of Medical School, Model Animal Research Center of Medical School, Nanjing University, Nanjing, China
| | - Chenxuan Yong
- MOE Key Laboratory of Model Animal for Disease Study, Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), The Affiliated Drum Tower Hospital of Medical School, Model Animal Research Center of Medical School, Nanjing University, Nanjing, China
| | - Ruixing Hu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| | - Yuecen Sun
- MOE Key Laboratory of Model Animal for Disease Study, Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), The Affiliated Drum Tower Hospital of Medical School, Model Animal Research Center of Medical School, Nanjing University, Nanjing, China
| | - Busong Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, National Resource Center for Mutant Mice of China, Medical School, Nanjing University, Nanjing, China
| | - Lei Fang
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, National Resource Center for Mutant Mice of China, Medical School, Nanjing University, Nanjing, China
| | - Guang-Jie Zhu
- MOE Key Laboratory of Model Animal for Disease Study, Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), The Affiliated Drum Tower Hospital of Medical School, Model Animal Research Center of Medical School, Nanjing University, Nanjing, China; Research Institute of Otolaryngology, Nanjing, China
| | - Qing Lu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| | - Junguo Wang
- MOE Key Laboratory of Model Animal for Disease Study, Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), The Affiliated Drum Tower Hospital of Medical School, Model Animal Research Center of Medical School, Nanjing University, Nanjing, China; Research Institute of Otolaryngology, Nanjing, China.
| | - Xiaofeng Ma
- MOE Key Laboratory of Model Animal for Disease Study, Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), The Affiliated Drum Tower Hospital of Medical School, Model Animal Research Center of Medical School, Nanjing University, Nanjing, China; Research Institute of Otolaryngology, Nanjing, China.
| | - Luping Zhang
- Department of Otolaryngology-Head and Neck Surgery, Affiliated Hospital, Nantong University, Nantong, China.
| | - Guoqiang Wan
- MOE Key Laboratory of Model Animal for Disease Study, Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), The Affiliated Drum Tower Hospital of Medical School, Model Animal Research Center of Medical School, Nanjing University, Nanjing, China; State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, National Resource Center for Mutant Mice of China, Medical School, Nanjing University, Nanjing, China; Research Institute of Otolaryngology, Nanjing, China.
| |
Collapse
|
9
|
Tanshee RR, Mahmud Z, Nabi AHMN, Sayem M. A comprehensive in silico investigation into the pathogenic SNPs in the RTEL1 gene and their biological consequences. PLoS One 2024; 19:e0309713. [PMID: 39240887 PMCID: PMC11379182 DOI: 10.1371/journal.pone.0309713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 08/16/2024] [Indexed: 09/08/2024] Open
Abstract
The Regulator of Telomere Helicase 1 (RTEL1) gene encodes a critical DNA helicase intricately involved in the maintenance of telomeric structures and the preservation of genomic stability. Germline mutations in the RTEL1 gene have been clinically associated with Hoyeraal-Hreidarsson syndrome, a more severe version of Dyskeratosis Congenita. Although various research has sought to link RTEL1 mutations to specific disorders, no comprehensive investigation has yet been conducted on missense mutations. In this study, we attempted to investigate the functionally and structurally deleterious coding and non-coding SNPs of the RTEL1 gene using an in silico approach. Initially, out of 1392 nsSNPs, 43 nsSNPs were filtered out through ten web-based bioinformatics tools. With subsequent analysis using nine in silico tools, these 43 nsSNPs were further shortened to 11 most deleterious nsSNPs. Furthermore, analyses of mutated protein structures, evolutionary conservancy, surface accessibility, domains & PTM sites, cancer susceptibility, and interatomic interaction revealed the detrimental effect of these 11 nsSNPs on RTEL1 protein. An in-depth investigation through molecular docking with the DNA binding sequence demonstrated a striking change in the interaction pattern for F15L, M25V, and G706R mutant proteins, suggesting the more severe consequences of these mutations on protein structure and functionality. Among the non-coding variants, two had the highest likelihood of being regulatory variants, whereas one variant was predicted to affect the target region of a miRNA. Thus, this study lays the groundwork for extensive analysis of RTEL1 gene variants in the future, along with the advancement of precision medicine and other treatment modalities.
Collapse
Affiliation(s)
- Rifah Rownak Tanshee
- Department of Mathematics and Natural Sciences, BRAC University, Badda, Dhaka, Bangladesh
| | - Zimam Mahmud
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, Bangladesh
| | - A. H. M. Nurun Nabi
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, Bangladesh
| | - Mohammad Sayem
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, Bangladesh
| |
Collapse
|
10
|
Lim CP, Leow CH, Lim HT, Kok BH, Chuah C, Oliveira JIN, Jones M, Leow CY. Insights into structural vaccinology harnessed for universal coronavirus vaccine development. Clin Exp Vaccine Res 2024; 13:202-217. [PMID: 39144127 PMCID: PMC11319108 DOI: 10.7774/cevr.2024.13.3.202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/10/2024] [Accepted: 05/15/2024] [Indexed: 08/16/2024] Open
Abstract
Structural vaccinology is pivotal in expediting vaccine design through high-throughput screening of immunogenic antigens. Leveraging the structural and functional characteristics of antigens and immune cell receptors, this approach employs protein structural comparison to identify conserved patterns in key pathogenic components. Molecular modeling techniques, including homology modeling and molecular docking, analyze specific three-dimensional (3D) structures and protein interactions and offer valuable insights into the 3D interactions and binding affinity between vaccine candidates and target proteins. In this review, we delve into the utilization of various immunoinformatics and molecular modeling tools to streamline the development of broad-protective vaccines against coronavirus disease 2019 variants. Structural vaccinology significantly enhances our understanding of molecular interactions between hosts and pathogens. By accelerating the pace of developing effective and targeted vaccines, particularly against the rapidly mutating severe acute respiratory syndrome coronavirus 2 and other prevalent infectious diseases, this approach stands at the forefront of advancing immunization strategies. The combination of computational techniques and structural insights not only facilitates the identification of potential vaccine candidates but also contributes to the rational design of vaccines, fostering a more efficient and targeted approach to combatting infectious diseases.
Collapse
Affiliation(s)
- Chin Peng Lim
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Gelugor, Malaysia
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Gelugor, Malaysia
| | - Chiuan Herng Leow
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Gelugor, Malaysia
| | - Hui Ting Lim
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Gelugor, Malaysia
| | - Boon Hui Kok
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Gelugor, Malaysia
| | - Candy Chuah
- Faculty of Medicine, Asian Institute of Medical Science and Technology University, Bedong, Malaysia
| | - Jonas Ivan Nobre Oliveira
- Department of Biophysics and Pharmacology, Bioscience Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Malcolm Jones
- School of Veterinary Science, The University of Queensland, Gatton, Australia
| | - Chiuan Yee Leow
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Gelugor, Malaysia
| |
Collapse
|
11
|
Shazia, Ullah FUM, Rho S, Lee MY. Predictive modeling for ubiquitin proteins through advanced machine learning technique. Heliyon 2024; 10:e32517. [PMID: 38975176 PMCID: PMC11225741 DOI: 10.1016/j.heliyon.2024.e32517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 06/05/2024] [Indexed: 07/09/2024] Open
Abstract
Ubiquitination is an essential post-translational modification mechanism involving the ubiquitin protein's bonding to a substrate protein. It is crucial in a variety of physiological activities including cell survival and differentiation, and innate and adaptive immunity. Any alteration in the ubiquitin system leads to the development of various human diseases. Numerous researches show the highly reversibility and dynamic of ubiquitin system, making the experimental identification quite difficult. To solve this issue, this article develops a model using a machine learning approach, tending to improve the ubiquitin protein prediction precisely. We deeply investigate the ubiquitination data that is proceed through different features extraction methods, followed by the classification. The evaluation and assessment are conducted considering Jackknife tests and 10-fold cross-validation. The proposed method demonstrated the remarkable performance in terms of 100 %, 99.88 %, and 99.84 % accuracy on Dataset-I, Dataset-II, and Dataset-III, respectively. Using Jackknife test, the method achieves 100 %, 99.91 %, and 99.99 % for Dataset-I, Dataset-II and Dataset-III, respectively. This analysis concludes that the proposed method outperformed the state-of-the-arts to identify the ubiquitination sites and helpful in the development of current clinical therapies. The source code and datasets will be made available at Github.
Collapse
Affiliation(s)
- Shazia
- Mardan College of Nursing, Bacha Khan Medical College, Mardan, Pakistan
| | - Fath U Min Ullah
- Deparment of Computing, School of Engineering and Computing, University of Central Lancashire, Preston, United Kingdom
| | - Seungmin Rho
- Department of Industrial Security, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Mi Young Lee
- Chung-Ang University, Seoul 06974, Republic of Korea
| |
Collapse
|
12
|
Sun W, Wang J, Liu C, Gao F, Ou Q, Tian H, Xu J, Zhang J, Li J, Xu J, Jia S, Zhang J, Xu G, Huang J, Jin C, Lu L. SUMOylation of GMFB regulates its stability and function in retinal pigment epithelial cells under hyperglycemia. Int J Biol Macromol 2024; 268:131678. [PMID: 38657921 DOI: 10.1016/j.ijbiomac.2024.131678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 04/26/2024]
Abstract
BACKGROUND Glia maturation factor beta (GMFB) is a growth and differentiation factor that acts as an intracellular regulator of signal transduction pathways. The small ubiquitin-related modifier (SUMO) modification, SUMOylation, is a posttranslational modification (PTM) that plays a key role in protein subcellular localization, stability, transcription, and enzymatic activity. Recent studies have highlighted the importance of SUMOylation in the inflammation and progression of numerous diseases. However, the relationship between GMFB and SUMOylation is unclear. RESULTS Here, we report for the first time that GMFB and SUMO1 are markedly increased in retinal pigment epithelial (RPE) cells at the early stage of diabetes mellitus (DM) under hyperglycemia. The GMFΒ protein could be mono-SUMOylated by SUMO1 at the K20, K35, K58 or K97 sites. SUMOylation of GMFB led to its increased protein stability and subcellular translocation. Furthermore, deSUMOylation of GMFΒ downregulates multiple signaling pathways, including the Jak-STAT signaling pathway, p38 pathway and NF-kappa B signaling pathway. CONCLUSIONS This work provides novel insight into the role of SUMOylated GMFB in RPE cells and provides a novel therapeutic target for diabetic retinopathy (DR).
Collapse
Affiliation(s)
- Wan Sun
- Department of Ophthalmology of Shanghai Tongji Hospital and Laboratory of Clinical Visual Science of Tongji Eye Institute, Tongji University, Shanghai 200065, China; Department of Biochemistry and Molecular Biology, School of Medicine, Tongji University, Shanghai 200065, China
| | - Juan Wang
- Department of Ophthalmology of Shanghai Tongji Hospital and Laboratory of Clinical Visual Science of Tongji Eye Institute, Tongji University, Shanghai 200065, China; Department of Medical Genetics, School of Medicine, Tongji University, Shanghai 200065, China
| | - Caiying Liu
- Department of Ophthalmology of Shanghai Tongji Hospital and Laboratory of Clinical Visual Science of Tongji Eye Institute, Tongji University, Shanghai 200065, China; Department of Biochemistry and Molecular Biology, School of Medicine, Tongji University, Shanghai 200065, China
| | - Furong Gao
- Department of Ophthalmology of Shanghai Tongji Hospital and Laboratory of Clinical Visual Science of Tongji Eye Institute, Tongji University, Shanghai 200065, China; Department of Biochemistry and Molecular Biology, School of Medicine, Tongji University, Shanghai 200065, China
| | - Qingjian Ou
- Department of Ophthalmology of Shanghai Tongji Hospital and Laboratory of Clinical Visual Science of Tongji Eye Institute, Tongji University, Shanghai 200065, China; Department of Pharmacology, School of Medicine, Tongji University, Shanghai 200065, China
| | - Haibin Tian
- Department of Ophthalmology of Shanghai Tongji Hospital and Laboratory of Clinical Visual Science of Tongji Eye Institute, Tongji University, Shanghai 200065, China; Department of Biochemistry and Molecular Biology, School of Medicine, Tongji University, Shanghai 200065, China
| | - Jingying Xu
- Department of Ophthalmology of Shanghai Tongji Hospital and Laboratory of Clinical Visual Science of Tongji Eye Institute, Tongji University, Shanghai 200065, China; Department of Biochemistry and Molecular Biology, School of Medicine, Tongji University, Shanghai 200065, China
| | - Jieping Zhang
- Department of Ophthalmology of Shanghai Tongji Hospital and Laboratory of Clinical Visual Science of Tongji Eye Institute, Tongji University, Shanghai 200065, China; Department of Pharmacology, School of Medicine, Tongji University, Shanghai 200065, China
| | - Jiao Li
- Department of Biochemistry and Molecular Biology, School of Medicine, Tongji University, Shanghai 200065, China
| | - Jie Xu
- Department of Biochemistry and Molecular Biology, School of Medicine, Tongji University, Shanghai 200065, China
| | - Song Jia
- Department of Biochemistry and Molecular Biology, School of Medicine, Tongji University, Shanghai 200065, China
| | - Jingfa Zhang
- Department of Ophthalmology, Shanghai First People's Hospital, Shanghai Jiao Tong University, Shanghai 200025, China
| | - GuoTong Xu
- Department of Ophthalmology of Shanghai Tongji Hospital and Laboratory of Clinical Visual Science of Tongji Eye Institute, Tongji University, Shanghai 200065, China; Department of Pharmacology, School of Medicine, Tongji University, Shanghai 200065, China.
| | - Jian Huang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | - Caixia Jin
- Department of Ophthalmology of Shanghai Tongji Hospital and Laboratory of Clinical Visual Science of Tongji Eye Institute, Tongji University, Shanghai 200065, China; Department of Biochemistry and Molecular Biology, School of Medicine, Tongji University, Shanghai 200065, China.
| | - Lixia Lu
- Department of Ophthalmology of Shanghai Tongji Hospital and Laboratory of Clinical Visual Science of Tongji Eye Institute, Tongji University, Shanghai 200065, China; Department of Biochemistry and Molecular Biology, School of Medicine, Tongji University, Shanghai 200065, China.
| |
Collapse
|
13
|
Sahu M, Rani N, Kumar P. Simulation and Computational Study of RING Domain Mutants of BRCA1 and Ube2k in AD/PD Pathophysiology. Mol Biotechnol 2024; 66:1095-1115. [PMID: 38172369 DOI: 10.1007/s12033-023-01006-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 11/27/2023] [Indexed: 01/05/2024]
Abstract
Lysine-based post-translational modification (PTM) such as acylation, acetylation, deamination, methylation, SUMOylation, and ubiquitination has proven to be a major regulator of gene expression, chromatin structure, protein stability, protein-protein interaction, protein degradation, and cellular localization. However, besides all the PTMs, ubiquitination stands as the second most common PTM after phosphorylation that is involved in the etiology of neurodegenerative diseases (NDDs) namely, Alzheimer's disease (AD) and Parkinson's disease (PD). NDDs are characterized by the accumulation of misfolded protein aggregates in the brain that lead to disease-related gene mutation and irregular protein homeostasis. The ubiquitin-proteasome system (UPS) is in charge of degrading these misfolded proteins, which involve an interplay of E1, E2, E3, and deubiquitinase enzymes. Impaired UPS has been commonly observed in NDDs and E3 ligases are the key members of the UPS, thus, dysfunction of the same can accelerate the neurodegeneration process. Therefore, the aim of this study is firstly, to find E3 ligases that are common in both AD and PD through data mining. Secondly, to study the impact of mutation on its structure and function. The study deciphered 74 E3 ligases that were common in both AD and PD. Later, 10 hub genes were calculated of which protein-protein interaction, pathway enrichment, lysine site prediction, domain, and motif analysis were performed. The results predicted BRCA1, PML, and TRIM33 as the top three putative lysine-modified E3 ligases involved in AD and PD pathogenesis. However, based on structural characterization, BRCA1 was taken further to study RING domain mutation that inferred K32Y, K32L, K32C, K45V, K45Y, and K45G as potential mutants that alter the structural and functional ability of BRCA1 to interact with Ube2k, E2-conjugating enzyme. The most probable mutant observed after molecular dynamics simulation of 50 ns is K32L. Therefore, our study concludes BRCA1, a potential E3 ligase common in AD and PD, and RING domain mutation at sites K32 and K45 possibly disturbs its interaction with its E2, Ube2k.
Collapse
Affiliation(s)
- Mehar Sahu
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly Delhi College of Engineering), Shahbad Daulatpur, Bawana Road, Delhi, 110042, India
| | - Neetu Rani
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly Delhi College of Engineering), Shahbad Daulatpur, Bawana Road, Delhi, 110042, India
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly Delhi College of Engineering), Shahbad Daulatpur, Bawana Road, Delhi, 110042, India.
| |
Collapse
|
14
|
Tajdel-Zielińska M, Janicki M, Marczak M, Ludwików A. Arabidopsis HECT and RING-type E3 Ligases Promote MAPKKK18 Degradation to Regulate Abscisic Acid Signaling. PLANT & CELL PHYSIOLOGY 2024; 65:390-404. [PMID: 38153765 PMCID: PMC11020294 DOI: 10.1093/pcp/pcad165] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/29/2023] [Accepted: 12/20/2023] [Indexed: 12/29/2023]
Abstract
Mitogen-activated protein kinase (MAPK) cascades are conserved signaling pathways that transduce extracellular signals into diverse cellular responses. Arabidopsis MAPKKK18 is a component of the MAPKKK17/18-MKK3-MPK1/2/7/14 cascades, which play critical roles in abscisic acid (ABA) signaling, drought tolerance and senescence. A very important aspect of MAP kinase signaling is both its activation and its termination, which must be tightly controlled to achieve appropriate biological responses. Recently, the ubiquitin-proteasome system (UPS) has received increasing attention as a key mechanism for maintaining the homeostasis of MAPK cascade components and other ABA signaling effectors. Previous studies have shown that the stability of MAPKKK18 is regulated by the UPS via the ABA core pathway. Here, using multiple proteomic approaches, we found that MAPKKK17/18 turnover is tightly controlled by three E3 ligases, UPL1, UPL4 and KEG. We also identified lysines 154 and 237 as critical for MAPKKK18 stability. Taken together, this study sheds new light on the mechanism that controls MAPKKK17/18 activity and function.
Collapse
Affiliation(s)
- Małgorzata Tajdel-Zielińska
- Laboratory Biotechnology, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University Poznan, Uniwersytetu Poznańskiego 6, Poznań 61-614, Poland
| | - Maciej Janicki
- Laboratory Biotechnology, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University Poznan, Uniwersytetu Poznańskiego 6, Poznań 61-614, Poland
| | - Małgorzata Marczak
- Laboratory Biotechnology, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University Poznan, Uniwersytetu Poznańskiego 6, Poznań 61-614, Poland
| | - Agnieszka Ludwików
- Laboratory Biotechnology, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University Poznan, Uniwersytetu Poznańskiego 6, Poznań 61-614, Poland
| |
Collapse
|
15
|
Collins E, Shou H, Mao C, Whelan J, Jost R. Dynamic interactions between SPX proteins, the ubiquitination machinery, and signalling molecules for stress adaptation at a whole-plant level. Biochem J 2024; 481:363-385. [PMID: 38421035 DOI: 10.1042/bcj20230163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/31/2024] [Accepted: 02/01/2024] [Indexed: 03/02/2024]
Abstract
The plant macronutrient phosphorus is a scarce resource and plant-available phosphate is limiting in most soil types. Generally, a gene regulatory module called the phosphate starvation response (PSR) enables efficient phosphate acquisition by roots and translocation to other organs. Plants growing on moderate to nutrient-rich soils need to co-ordinate availability of different nutrients and repress the highly efficient PSR to adjust phosphate acquisition to the availability of other macro- and micronutrients, and in particular nitrogen. PSR repression is mediated by a small family of single SYG1/Pho81/XPR1 (SPX) domain proteins. The SPX domain binds higher order inositol pyrophosphates that signal cellular phosphorus status and modulate SPX protein interaction with PHOSPHATE STARVATION RESPONSE1 (PHR1), the central transcriptional regulator of PSR. Sequestration by SPX repressors restricts PHR1 access to PSR gene promoters. Here we focus on SPX4 that primarily acts in shoots and sequesters many transcription factors other than PHR1 in the cytosol to control processes beyond the classical PSR, such as nitrate, auxin, and jasmonic acid signalling. Unlike SPX1 and SPX2, SPX4 is subject to proteasomal degradation not only by singular E3 ligases, but also by SCF-CRL complexes. Emerging models for these different layers of control and their consequences for plant acclimation to the environment will be discussed.
Collapse
Affiliation(s)
- Emma Collins
- Department of Animal, Plant and Soil Sciences, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC 3086, Australia
| | - Huixia Shou
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, P.R. China
- Hainan Institute, Zhejiang University, Sanya 572025, China
- The Provincial International Science and Technology Cooperation Base on Engineering Biology, International Campus of Zhejiang University, Haining, Zhejiang 314400, China
| | - Chuanzao Mao
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, P.R. China
| | - James Whelan
- Department of Animal, Plant and Soil Sciences, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC 3086, Australia
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, P.R. China
- The Provincial International Science and Technology Cooperation Base on Engineering Biology, International Campus of Zhejiang University, Haining, Zhejiang 314400, China
| | - Ricarda Jost
- Department of Animal, Plant and Soil Sciences, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC 3086, Australia
- La Trobe Institute for Sustainable Agriculture and Food, La Trobe University, Bundoora, VIC 3086, Australia
| |
Collapse
|
16
|
Wright KM, Nathan S, Jiang H, Xia W, Kim H, Chakouri N, Nwafor JN, Fossier L, Srinivasan L, Chen Z, Boronina T, Post J, Paul S, Cole RN, Ben-Johny M, Cole PA, Gabelli SB. NEDD4L intramolecular interactions regulate its auto and substrate Na V1.5 ubiquitination. J Biol Chem 2024; 300:105715. [PMID: 38309503 PMCID: PMC10933555 DOI: 10.1016/j.jbc.2024.105715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 01/13/2024] [Accepted: 01/17/2024] [Indexed: 02/05/2024] Open
Abstract
NEDD4L is a HECT-type E3 ligase that catalyzes the addition of ubiquitin to intracellular substrates such as the cardiac voltage-gated sodium channel, NaV1.5. The intramolecular interactions of NEDD4L regulate its enzymatic activity which is essential for proteostasis. For NaV1.5, this process is critical as alterations in Na+ current is involved in cardiac diseases including arrhythmias and heart failure. In this study, we perform extensive biochemical and functional analyses that implicate the C2 domain and the first WW-linker (1,2-linker) in the autoregulatory mechanism of NEDD4L. Through in vitro and electrophysiological experiments, the NEDD4L 1,2-linker was determined to be important in substrate ubiquitination of NaV1.5. We establish the preferred sites of ubiquitination of NEDD4L to be in the second WW-linker (2,3-linker). Interestingly, NEDD4L ubiquitinates the cytoplasmic linker between the first and second transmembrane domains of the channel (DI-DII) of NaV1.5. Moreover, we design a genetically encoded modulator of Nav1.5 that achieves Na+ current reduction using the NEDD4L HECT domain as cargo of a NaV1.5-binding nanobody. These investigations elucidate the mechanisms regulating the NEDD4 family and furnish a new molecular framework for understanding NaV1.5 ubiquitination.
Collapse
Affiliation(s)
- Katharine M Wright
- Department of Biophysics and Biophysical Chemistry, The Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Sara Nathan
- Department of Biophysics and Biophysical Chemistry, The Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Hanjie Jiang
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA; Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Wendy Xia
- Department of Biophysics and Biophysical Chemistry, The Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - HyoJeon Kim
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| | - Nourdine Chakouri
- Department of Physiology and Cellular Biophysics, Columbia University, New York, New York, USA
| | - Justin N Nwafor
- Department of Biophysics and Biophysical Chemistry, The Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Lucile Fossier
- Department of Physiology and Cellular Biophysics, Columbia University, New York, New York, USA
| | - Lakshmi Srinivasan
- Department of Biophysics and Biophysical Chemistry, The Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Zan Chen
- Department of Biophysics and Biophysical Chemistry, The Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Tatiana Boronina
- Mass Spectrometry and Proteomics Facility, Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jeremy Post
- Mass Spectrometry and Proteomics Facility, Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Suman Paul
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Robert N Cole
- Mass Spectrometry and Proteomics Facility, Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Manu Ben-Johny
- Department of Physiology and Cellular Biophysics, Columbia University, New York, New York, USA
| | - Philip A Cole
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| | - Sandra B Gabelli
- Department of Biophysics and Biophysical Chemistry, The Johns Hopkins School of Medicine, Baltimore, Maryland, USA; Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
| |
Collapse
|
17
|
Yang S, Ting CY, Lilly MA. The GATOR2 complex maintains lysosomal-autophagic function by inhibiting the protein degradation of MiT/TFEs. Mol Cell 2024; 84:727-743.e8. [PMID: 38325378 PMCID: PMC10940221 DOI: 10.1016/j.molcel.2024.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 07/31/2023] [Accepted: 01/17/2024] [Indexed: 02/09/2024]
Abstract
Lysosomes are central to metabolic homeostasis. The microphthalmia bHLH-LZ transcription factors (MiT/TFEs) family members MITF, TFEB, and TFE3 promote the transcription of lysosomal and autophagic genes and are often deregulated in cancer. Here, we show that the GATOR2 complex, an activator of the metabolic regulator TORC1, maintains lysosomal function by protecting MiT/TFEs from proteasomal degradation independent of TORC1, GATOR1, and the RAG GTPase. We determine that in GATOR2 knockout HeLa cells, members of the MiT/TFEs family are ubiquitylated by a trio of E3 ligases and are degraded, resulting in lysosome dysfunction. Additionally, we demonstrate that GATOR2 protects MiT/TFE proteins in pancreatic ductal adenocarcinoma and Xp11 translocation renal cell carcinoma, two cancers that are driven by MiT/TFE hyperactivation. In summary, we find that the GATOR2 complex has independent roles in TORC1 regulation and MiT/TFE protein protection and thus is central to coordinating cellular metabolism with control of the lysosomal-autophagic system.
Collapse
Affiliation(s)
- Shu Yang
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Chun-Yuan Ting
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mary A Lilly
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
18
|
Shih YC, Chen HF, Wu CY, Ciou YR, Wang CW, Chuang HC, Tan TH. The phosphatase DUSP22 inhibits UBR2-mediated K63-ubiquitination and activation of Lck downstream of TCR signalling. Nat Commun 2024; 15:532. [PMID: 38225265 PMCID: PMC10789758 DOI: 10.1038/s41467-024-44843-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 01/08/2024] [Indexed: 01/17/2024] Open
Abstract
DUSP22 is a dual-specificity phosphatase that inhibits T cell activation by inactivating the kinase Lck. Here we show that the E3 ubiquitin ligase UBR2 is a positive upstream regulator of Lck during T-cell activation. DUSP22 dephosphorylates UBR2 at specific Serine residues, leading to ubiquitin-mediated UBR2 degradation. UBR2 is also modified by the SCF E3 ubiquitin ligase complex via Lys48-linked ubiquitination at multiple Lysine residues. Single-cell RNA sequencing analysis and UBR2 loss of function experiments showed that UBR2 is a positive regulator of proinflammatory cytokine expression. Mechanistically, UBR2 induces Lys63-linked ubiquitination of Lck at Lys99 and Lys276 residues, followed by Lck Tyr394 phosphorylation and activation as part of TCR signalling. Inflammatory phenotypes induced by TCR-triggered Lck activation or knocking out DUSP22, are attenuated by genomic deletion of UBR2. UBR2-Lck interaction and Lck Lys63-linked ubiquitination are induced in the peripheral blood T cells of human SLE patients, which demonstrate the relevance of the UBR2-mediated regulation of inflammation to human pathology. In summary, we show here an important regulatory mechanism of T cell activation, which finetunes the balance between T cell response and aggravated inflammation.
Collapse
Affiliation(s)
- Ying-Chun Shih
- Immunology Research Center, National Health Research Institutes, Zhunan, Taiwan
| | - Hsueh-Fen Chen
- Immunology Research Center, National Health Research Institutes, Zhunan, Taiwan
| | - Chia-Ying Wu
- Immunology Research Center, National Health Research Institutes, Zhunan, Taiwan
| | - Yi-Ru Ciou
- Immunology Research Center, National Health Research Institutes, Zhunan, Taiwan
| | - Chia-Wen Wang
- Immunology Research Center, National Health Research Institutes, Zhunan, Taiwan
| | - Huai-Chia Chuang
- Immunology Research Center, National Health Research Institutes, Zhunan, Taiwan.
| | - Tse-Hua Tan
- Immunology Research Center, National Health Research Institutes, Zhunan, Taiwan.
| |
Collapse
|
19
|
Wang Z, Zhang C, Fan C, Liu Y. Post-translational modifications in stress granule and their implications in neurodegenerative diseases. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2023; 1866:194989. [PMID: 37751804 DOI: 10.1016/j.bbagrm.2023.194989] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 08/21/2023] [Accepted: 09/21/2023] [Indexed: 09/28/2023]
Abstract
Stress granules (SGs) arise as formations of mRNAs and proteins in response to translation initiation inhibition during stress. These dynamic compartments adopt a fluidic nature through liquid-liquid phase separation (LLPS), exhibiting a composition subject to constant change within cellular contexts. Research has unveiled an array of post-translational modifications (PTMs) occurring on SG proteins, intricately orchestrating SG dynamics. In the realm of neurodegenerative diseases, pathological mutant proteins congregate into insoluble aggregates alongside numerous SG proteins, manifesting resilience against disassembly. Specific PTMs conspicuously label these aggregates, designating them for subsequent degradation. The strategic manipulation of aberrant SGs via PTMs emerges as a promising avenue for therapeutic intervention. This review discerns recent strides in comprehending the impact of PTMs on LLPS behavior and the assembly/disassembly kinetics of SGs. By delving into the roles of PTMs in governing SG dynamics, we augment our cognizance of the molecular underpinnings of neurodegeneration. Furthermore, we offer invaluable insights into potential targets for therapeutic intervention in neurodegenerative afflictions, encompassing conditions like amyotrophic lateral sclerosis and frontotemporal dementia.
Collapse
Affiliation(s)
- Zhangshun Wang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Chen'ang Zhang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Chengyu Fan
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yanfen Liu
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| |
Collapse
|
20
|
Pourmirzaei M, Ramazi S, Esmaili F, Shojaeilangari S, Allahvardi A. Machine learning-based approaches for ubiquitination site prediction in human proteins. BMC Bioinformatics 2023; 24:449. [PMID: 38017391 PMCID: PMC10683244 DOI: 10.1186/s12859-023-05581-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 11/23/2023] [Indexed: 11/30/2023] Open
Abstract
Protein ubiquitination is a critical post-translational modification (PTMs) involved in numerous cellular processes. Identifying ubiquitination sites (Ubi-sites) on proteins offers valuable insights into their function and regulatory mechanisms. Due to the cost- and time-consuming nature of traditional approaches for Ubi-site detection, there has been a growing interest in leveraging artificial intelligence for computer-aided Ubi-site prediction. In this study, we collected experimentally verified Ubi-sites of human proteins from the dbPTM database, then conducted comprehensive state-of-the art computational methods along with standard evaluation metrics and a proper validation strategy for Ubi-site prediction. We presented the effectiveness of our framework by comparing ten machine learning (ML) based approaches in three different categories: feature-based conventional ML methods, end-to-end sequence-based deep learning (DL) techniques, and hybrid feature-based DL models. Our results revealed that DL approaches outperformed the classical ML methods, achieving a 0.902 F1-score, 0.8198 accuracy, 0.8786 precision, and 0.9147 recall as the best performance for a DL model using both raw amino acid sequences and hand-crafted features. Interestingly, our experimental results disclosed that the performance of DL methods had a positive correlation with the length of amino acid fragments, suggesting that utilizing the entire sequence can lead to more accurate predictions in future research endeavors. Additionally, we developed a meticulously curated benchmark for Ubi-site prediction in human proteins. This benchmark serves as a valuable resource for future studies, enabling fair and accurate comparisons between different methods. Overall, our work highlights the potential of ML, particularly DL techniques, in predicting Ubi-sites and furthering our knowledge of protein regulation through ubiquitination in cells.
Collapse
Affiliation(s)
- Mahdi Pourmirzaei
- Department of Information Technology, Tarbiat Modares University, 14115-111, Tehran, Iran
| | - Shahin Ramazi
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, 14115-111, Tehran, Iran
| | - Farzaneh Esmaili
- Department of Information Technology, Tarbiat Modares University, 14115-111, Tehran, Iran
| | - Seyedehsamaneh Shojaeilangari
- Biomedical Engineering Group, Department of Electrical and Information Technology, Iranian Research Organization for Science and Technology (IROST), 33535111, Tehran, Iran.
| | - Abdollah Allahvardi
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, 14115-111, Tehran, Iran
| |
Collapse
|
21
|
Shinwari K, Wu Y, Rehman HM, Xiao N, Bolkov M, Tuzankina I, Chereshnev V. In-silico assessment of high-risk non-synonymous SNPs in ADAMTS3 gene associated with Hennekam syndrome and their impact on protein stability and function. BMC Bioinformatics 2023; 24:251. [PMID: 37322437 DOI: 10.1186/s12859-023-05361-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 05/25/2023] [Indexed: 06/17/2023] Open
Abstract
Hennekam Lymphangiectasia-Lymphedema Syndrome 3 (HKLLS3) is a rare genetical disorder caused by mutations in a few genes including ADAMTS3. It is characterized by lymphatic dysplasia, intestinal lymphangiectasia, severe lymphedema and distinctive facial appearance. Up till now, no extensive studies have been conducted to elucidate the mechanism of the disease caused by various mutations. As a preliminary investigation of HKLLS3, we sorted out the most deleterious nonsynonymous single nucleotide polymorphisms (nsSNPs) that might affect the structure and function of ADAMTS3 protein by using a variety of in silico tools. A total of 919 nsSNPs in the ADAMTS3 gene were identified. 50 nsSNPs were predicted to be deleterious by multiple computational tools. 5 nsSNPs (G298R, C567Y, A370T, C567R and G374S) were found to be the most dangerous and can be associated with the disease as predicted by different bioinformatics tools. Modelling of the protein shows it can be divided into segments 1, 2 and 3, which are connected by short loops. Segment 3 mainly consists of loops without substantial secondary structures. With prediction tools and molecular dynamics simulation, some SNPs were found to significantly destabilize the protein structure and disrupt the secondary structures, especially in segment 2. The deleterious effects of mutations in segment 1 are possibly not from destabilization but from other factors such as the change in phosphorylation as suggested by post-translational modification (PTM) studies. This is the first-ever study of ADAMTS3 gene polymorphism, and the predicted nsSNPs in ADAMST3, some of which have not been reported yet in patients, will serve for diagnostic purposes and further therapeutic implications in Hennekam syndrome, contributing to better diagnosis and treatment.
Collapse
Affiliation(s)
- Khyber Shinwari
- Institute of Chemical Engineering, Department of Immunochemistry, Ural Federal University, Yekaterinburg, Russia.
- Insitutite of Immunology and Physiology, Russian Academy of Science, Yekaterinburg, Russia.
| | - Yurong Wu
- Department of Chemistry, Hong Kong University of Science and Technology, Hong Kong, China
| | | | - Ningkun Xiao
- Department of Psychology, Ural Federal University, Yekaterinburg, Russia
| | - Mikhail Bolkov
- Insitutite of Immunology and Physiology, Russian Academy of Science, Yekaterinburg, Russia
| | - Irina Tuzankina
- Insitutite of Immunology and Physiology, Russian Academy of Science, Yekaterinburg, Russia
| | - Valery Chereshnev
- Insitutite of Immunology and Physiology, Russian Academy of Science, Yekaterinburg, Russia
| |
Collapse
|
22
|
Xu D, Shao Q, Zhou C, Mahmood A, Zhang J. In Silico Analysis of nsSNPs of Human KRAS Gene and Protein Modeling Using Bioinformatic Tools. ACS OMEGA 2023; 8:13362-13370. [PMID: 37065036 PMCID: PMC10099408 DOI: 10.1021/acsomega.3c00804] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 03/23/2023] [Indexed: 06/19/2023]
Abstract
The KRAS gene belongs to the RAS family and codes for 188 amino acid residues of KRAS protein, with a molecular mass of 21.6 kD. Non-synonymous single-nucleotide polymorphisms (nsSNPs) have been identified within the coding region in which some are associated with different diseases. However, structural changes are not well defined yet. In this study, we first categorized SNPs in the KRAS coding area and then used computational methods to determine their impact on the protein structure and stability. In addition, the three-dimensional model of KRAS was taken from the Protein Data Bank for structural modeling. Furthermore, genomic data were extracted from a variety of sources, including the 1000 Genome Project, dbSNPs, and ENSEMBLE, and assessed through in silico methods. Based on various tools used in this study, 10 out of 48 missense SNPs with rsIDs were found deleterious. The substitution of alanine for proline at position 146 pushed several residues toward the center of the protein. Arginine instead of leucine has a minor effect on protein structure and stability. In addition, the substitution of proline for leucine at the 34th position disrupted the structure and led to a bigger size than the wild-type protein, hence interrupting the protein interaction. Using the well-intended computational approach and applying several bioinformatic tools, we characterized and identified most damaging nsSNPs and further explored the structural dynamics and stability of KRAS protein.
Collapse
Affiliation(s)
- Duoduo Xu
- Oncology
Department, Wenzhou Hospital of Traditional
Chinese Medicine Affiliated to Zhejiang Chinese Medicine University, Wenzhou 325000, China
| | - Qiqi Shao
- Department
of Nursing, Central Health Center of Zeya
Town, Ouhai District, Wenzhou 325000, China
| | - Chen Zhou
- Ultrasonography
Department, Wenzhou Hospital of Traditional
Chinese Medicine Affiliated to Zhejiang Chinese Medicine University, Wenzhou 325099, China
| | - Arif Mahmood
- Center
for Medical Genetics and Hunan Key Laboratory of Medical Genetics,
School of Life Sciences, Central South University, Changsha 410078, Hunan, China
| | - Jizhou Zhang
- Oncology
Department, Wenzhou Hospital of Traditional
Chinese Medicine Affiliated to Zhejiang Chinese Medicine University, Wenzhou 325000, China
| |
Collapse
|
23
|
Gingerich MA, Zhu J, Chai B, Vincent MP, Xie N, Sidarala V, Kotov NA, Sahu D, Klionsky DJ, Schnell S, Soleimanpour SA. Reciprocal regulatory balance within the CLEC16A-RNF41 mitophagy complex depends on an intrinsically disordered protein region. J Biol Chem 2023; 299:103057. [PMID: 36822331 PMCID: PMC10066562 DOI: 10.1016/j.jbc.2023.103057] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 01/26/2023] [Indexed: 02/23/2023] Open
Abstract
CLEC16A is an E3 ubiquitin ligase that regulates mitochondrial quality control through mitophagy and is associated with over 20 human diseases. CLEC16A forms a complex with another E3 ligase, RNF41, and a ubiquitin-specific peptidase, USP8; however, regions that regulate CLEC16A activity or the assembly of the tripartite mitophagy regulatory complex are unknown. Here, we report that CLEC16A contains an internal intrinsically disordered protein region (IDPR) that is crucial for CLEC16A function and turnover. IDPRs lack a fixed secondary structure and possess emerging yet still equivocal roles in protein stability, interactions, and enzymatic activity. We find that the internal IDPR of CLEC16A is crucial for its degradation. CLEC16A turnover was promoted by RNF41, which binds and acts upon the internal IDPR to destabilize CLEC16A. Loss of this internal IDPR also destabilized the ubiquitin-dependent tripartite CLEC16A-RNF41-USP8 complex. Finally, the presence of an internal IDPR within CLEC16A was confirmed using NMR and CD spectroscopy. Together, our studies reveal that an IDPR is essential to control the reciprocal regulatory balance between CLEC16A and RNF41, which could be targeted to improve mitochondrial health in disease.
Collapse
Affiliation(s)
- Morgan A Gingerich
- Department of Internal Medicine and Division of Metabolism, Endocrinology & Diabetes, University of Michigan, Ann Arbor, Michigan, USA; Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Jie Zhu
- Department of Internal Medicine and Division of Metabolism, Endocrinology & Diabetes, University of Michigan, Ann Arbor, Michigan, USA
| | - Biaoxin Chai
- Department of Internal Medicine and Division of Metabolism, Endocrinology & Diabetes, University of Michigan, Ann Arbor, Michigan, USA
| | - Michael P Vincent
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA; Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, USA
| | - Nuli Xie
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Vaibhav Sidarala
- Department of Internal Medicine and Division of Metabolism, Endocrinology & Diabetes, University of Michigan, Ann Arbor, Michigan, USA
| | - Nicholas A Kotov
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Debashish Sahu
- University of Michigan BioNMR Core Facility, Ann Arbor, Michigan, USA
| | - Daniel J Klionsky
- Life Sciences Institute and Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Santiago Schnell
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA; Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, USA
| | - Scott A Soleimanpour
- Department of Internal Medicine and Division of Metabolism, Endocrinology & Diabetes, University of Michigan, Ann Arbor, Michigan, USA; Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, Michigan, USA; Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA; Endocrinology and Metabolism Section, Medicine Service, VA Ann Arbor Health Care System, Ann Arbor, Michigan, USA.
| |
Collapse
|
24
|
Ranjan P, Das P. An inclusive study of deleterious missense PAX9 variants using user-friendly tools reveals structural, functional alterations, as well as potential therapeutic targets. Int J Biol Macromol 2023; 233:123375. [PMID: 36702222 DOI: 10.1016/j.ijbiomac.2023.123375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 01/10/2023] [Accepted: 01/13/2023] [Indexed: 01/24/2023]
Abstract
Mutations in the PAX9 are responsible for non-syndromic tooth agenesis in humans, although their structural and functional consequences on protein phenotype, stability, and posttranslational modifications (PTMs) have not yet been adequately investigated. This in silico study focuses on retrieving the six most deleterious mutations (L21P, R26W, R28P, G51S, I87F, and K91E) of PAX9 that has been linked to severe oligodontia. Several computational algorithm methods were used to determine the deleterious effects of PAX9 mutations. Analysis of gene ontology, protein interactions, and PTMs indicated significant functional changes caused by PAX9 mutations. The structural superimposition of the wild-type and mutant PAX9 variants revealed structural changes in locations that were present in the structures of all six variations. The conserved domain analysis revealed that the areas shared by all six variations contained unique sections that lacked DNA binding or protein-protein interaction sites, suggesting prospective drug target sites for functional restoration. The protein-protein interaction network showed KDM5B as PAX9's strongest interacting partner similar to MSX1. The PAX9 protein's structural conformations, compactness, stiffness, and function may all be impacted by changes, according to MD simulations. In addition, research on cell lines and animal models may be valuable in establishing their specific roles in functional annotations.
Collapse
Affiliation(s)
- Prashant Ranjan
- Centre for Genetic Disorders, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Parimal Das
- Centre for Genetic Disorders, Institute of Science, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
25
|
Kuser-Abali G, Zhang Y, Szeto P, Zhao P, Masoumi-Moghaddam S, Fedele CG, Leece I, Huang C, Cheung JG, Ameratunga M, Noguchi F, Andrews MC, Wong NC, Schittenhelm RB, Shackleton M. UHRF1/UBE2L6/UBR4-mediated ubiquitination regulates EZH2 abundance and thereby melanocytic differentiation phenotypes in melanoma. Oncogene 2023; 42:1360-1373. [PMID: 36906655 PMCID: PMC10121471 DOI: 10.1038/s41388-023-02631-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 02/08/2023] [Accepted: 02/13/2023] [Indexed: 03/13/2023]
Abstract
Cellular heterogeneity in cancer is linked to disease progression and therapy response, although mechanisms regulating distinct cellular states within tumors are not well understood. We identified melanin pigment content as a major source of cellular heterogeneity in melanoma and compared RNAseq data from high-pigmented (HPCs) and low-pigmented melanoma cells (LPCs), suggesting EZH2 as a master regulator of these states. EZH2 protein was found to be upregulated in LPCs and inversely correlated with melanin deposition in pigmented patient melanomas. Surprisingly, conventional EZH2 methyltransferase inhibitors, GSK126 and EPZ6438, had no effect on LPC survival, clonogenicity and pigmentation, despite fully inhibiting methyltransferase activity. In contrast, EZH2 silencing by siRNA or degradation by DZNep or MS1943 inhibited growth of LPCs and induced HPCs. As the proteasomal inhibitor MG132 induced EZH2 protein in HPCs, we evaluated ubiquitin pathway proteins in HPC vs LPCs. Biochemical assays and animal studies demonstrated that in LPCs, the E2-conjugating enzyme UBE2L6 depletes EZH2 protein in cooperation with UBR4, an E3 ligase, via ubiquitination at EZH2's K381 residue, and is downregulated in LPCs by UHRF1-mediated CpG methylation. Targeting UHRF1/UBE2L6/UBR4-mediated regulation of EZH2 offers potential for modulating the activity of this oncoprotein in contexts in which conventional EZH2 methyltransferase inhibitors are ineffective.
Collapse
Affiliation(s)
- Gamze Kuser-Abali
- Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Youfang Zhang
- Central Clinical School, Monash University, Melbourne, VIC, Australia.,Alfred Health, Melbourne, VIC, Australia
| | - Pacman Szeto
- Central Clinical School, Monash University, Melbourne, VIC, Australia.,Alfred Health, Melbourne, VIC, Australia
| | - Peinan Zhao
- Central Clinical School, Monash University, Melbourne, VIC, Australia
| | | | | | - Isobel Leece
- Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Cheng Huang
- Monash Proteomics and Metabolomics Facility and the Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| | - Jen G Cheung
- Central Clinical School, Monash University, Melbourne, VIC, Australia.,Alfred Health, Melbourne, VIC, Australia
| | - Malaka Ameratunga
- Central Clinical School, Monash University, Melbourne, VIC, Australia.,Alfred Health, Melbourne, VIC, Australia
| | - Fumihito Noguchi
- Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Miles C Andrews
- Central Clinical School, Monash University, Melbourne, VIC, Australia.,Alfred Health, Melbourne, VIC, Australia
| | - Nicholas C Wong
- Central Clinical School, Monash University, Melbourne, VIC, Australia.,Monash Bioinformatics Platform, Monash University, Melbourne, VIC, Australia
| | - Ralf B Schittenhelm
- Monash Proteomics and Metabolomics Facility and the Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| | - Mark Shackleton
- Central Clinical School, Monash University, Melbourne, VIC, Australia. .,Alfred Health, Melbourne, VIC, Australia.
| |
Collapse
|
26
|
Martinez MZ, Olmo F, Taylor MC, Caudron F, Wilkinson SR. Dissecting the interstrand crosslink DNA repair system of Trypanosoma cruzi. DNA Repair (Amst) 2023; 125:103485. [PMID: 36989950 DOI: 10.1016/j.dnarep.2023.103485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/08/2023] [Accepted: 03/13/2023] [Indexed: 03/18/2023]
Abstract
DNA interstrand crosslinks (ICLs) are toxic lesions that can block essential biological processes. Here we show Trypanosoma cruzi, the causative agent of Chagas disease, is susceptible to ICL-inducing compounds including mechlorethamine and novel nitroreductase-activated prodrugs that have potential in treating this infection. To resolve such lesions, cells co-opt enzymes from "classical" DNA repair pathways that alongside dedicated factors operate in replication-dependent and -independent mechanisms. To assess ICL repair in T. cruzi, orthologues of SNM1, MRE11 and CSB were identified and their function assessed. The T. cruzi enzymes could complement the mechlorethamine susceptibility phenotype displayed by corresponding yeast and/or T. brucei null confirming their role as ICL repair factors while GFP-tagged TcSNM1, TcMRE11 and TcCSB were shown to localise to the nuclei of insect and/or intracellular form parasites. Gene disruption demonstrated that while each activity was non-essential for T. cruzi viability, nulls displayed a growth defect in at least one life cycle stage with TcMRE11-deficient trypomastigotes also compromised in mammalian cell infectivity. Phenotyping revealed all nulls were more susceptible to mechlorethamine than controls, a trait complemented by re-expression of the deleted gene. To assess interplay, the gene disruption approach was extended to generate T. cruzi deficient in TcSNM1/TcMRE11 or in TcSNM1/TcCSB. Analysis demonstrated these activities functioned across two ICL repair pathways with TcSNM1 and TcMRE11 postulated to operate in a replication-dependent system while TcCSB helps resolve transcription-blocking lesions. By unravelling how T. cruzi repairs ICL damage, specific inhibitors targeting repair components could be developed and used to increase the potency of trypanocidal ICL-inducing compounds.
Collapse
Affiliation(s)
- Monica Zavala Martinez
- School of Biological & Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Francisco Olmo
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | - Martin C Taylor
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | - Fabrice Caudron
- School of Biological & Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Shane R Wilkinson
- School of Biological & Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK.
| |
Collapse
|
27
|
Shinwari K, Rehman HM, Xiao N, Guojun L, Khan MA, Bolkov MA, Tuzankina IA, Chereshnev VA. Novel high-risk missense mutations identification in FAT4 gene causing Hennekam syndrome and Van Maldergem syndrome 2 through molecular dynamics simulation. INFORMATICS IN MEDICINE UNLOCKED 2023. [DOI: 10.1016/j.imu.2023.101160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|
28
|
Tan S, Li S, Zhang XY, Li YM, Zhang P, Yin LP. Monoubiquitinated MxIRT1 acts as an iron receptor to determine MxIRT1 vacuole degradation or plasma membrane recycling via endocytosis. PLANT SIGNALING & BEHAVIOR 2022; 17:2095141. [PMID: 35775587 PMCID: PMC9255258 DOI: 10.1080/15592324.2022.2095141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 06/15/2023]
Abstract
IRON-REGULATED TRANSPORTER 1 (IRT1) is critical for iron uptake in roots, and its exocytosis to the plasma membrane (PM) is regulated by the iron status sensed by the histidine-rich domain (HRM). However, studies on the fate of IRT1 after fusion with PM in response to iron conditions are still limited. In this study, we found that K165 and K196 regulate the monoubiquitination of MxIRT1 (mUb-MxIRT1), which acts as a receptor delivering signals from HRM to downstream effectors such as clathrin to determine the fate of MxIRT1. Iron supply led MxIRT1 in the PM to monoubiquitin-dependent endocytosis which could be inhibited by endocytosis inhibitor TyrA23 or in the double site-directed mutant K165/K196R. Subsequently, the endocytosis pathway to the vacuole was inhibited by vacuolar protease inhibitor Leupeptin in excessive iron conditions and the inability of being able to respond to iron change, indicated by the protein accumulating in the PM, contributed to iron toxicity in K165/K196R transgenic Arabidopsis. With iron availability decreasing again, MxIRT1 could dock close to the PM waiting for to be recycled. Another monoubiquitination site, K26, was necessary for MxIRT1 Endoplasmic Reticulum (ER) export as site-directed mutant K26R lost the ability of PM targeting, and co-localized with the COPII subunit of the coat protein OsSec24. Therefore, after K26-directed ER export and iron-induced PM fusion, mUb-MxIRT1 determines subsequent vacuolar degradation or recycling to the PM via endocytosis for maintaining iron homeostasis.
Collapse
Affiliation(s)
- Song Tan
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, China
- College of Life Science, Capital Normal University, Beijing, China
- Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei, Anhui, China
| | - Shuang Li
- College of Life Science, Capital Normal University, Beijing, China
| | - Xiu-Yue Zhang
- College of Life Science, Capital Normal University, Beijing, China
| | - Yu-Meng Li
- College of Life Science, Capital Normal University, Beijing, China
| | - Peng Zhang
- College of Life Science, Capital Normal University, Beijing, China
| | - Li-Ping Yin
- College of Life Science, Capital Normal University, Beijing, China
| |
Collapse
|
29
|
Irfan M, Iqbal T, Hashmi S, Ghani U, Bhatti A. Insilico prediction and functional analysis of nonsynonymous SNPs in human CTLA4 gene. Sci Rep 2022; 12:20441. [PMID: 36443461 PMCID: PMC9705290 DOI: 10.1038/s41598-022-24699-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 11/18/2022] [Indexed: 11/29/2022] Open
Abstract
The CTLA4 receptor is an immune checkpoint involved in the downregulation of T cells. Polymorphisms in this gene have been found to be associated with different diseases like rheumatoid arthritis, autosomal dominant immune dysregulation syndrome, juvenile idiopathic arthritis and autoimmune Addison's disease. Therefore, the identification of polymorphisms that have an effect on the structure and function of CTLA4 gene is important. Here we identified the most damaging missense or non-synonymous SNPs (nsSNPs) that might be crucial for the structure and function of CTLA4 using different bioinformatics tools. These in silico tools included SIFT, PROVEAN, PhD-SNP, PolyPhen-2 followed by MutPred2, I-Mutant 2.0 and ConSurf. The protein structures were predicted using Phyre2 and I-TASSER, while the gene-gene interactions were predicted by GeneMANIA and STRING. Our study identified three damaging missense SNPs rs1553657429, rs1559591863 and rs778534474 in coding region of CTLA4 gene. Among these SNPs the rs1553657429 showed a loss of potential phosphorylation site and was found to be highly conserved. The prediction of gene-gene interaction showed the interaction of CTlA4 with other genes and its importance in different pathways. This investigation of damaging nsSNPs can be considered in future while studying CTLA4 related diseases and can be of great importance in precision medicine.
Collapse
Affiliation(s)
- Muhammad Irfan
- grid.412117.00000 0001 2234 2376Healthcare Biotechnology, National University of Science and Technology, Islamabad H-12, 44000 Pakistan
| | - Talha Iqbal
- grid.412117.00000 0001 2234 2376Healthcare Biotechnology, National University of Science and Technology, Islamabad H-12, 44000 Pakistan
| | - Sakina Hashmi
- grid.412117.00000 0001 2234 2376Healthcare Biotechnology, National University of Science and Technology, Islamabad H-12, 44000 Pakistan
| | - Uzma Ghani
- grid.412117.00000 0001 2234 2376Healthcare Biotechnology, National University of Science and Technology, Islamabad H-12, 44000 Pakistan
| | - Attya Bhatti
- grid.412117.00000 0001 2234 2376Healthcare Biotechnology, National University of Science and Technology, Islamabad H-12, 44000 Pakistan
| |
Collapse
|
30
|
Weigle AT, Feng J, Shukla D. Thirty years of molecular dynamics simulations on posttranslational modifications of proteins. Phys Chem Chem Phys 2022; 24:26371-26397. [PMID: 36285789 PMCID: PMC9704509 DOI: 10.1039/d2cp02883b] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
Posttranslational modifications (PTMs) are an integral component to how cells respond to perturbation. While experimental advances have enabled improved PTM identification capabilities, the same throughput for characterizing how structural changes caused by PTMs equate to altered physiological function has not been maintained. In this Perspective, we cover the history of computational modeling and molecular dynamics simulations which have characterized the structural implications of PTMs. We distinguish results from different molecular dynamics studies based upon the timescales simulated and analysis approaches used for PTM characterization. Lastly, we offer insights into how opportunities for modern research efforts on in silico PTM characterization may proceed given current state-of-the-art computing capabilities and methodological advancements.
Collapse
Affiliation(s)
- Austin T Weigle
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Jiangyan Feng
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Diwakar Shukla
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA.
| |
Collapse
|
31
|
Andreadis C, Li T, Liu JL. Ubiquitination regulates cytoophidium assembly in Schizosaccharomyces pombe. Exp Cell Res 2022; 420:113337. [PMID: 36087798 DOI: 10.1016/j.yexcr.2022.113337] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/26/2022] [Accepted: 08/27/2022] [Indexed: 12/30/2022]
Abstract
CTP synthase (CTPS), a metabolic enzyme responsible for the de novo synthesis of CTP, can form filamentous structures termed cytoophidia, which are evolutionarily conserved from bacteria to humans. Here we used Schizosaccharomyces pombe to study the cytoophidium assembly regulation by ubiquitination. We tested the CTP synthase's capacity to be post-translationally modified by ubiquitin or be affected by the ubiquitination state of the cell and showed that ubiquitination is important for the maintenance of the CTPS filamentous structure in fission yeast. We have identified proteins which are in complex with CTPS, including specific ubiquitination regulators which significantly affect CTPS filamentation, and mapped probable ubiquitination targets on CTPS. Furthermore, we discovered that a cohort of deubiquitinating enzymes is important for the regulation of cytoophidium's filamentous morphology. Our study provides a framework for the analysis of the effects that ubiquitination and deubiquitination have on the formation of cytoophidia.
Collapse
Affiliation(s)
- Christos Andreadis
- School of Life Science and Technology, ShanghaiTech University, 201210, Shanghai, China
| | - Tianhao Li
- School of Life Science and Technology, ShanghaiTech University, 201210, Shanghai, China
| | - Ji-Long Liu
- School of Life Science and Technology, ShanghaiTech University, 201210, Shanghai, China; Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, United Kingdom.
| |
Collapse
|
32
|
A COP1-GATA2 axis suppresses AR signaling and prostate cancer. Proc Natl Acad Sci U S A 2022; 119:e2205350119. [PMID: 36251994 PMCID: PMC9618149 DOI: 10.1073/pnas.2205350119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Androgen receptor (AR) signaling is crucial for driving prostate cancer (PCa), the most diagnosed and the second leading cause of death in male patients with cancer in the United States. Androgen deprivation therapy is initially effective in most instances of AR-positive advanced or metastatic PCa. However, patients inevitably develop lethal castration-resistant PCa (CRPC), which is also resistant to the next-generation AR signaling inhibitors. Most CRPCs maintain AR expression, and blocking AR signaling remains a main therapeutic approach. GATA2 is a pioneer transcription factor emerging as a key therapeutic target for PCa because it promotes AR expression and activation. While directly inhibiting GATA2 transcriptional activity remains challenging, enhancing GATA2 degradation is a plausible therapeutic strategy. How GATA2 protein stability is regulated in PCa remains unknown. Here, we show that constitutive photomorphogenesis protein 1 (COP1), an E3 ubiquitin ligase, drives GATA2 ubiquitination at K419/K424 for degradation. GATA2 lacks a conserved [D/E](x)xxVP[D/E] degron but uses alternate BR1/BR2 motifs to bind COP1. By promoting GATA2 degradation, COP1 inhibits AR expression and activation and represses PCa cell and xenograft growth and castration resistance. Accordingly, GATA2 overexpression or COP1 mutations that disrupt COP1-GATA2 binding block COP1 tumor-suppressing activities. We conclude that GATA2 is a major COP1 substrate in PCa and that COP1 promotion of GATA2 degradation is a direct mechanism for regulating AR expression and activation, PCa growth, and castration resistance.
Collapse
|
33
|
Fechner J, Ketelhut M, Maier D, Preiss A, Nagel AC. The Binding of CSL Proteins to Either Co-Activators or Co-Repressors Protects from Proteasomal Degradation Induced by MAPK-Dependent Phosphorylation. Int J Mol Sci 2022; 23:ijms232012336. [PMID: 36293193 PMCID: PMC9604145 DOI: 10.3390/ijms232012336] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/12/2022] [Accepted: 10/13/2022] [Indexed: 11/06/2022] Open
Abstract
The primary role of Notch is to specify cellular identities, whereby the cells respond to amazingly small changes in Notch signalling activity. Hence, dosage of Notch components is crucial to regulation. Central to Notch signal transduction are CSL proteins: together with respective cofactors, they mediate the activation or the silencing of Notch target genes. CSL proteins are extremely similar amongst species regarding sequence and structure. We noticed that the fly homologue suppressor of hairless (Su(H)) is stabilised in transcription complexes. Using specific transgenic fly lines and HeLa RBPJKO cells we provide evidence that Su(H) is subjected to proteasomal degradation with a half-life of about two hours if not protected by binding to co-repressor hairless or co-activator Notch. Moreover, Su(H) stability is controlled by MAPK-dependent phosphorylation, matching earlier data for RBPJ in human cells. The homologous murine and human RBPJ proteins, however, are largely resistant to degradation in our system. Mutating presumptive protein contact sites, however, sensitised RBPJ for proteolysis. Overall, our data highlight the similarities in the regulation of CSL protein stability across species and imply that turnover of CSL proteins may be a conserved means of regulating Notch signalling output directly at the level of transcription.
Collapse
|
34
|
Hrq1/RECQL4 regulation is critical for preventing aberrant recombination during DNA intrastrand crosslink repair and is upregulated in breast cancer. PLoS Genet 2022; 18:e1010122. [PMID: 36126066 PMCID: PMC9488787 DOI: 10.1371/journal.pgen.1010122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 08/18/2022] [Indexed: 11/19/2022] Open
Abstract
Human RECQL4 is a member of the RecQ family of DNA helicases and functions during DNA replication and repair. RECQL4 mutations are associated with developmental defects and cancer. Although RECQL4 mutations lead to disease, RECQL4 overexpression is also observed in cancer, including breast and prostate. Thus, tight regulation of RECQL4 protein levels is crucial for genome stability. Because mammalian RECQL4 is essential, how cells regulate RECQL4 protein levels is largely unknown. Utilizing budding yeast, we investigated the RECQL4 homolog, HRQ1, during DNA crosslink repair. We find that Hrq1 functions in the error-free template switching pathway to mediate DNA intrastrand crosslink repair. Although Hrq1 mediates repair of cisplatin-induced lesions, it is paradoxically degraded by the proteasome following cisplatin treatment. By identifying the targeted lysine residues, we show that preventing Hrq1 degradation results in increased recombination and mutagenesis. Like yeast, human RECQL4 is similarly degraded upon exposure to crosslinking agents. Furthermore, over-expression of RECQL4 results in increased RAD51 foci, which is dependent on its helicase activity. Using bioinformatic analysis, we observe that RECQL4 overexpression correlates with increased recombination and mutations. Overall, our study uncovers a role for Hrq1/RECQL4 in DNA intrastrand crosslink repair and provides further insight how misregulation of RECQL4 can promote genomic instability, a cancer hallmark. RECQL4 is a DNA helicase and functions during DNA replication and repair. While loss-of-function RECQL4 mutations are found in diseases characterized by developmental defects and cancer, such as Rothmund-Thomson syndrome, over-expression of RECQL4 is also observed in cancer, such as breast cancer. Therefore, RECQL4 protein expression must be tightly regulated. Here we used the budding yeast homolog of RECQL4, Hrq1, and discovered that overexpression of Hrq1 protein levels result in increased recombination and mutations, both cancer hallmarks. We find that Hrq1 functions to mediate repair of a specific type of DNA damage, intrastrand crosslinks, which occur when DNA nucleotides on the same strand are chemically linked together. These findings are also conserved in humans suggesting a common mechanism between yeast Hrq1 and human RECQL4. Overall, our study identifies a conserved role for RECQL4 in DNA intrastrand crosslink repair and provides insights into how its misregulation could promote cancer development.
Collapse
|
35
|
Ikram A, Rauff B, Alzahrani B, Awan FM, Obaid A, Naz A, Kakar SJ, Janjua HA. Integrated analysis to study the interplay between post-translational modifications (PTM) in hepatitis C virus proteins and hepatocellular carcinoma (HCC) development. Sci Rep 2022; 12:15648. [PMID: 36123370 PMCID: PMC9483894 DOI: 10.1038/s41598-022-19854-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 09/06/2022] [Indexed: 02/05/2023] Open
Abstract
Many PTMs dysregulation is known to be the major cause of many cancers including HCV induced HCC. PTMs of hepatitis C virus (HCV) regions NS3/4A, NS5A and NS5B are crucial for proper protein functions and replication that directly affect the generation of infectious virus particles and completion of its life cycle. In this study, we have performed comprehensive analysis of PTMs within HCV non-structural proteins (NS3/4A, NS5A and NS5B) through bioinformatics analysis to examine post-translational crosstalk between phosphorylation, palmitoylation, methylation, acetylation and ubiquitination sites in selected viral proteins. Our analysis has revealed many highly putative PTMs sites that are also conserved among major genotypes conferring the importance of these sites. We have also analysed viral 3D structures in their modified and unmodified forms to address extent and signatures of structural changes upon PTM. This study provides evidence that PTMs induce significant conformational changes and make viral proteins more stable. To find the potential role of PTMs in HCV induced HCC, docking analysis between selected viral proteins and p38-MAPK has been performed which also confirms their strong association with HCV induced HCC. The major findings proposed that PTMs at specific sites of HCV viral proteins could dysregulate specific pathways that cause the development of HCC.
Collapse
Affiliation(s)
- Aqsa Ikram
- Institute of Molecular Biology and Biotechnology (IMBB), University of Lahore (UOL), Lahore, Pakistan.
| | - Bisma Rauff
- Department of Biomedical Engineering, UET Lahore, Narowal campus, Narowal, Pakistan
| | - Badr Alzahrani
- Department of Clinical Laboratory Sciences, Jouf University, Sakaka, Saudi Arabia
| | - Faryal Mehwish Awan
- Department of Medical Lab Technology, University of Haripur (UOH), Haripur, Pakistan
| | - Ayesha Obaid
- Department of Medical Lab Technology, University of Haripur (UOH), Haripur, Pakistan
| | - Anam Naz
- Institute of Molecular Biology and Biotechnology (IMBB), University of Lahore (UOL), Lahore, Pakistan
| | - Salik Javed Kakar
- Atta Ur Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Hussnain Ahmed Janjua
- Atta Ur Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, Pakistan.
| |
Collapse
|
36
|
Sikander R, Arif M, Ghulam A, Worachartcheewan A, Thafar MA, Habib S. Identification of the ubiquitin-proteasome pathway domain by hyperparameter optimization based on a 2D convolutional neural network. Front Genet 2022; 13:851688. [PMID: 35937990 PMCID: PMC9355632 DOI: 10.3389/fgene.2022.851688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 06/29/2022] [Indexed: 11/13/2022] Open
Abstract
The major mechanism of proteolysis in the cytosol and nucleus is the ubiquitin-proteasome pathway (UPP). The highly controlled UPP has an effect on a wide range of cellular processes and substrates, and flaws in the system can lead to the pathogenesis of a number of serious human diseases. Knowledge about UPPs provide useful hints to understand the cellular process and drug discovery. The exponential growth in next-generation sequencing wet lab approaches have accelerated the accumulation of unannotated data in online databases, making the UPP characterization/analysis task more challenging. Thus, computational methods are used as an alternative for fast and accurate identification of UPPs. Aiming this, we develop a novel deep learning-based predictor named "2DCNN-UPP" for identifying UPPs with low error rate. In the proposed method, we used proposed algorithm with a two-dimensional convolutional neural network with dipeptide deviation features. To avoid the over fitting problem, genetic algorithm is employed to select the optimal features. Finally, the optimized attribute set are fed as input to the 2D-CNN learning engine for building the model. Empirical evidence or outcomes demonstrates that the proposed predictor achieved an overall accuracy and AUC (ROC) value using 10-fold cross validation test. Superior performance compared to other state-of-the art methods for discrimination the relations UPPs classification. Both on and independent test respectively was trained on 10-fold cross validation method and then evaluated through independent test. In the case where experimentally validated ubiquitination sites emerged, we must devise a proteomics-based predictor of ubiquitination. Meanwhile, we also evaluated the generalization power of our trained modal via independent test, and obtained remarkable performance in term of 0.862 accuracy, 0.921 sensitivity, 0.803 specificity 0.803, and 0.730 Matthews correlation coefficient (MCC) respectively. Four approaches were used in the sequences, and the physical properties were calculated combined. When used a 10-fold cross-validation, 2D-CNN-UPP obtained an AUC (ROC) value of 0.862 predicted score. We analyzed the relationship between UPP protein and non-UPP protein predicted score. Last but not least, this research could effectively analyze the large scale relationship between UPP proteins and non-UPP proteins in particular and other protein problems in general and our research work might improve computational biological research. Therefore, we could utilize the latest features in our model framework and Dipeptide Deviation from Expected Mean (DDE) -based protein structure features for the prediction of protein structure, functions, and different molecules, such as DNA and RNA.
Collapse
Affiliation(s)
- Rahu Sikander
- School of Computer Science and Technology, Xidian University, Xi’an, China
| | - Muhammad Arif
- Department of Community Medical Technology, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| | - Ali Ghulam
- Computerization and Network Section, Sindh Agriculture University, Tando Jam, Pakistan
| | - Apilak Worachartcheewan
- Department of Community Medical Technology, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| | - Maha A. Thafar
- Department of Computer Science, Collage of Computer and Information Technology, Taif University, Taif, Saudi Arabia
| | - Shabana Habib
- Department of Information Technology, College of Computer, Qassim University, Buraydah, Saudi Arabia
| |
Collapse
|
37
|
Wu Y, Zhou T, Hu J, Liu Y, Jin S, Wu J, Guan X, Cui J. Autophagy Activation Induces p62-Dependent Autophagic Degradation of Dengue Virus Capsid Protein During Infection. Front Microbiol 2022; 13:889693. [PMID: 35865923 PMCID: PMC9294600 DOI: 10.3389/fmicb.2022.889693] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 06/13/2022] [Indexed: 11/13/2022] Open
Abstract
In the past decade, dengue virus infection is one of the most prevalent and rapidly spreading arthropod-borne diseases worldwide with about 400 million infections every year. Although it has been reported that the dengue virus could take advantage of autophagy to promote its propagation, the association between selective autophagy and the dengue virus remains largely unclear. Here, we demonstrated that dengue virus capsid protein, the key viral protein for virus assembly, maturation, and replication, underwent autophagic degradation after autophagy activation. Autophagy cargo receptor p62 delivered ubiquitinated capsid protein to autophagosomes for degradation, which could be enhanced by Torin 1 treatments. Further study revealed that the association between p62 and viral capsid protein was dependent on the ubiquitin-binding domain of p62, and the poly-ubiquitin conjugated at lysine 76 of capsid protein served as a recognition signal for autophagy. Consistently, p62 deficiency in Huh7 cells led to the enhancement of dengue virus replication. Our study revealed that p62 targeted dengue virus capsid protein for autophagic degradation in a ubiquitin-dependent manner, which might uncover the potential roles of p62 in restricting dengue virus replication.
Collapse
Affiliation(s)
- Yaoxing Wu
- Department of Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Tao Zhou
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jiajia Hu
- State Key Laboratory of Oncology in South China Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yishan Liu
- Department of Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Shouheng Jin
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jianfeng Wu
- Department of Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiangdong Guan
- Department of Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jun Cui
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
38
|
Gou X, Feng X, Shi H, Guo T, Xie R, Liu Y, Wang Q, Li H, Yang B, Chen L, Lu Y. PPVED: A machine learning tool for predicting the effect of single amino acid substitution on protein function in plants. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:1417-1431. [PMID: 35398963 PMCID: PMC9241370 DOI: 10.1111/pbi.13823] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 04/03/2022] [Indexed: 05/31/2023]
Abstract
Single amino acid substitution (SAAS) produces the most common variant of protein function change under physiological conditions. As the number of SAAS events in plants has increased exponentially, an effective prediction tool is required to help identify and distinguish functional SAASs from the whole genome as either potentially causal traits or as variants. Here, we constructed a plant SAAS database that stores 12 865 SAASs in 6172 proteins and developed a tool called Plant Protein Variation Effect Detector (PPVED) that predicts the effect of SAASs on protein function in plants. PPVED achieved an 87% predictive accuracy when applied to plant SAASs, an accuracy that was much higher than those from six human database software: SIFT, PROVEAN, PANTHER-PSEP, PhD-SNP, PolyPhen-2, and MutPred2. The predictive effect of six SAASs from three proteins in Arabidopsis and maize was validated with wet lab experiments, of which five substitution sites were accurately predicted. PPVED could facilitate the identification and characterization of genetic variants that explain observed phenotype variations in plants, contributing to solutions for challenges in functional genomics and systems biology. PPVED can be accessed under a CC-BY (4.0) license via http://www.ppved.org.cn.
Collapse
Affiliation(s)
- Xiangjian Gou
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaWenjiangSichuanChina
- Maize Research InstituteSichuan Agricultural UniversityWenjiangSichuanChina
| | - Xuanjun Feng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaWenjiangSichuanChina
- Maize Research InstituteSichuan Agricultural UniversityWenjiangSichuanChina
| | - Haoran Shi
- Chengdu Academy of Agricultural and Forestry SciencesWenjiangSichuanChina
| | - Tingting Guo
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubeiChina
| | - Rongqian Xie
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaWenjiangSichuanChina
- Maize Research InstituteSichuan Agricultural UniversityWenjiangSichuanChina
| | - Yaxi Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaWenjiangSichuanChina
- Triticeae Research InstituteSichuan Agricultural UniversityWenjiangSichuanChina
| | - Qi Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaWenjiangSichuanChina
| | - Hongxiang Li
- College of Information EngineeringSichuan Agricultural UniversityYa’anSichuanChina
| | - Banglie Yang
- College of Information EngineeringSichuan Agricultural UniversityYa’anSichuanChina
| | - Lixue Chen
- College of Information EngineeringSichuan Agricultural UniversityYa’anSichuanChina
| | - Yanli Lu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaWenjiangSichuanChina
- Maize Research InstituteSichuan Agricultural UniversityWenjiangSichuanChina
| |
Collapse
|
39
|
In Silico Analysis Revealed Five Novel High-Risk Single-Nucleotide Polymorphisms (rs200384291, rs201163886, rs193141883, rs201139487, and rs201723157) in ELANE Gene Causing Autosomal Dominant Severe Congenital Neutropenia 1 and Cyclic Hematopoiesis. ScientificWorldJournal 2022; 2022:3356835. [PMID: 35571273 PMCID: PMC9106522 DOI: 10.1155/2022/3356835] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 01/22/2022] [Accepted: 04/12/2022] [Indexed: 11/18/2022] Open
Abstract
Single-nucleotide polymorphisms in the ELANE (Elastase, Neutrophil Expressed) gene are associated with severe congenital neutropenia, while the ELANE gene provides instructions for making a protein called neutrophil elastase. We identified disease susceptibility single-nucleotide polymorphisms (SNPs) in the ELANE gene using several computational tools. We used cutting-edge computational techniques to investigate the effects of ELANE mutations on the sequence and structure of the protein. Our study suggested that eight nsSNPs (rs28931611, rs57246956, rs137854448, rs193141883, rs201723157, rs201139487, rs137854451, and rs200384291) are the most deleterious in ELANE gene and disturb protein structure and function. The mutants F218L, R34W, G203S, R193W, and T175M have not yet been identified in patients suffering from SCN and cyclic hematopoiesis, while C71Y, P139R, C151Y, G214R, and G203C reported in our study are already associated with both of the disorders. These mutations are shown to destabilize structure and disrupt ELANE protein activation, splicing, and folding and might diminish trypsin-like serine protease efficiency. Prediction of posttranslation modifications highlighted the significance of deleterious nsSNPs because some of nsSNPs affect potential phosphorylation sites. Gene-gene interactions showed the relation of ELANE with other genes depicting its importance in numerous pathways and coexpressions. We identified the deleterious nsSNPs, constructed mutant protein structures, and evaluated the impact of mutation by employing molecular docking. This research sheds light on how ELANE failure upon mutation results in disease progression, including congenital neutropenia, and validation of these novel predicted nsSNPs is required through the wet lab.
Collapse
|
40
|
Shinwari K, Rehman HM, Liu G, Bolkov MA, Tuzankina IA, Chereshnev VA. Novel Disease-Associated Missense Single-Nucleotide Polymorphisms Variants Predication by Algorithms Tools and Molecular Dynamics Simulation of Human TCIRG1 Gene Causing Congenital Neutropenia and Osteopetrosis. Front Mol Biosci 2022; 9:879875. [PMID: 35573728 PMCID: PMC9095858 DOI: 10.3389/fmolb.2022.879875] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 04/04/2022] [Indexed: 12/16/2022] Open
Abstract
T Cell Immune Regulator 1, ATPase H + Transporting V0 Subunit A3 (TCIRG1 gene provides instructions for making one part, the a3 subunit, of a large protein complex known as a vacuolar H + -ATPase (V-ATPase). V-ATPases are a group of similar complexes that act as pumps to move positively charged hydrogen atoms (protons) across membranes. Single amino acid changes in highly conserved areas of the TCIRG1 protein have been linked to autosomal recessive osteopetrosis and severe congenital neutropenia. We used multiple computational approaches to classify disease-prone single nucleotide polymorphisms (SNPs) in TCIRG1. We used molecular dynamics analysis to identify the deleterious nsSNPs, build mutant protein structures, and assess the impact of mutation. Our results show that fifteen nsSNPs (rs199902030, rs200149541, rs372499913, rs267605221, rs374941368, rs375717418, rs80008675, rs149792489, rs116675104, rs121908250, rs121908251, rs121908251, rs149792489 and rs116675104) variants are likely to be highly deleterious mutations as by incorporating them into wild protein they destabilize the wild protein structure and function. They are also located in the V-ATPase I domain, which may destabilize the structure and impair TCIRG1 protein activation, as well as reduce its ATPase effectiveness. These mutants have not yet been identified in patients suffering from CN and osteopetrosis while (G405R, R444L, and D517N) reported in our study are already associated with osteopetrosis. Mutation V52L reported in our study was identified in a patient suspected for CN. Finally, these mutants can help to further understand the broad pool of illness susceptibilities associated with TCIRG1 catalytic kinase domain activation and aid in the development of an effective treatment for associated diseases.
Collapse
Affiliation(s)
- Khyber Shinwari
- Institute of Chemical Engineering, Department of Immunochemistry, Ural Federal University, Yekaterinburg, Russia
| | - Hafiz Muzzammel Rehman
- School of Biochemistry and Biotechnology, University of the Punjab, Lahore, Pakistan
- Alnoorians Group of Institutes, Shad Bagh, Lahore, Pakistan
| | - Guojun Liu
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou, China
| | - Mikhail A. Bolkov
- Institute of Chemical Engineering, Department of Immunochemistry, Ural Federal University, Yekaterinburg, Russia
- Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences, Yekaterinburg, Russia
| | - Irina A. Tuzankina
- Institute of Chemical Engineering, Department of Immunochemistry, Ural Federal University, Yekaterinburg, Russia
- Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences, Yekaterinburg, Russia
| | - Valery. A. Chereshnev
- Institute of Chemical Engineering, Department of Immunochemistry, Ural Federal University, Yekaterinburg, Russia
- Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences, Yekaterinburg, Russia
| |
Collapse
|
41
|
Ali MZ, Farid A, Ahmad S, Muzammal M, Mohaini MA, Alsalman AJ, Al Hawaj MA, Alhashem YN, Alsaleh AA, Almusalami EM, Maryam M, Khan MA. In Silico Analysis Identified Putative Pathogenic Missense nsSNPs in Human SLITRK1 Gene. Genes (Basel) 2022; 13:672. [PMID: 35456478 PMCID: PMC9030497 DOI: 10.3390/genes13040672] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 04/05/2022] [Accepted: 04/07/2022] [Indexed: 02/04/2023] Open
Abstract
Human DNA contains several variations, which can affect the structure and normal functioning of a protein. These variations could be single nucleotide polymorphisms (SNPs) or insertion-deletions (InDels). SNPs, as opposed to InDels, are more commonly present in DNA and may cause genetic disorders. In the current study, several bioinformatic tools were used to prioritize the pathogenic variants in the SLITRK1 gene. Out of all of the variants, 16 were commonly predicted to be pathogenic by these tools. All the variants had very low frequency, i.e., <0.0001 in the global population. The secondary structure of all filtered variants was predicted, but no structural change was observed at the site of variation in any variant. Protein stability analysis of these variants was then performed, which determined a decrease in protein stability of 10 of the variants. Amino acid conservation analysis revealed that all the amino acids were highly conserved, indicating their structural and functional importance. Protein 3D structure of wildtype SLITRK1 and all of its variants was predicted using I-TASSER, and the effect of variation on 3D structure of the protein was observed using the Missense3D tool, which presented the probable structural loss in three variants, i.e., Asn529Lys, Leu496Pro and Leu94Phe. The wildtype SLITRK1 protein and these three variants were independently docked with their close interactor protein PTPRD, and remarkable differences were observed in the docking sites of normal and variants, which will ultimately affect the functional activity of the SLITRK1 protein. Previous studies have shown that mutations in SLITRK1 are involved in Tourette syndrome. The present study may assist a molecular geneticist in interpreting the variant pathogenicity in research as well as diagnostic setup.
Collapse
Affiliation(s)
- Muhammad Zeeshan Ali
- Gomal Center of Biochemistry and Biotechnology, Gomal University, Dera Ismail Khan 29111, Pakistan; (M.Z.A.); (A.F.); (S.A.); (M.M.)
| | - Arshad Farid
- Gomal Center of Biochemistry and Biotechnology, Gomal University, Dera Ismail Khan 29111, Pakistan; (M.Z.A.); (A.F.); (S.A.); (M.M.)
| | - Safeer Ahmad
- Gomal Center of Biochemistry and Biotechnology, Gomal University, Dera Ismail Khan 29111, Pakistan; (M.Z.A.); (A.F.); (S.A.); (M.M.)
| | - Muhammad Muzammal
- Gomal Center of Biochemistry and Biotechnology, Gomal University, Dera Ismail Khan 29111, Pakistan; (M.Z.A.); (A.F.); (S.A.); (M.M.)
| | - Mohammed Al Mohaini
- Basic Sciences Department, College of Applied Medical Sciences, King Saud Bin Abdulaziz University for Health Sciences, Al Ahsa 31982, Saudi Arabia;
- King Abdullah International Medical Research Center, Al Ahsa 31982, Saudi Arabia
| | - Abdulkhaliq J. Alsalman
- Department of Clinical Pharmacy, Faculty of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia;
| | - Maitham A. Al Hawaj
- Department of Pharmacy Practice, College of Clinical Pharmacy, King Faisal University, Al Ahsa 31982, Saudi Arabia;
| | - Yousef N. Alhashem
- Clinical Laboratory Sciences Department, Mohammed Al-Mana College for Medical Sciences, Dammam 34222, Saudi Arabia; (Y.N.A.); (A.A.A.)
| | - Abdulmonem A. Alsaleh
- Clinical Laboratory Sciences Department, Mohammed Al-Mana College for Medical Sciences, Dammam 34222, Saudi Arabia; (Y.N.A.); (A.A.A.)
| | | | - Mahpara Maryam
- Department of Zoology, Government College No.1, Dera Ismail Khan 29111, Pakistan;
| | - Muzammil Ahmad Khan
- Gomal Center of Biochemistry and Biotechnology, Gomal University, Dera Ismail Khan 29111, Pakistan; (M.Z.A.); (A.F.); (S.A.); (M.M.)
- Department of Human Genetics, Sidra Medical and Research Centre, Doha 26999, Qatar
| |
Collapse
|
42
|
Sana M, Javed A, Babar Jamal S, Junaid M, Faheem M. Development of multivalent vaccine targeting M segment of Crimean Congo Hemorrhagic Fever Virus (CCHFV) using immunoinformatic approaches. Saudi J Biol Sci 2022; 29:2372-2388. [PMID: 35531180 PMCID: PMC9072894 DOI: 10.1016/j.sjbs.2021.12.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 11/25/2021] [Accepted: 12/04/2021] [Indexed: 01/23/2023] Open
Abstract
Crimean-Congo Hemorrhagic Fever (CCHF) is a tick-borne viral infection with no licensed vaccine or therapeutics available for its treatment. In the present study we have developed the first multi-epitope subunit vaccine effective against all the seven genotypes of CCHF virus (CCHFV). The vaccine contains five B-cell, two MHC-II (HTL), and three MHC-I (CTL) epitopes screened from two structural glycoproteins (Gc and Gn in M segment) of CCHFV with an N-terminus human β-defensin as an adjuvant, as well as an N-terminus EAAAK sequence. The epitopes were rigorously investigated for their antigenicity, allergenicity, IFN gamma induction, anti-inflammatory responses, stability, and toxicity. The three-dimensional structure of the vaccine was predicted and docked with TLR-3, TLR-8, and TLR-9 receptors to find the strength of the binding complexes via molecular dynamics simulation. After codon adaptation, the subunit vaccine construct was developed in a pDual-GC plasmid and has population coverage of 98.47% of the world's population (HLA-I & II combined). The immune simulation studies were carried out on the C-ImmSim in-silico interface showing a marked increase in the production of cellular and humoral response (B-cell and T-cell) as well as TGFβ, IL-2, IL-10, and IL-12 indicating that the proposed vaccine would be able to sufficiently provoke both humoral and cell-mediated immune responses. Thus, making it a new and promising vaccine candidate against CCHFV.
Collapse
Affiliation(s)
- Maaza Sana
- Atta-ur-Rahman School of Applied Biosciences, National University of Science and Technology, Sector H-12, Islamabad, Pakistan
| | - Aneela Javed
- Atta-ur-Rahman School of Applied Biosciences, National University of Science and Technology, Sector H-12, Islamabad, Pakistan
| | - Syed Babar Jamal
- Deparment of Biological Sciences, National University of Medical Sciences, Abid Majeed Rd, Rawalpindi, Punjab 46000, Pakistan
| | - Muhammad Junaid
- Precision Medicine Laboratory, Rehman Medical Institute, Hayatabad, Peshawar, KPK, 25000, Pakistan
| | - Muhammad Faheem
- Deparment of Biological Sciences, National University of Medical Sciences, Abid Majeed Rd, Rawalpindi, Punjab 46000, Pakistan
| |
Collapse
|
43
|
Prokop JW, Jdanov V, Savage L, Morris M, Lamb N, VanSickle E, Stenger CL, Rajasekaran S, Bupp CP. Computational and Experimental Analysis of Genetic Variants. Compr Physiol 2022; 12:3303-3336. [PMID: 35578967 DOI: 10.1002/cphy.c210012] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Genomics has grown exponentially over the last decade. Common variants are associated with physiological changes through statistical strategies such as Genome-Wide Association Studies (GWAS) and quantitative trail loci (QTL). Rare variants are associated with diseases through extensive filtering tools, including population genomics and trio-based sequencing (parents and probands). However, the genomic associations require follow-up analyses to narrow causal variants, identify genes that are influenced, and to determine the physiological changes. Large quantities of data exist that can be used to connect variants to gene changes, cell types, protein pathways, clinical phenotypes, and animal models that establish physiological genomics. This data combined with bioinformatics including evolutionary analysis, structural insights, and gene regulation can yield testable hypotheses for mechanisms of genomic variants. Molecular biology, biochemistry, cell culture, CRISPR editing, and animal models can test the hypotheses to give molecular variant mechanisms. Variant characterizations can be a significant component of educating future professionals at the undergraduate, graduate, or medical training programs through teaching the basic concepts and terminology of genetics while learning independent research hypothesis design. This article goes through the computational and experimental analysis strategies of variant characterization and provides examples of these tools applied in publications. © 2022 American Physiological Society. Compr Physiol 12:3303-3336, 2022.
Collapse
Affiliation(s)
- Jeremy W Prokop
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, Michigan, USA.,Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan, USA
| | - Vladislav Jdanov
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, Michigan, USA
| | - Lane Savage
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, Michigan, USA
| | - Michele Morris
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama, USA
| | - Neil Lamb
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama, USA
| | | | - Cynthia L Stenger
- Department of Mathematics, University of North Alabama, Florence, Alabama, USA
| | - Surender Rajasekaran
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, Michigan, USA.,Pediatric Intensive Care Unit, Helen DeVos Children's Hospital, Grand Rapids, Michigan, USA.,Office of Research, Spectrum Health, Grand Rapids, Michigan, USA
| | - Caleb P Bupp
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, Michigan, USA.,Medical Genetics, Spectrum Health, Grand Rapids, Michigan, USA
| |
Collapse
|
44
|
Bondos SE, Dunker AK, Uversky VN. Intrinsically disordered proteins play diverse roles in cell signaling. Cell Commun Signal 2022; 20:20. [PMID: 35177069 PMCID: PMC8851865 DOI: 10.1186/s12964-022-00821-7] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 12/11/2021] [Indexed: 11/29/2022] Open
Abstract
Signaling pathways allow cells to detect and respond to a wide variety of chemical (e.g. Ca2+ or chemokine proteins) and physical stimuli (e.g., sheer stress, light). Together, these pathways form an extensive communication network that regulates basic cell activities and coordinates the function of multiple cells or tissues. The process of cell signaling imposes many demands on the proteins that comprise these pathways, including the abilities to form active and inactive states, and to engage in multiple protein interactions. Furthermore, successful signaling often requires amplifying the signal, regulating or tuning the response to the signal, combining information sourced from multiple pathways, all while ensuring fidelity of the process. This sensitivity, adaptability, and tunability are possible, in part, due to the inclusion of intrinsically disordered regions in many proteins involved in cell signaling. The goal of this collection is to highlight the many roles of intrinsic disorder in cell signaling. Following an overview of resources that can be used to study intrinsically disordered proteins, this review highlights the critical role of intrinsically disordered proteins for signaling in widely diverse organisms (animals, plants, bacteria, fungi), in every category of cell signaling pathway (autocrine, juxtacrine, intracrine, paracrine, and endocrine) and at each stage (ligand, receptor, transducer, effector, terminator) in the cell signaling process. Thus, a cell signaling pathway cannot be fully described without understanding how intrinsically disordered protein regions contribute to its function. The ubiquitous presence of intrinsic disorder in different stages of diverse cell signaling pathways suggest that more mechanisms by which disorder modulates intra- and inter-cell signals remain to be discovered.
Collapse
Affiliation(s)
- Sarah E. Bondos
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, TX 77843 USA
| | - A. Keith Dunker
- Center for Computational Biology and Bioinformatics, Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202 USA
| | - Vladimir N. Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer’s Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612 USA
- Institute for Biological Instrumentation of the Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, Pushchino, Moscow Region, Russia 142290
| |
Collapse
|
45
|
Avsar O. Investigation of Putative Functional SNPs of Human HAT1 Protein: A Comprehensive “in silico” Study. CYTOL GENET+ 2022. [DOI: 10.3103/s0095452722010029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
46
|
Philip J, Örd M, Silva A, Singh S, Diffley JFX, Remus D, Loog M, Ikui AE. Cdc6 is sequentially regulated by PP2A-Cdc55, Cdc14, and Sic1 for origin licensing in S. cerevisiae. eLife 2022; 11:e74437. [PMID: 35142288 PMCID: PMC8830886 DOI: 10.7554/elife.74437] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 12/15/2021] [Indexed: 01/31/2023] Open
Abstract
Cdc6, a subunit of the pre-replicative complex (pre-RC), contains multiple regulatory cyclin-dependent kinase (Cdk1) consensus sites, SP or TP motifs. In Saccharomyces cerevisiae, Cdk1 phosphorylates Cdc6-T7 to recruit Cks1, the Cdk1 phospho-adaptor in S phase, for subsequent multisite phosphorylation and protein degradation. Cdc6 accumulates in mitosis and is tightly bound by Clb2 through N-terminal phosphorylation in order to prevent premature origin licensing and degradation. It has been extensively studied how Cdc6 phosphorylation is regulated by the cyclin-Cdk1 complex. However, a detailed mechanism on how Cdc6 phosphorylation is reversed by phosphatases has not been elucidated. Here, we show that PP2ACdc55 dephosphorylates Cdc6 N-terminal sites to release Clb2. Cdc14 dephosphorylates the C-terminal phospho-degron, leading to Cdc6 stabilization in mitosis. In addition, Cdk1 inhibitor Sic1 releases Clb2·Cdk1·Cks1 from Cdc6 to load Mcm2-7 on the chromatin upon mitotic exit. Thus, pre-RC assembly and origin licensing are promoted by phosphatases through the attenuation of distinct Cdk1-dependent Cdc6 inhibitory mechanisms.
Collapse
Affiliation(s)
- Jasmin Philip
- The PhD Program in Biochemistry, The Graduate Center, CUNYBrooklynUnited States
- Brooklyn CollegeBrooklynUnited States
| | | | - Andriele Silva
- The PhD Program in Biochemistry, The Graduate Center, CUNYBrooklynUnited States
- Brooklyn CollegeBrooklynUnited States
| | - Shaneen Singh
- The PhD Program in Biochemistry, The Graduate Center, CUNYBrooklynUnited States
- Brooklyn CollegeBrooklynUnited States
| | | | - Dirk Remus
- Memorial Sloan-Kettering Cancer CenterNew YorkUnited States
| | | | - Amy E Ikui
- The PhD Program in Biochemistry, The Graduate Center, CUNYBrooklynUnited States
- Brooklyn CollegeBrooklynUnited States
| |
Collapse
|
47
|
E3 ubiquitin ligase SYVN1 is a key positive regulator for GSDMD-mediated pyroptosis. Cell Death Dis 2022; 13:106. [PMID: 35115505 PMCID: PMC8814081 DOI: 10.1038/s41419-022-04553-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 12/22/2021] [Accepted: 01/17/2022] [Indexed: 01/01/2023]
Abstract
Gasdermin D (GSDMD) participates in the activation of inflammasomes and pyroptosis. Meanwhile, ubiquitination strictly regulates inflammatory responses. However, how ubiquitination regulates Gasdermin D activity is not well understood. In this study, we show that pyroptosis triggered by Gasdermin D is regulated through ubiquitination. Specifically, SYVN1, an E3 ubiquitin ligase of gasdermin D, promotes GSDMD-mediated pyroptosis. SYVN1 deficiency inhibits pyroptosis and subsequent LDH release and PI uptake. SYVN1 directly interacts with GSDMD, and mediates K27-linked polyubiquitination of GSDMD on K203 and K204 residues, promoting GSDMD-induced pyroptotic cell death. Thus, our findings revealed the essential role of SYVN1 in GSDMD-mediated pyroptosis. Overall, GSDMD ubiquitination is a potential therapeutic module for inflammatory diseases.
Collapse
|
48
|
Senís E, Esgleas M, Najas S, Jiménez-Sábado V, Bertani C, Giménez-Alejandre M, Escriche A, Ruiz-Orera J, Hergueta-Redondo M, Jiménez M, Giralt A, Nuciforo P, Albà MM, Peinado H, Del Toro D, Hove-Madsen L, Götz M, Abad M. TUNAR lncRNA Encodes a Microprotein that Regulates Neural Differentiation and Neurite Formation by Modulating Calcium Dynamics. Front Cell Dev Biol 2022; 9:747667. [PMID: 35036403 PMCID: PMC8758570 DOI: 10.3389/fcell.2021.747667] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 11/03/2021] [Indexed: 11/13/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) are regulatory molecules which have been traditionally considered as “non-coding”. Strikingly, recent evidence has demonstrated that many non-coding regions, including lncRNAs, do in fact contain small-open reading frames that code for small proteins that have been called microproteins. Only a few of them have been characterized so far, but they display key functions in a wide variety of cellular processes. Here, we show that TUNAR lncRNA encodes an evolutionarily conserved microprotein expressed in the nervous system that we have named pTUNAR. pTUNAR deficiency in mouse embryonic stem cells improves their differentiation potential towards neural lineage both in vitro and in vivo. Conversely, pTUNAR overexpression impairs neuronal differentiation by reduced neurite formation in different model systems. At the subcellular level, pTUNAR is a transmembrane protein that localizes in the endoplasmic reticulum and interacts with the calcium transporter SERCA2. pTUNAR overexpression reduces cytoplasmatic calcium, consistent with a possible role of pTUNAR as an activator of SERCA2. Altogether, our results suggest that our newly discovered microprotein has an important role in neural differentiation and neurite formation through the regulation of intracellular calcium. From a more general point of view, our results provide a proof of concept of the role of lncRNAs-encoded microproteins in neural differentiation.
Collapse
Affiliation(s)
- Elena Senís
- Cellular Plasticity and Cancer Group, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Miriam Esgleas
- Physiological Genomics, Biomedical Center (BMC), Helmholtz Center Munich, Institute of Stem Cell Research, Großhaderner Str, SyNergy Excellence Cluster, Ludwig-Maximilians-Universitaet (LMU), Munich, Germany
| | - Sonia Najas
- Physiological Genomics, Biomedical Center (BMC), Helmholtz Center Munich, Institute of Stem Cell Research, Großhaderner Str, SyNergy Excellence Cluster, Ludwig-Maximilians-Universitaet (LMU), Munich, Germany
| | - Verónica Jiménez-Sábado
- Instituto de Investigación Biomédica Barcelona (IIBB-CSIC), Instituto de Investigación Biomédica Sant Pau (IIB-Sant Pau) and CIBERCV, Barcelona, Spain
| | - Camilla Bertani
- Cellular Plasticity and Cancer Group, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Marta Giménez-Alejandre
- Cellular Plasticity and Cancer Group, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Alba Escriche
- Cellular Plasticity and Cancer Group, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Jorge Ruiz-Orera
- Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Marta Hergueta-Redondo
- Microenvironment and Metastasis Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Mireia Jiménez
- Cellular Plasticity and Cancer Group, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Albert Giralt
- Department of Biological Sciences, Institute of Neurosciences, IDIBAPS, CIBERNED, University of Barcelona, Barcelona, Spain
| | - Paolo Nuciforo
- Molecular Oncology Group, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - M Mar Albà
- Evolutionary Genomics Group, Research Programme on Biomedical Informatics, Hospital del Mar Medical Research Institute (IMIM) and Universitat Pompeu Fabra (UPF), Barcelona, Spain.,Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - Héctor Peinado
- Microenvironment and Metastasis Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Daniel Del Toro
- Department of Biological Sciences, Institute of Neurosciences, IDIBAPS, CIBERNED, University of Barcelona, Barcelona, Spain
| | - Leif Hove-Madsen
- Instituto de Investigación Biomédica Barcelona (IIBB-CSIC), Instituto de Investigación Biomédica Sant Pau (IIB-Sant Pau) and CIBERCV, Barcelona, Spain
| | - Magdalena Götz
- Physiological Genomics, Biomedical Center (BMC), Helmholtz Center Munich, Institute of Stem Cell Research, Großhaderner Str, SyNergy Excellence Cluster, Ludwig-Maximilians-Universitaet (LMU), Munich, Germany
| | - María Abad
- Cellular Plasticity and Cancer Group, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| |
Collapse
|
49
|
Wang C, Tan X, Tang D, Gou Y, Han C, Ning W, Lin S, Zhang W, Chen M, Peng D, Xue Y. GPS-Uber: a hybrid-learning framework for prediction of general and E3-specific lysine ubiquitination sites. Brief Bioinform 2022; 23:6509047. [PMID: 35037020 DOI: 10.1093/bib/bbab574] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 12/11/2021] [Accepted: 12/14/2021] [Indexed: 12/13/2022] Open
Abstract
As an important post-translational modification, lysine ubiquitination participates in numerous biological processes and is involved in human diseases, whereas the site specificity of ubiquitination is mainly decided by ubiquitin-protein ligases (E3s). Although numerous ubiquitination predictors have been developed, computational prediction of E3-specific ubiquitination sites is still a great challenge. Here, we carefully reviewed the existing tools for the prediction of general ubiquitination sites. Also, we developed a tool named GPS-Uber for the prediction of general and E3-specific ubiquitination sites. From the literature, we manually collected 1311 experimentally identified site-specific E3-substrate relations, which were classified into different clusters based on corresponding E3s at different levels. To predict general ubiquitination sites, we integrated 10 types of sequence and structure features, as well as three types of algorithms including penalized logistic regression, deep neural network and convolutional neural network. Compared with other existing tools, the general model in GPS-Uber exhibited a highly competitive accuracy, with an area under curve values of 0.7649. Then, transfer learning was adopted for each E3 cluster to construct E3-specific models, and in total 112 individual E3-specific predictors were implemented. Using GPS-Uber, we conducted a systematic prediction of human cancer-associated ubiquitination events, which could be helpful for further experimental consideration. GPS-Uber will be regularly updated, and its online service is free for academic research at http://gpsuber.biocuckoo.cn/.
Collapse
Affiliation(s)
- Chenwei Wang
- Department of Bioinformatics and Systems Biology, MOE Key Laboratory of Molecular Biophysics, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Center for Artificial Intelligence Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Xiaodan Tan
- Department of Bioinformatics and Systems Biology, MOE Key Laboratory of Molecular Biophysics, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Center for Artificial Intelligence Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Dachao Tang
- Department of Bioinformatics and Systems Biology, MOE Key Laboratory of Molecular Biophysics, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Center for Artificial Intelligence Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Yujie Gou
- Department of Bioinformatics and Systems Biology, MOE Key Laboratory of Molecular Biophysics, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Center for Artificial Intelligence Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Cheng Han
- Department of Bioinformatics and Systems Biology, MOE Key Laboratory of Molecular Biophysics, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Center for Artificial Intelligence Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Wanshan Ning
- Department of Bioinformatics and Systems Biology, MOE Key Laboratory of Molecular Biophysics, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Center for Artificial Intelligence Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Shaofeng Lin
- Department of Bioinformatics and Systems Biology, MOE Key Laboratory of Molecular Biophysics, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Center for Artificial Intelligence Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Weizhi Zhang
- Department of Bioinformatics and Systems Biology, MOE Key Laboratory of Molecular Biophysics, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Center for Artificial Intelligence Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Miaomiao Chen
- Department of Bioinformatics and Systems Biology, MOE Key Laboratory of Molecular Biophysics, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Center for Artificial Intelligence Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Di Peng
- Department of Bioinformatics and Systems Biology, MOE Key Laboratory of Molecular Biophysics, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Center for Artificial Intelligence Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Yu Xue
- Department of Bioinformatics and Systems Biology, MOE Key Laboratory of Molecular Biophysics, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Center for Artificial Intelligence Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| |
Collapse
|
50
|
Knychala MM, dos Santos AA, Kretzer LG, Gelsleichter F, Leandro MJ, Fonseca C, Stambuk BU. Strategies for Efficient Expression of Heterologous Monosaccharide Transporters in Saccharomyces cerevisiae. J Fungi (Basel) 2022; 8:jof8010084. [PMID: 35050024 PMCID: PMC8778384 DOI: 10.3390/jof8010084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/09/2022] [Accepted: 01/12/2022] [Indexed: 02/01/2023] Open
Abstract
In previous work, we developed a Saccharomyces cerevisiae strain (DLG-K1) lacking the main monosaccharide transporters (hxt-null) and displaying high xylose reductase, xylitol dehydrogenase and xylulokinase activities. This strain proved to be a useful chassis strain to study new glucose/xylose transporters, as SsXUT1 from Scheffersomyces stipitis. Proteins with high amino acid sequence similarity (78–80%) to SsXUT1 were identified from Spathaspora passalidarum and Spathaspora arborariae genomes. The characterization of these putative transporter genes (SpXUT1 and SaXUT1, respectively) was performed in the same chassis strain. Surprisingly, the cloned genes could not restore the ability to grow in several monosaccharides tested (including glucose and xylose), but after being grown in maltose, the uptake of 14C-glucose and 14C-xylose was detected. While SsXUT1 lacks lysine residues with high ubiquitinylation potential in its N-terminal domain and displays only one in its C-terminal domain, both SpXUT1 and SaXUT1 transporters have several such residues in their C-terminal domains. A truncated version of SpXUT1 gene, deprived of the respective 3′-end, was cloned in DLG-K1 and allowed growth and fermentation in glucose or xylose. In another approach, two arrestins known to be involved in the ubiquitinylation and endocytosis of sugar transporters (ROD1 and ROG3) were knocked out, but only the rog3 mutant allowed a significant improvement of growth and fermentation in glucose when either of the XUT permeases were expressed. Therefore, for the efficient heterologous expression of monosaccharide (e.g., glucose/xylose) transporters in S. cerevisiae, we propose either the removal of lysines involved in ubiquitinylation and endocytosis or the use of chassis strains hampered in the specific mechanism of membrane protein turnover.
Collapse
Affiliation(s)
- Marilia M. Knychala
- Center of Biological Sciences, Department of Biochemistry, Federal University of Santa Catarina, Florianópolis 88040-900, SC, Brazil; (M.M.K.); (A.A.d.S.); (L.G.K.); (F.G.)
- Laboratório Nacional de Energia e Geologia, I.P., Unidade de Bioenergia, Estrada do Paço do Lumiar 22, 1649-038 Lisboa, Portugal; (M.J.L.); (C.F.)
- ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Av. da República, 2780-157 Oeiras, Portugal
| | - Angela A. dos Santos
- Center of Biological Sciences, Department of Biochemistry, Federal University of Santa Catarina, Florianópolis 88040-900, SC, Brazil; (M.M.K.); (A.A.d.S.); (L.G.K.); (F.G.)
| | - Leonardo G. Kretzer
- Center of Biological Sciences, Department of Biochemistry, Federal University of Santa Catarina, Florianópolis 88040-900, SC, Brazil; (M.M.K.); (A.A.d.S.); (L.G.K.); (F.G.)
| | - Fernanda Gelsleichter
- Center of Biological Sciences, Department of Biochemistry, Federal University of Santa Catarina, Florianópolis 88040-900, SC, Brazil; (M.M.K.); (A.A.d.S.); (L.G.K.); (F.G.)
| | - Maria José Leandro
- Laboratório Nacional de Energia e Geologia, I.P., Unidade de Bioenergia, Estrada do Paço do Lumiar 22, 1649-038 Lisboa, Portugal; (M.J.L.); (C.F.)
- ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Av. da República, 2780-157 Oeiras, Portugal
| | - César Fonseca
- Laboratório Nacional de Energia e Geologia, I.P., Unidade de Bioenergia, Estrada do Paço do Lumiar 22, 1649-038 Lisboa, Portugal; (M.J.L.); (C.F.)
- Discovery, R&D, Chr. Hansen A/S, 2970 Hørsholm, Denmark
| | - Boris U. Stambuk
- Center of Biological Sciences, Department of Biochemistry, Federal University of Santa Catarina, Florianópolis 88040-900, SC, Brazil; (M.M.K.); (A.A.d.S.); (L.G.K.); (F.G.)
- Correspondence: ; Tel.: +55-48-3721-4449
| |
Collapse
|