1
|
Chagas BCA, Zhou X, Guerrero M, Ilina TV, Ishima R. Interplay between protease and reverse transcriptase dimerization in a model HIV-1 polyprotein. Protein Sci 2024; 33:e5080. [PMID: 38896002 PMCID: PMC11187873 DOI: 10.1002/pro.5080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 05/01/2024] [Accepted: 05/31/2024] [Indexed: 06/21/2024]
Abstract
The Gag-Pol polyprotein in human immunodeficiency virus type I (HIV-1) encodes enzymes that are essential for virus replication: protease (PR), reverse transcriptase (RT), and integrase (IN). The mature forms of PR, RT and IN are homodimer, heterodimer and tetramer, respectively. The precise mechanism underlying the formation of dimer or tetramer is not yet understood. Here, to gain insight into the dimerization of PR and RT in the precursor, we prepared a model precursor, PR-RT, incorporating an inactivating mutation at the PR active site, D25A, and including two residues in the p6* region, fused to a SUMO-tag, at the N-terminus of the PR region. We also prepared two mutants of PR-RT containing a dimer dissociation mutation either in the PR region, PR(T26A)-RT, or in the RT region, PR-RT(W401A). Size exclusion chromatography showed both monomer and dimer fractions in PR-RT and PR(T26A)-RT, but only monomer in PR-RT(W401A). SEC experiments of PR-RT in the presence of protease inhibitor, darunavir, significantly enhanced the dimerization. Additionally, SEC results suggest an estimated PR-RT dimer dissociation constant that is higher than that of the mature RT heterodimer, p66/p51, but slightly lower than the premature RT homodimer, p66/p66. Reverse transcriptase assays and RT maturation assays were performed as tools to assess the effects of the PR dimer-interface on these functions. Our results consistently indicate that the RT dimer-interface plays a crucial role in the dimerization in PR-RT, whereas the PR dimer-interface has a lesser role.
Collapse
Affiliation(s)
| | - Xiaohong Zhou
- Department of Structural BiologyUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - Michel Guerrero
- Department of Structural BiologyUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - Tatiana V. Ilina
- Department of Structural BiologyUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - Rieko Ishima
- Department of Structural BiologyUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| |
Collapse
|
2
|
Bowen NE, Oo A, Kim B. Mechanistic Interplay between HIV-1 Reverse Transcriptase Enzyme Kinetics and Host SAMHD1 Protein: Viral Myeloid-Cell Tropism and Genomic Mutagenesis. Viruses 2022; 14:v14081622. [PMID: 35893688 PMCID: PMC9331428 DOI: 10.3390/v14081622] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/21/2022] [Accepted: 07/22/2022] [Indexed: 11/23/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) has been the primary interest among studies on antiviral discovery, viral replication kinetics, drug resistance, and viral evolution. Following infection and entry into target cells, the HIV-1 core disassembles, and the viral RT concomitantly converts the viral RNA into double-stranded proviral DNA, which is integrated into the host genome. The successful completion of the viral life cycle highly depends on the enzymatic DNA polymerase activity of RT. Furthermore, HIV-1 RT has long been known as an error-prone DNA polymerase due to its lack of proofreading exonuclease properties. Indeed, the low fidelity of HIV-1 RT has been considered as one of the key factors in the uniquely high rate of mutagenesis of HIV-1, which leads to efficient viral escape from immune and therapeutic antiviral selective pressures. Interestingly, a series of studies on the replication kinetics of HIV-1 in non-dividing myeloid cells and myeloid specific host restriction factor, SAM domain, and HD domain-containing protein, SAMHD1, suggest that the myeloid cell tropism and high rate of mutagenesis of HIV-1 are mechanistically connected. Here, we review not only HIV-1 RT as a key antiviral target, but also potential evolutionary and mechanistic crosstalk among the unique enzymatic features of HIV-1 RT, the replication kinetics of HIV-1, cell tropism, viral genetic mutation, and host SAMHD1 protein.
Collapse
Affiliation(s)
- Nicole E. Bowen
- Department of Pediatrics, School of Medicine, Emory University, Atlanta, GA 30329, USA; (N.E.B.); (A.O.)
| | - Adrian Oo
- Department of Pediatrics, School of Medicine, Emory University, Atlanta, GA 30329, USA; (N.E.B.); (A.O.)
| | - Baek Kim
- Department of Pediatrics, School of Medicine, Emory University, Atlanta, GA 30329, USA; (N.E.B.); (A.O.)
- Center for Drug Discovery, Children’s Healthcare of Atlanta, Atlanta, GA 30329, USA
- Correspondence:
| |
Collapse
|
3
|
Baldwin ET, Götte M, Tchesnokov EP, Arnold E, Hagel M, Nichols C, Dossang P, Lamers M, Wan P, Steinbacher S, Romero DL. Human endogenous retrovirus-K (HERV-K) reverse transcriptase (RT) structure and biochemistry reveals remarkable similarities to HIV-1 RT and opportunities for HERV-K-specific inhibition. Proc Natl Acad Sci U S A 2022; 119:e2200260119. [PMID: 35771941 PMCID: PMC9271190 DOI: 10.1073/pnas.2200260119] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 04/28/2022] [Indexed: 11/18/2022] Open
Abstract
Human endogenous retroviruses (HERVs) comprise nearly 8% of the human genome and are derived from ancient integrations of retroviruses into the germline. The biology of HERVs is poorly defined, but there is accumulating evidence supporting pathological roles in diverse diseases, such as cancer, autoimmune, and neurodegenerative diseases. Functional proteins are produced by HERV-encoded genes, including reverse transcriptases (RTs), which could be a contributor to the pathology attributed to aberrant HERV-K expression. To facilitate the discovery and development of HERV-K RT potent and selective inhibitors, we expressed active HERV-K RT and determined the crystal structure of a ternary complex of this enzyme with a double-stranded DNA substrate. We demonstrate a range of RT inhibition with antiretroviral nucleotide analogs, while classic nonnucleoside analogs do not inhibit HERV-K RT. Detailed comparisons of HERV-K RT with other known RTs demonstrate similarities to diverse RT families and a striking similarity to the HIV-1 RT asymmetric heterodimer. Our analysis further reveals opportunities for selective HERV-K RT inhibition.
Collapse
Affiliation(s)
| | - Matthias Götte
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Egor P. Tchesnokov
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Eddy Arnold
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ, 08854
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ, 08854
| | | | - Charles Nichols
- Charles River Laboratory, Chesterford Research Park, Saffron Walden CB10 1XL, United Kingdom
| | - Pam Dossang
- Charles River Laboratory, Chesterford Research Park, Saffron Walden CB10 1XL, United Kingdom
| | - Marieke Lamers
- Charles River Laboratory, Chesterford Research Park, Saffron Walden CB10 1XL, United Kingdom
- DomainEx, Chesterford Research Park, Saffron Walden CB10 1XL United Kingdom
| | - Paul Wan
- Charles River Laboratory, Chesterford Research Park, Saffron Walden CB10 1XL, United Kingdom
| | | | | |
Collapse
|
4
|
Xi Z, Ilina TV, Guerrero M, Fan L, Sluis‐Cremer N, Wang Y, Ishima R. Relative domain orientation of the L289K HIV-1 reverse transcriptase monomer. Protein Sci 2022; 31:e4307. [PMID: 35481647 PMCID: PMC8996465 DOI: 10.1002/pro.4307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 03/18/2022] [Accepted: 03/21/2022] [Indexed: 11/08/2022]
Abstract
HIV-1 reverse transcriptase (RT) is a heterodimer comprised p66 and p51 subunits (p66/p51). Several single amino acid substitutions in RT, including L289K, decrease p66/p51 dimer affinity, and reduce enzymatic functioning. Here, small-angle X-ray scattering (SAXS) with proton paramagnetic relaxation enhancement (PRE), 19 F site-specific NMR, and size exclusion chromatography (SEC) were performed for the p66 monomer with the L289K mutation, p66L289K . NMR and SAXS experiments clearly elucidated that the thumb and RNH domains in the monomer do not rigidly interact with each other but are spatially close to the RNH domain. Based on this structural model of the monomer, p66L289K and p51 were predicted to form a heterodimer while p66 and p51L289K not. We tested this hypothesis by SEC analysis of p66 and p51 containing L289K in different combinations and clearly demonstrated that L289K substitution in the p51 subunit, but not in the p66 subunit, reduces p66/p51 formation. Based on the derived monomer model and the importance of the inter-subunit RNH-thumb domain interaction in p66/p51, validated by SEC, the mechanism of p66 homodimer formation was discussed.
Collapse
Affiliation(s)
- Zhaoyong Xi
- Department of Structural BiologyUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - Tatiana V. Ilina
- Department of Structural BiologyUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - Michel Guerrero
- Department of Structural BiologyUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - Lixin Fan
- Basic Science Program, Frederick National Laboratory for Cancer ResearchSAXS Core Facility of the National Cancer InstituteFrederickMarylandUSA
| | - Nicolas Sluis‐Cremer
- Department of Medicine, Division of Infectious DiseasesUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - Yun‐Xing Wang
- Protein‐Nucleic Acid Interaction Section, Structural Biophysics Laboratory, National Cancer InstituteNational Institutes of HealthFrederickMarylandUSA
| | - Rieko Ishima
- Department of Structural BiologyUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| |
Collapse
|
5
|
Large Multidomain Protein NMR: HIV-1 Reverse Transcriptase Precursor in Solution. Int J Mol Sci 2020; 21:ijms21249545. [PMID: 33333923 PMCID: PMC7765405 DOI: 10.3390/ijms21249545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 12/10/2020] [Accepted: 12/12/2020] [Indexed: 11/17/2022] Open
Abstract
NMR studies of large proteins, over 100 kDa, in solution are technically challenging and, therefore, of considerable interest in the biophysics field. The challenge arises because the molecular tumbling of a protein in solution considerably slows as molecular mass increases, reducing the ability to detect resonances. In fact, the typical 1H-13C or 1H-15N correlation spectrum of a large protein, using a 13C- or 15N-uniformly labeled protein, shows severe line-broadening and signal overlap. Selective isotope labeling of methyl groups is a useful strategy to reduce these issues, however, the reduction in the number of signals that goes hand-in-hand with such a strategy is, in turn, disadvantageous for characterizing the overall features of the protein. When domain motion exists in large proteins, the domain motion differently affects backbone amide signals and methyl groups. Thus, the use of multiple NMR probes, such as 1H, 19F, 13C, and 15N, is ideal to gain overall structural or dynamical information for large proteins. We discuss the utility of observing different NMR nuclei when characterizing a large protein, namely, the 66 kDa multi-domain HIV-1 reverse transcriptase that forms a homodimer in solution. Importantly, we present a biophysical approach, complemented by biochemical assays, to understand not only the homodimer, p66/p66, but also the conformational changes that contribute to its maturation to a heterodimer, p66/p51, upon HIV-1 protease cleavage.
Collapse
|
6
|
Ilina T, Slack RL, Guerrero M, Ishima R. Effect of Lysyl-tRNA Synthetase on the Maturation of HIV-1 Reverse Transcriptase. ACS OMEGA 2020; 5:16619-16627. [PMID: 32685828 PMCID: PMC7364630 DOI: 10.1021/acsomega.0c01449] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 06/17/2020] [Indexed: 06/11/2023]
Abstract
In human immunodeficiency virus-1 (HIV-1), reverse transcriptase (RT) is encoded as a 66 kDa protein, p66, in the Gag-Pol polyprotein. This protein is proteolytically cleaved by HIV-1 protease (PR) to finally generate a mature RT that is a heterodimer, composed of a p66 subunit and a p66-derived 51 kDa subunit, p51. In our prior work, we demonstrated that tRNALys3 binding to p66/p66 facilitates efficient cleavage of p66 to p51 by PR. However, tRNALys3 is known to be recruited to the virus by forming a complex with lysyl-tRNA synthetase (LysRS). Herein, we tested whether LysRS can have an effect on RT maturation in vitro. Importantly, our data show no significant differences in RT maturation in the presence of LysRS. Furthermore, no apparent p66/66 interaction with LysRS was observed. Although PR cleaved LysRS, it did not immediately release tRNALys3 from LysRS. Thus, we conclude that a free fraction of tRNALys3, which is in equilibrium with a LysRS-bound form, interacts with p66/p66 without any additional mechanism involving release of tRNALys3 from LysRS. Given that only transient tRNALys3-p66/p66 interaction is needed for efficient RT maturation, a small amount of free tRNA may be sufficient for this process. These studies reveal molecular level insights into RT maturation and will be useful for the design of cellular/viral experiments to better understand the role of tRNA in HIV-1 replication.
Collapse
|
7
|
Slack RL, Ilina TV, Xi Z, Giacobbi NS, Kawai G, Parniak MA, Sarafianos SG, Sluis Cremer N, Ishima R. Conformational Changes in HIV-1 Reverse Transcriptase that Facilitate Its Maturation. Structure 2019; 27:1581-1593.e3. [PMID: 31471129 DOI: 10.1016/j.str.2019.08.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 07/10/2019] [Accepted: 08/09/2019] [Indexed: 01/18/2023]
Abstract
HIV-1 reverse transcriptase (RT) is translated as part of the Gag-Pol polyprotein that is proteolytically processed by HIV-1 protease (PR) to finally become a mature heterodimer, composed of a p66 and a p66-derived 51-kDa subunit, p51. Our previous work suggested that tRNALys3 binding to p66/p66 introduces conformational changes in the ribonuclease (RNH) domain of RT that facilitate efficient cleavage of p66 to p51 by PR. In this study, we characterized the conformational changes in the RNH domain of p66/p66 imparted by tRNALys3 using NMR. Moreover, the importance of tRNALys3 in RT maturation was confirmed in cellulo by modulating the levels of Lys-tRNA synthetase, which affects recruitment of tRNALys3 to the virus. We also employed nonnucleoside RT inhibitors, to modulate the p66 dimer-monomer equilibrium and monitor the resulting structural changes. Taken together, our data provide unique insights into the conformational changes in p66/p66 that drive PR cleavage.
Collapse
Affiliation(s)
- Ryan L Slack
- Department of Structural Biology, University of Pittsburgh School of Medicine, Room 1037, Biomedical Science Tower 3, 3501 Fifth Avenue, Pittsburgh, PA 15260, USA
| | - Tatiana V Ilina
- Department of Structural Biology, University of Pittsburgh School of Medicine, Room 1037, Biomedical Science Tower 3, 3501 Fifth Avenue, Pittsburgh, PA 15260, USA
| | - Zhaoyong Xi
- Department of Structural Biology, University of Pittsburgh School of Medicine, Room 1037, Biomedical Science Tower 3, 3501 Fifth Avenue, Pittsburgh, PA 15260, USA
| | - Nicholas S Giacobbi
- Department of Medicine, Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Gota Kawai
- Department of Life and Environmental Sciences, Chiba Institute of Technology, Chiba, Japan
| | - Michael A Parniak
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA
| | - Stefan G Sarafianos
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Nicolas Sluis Cremer
- Department of Medicine, Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA.
| | - Rieko Ishima
- Department of Structural Biology, University of Pittsburgh School of Medicine, Room 1037, Biomedical Science Tower 3, 3501 Fifth Avenue, Pittsburgh, PA 15260, USA.
| |
Collapse
|
8
|
Spatial domain organization in the HIV-1 reverse transcriptase p66 homodimer precursor probed by double electron-electron resonance EPR. Proc Natl Acad Sci U S A 2019; 116:17809-17816. [PMID: 31383767 DOI: 10.1073/pnas.1911086116] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
HIV type I (HIV-1) reverse transcriptase (RT) catalyzes the conversion of viral RNA into DNA, initiating the chain of events leading to integration of proviral DNA into the host genome. RT is expressed as a single polypeptide chain within the Gag-Pol polyprotein, and either prior to or following excision by HIV-1 protease forms a 66 kDa chain (p66) homodimer precursor. Further proteolytic attack by HIV-1 protease cleaves the ribonuclease H (RNase H) domain of a single subunit to yield the mature p66/p51 heterodimer. Here, we probe the spatial domain organization within the p66 homodimer using pulsed Q-band double electron-electron resonance (DEER) EPR spectroscopy to measure a large number of intra- and intersubunit distances between spin labels attached to surface-engineered cysteines. The DEER-derived distances are fully consistent with the structural subunit asymmetry found in the mature p66/p51 heterodimer in which catalytic activity resides in the p66 subunit, while the p51 subunit purely serves as a structural scaffold. Furthermore, the p66 homodimer precursor undergoes a conformational change involving the thumb, palm, and finger domains in one of the subunits (corresponding to the p66 subunit in the mature p66/p51 heterodimer) from a closed to a partially open state upon addition of a nonnucleoside inhibitor. The relative orientation of the domains was modeled by simulated annealing driven by the DEER-derived distances. Finally, the RNase H domain that is cleaved to generate p51 in the mature p66/p51 heterodimer is present in 2 major conformers. One conformer is fully solvent accessible thereby accounting for the observation that only a single subunit of the p66 homodimer precursor is susceptible to HIV-1 protease.
Collapse
|
9
|
Rawle DJ, Li D, Wu Z, Wang L, Choong M, Lor M, Reid RC, Fairlie DP, Harris J, Tachedjian G, Poulsen SA, Harrich D. Oxazole-Benzenesulfonamide Derivatives Inhibit HIV-1 Reverse Transcriptase Interaction with Cellular eEF1A and Reduce Viral Replication. J Virol 2019; 93:e00239-19. [PMID: 30918071 PMCID: PMC6613760 DOI: 10.1128/jvi.00239-19] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 03/20/2019] [Indexed: 12/14/2022] Open
Abstract
HIV-1 replication requires direct interaction between HIV-1 reverse transcriptase (RT) and cellular eukaryotic translation elongation factor 1A (eEF1A). Our previous work showed that disrupting this interaction inhibited HIV-1 uncoating, reverse transcription, and replication, indicating its potential as an anti-HIV-1 target. In this study, we developed a sensitive, live-cell split-luciferase complementation assay (NanoBiT) to quantitatively measure inhibition of HIV-1 RT interaction with eEF1A. We used this to screen a small molecule library and discovered small-molecule oxazole-benzenesulfonamides (C7, C8, and C9), which dose dependently and specifically inhibited the HIV-1 RT interaction with eEF1A. These compounds directly bound to HIV-1 RT in a dose-dependent manner, as assessed by a biolayer interferometry (BLI) assay, but did not bind to eEF1A. These oxazole-benzenesulfonamides did not inhibit enzymatic activity of recombinant HIV-1 RT in a homopolymer assay but did inhibit reverse transcription and infection of both wild-type (WT) and nonnucleoside reverse transcriptase inhibitor (NNRTI)-resistant HIV-1 in a dose-dependent manner in HEK293T cells. Infection of HeLa cells was significantly inhibited by the oxazole-benzenesulfonamides, and the antiviral activity was most potent against replication stages before 8 h postinfection. In human primary activated CD4+ T cells, C7 inhibited HIV-1 infectivity and replication up to 6 days postinfection. The data suggest a novel mechanism of HIV-1 inhibition and further elucidate how the RT-eEF1A interaction is important for HIV-1 replication. These compounds provide potential to develop a new class of anti-HIV-1 drugs to treat WT and NNRTI-resistant strains in people infected with HIV.IMPORTANCE Antiretroviral drugs protect many HIV-positive people, but their success can be compromised by drug-resistant strains. To combat these strains, the development of new classes of HIV-1 inhibitors is essential and a priority in the field. In this study, we identified small molecules that bind directly to HIV-1 reverse transcriptase (RT) and inhibit its interaction with cellular eEF1A, an interaction which we have previously identified as crucial for HIV-1 replication. These compounds inhibit intracellular HIV-1 reverse transcription and replication of WT HIV-1, as well as HIV-1 mutants that are resistant to current RT inhibitors. A novel mechanism of action involving inhibition of the HIV-1 RT-eEF1A interaction is an important finding and a potential new way to combat drug-resistant HIV-1 strains in infected people.
Collapse
Affiliation(s)
- Daniel J Rawle
- Department of Cell and Molecular Biology, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
- School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, QLD, Australia
| | - Dongsheng Li
- Department of Cell and Molecular Biology, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Zhonglan Wu
- Ningxia Center for Disease Control and Prevention, Ningxia, China
| | - Lu Wang
- Department of Cell and Molecular Biology, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
- School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, QLD, Australia
| | - Marcus Choong
- Department of Cell and Molecular Biology, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
- School of Biomolecular Sciences, Queensland University of Technology, Brisbane, QLD, Australia
| | - Mary Lor
- Department of Cell and Molecular Biology, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Robert C Reid
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, Australia
| | - David P Fairlie
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, Australia
| | - Jonathan Harris
- School of Biomolecular Sciences, Queensland University of Technology, Brisbane, QLD, Australia
| | - Gilda Tachedjian
- Disease Elimination Program, Life Sciences Discipline, Burnet Institute, Melbourne, VIC, Australia
- Department of Microbiology, Monash University, Clayton, VIC, Australia
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
- School of Science, College of Science, Engineering and Health, RMIT University, Melbourne, VIC, Australia
| | - Sally-Ann Poulsen
- Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD, Australia
| | - David Harrich
- Department of Cell and Molecular Biology, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| |
Collapse
|
10
|
London RE. HIV-1 Reverse Transcriptase: A Metamorphic Protein with Three Stable States. Structure 2019; 27:420-426. [PMID: 30639227 DOI: 10.1016/j.str.2018.11.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 10/31/2018] [Accepted: 11/27/2018] [Indexed: 11/18/2022]
Abstract
There has been a steadily increasing appreciation of the fact that the relationship between protein sequence and structure is often sufficiently ambiguous to allow a single sequence to adopt alternative, stable folds. Living organisms have been able to utilize such metamorphic proteins in remarkable and unanticipated ways. HIV-1 reverse transcriptase is among the earliest such proteins identified and remains a unique example in which a functional heterodimer contains two, alternatively folded polymerase domains. Structural characterization of the p66 precursor protein combined with NMR spectroscopic and molecular modeling studies have provided insights into the factors underlying the metamorphic transition and the subunit-specific programmed unfolding step required to expose the protease cleavage site within the ribonuclease H domain, supporting the conversion of the p66/p66' precursor into the mature p66/p51 heterodimer.
Collapse
Affiliation(s)
- Robert E London
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA.
| |
Collapse
|
11
|
Ilina TV, Slack RL, Elder JH, Sarafianos SG, Parniak MA, Ishima R. Effect of tRNA on the Maturation of HIV-1 Reverse Transcriptase. J Mol Biol 2018; 430:1891-1900. [PMID: 29751015 PMCID: PMC5988984 DOI: 10.1016/j.jmb.2018.02.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 02/21/2018] [Accepted: 02/22/2018] [Indexed: 11/21/2022]
Abstract
The mature HIV-1 reverse transcriptase is a heterodimer that comprises 66 kDa (p66) and 51 kDa (p51) subunits. The latter is formed by HIV-1 protease-catalyzed removal of a C-terminal ribonuclease H domain from a p66 subunit. This proteolytic processing is a critical step in virus maturation and essential for viral infectivity. Here, we report that tRNA significantly enhances in vitro processing even at a substoichiometric tRNA:p66/p66 ratio. Other double-stranded RNAs have considerably less pronounced effect. Our data support a model where interaction of p66/p66 with tRNA introduces conformational asymmetry in the two subunits, permitting specific proteolytic processing of one p66 to provide the mature RT p66/p51 heterodimer.
Collapse
Affiliation(s)
- Tatiana V Ilina
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, United States; Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, United States
| | - Ryan L Slack
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, United States
| | - John H Elder
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, United States
| | - Stefan G Sarafianos
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, United States
| | - Michael A Parniak
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, United States
| | - Rieko Ishima
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, United States.
| |
Collapse
|
12
|
Schmidt T, Tian L, Clore GM. Probing Conformational States of the Finger and Thumb Subdomains of HIV-1 Reverse Transcriptase Using Double Electron-Electron Resonance Electron Paramagnetic Resonance Spectroscopy. Biochemistry 2018; 57:489-493. [PMID: 29251492 PMCID: PMC6034511 DOI: 10.1021/acs.biochem.7b01035] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The configurational space sampled by the finger and thumb subdomains of the p66 subunit of HIV-1 reverse transcriptase was investigated by Q-band double electron-electron resonance pulsed electron paramagnetic resonance spectroscopy, a method for determining long-range distances between pairs of nitroxide spin-labels introduced via surface-engineered cysteine residues. Four constructs were examined, each containing two spin-labels in the p66 subunit, one in the finger subdomain and the other in the thumb subdomain. In the unliganded state, open and closed configurations for the finger and thumb subdomains are observed with the distribution between these states modulated by the spin-labels and associated mutations, in contrast to crystallographic data in which the unliganded state crystallizes in the closed conformation. Upon addition of double-stranded DNA, all constructs adopt open conformations consistent with previous crystallographic data in which the position of the thumb and finger subdomains is determined by contacts with the bound oligonucleotide duplex (DNA or DNA/RNA). Likewise, binary complexes with five different non-nucleoside reverse transcriptase inhibitors are in open or partially open conformations, indicating that binding of the inhibitor to the palm subdomain indirectly restricts the conformational space sampled by the finger and thumb subdomains.
Collapse
Affiliation(s)
- Thomas Schmidt
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0520, United States
| | - Lan Tian
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0520, United States
| | - G. Marius Clore
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0520, United States
| |
Collapse
|
13
|
Lange MJ, Nguyen PDM, Callaway MK, Johnson MC, Burke DH. RNA-protein interactions govern antiviral specificity and encapsidation of broad spectrum anti-HIV reverse transcriptase aptamers. Nucleic Acids Res 2017; 45:6087-6097. [PMID: 28334941 PMCID: PMC5449596 DOI: 10.1093/nar/gkx155] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Accepted: 03/02/2017] [Indexed: 11/29/2022] Open
Abstract
RNA aptamers that bind HIV-1 reverse transcriptase (RT) inhibit HIV-1 replication, but little is known about potential aptamer-specific viral resistance. During replication, RT interacts with diverse nucleic acids. Thus, the genetic threshold for eliciting resistance may be high for aptamers that make numerous contacts with RT. To evaluate the impact of RT–aptamer binding specificity on replication, we engineered proviral plasmids encoding diverse RTs within the backbone of HIV-1 strain NL4-3. Viruses inhibited by pseudoknot aptamers were rendered insensitive by a naturally occurring R277K variant, providing the first demonstration of aptamer-specific resistance in cell culture. Naturally occurring, pseudoknot-insensitive viruses were rendered sensitive by the inverse K277R mutation, establishing RT as the genetic locus for aptamer-mediated HIV-1 inhibition. Non-pseudoknot RNA aptamers exhibited broad-spectrum inhibition. Inhibition was observed only when virus was produced in aptamer-expressing cells, indicating that encapsidation is required. HIV-1 suppression magnitude correlated with the number of encapsidated aptamer transcripts per virion, with saturation occurring around 1:1 stoichiometry with packaged RT. Encapsidation specificity suggests that aptamers may encounter dimerized GagPol in the cytosol during viral assembly. This study provides new insights into HIV-1's capacity to escape aptamer-mediated inhibition, the potential utility of broad-spectrum aptamers to overcome resistance, and molecular interactions that occur during viral assembly.
Collapse
Affiliation(s)
- Margaret J Lange
- Department of Molecular Microbiology & Immunology, University of Missouri, Columbia, MO 65211, USA.,Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Phuong D M Nguyen
- Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA.,Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA
| | - Mackenzie K Callaway
- Department of Biological Engineering, University of Missouri, Columbia, MO 65211, USA
| | - Marc C Johnson
- Department of Molecular Microbiology & Immunology, University of Missouri, Columbia, MO 65211, USA.,Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Donald H Burke
- Department of Molecular Microbiology & Immunology, University of Missouri, Columbia, MO 65211, USA.,Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA.,Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA.,Department of Biological Engineering, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
14
|
Sharaf NG, Xi Z, Ishima R, Gronenborn AM. The HIV-1 p66 homodimeric RT exhibits different conformations in the binding-competent and -incompetent NNRTI site. Proteins 2017; 85:2191-2197. [PMID: 28905420 DOI: 10.1002/prot.25383] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 08/02/2017] [Accepted: 09/10/2017] [Indexed: 01/10/2023]
Abstract
Non-nucleoside inhibitors of human immunodeficiency virus type 1 reverse transcriptase (RT), NNRTIs, which bind to the p66/p51 heterodimeric RT, also interact with the p66/p66 homodimer, whose structure is unknown. 19 F nuclear magnetic resonance of a single 4-trifluoromethylphenylalanine (tfmF) residue, incorporated into the NNRTI binding pocket of the p66/p66 homodimer at position 181, was used to investigate NNRTI binding. In the NNRTI-bound homodimer complex, two different 19 F signals are observed, with the resonance frequencies matching those of the NNRTI-bound p66/p51 heterodimer spectra, in which the individual p66-subunit or p51-subunit were labeled with tfmF at positions 181. These data suggest that the NNRTI-bound p66/p66 homodimer conformation, particularly around residue 181, is very similar to that in the p66/p51 heterodimer, explaining why NNRTI binding to p66/p66 enhances dimer formation.
Collapse
Affiliation(s)
- Naima G Sharaf
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, 15260
| | - Zhaoyong Xi
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, 15260
| | - Rieko Ishima
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, 15260
| | - Angela M Gronenborn
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, 15260
| |
Collapse
|
15
|
Identification of drivers for the metamorphic transition of HIV-1 reverse transcriptase. Biochem J 2017; 474:3321-3338. [PMID: 28811321 DOI: 10.1042/bcj20170480] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 08/09/2017] [Accepted: 08/15/2017] [Indexed: 11/17/2022]
Abstract
Recent structural characterizations of the p51 and p66 monomers have established an important starting point for understanding the maturation pathway of the human immunodeficiency virus (HIV)-1 reverse transcriptase p66/p51 heterodimer. This process requires a metamorphic transition of the polymerase domain leading to formation of a p66/p66' homodimer that exists as a structural heterodimer. To better understand the drivers for this metamorphic transition, we have performed NMR studies of 15N-labeled RT216 - a construct that includes the fingers and most of the palm domains. These studies are consistent with the conclusion that the p66 monomer exists as a spring-loaded complex. Initial dissociation of the fingers/palm : connection complex allows the fingers/palm to adopt an alternate, more stable structure, reducing the rate of reassociation and facilitating subsequent maturation steps. One of the drivers for an initial extension of the fingers/palm domains is identified as a straightening of helix E relative to its conformation in the monomer by eliminating a bend of ∼50° near residue Phe160. NMR and circular dichroism data also are consistent with the conclusion that a hydrophobic surface of palm domain that becomes exposed after the initial dissociation, as well as the intrinsic conformational preferences of the palm domain C-terminal segment, facilitates the formation of the β-sheet structure that is unique to the active polymerase subunit. Spectral comparisons based on 15N-labeled constructs are all consistent with previous structural conclusions based on studies of 13C-methyl-labeled constructs.
Collapse
|
16
|
Pandey AK, Dixit U, Kholodovych V, Comollo TW, Pandey VN. The β1'-β2' Motif of the RNase H Domain of Human Immunodeficiency Virus Type 1 Reverse Transcriptase Is Responsible for Conferring Open Conformation to the p66 Subunit by Displacing the Connection Domain from the Polymerase Cleft. Biochemistry 2017; 56:3434-3442. [PMID: 28627879 DOI: 10.1021/acs.biochem.7b00005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The heterodimeric human immunodeficiency virus type 1 reverse transcriptase is composed of p66 and p51 subunits. While in the p51 subunit, the connection domain is tucked in the polymerase cleft; it is effectively displaced from the cleft of the catalytically active p66 subunit. How is the connection domain relocated from the polymerase cleft of p66? Does the RNase H domain have any role in this process? To answer this question, we extended the C-terminal region of p51 by stepwise addition of N-terminal motifs of RNase H domain to generate p54, p57, p60, and p63 derivatives. We found all of the C-terminal extended derivatives of p51 assume open conformation, bind to the template-primer, and catalyze the polymerase reaction. Glycerol gradient ultracentrifugation analysis showed that only p54 sedimented as a monomer, while other derivatives were in a homodimeric conformation. We proposed a model to explain the monomeric conformation of catalytically active p54 derivative carrying additional 21-residues long β1'-β2' motif from the RNase H domain. Our results indicate that the β1'-β2' motif of the RNase H domain may be responsible for displacing the connection domain from the polymerase cleft of putative monomeric p66. The unstable elongated p66 molecule may then readily dimerize with p51 to assume a stable dimeric conformation.
Collapse
Affiliation(s)
- Ashutosh K Pandey
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers University-Newark , Newark, New Jersey 07103, United States
| | - Updesh Dixit
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers University-Newark , Newark, New Jersey 07103, United States
| | - Vlad Kholodovych
- Office of Advanced Research Computing, Rutgers University , Piscataway, New Jersey 08854, United States
- Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers University , Piscataway, New Jersey 08854, United States
| | - Thomas W Comollo
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers University-Newark , Newark, New Jersey 07103, United States
| | - Virendra N Pandey
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers University-Newark , Newark, New Jersey 07103, United States
| |
Collapse
|
17
|
Menéndez-Arias L, Sebastián-Martín A, Álvarez M. Viral reverse transcriptases. Virus Res 2017; 234:153-176. [PMID: 28043823 DOI: 10.1016/j.virusres.2016.12.019] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 12/19/2016] [Accepted: 12/24/2016] [Indexed: 12/11/2022]
Abstract
Reverse transcriptases (RTs) play a major role in the replication of Retroviridae, Metaviridae, Pseudoviridae, Hepadnaviridae and Caulimoviridae. RTs are enzymes that are able to synthesize DNA using RNA or DNA as templates (DNA polymerase activity), and degrade RNA when forming RNA/DNA hybrids (ribonuclease H activity). In retroviruses and LTR retrotransposons (Metaviridae and Pseudoviridae), the coordinated action of both enzymatic activities converts single-stranded RNA into a double-stranded DNA that is flanked by identical sequences known as long terminal repeats (LTRs). RTs of retroviruses and LTR retrotransposons are active as monomers (e.g. murine leukemia virus RT), homodimers (e.g. Ty3 RT) or heterodimers (e.g. human immunodeficiency virus type 1 (HIV-1) RT). RTs lack proofreading activity and display high intrinsic error rates. Besides, high recombination rates observed in retroviruses are promoted by poor processivity that causes template switching, a hallmark of reverse transcription. HIV-1 RT inhibitors acting on its polymerase activity constitute the backbone of current antiretroviral therapies, although novel drugs, including ribonuclease H inhibitors, are still necessary to fight HIV infections. In Hepadnaviridae and Caulimoviridae, reverse transcription leads to the formation of nicked circular DNAs that will be converted into episomal DNA in the host cell nucleus. Structural and biochemical information on their polymerases is limited, although several drugs inhibiting HIV-1 RT are known to be effective against the human hepatitis B virus polymerase. In this review, we summarize current knowledge on reverse transcription in the five virus families and discuss available biochemical and structural information on RTs, including their biosynthesis, enzymatic activities, and potential inhibition.
Collapse
Affiliation(s)
- Luis Menéndez-Arias
- Centro de Biología Molecular "Severo Ochoa", Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, c/Nicolás Cabrera, 1, Campus de Cantoblanco, 28049 Madrid, Spain.
| | - Alba Sebastián-Martín
- Centro de Biología Molecular "Severo Ochoa", Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, c/Nicolás Cabrera, 1, Campus de Cantoblanco, 28049 Madrid, Spain
| | - Mar Álvarez
- Centro de Biología Molecular "Severo Ochoa", Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, c/Nicolás Cabrera, 1, Campus de Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
18
|
Karki I, Christen MT, Spiriti J, Slack RL, Oda M, Kanaori K, Zuckerman DM, Ishima R. Entire-Dataset Analysis of NMR Fast-Exchange Titration Spectra: A Mg 2+ Titration Analysis for HIV-1 Ribonuclease H Domain. J Phys Chem B 2016; 120:12420-12431. [PMID: 27973819 DOI: 10.1021/acs.jpcb.6b08323] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
This article communicates our study to elucidate the molecular determinants of weak Mg2+ interaction with the ribonuclease H (RNH) domain of HIV-1 reverse transcriptase in solution. As the interaction is weak (a ligand-dissociation constant >1 mM), nonspecific Mg2+ interaction with the protein or interaction of the protein with other solutes that are present in the buffer solution can confound the observed Mg2+-titration data. To investigate these indirect effects, we monitored changes in the chemical shifts of backbone amides of RNH by recording NMR 1H-15N heteronuclear single-quantum coherence spectra upon titration of Mg2+ into an RNH solution. We performed the titration under three different conditions: (1) in the absence of NaCl, (2) in the presence of 50 mM NaCl, and (3) at a constant 160 mM Cl- concentration. Careful analysis of these three sets of titration data, along with molecular dynamics simulation data of RNH with Na+ and Cl- ions, demonstrates two characteristic phenomena distinct from the specific Mg2+ interaction with the active site: (1) weak interaction of Mg2+, as a salt, with the substrate-handle region of the protein and (2) overall apparent lower Mg2+ affinity in the absence of NaCl compared to that in the presence of 50 mM NaCl. A possible explanation may be that the titrated MgCl2 is consumed as a salt and interacts with RNH in the absence of NaCl. In addition, our data suggest that Na+ increases the kinetic rate of the specific Mg2+ interaction at the active site of RNH. Taken together, our study provides biophysical insight into the mechanism of weak metal interaction on a protein.
Collapse
Affiliation(s)
- Ichhuk Karki
- Department of Structural Biology and ‡Department of Computational and Systems Biology, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania 15260, United States.,Graduate School of Life and Environmental Sciences, Kyoto Prefectural University and ⊥Department of Biomolecular Engineering, Kyoto Institute of Technology , Kyoto 606, Japan
| | - Martin T Christen
- Department of Structural Biology and ‡Department of Computational and Systems Biology, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania 15260, United States.,Graduate School of Life and Environmental Sciences, Kyoto Prefectural University and ⊥Department of Biomolecular Engineering, Kyoto Institute of Technology , Kyoto 606, Japan
| | - Justin Spiriti
- Department of Structural Biology and ‡Department of Computational and Systems Biology, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania 15260, United States.,Graduate School of Life and Environmental Sciences, Kyoto Prefectural University and ⊥Department of Biomolecular Engineering, Kyoto Institute of Technology , Kyoto 606, Japan
| | - Ryan L Slack
- Department of Structural Biology and ‡Department of Computational and Systems Biology, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania 15260, United States.,Graduate School of Life and Environmental Sciences, Kyoto Prefectural University and ⊥Department of Biomolecular Engineering, Kyoto Institute of Technology , Kyoto 606, Japan
| | - Masayuki Oda
- Department of Structural Biology and ‡Department of Computational and Systems Biology, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania 15260, United States.,Graduate School of Life and Environmental Sciences, Kyoto Prefectural University and ⊥Department of Biomolecular Engineering, Kyoto Institute of Technology , Kyoto 606, Japan
| | - Kenji Kanaori
- Department of Structural Biology and ‡Department of Computational and Systems Biology, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania 15260, United States.,Graduate School of Life and Environmental Sciences, Kyoto Prefectural University and ⊥Department of Biomolecular Engineering, Kyoto Institute of Technology , Kyoto 606, Japan
| | - Daniel M Zuckerman
- Department of Structural Biology and ‡Department of Computational and Systems Biology, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania 15260, United States.,Graduate School of Life and Environmental Sciences, Kyoto Prefectural University and ⊥Department of Biomolecular Engineering, Kyoto Institute of Technology , Kyoto 606, Japan
| | - Rieko Ishima
- Department of Structural Biology and ‡Department of Computational and Systems Biology, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania 15260, United States.,Graduate School of Life and Environmental Sciences, Kyoto Prefectural University and ⊥Department of Biomolecular Engineering, Kyoto Institute of Technology , Kyoto 606, Japan
| |
Collapse
|
19
|
Sharaf NG, Brereton AE, Byeon IJL, Karplus PA, Gronenborn AM. NMR structure of the HIV-1 reverse transcriptase thumb subdomain. JOURNAL OF BIOMOLECULAR NMR 2016; 66:273-280. [PMID: 27858311 PMCID: PMC5218889 DOI: 10.1007/s10858-016-0077-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 11/09/2016] [Indexed: 06/06/2023]
Abstract
The solution NMR structure of the isolated thumb subdomain of HIV-1 reverse transcriptase (RT) has been determined. A detailed comparison of the current structure with dozens of the highest resolution crystal structures of this domain in the context of the full-length enzyme reveals that the overall structures are very similar, with only two regions exhibiting local conformational differences. The C-terminal capping pattern of the αH helix is subtly different, and the loop connecting the αI and αJ helices in the p51 chain of the full-length p51/p66 heterodimeric RT differs from our NMR structure due to unique packing interactions in mature RT. Overall, our data show that the thumb subdomain folds independently and essentially the same in isolation as in its natural structural context.
Collapse
Affiliation(s)
- Naima G Sharaf
- Department of Structural Biology and Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh, School of Medicine, Biomedical Science Tower 3, 3501 Fifth Avenue, Pittsburgh, PA, 15260, USA
| | - Andrew E Brereton
- Department of Biochemistry and Biophysics, 2011 Ag & Life Sciences Bldg, Oregon State University, Corvallis, OR, 97331, USA
| | - In-Ja L Byeon
- Department of Structural Biology and Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh, School of Medicine, Biomedical Science Tower 3, 3501 Fifth Avenue, Pittsburgh, PA, 15260, USA
| | - P Andrew Karplus
- Department of Biochemistry and Biophysics, 2011 Ag & Life Sciences Bldg, Oregon State University, Corvallis, OR, 97331, USA
| | - Angela M Gronenborn
- Department of Structural Biology and Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh, School of Medicine, Biomedical Science Tower 3, 3501 Fifth Avenue, Pittsburgh, PA, 15260, USA.
| |
Collapse
|
20
|
Schmidt T, Ghirlando R, Baber J, Clore GM. Quantitative Resolution of Monomer-Dimer Populations by Inversion Modulated DEER EPR Spectroscopy. Chemphyschem 2016; 17:2987-2991. [PMID: 27442455 PMCID: PMC5590656 DOI: 10.1002/cphc.201600726] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Indexed: 12/13/2022]
Abstract
A simple method, based on inversion modulated double electron-electron resonance electron paramagnetic resonance (DEER EPR) spectroscopy, is presented for determining populations of monomer and dimer in proteins (as well as any other biological macromolecules). The method is based on analysis of modulation depth versus electron double resonance (ELDOR) pulse flip angle. High accuracy is achieved by complete deuteration, extensive sampling of a large number of ELDOR pulse flip angle values, and combined analysis of differently labeled spin samples. We demonstrate the method using two different proteins: an obligate monomer exemplified by the small immunoglobulin binding B domain of protein A, and the p66 subunit of HIV-1 reverse transcriptase which exists as an equilibrium mixture of monomer and dimer species whose relative populations are affected by glycerol content. This information is crucial for quantitative analysis of distance distributions involving proteins that may exist as mixtures of monomer, dimer and high order multimers under the conditions of the DEER EPR experiment.
Collapse
Affiliation(s)
- Thomas Schmidt
- Laboratory of Chemical Physics, National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892-0520, USA
| | - Rodolfo Ghirlando
- Laboratory of Chemical Physics, National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892-0520, USA
| | - James Baber
- Laboratory of Chemical Physics, National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892-0520, USA
| | - G Marius Clore
- Laboratory of Chemical Physics, National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892-0520, USA.
| |
Collapse
|
21
|
Structural Maturation of HIV-1 Reverse Transcriptase-A Metamorphic Solution to Genomic Instability. Viruses 2016; 8:v8100260. [PMID: 27690082 PMCID: PMC5086598 DOI: 10.3390/v8100260] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 09/12/2016] [Indexed: 12/13/2022] Open
Abstract
Human immunodeficiency virus 1 (HIV-1) reverse transcriptase (RT)—a critical enzyme of the viral life cycle—undergoes a complex maturation process, required so that a pair of p66 precursor proteins can develop conformationally along different pathways, one evolving to form active polymerase and ribonuclease H (RH) domains, while the second forms a non-functional polymerase and a proteolyzed RH domain. These parallel maturation pathways rely on the structural ambiguity of a metamorphic polymerase domain, for which the sequence–structure relationship is not unique. Recent nuclear magnetic resonance (NMR) studies utilizing selective labeling techniques, and structural characterization of the p66 monomer precursor have provided important insights into the details of this maturation pathway, revealing many aspects of the three major steps involved: (1) domain rearrangement; (2) dimerization; and (3) subunit-selective RH domain proteolysis. This review summarizes the major structural changes that occur during the maturation process. We also highlight how mutations, often viewed within the context of the mature RT heterodimer, can exert a major influence on maturation and dimerization. It is further suggested that several steps in the RT maturation pathway may provide attractive targets for drug development.
Collapse
|
22
|
Sharaf NG, Ishima R, Gronenborn AM. Conformational Plasticity of the NNRTI-Binding Pocket in HIV-1 Reverse Transcriptase: A Fluorine Nuclear Magnetic Resonance Study. Biochemistry 2016; 55:3864-73. [PMID: 27163463 DOI: 10.1021/acs.biochem.6b00113] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
HIV-1 reverse transcriptase (RT) is a major drug target in the treatment of HIV-1 infection. RT inhibitors currently in use include non-nucleoside, allosteric RT inhibitors (NNRTIs), which bind to a hydrophobic pocket, distinct from the enzyme's active site. We investigated RT-NNRTI interactions by solution (19)F nuclear magnetic resonance (NMR), using singly (19)F-labeled RT proteins. Comparison of (19)F chemical shifts of fluorinated RT and drug-resistant variants revealed that the fluorine resonance is a sensitive probe for identifying mutation-induced changes in the enzyme. Our data show that in the unliganded enzyme, the NNRTI-binding pocket is highly plastic and not locked into a single conformation. Upon inhibitor binding, the binding pocket becomes rigidified. In the inhibitor-bound state, the (19)F signal of RT is similar to that of drug-resistant mutant enzymes, distinct from what is observed for the free state. Our results demonstrate the power of (19)F NMR spectroscopy to characterize conformational properties using selectively (19)F-labeled protein.
Collapse
Affiliation(s)
- Naima G Sharaf
- Department of Structural Biology and Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania 15260, United States
| | - Rieko Ishima
- Department of Structural Biology and Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania 15260, United States
| | - Angela M Gronenborn
- Department of Structural Biology and Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
23
|
Zheng X, Pedersen LC, Gabel SA, Mueller GA, DeRose EF, London RE. Unfolding the HIV-1 reverse transcriptase RNase H domain--how to lose a molecular tug-of-war. Nucleic Acids Res 2016; 44:1776-88. [PMID: 26773054 PMCID: PMC4770237 DOI: 10.1093/nar/gkv1538] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 12/24/2015] [Indexed: 11/14/2022] Open
Abstract
Formation of the mature HIV-1 reverse transcriptase (RT) p66/p51 heterodimer requires subunit-specific processing of the p66/p66' homodimer precursor. Since the ribonuclease H (RH) domain contains an occult cleavage site located near its center, cleavage must occur either prior to folding or subsequent to unfolding. Recent NMR studies have identified a slow, subunit-specific RH domain unfolding process proposed to result from a residue tug-of-war between the polymerase and RH domains on the functionally inactive, p66' subunit. Here, we describe a structural comparison of the isolated RH domain with a domain swapped RH dimer that reveals several intrinsically destabilizing characteristics of the isolated domain that facilitate excursions of Tyr427 from its binding pocket and separation of helices B and D. These studies provide independent support for the subunit-selective RH domain unfolding pathway in which instability of the Tyr427 binding pocket facilitates its release followed by domain transfer, acting as a trigger for further RH domain destabilization and subsequent unfolding. As further support for this pathway, NMR studies demonstrate that addition of an RH active site-directed isoquinolone ligand retards the subunit-selective RH' domain unfolding behavior of the p66/p66' homodimer. This study demonstrates the feasibility of directly targeting RT maturation with therapeutics.
Collapse
Affiliation(s)
- Xunhai Zheng
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental health Sciences, NIH, Research Triangle Park, NC 27709, USA
| | - Lars C Pedersen
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental health Sciences, NIH, Research Triangle Park, NC 27709, USA
| | - Scott A Gabel
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental health Sciences, NIH, Research Triangle Park, NC 27709, USA
| | - Geoffrey A Mueller
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental health Sciences, NIH, Research Triangle Park, NC 27709, USA
| | - Eugene F DeRose
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental health Sciences, NIH, Research Triangle Park, NC 27709, USA
| | - Robert E London
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental health Sciences, NIH, Research Triangle Park, NC 27709, USA
| |
Collapse
|
24
|
Slack RL, Spiriti J, Ahn J, Parniak MA, Zuckerman DM, Ishima R. Structural integrity of the ribonuclease H domain in HIV-1 reverse transcriptase. Proteins 2015; 83:1526-38. [PMID: 26061827 DOI: 10.1002/prot.24843] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 05/14/2015] [Accepted: 06/03/2015] [Indexed: 02/06/2023]
Abstract
The mature form of reverse transcriptase (RT) is a heterodimer comprising the intact 66-kDa subunit (p66) and a smaller 51-kDa subunit (p51) that is generated by removal of most of the RNase H (RNH) domain from a p66 subunit by proteolytic cleavage between residues 440 and 441. Viral infectivity is eliminated by mutations such as F440A and E438N in the proteolytic cleavage sequence, while normal processing and virus infectivity are restored by a compensatory mutation, T477A, that is located more than 10 Å away from the processing site. The molecular basis for this compensatory effect has remained unclear. We therefore investigated structural characteristics of RNH mutants using computational and experimental approaches. Our Nuclear Magnetic Resonance and Differential Scanning Fluorimetry results show that both F440A and E438N mutations disrupt RNH folding. Addition of the T477A mutation restores correct folding of the RNH domain despite the presence of the F440A or E438N mutations. Molecular dynamics simulations suggest that the T477A mutation affects the processing site by altering relative orientations of secondary structure elements. Predictions of sequence tolerance suggest that phenylalanine and tyrosine are structurally preferred at residues 440 and 441, respectively, which are the P1 and P1' substrate residues known to require bulky side chains for substrate specificity. Interestingly, our study demonstrates that the processing site residues, which are critical for protease substrate specificity and must be exposed to the solvent for efficient processing, also function to maintain proper RNH folding in the p66/p51 heterodimer.
Collapse
Affiliation(s)
- Ryan L Slack
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, 15260
| | - Justin Spiriti
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, 15260
| | - Jinwoo Ahn
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, 15260
| | - Michael A Parniak
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, 15260
| | - Daniel M Zuckerman
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, 15260
| | - Rieko Ishima
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, 15260
| |
Collapse
|
25
|
Zheng X, Perera L, Mueller GA, DeRose EF, London RE. Asymmetric conformational maturation of HIV-1 reverse transcriptase. eLife 2015; 4. [PMID: 26037594 PMCID: PMC4452869 DOI: 10.7554/elife.06359] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 04/29/2015] [Indexed: 12/13/2022] Open
Abstract
HIV-1 reverse transcriptase utilizes a metamorphic polymerase domain that is able to adopt two alternate structures that fulfill catalytic and structural roles, thereby minimizing its coding requirements. This ambiguity introduces folding challenges that are met by a complex maturation process. We have investigated this conformational maturation using NMR studies of methyl-labeled RT for the slower processes in combination with molecular dynamics simulations for rapid processes. Starting from an inactive conformation, the p66 precursor undergoes a unimolecular isomerization to a structure similar to its active form, exposing a large hydrophobic surface that facilitates initial homodimer formation. The resulting p66/p66' homodimer exists as a conformational heterodimer, after which a series of conformational adjustments on different time scales can be observed. Formation of the inter-subunit RH:thumb' interface occurs at an early stage, while maturation of the connection' and unfolding of the RH' domains are linked and occur on a much slower time scale. DOI:http://dx.doi.org/10.7554/eLife.06359.001 Proteins are made up of long chains of building blocks called amino acids. These chains can twist and fold in numerous ways to adopt the specific three-dimensional shapes that enable each protein to perform its role. In recent years, researchers have identified several proteins that can adopt different shapes from the same sequence of amino acids. These are known as metamorphic proteins and each shape may carry out a different role. HIV is a virus that causes AIDS, an illness that leads to progressive failure of a person’s immune system. The virus uses an enzyme called “reverse transcriptase” to copy its genetic material. The enzyme consists of two metamorphic protein subunits that are both derived from the same precursor protein called “p66”. One p66 subunit adopts an extended shape that enables it to carry out enzymatic activities. The second is processed into a smaller p51 subunit that is inactive but provides structural integrity to the enzyme. Zheng et al. have now used nuclear magnetic resonance and other state-of-the-art techniques to analyze the different stages of the conversion of the p66 protein into the mature reverse transcriptase enzyme. The analysis revealed the shape of a single p66 protein molecule, and showed that occasional changes in shape allow one p66 molecule to bind to a second. This means that an immature version of reverse transcriptase contains two p66 subunits with different shapes. The shapes of each of the two subunits then undergo further changes with time. In one of the subunits, competing interactions lead to a molecular tug-of-war that prevents part of the protein from adopting its folded shape. This part subsequently unravels and is later destroyed by another HIV enzyme (called HIV protease) to form the smaller p51 subunit. Since HIV needs reverse transcriptase in order to multiply and cause infection, drugs that prevent this enzyme from working are used to treat patients with AIDS. Current drugs target the mature form of the enzyme, but are of limited use because mutations can lead to drug-resistant forms of the proteins. The findings of Zheng et al. now fill a major gap in our understanding of the intermediate steps that lead to the formation of mature reverse transcriptase. These findings are expected to guide future work aimed at developing new drugs that interfere with maturation instead of blocking activity of the mature enzyme. DOI:http://dx.doi.org/10.7554/eLife.06359.002
Collapse
Affiliation(s)
- Xunhai Zheng
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, United States
| | - Lalith Perera
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, United States
| | - Geoffrey A Mueller
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, United States
| | - Eugene F DeRose
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, United States
| | - Robert E London
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, United States
| |
Collapse
|