1
|
Hayakawa T, Yamaoka S, Asakura M, Hirano M, Ide T. Mutagenesis Targeting the S 153 Residue Within the Transmembrane β-Hairpin of Mosquito-Larvicidal Mpp46Ab Affects Its Toxicity and the Synergistic Toxicity with Cry4Aa. BIOLOGY 2025; 14:489. [PMID: 40427678 PMCID: PMC12108766 DOI: 10.3390/biology14050489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2025] [Revised: 04/16/2025] [Accepted: 04/28/2025] [Indexed: 05/29/2025]
Abstract
We constructed a library of Mpp46Ab mutants, in which S153 within the transmembrane β-hairpin was randomly replaced by other amino acids. Mutagenesis and subsequent primary screening yielded 10 different Mpp46Ab mutants in addition to the wild type. Remarkably, S153 was replaced with a more hydrophobic amino acid in most of the mutants, and the S153I mutant in particular exhibited significantly increased toxicity. Electrophysiologic analysis using artificial lipid bilayers revealed that the single-channel conductance and PK/PCl permeability ratio were significantly increased for S153I pores. This suggests that the formation of highly ion-permeable and highly cation-selective toxin pores increases the influx of cations and water into cells, thereby facilitating osmotic shock. In addition, the S153F, S153L, and S153I mutants exhibited significantly reduced synergistic toxicity with Cry4Aa. Electrophysiologic analysis showed that the S153F, S153L, and S153I mutants form toxin pores with a significantly reduced PK/PNa permeability ratio and a significantly increased PK/PCa permeability ratio compared to wild-type pores. Thus, our results suggest that pore formation is central to the insecticidal activity of Mpp46Ab and that the ion permeability of toxin pores is a potential indicator correlated with both toxicity and synergistic toxicity with other toxins.
Collapse
Affiliation(s)
- Tohru Hayakawa
- Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | | | | | | | | |
Collapse
|
2
|
Mandodan S, Gangmei K, Vijayakumar A, Kunnikuruvan A, Lukose J, Padmanaban H, Bora B, Ashokkumar M, Irudayaraj G, Subbiah P. Molecular identification and GC-MS analysis of a newly isolated novel bacterium (Lysinibacillus sp. VCRC B655) for mosquito control. Mol Biol Rep 2024; 51:800. [PMID: 39001994 DOI: 10.1007/s11033-024-09734-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 06/17/2024] [Indexed: 07/15/2024]
Abstract
BACKGROUND Mosquitoes are widespread globally and have contributed to transmitting pathogens to humans and the burden of vector-borne diseases. They are effectively controlled at their larval stages by biocontrol agents. Unravelling natural sources for microbial agents can lead us to novel potential candidates for managing mosquito-borne diseases. In the present study, an attempt was made to isolate a novel bacterium from the field-collected agricultural soil for larvicidal activity and promising bacterial metabolites for human healthcare. METHODS AND RESULTS Field-collected soil samples from the Union territory of Puducherry, India, have been used as the source of bacteria. Isolate VCRC B655 belonging to the genus Lysinibacillus was identified by 16S rRNA gene sequencing and exhibited promising larvicidal activity against different mosquito species, including Culex (Cx.) quinquefasciatus, Anopheles (An.) stephensi, and Aedes (Ae.) aegypti. The lethal concentration (LC) of Lysinibacillus sp. VCRCB655 was observed to be high for Cx. quiquefasciatus: LC50 at 0.047 mg/l, LC90 at 0.086 mg/l, followed by An. stephensi and Ae. aegypti (LC50: 0.6952 mg/l and 0.795 mg/l) respectively. Additionally, metabolic profiling of the culture supernatant was carried out through Gas chromatography and Mass spectrophotometry (GC/MS) and identified 15 major secondary metabolites of different metabolic classes. Diketopiperazine (DKPs), notably pyro lo [1, 2-a] pyrazine1, 4-dione, are the abundant compounds reported for antioxidant activity, and an insecticide compound benzeneacetic acid was also identified. CONCLUSIONS A new bacterial isolate, Lysinibacillus sp. VCRC B655 has been identified with significant larvicidal activity against mosquito larvae with no observed in non-target organisms. GC-MS analysis revealed diverse bioactive compounds with substantial biological applications. In conclusion, Lysinibacillus sp. VCRC B655 showed promise as an alternative biocontrol agent for mosquito vector control, with additional biological applications further enhancing its significance.
Collapse
Affiliation(s)
- Sahadiya Mandodan
- Unit of Microbiology and Immunology (UMI), Department of Health Research (Ministry of Health & Family Welfare, Govt. of India), ICMR-Vector Control Research Centre (VCRC), Medical Complex Indira Nagar, Puducherry, 605006, India
| | - Kakhuangailiu Gangmei
- Unit of Microbiology and Immunology (UMI), Department of Health Research (Ministry of Health & Family Welfare, Govt. of India), ICMR-Vector Control Research Centre (VCRC), Medical Complex Indira Nagar, Puducherry, 605006, India
| | - Abhisubesh Vijayakumar
- Unit of Microbiology and Immunology (UMI), Department of Health Research (Ministry of Health & Family Welfare, Govt. of India), ICMR-Vector Control Research Centre (VCRC), Medical Complex Indira Nagar, Puducherry, 605006, India
| | - Aneha Kunnikuruvan
- Unit of Microbiology and Immunology (UMI), Department of Health Research (Ministry of Health & Family Welfare, Govt. of India), ICMR-Vector Control Research Centre (VCRC), Medical Complex Indira Nagar, Puducherry, 605006, India
| | - Jibi Lukose
- Unit of Microbiology and Immunology (UMI), Department of Health Research (Ministry of Health & Family Welfare, Govt. of India), ICMR-Vector Control Research Centre (VCRC), Medical Complex Indira Nagar, Puducherry, 605006, India
| | - Hemaladkshmi Padmanaban
- Unit of Microbiology and Immunology (UMI), Department of Health Research (Ministry of Health & Family Welfare, Govt. of India), ICMR-Vector Control Research Centre (VCRC), Medical Complex Indira Nagar, Puducherry, 605006, India
| | - Bhagyashree Bora
- Unit of Microbiology and Immunology (UMI), Department of Health Research (Ministry of Health & Family Welfare, Govt. of India), ICMR-Vector Control Research Centre (VCRC), Medical Complex Indira Nagar, Puducherry, 605006, India
| | - Mathivanan Ashokkumar
- Unit of Microbiology and Immunology (UMI), Department of Health Research (Ministry of Health & Family Welfare, Govt. of India), ICMR-Vector Control Research Centre (VCRC), Medical Complex Indira Nagar, Puducherry, 605006, India
| | - Geetha Irudayaraj
- Unit of Microbiology and Immunology (UMI), Department of Health Research (Ministry of Health & Family Welfare, Govt. of India), ICMR-Vector Control Research Centre (VCRC), Medical Complex Indira Nagar, Puducherry, 605006, India
| | - Poopathi Subbiah
- Unit of Microbiology and Immunology (UMI), Department of Health Research (Ministry of Health & Family Welfare, Govt. of India), ICMR-Vector Control Research Centre (VCRC), Medical Complex Indira Nagar, Puducherry, 605006, India.
| |
Collapse
|
3
|
Williamson LJ, Galchenkova M, Best HL, Bean RJ, Munke A, Awel S, Pena G, Knoska J, Schubert R, Dörner K, Park HW, Bideshi DK, Henkel A, Kremling V, Klopprogge B, Lloyd-Evans E, Young MT, Valerio J, Kloos M, Sikorski M, Mills G, Bielecki J, Kirkwood H, Kim C, de Wijn R, Lorenzen K, Xavier PL, Rahmani Mashhour A, Gelisio L, Yefanov O, Mancuso AP, Federici BA, Chapman HN, Crickmore N, Rizkallah PJ, Berry C, Oberthür D. Structure of the Lysinibacillus sphaericus Tpp49Aa1 pesticidal protein elucidated from natural crystals using MHz-SFX. Proc Natl Acad Sci U S A 2023; 120:e2203241120. [PMID: 38015839 PMCID: PMC10710082 DOI: 10.1073/pnas.2203241120] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 10/18/2023] [Indexed: 11/30/2023] Open
Abstract
The Lysinibacillus sphaericus proteins Tpp49Aa1 and Cry48Aa1 can together act as a toxin toward the mosquito Culex quinquefasciatus and have potential use in biocontrol. Given that proteins with sequence homology to the individual proteins can have activity alone against other insect species, the structure of Tpp49Aa1 was solved in order to understand this protein more fully and inform the design of improved biopesticides. Tpp49Aa1 is naturally expressed as a crystalline inclusion within the host bacterium, and MHz serial femtosecond crystallography using the novel nanofocus option at an X-ray free electron laser allowed rapid and high-quality data collection to determine the structure of Tpp49Aa1 at 1.62 Å resolution. This revealed the packing of Tpp49Aa1 within these natural nanocrystals as a homodimer with a large intermolecular interface. Complementary experiments conducted at varied pH also enabled investigation of the early structural events leading up to the dissolution of natural Tpp49Aa1 crystals-a crucial step in its mechanism of action. To better understand the cooperation between the two proteins, assays were performed on a range of different mosquito cell lines using both individual proteins and mixtures of the two. Finally, bioassays demonstrated Tpp49Aa1/Cry48Aa1 susceptibility of Anopheles stephensi, Aedes albopictus, and Culex tarsalis larvae-substantially increasing the potential use of this binary toxin in mosquito control.
Collapse
Affiliation(s)
| | - Marina Galchenkova
- Center for Free Electron Laser Science, Deutsches Elektronen-Synchrotron, 22607Hamburg, Germany
| | - Hannah L. Best
- School of Biosciences, Cardiff University, CardiffCF10 3AX, United Kingdom
| | | | - Anna Munke
- Center for Free Electron Laser Science, Deutsches Elektronen-Synchrotron, 22607Hamburg, Germany
| | - Salah Awel
- Center for Free Electron Laser Science, Deutsches Elektronen-Synchrotron, 22607Hamburg, Germany
| | - Gisel Pena
- Center for Free Electron Laser Science, Deutsches Elektronen-Synchrotron, 22607Hamburg, Germany
| | - Juraj Knoska
- Center for Free Electron Laser Science, Deutsches Elektronen-Synchrotron, 22607Hamburg, Germany
| | | | | | - Hyun-Woo Park
- Department of Biological Sciences, California Baptist University, Riverside, CA92504
| | - Dennis K. Bideshi
- Department of Biological Sciences, California Baptist University, Riverside, CA92504
| | - Alessandra Henkel
- Center for Free Electron Laser Science, Deutsches Elektronen-Synchrotron, 22607Hamburg, Germany
| | - Viviane Kremling
- Center for Free Electron Laser Science, Deutsches Elektronen-Synchrotron, 22607Hamburg, Germany
| | - Bjarne Klopprogge
- Center for Free Electron Laser Science, Deutsches Elektronen-Synchrotron, 22607Hamburg, Germany
| | - Emyr Lloyd-Evans
- School of Biosciences, Cardiff University, CardiffCF10 3AX, United Kingdom
| | - Mark T. Young
- School of Biosciences, Cardiff University, CardiffCF10 3AX, United Kingdom
| | | | - Marco Kloos
- European XFEL GmbH, 22869Schenefeld, Germany
| | | | - Grant Mills
- European XFEL GmbH, 22869Schenefeld, Germany
| | | | | | - Chan Kim
- European XFEL GmbH, 22869Schenefeld, Germany
| | | | | | - Paul Lourdu Xavier
- Center for Free Electron Laser Science, Deutsches Elektronen-Synchrotron, 22607Hamburg, Germany
- Max-Planck Institute for the Structure and Dynamics of Matter, 22761Hamburg, Germany
| | - Aida Rahmani Mashhour
- Center for Free Electron Laser Science, Deutsches Elektronen-Synchrotron, 22607Hamburg, Germany
| | - Luca Gelisio
- Center for Free Electron Laser Science, Deutsches Elektronen-Synchrotron, 22607Hamburg, Germany
| | - Oleksandr Yefanov
- Center for Free Electron Laser Science, Deutsches Elektronen-Synchrotron, 22607Hamburg, Germany
| | - Adrian P. Mancuso
- European XFEL GmbH, 22869Schenefeld, Germany
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC3086, Australia
| | - Brian A. Federici
- Department of Entomology and Institute for Integrative Genome Biology, University of California, Riverside, CA92521
| | - Henry N. Chapman
- Center for Free Electron Laser Science, Deutsches Elektronen-Synchrotron, 22607Hamburg, Germany
- Centre for Ultrafast Imaging, Universität Hamburg, 22761Hamburg, Germany
- Department of Physics, Universität Hamburg, 22761Hamburg, Germany
| | - Neil Crickmore
- School of Life Sciences, University of Sussex, Falmer, BrightonBN1 9QG, United Kingdom
| | | | - Colin Berry
- School of Biosciences, Cardiff University, CardiffCF10 3AX, United Kingdom
| | - Dominik Oberthür
- Center for Free Electron Laser Science, Deutsches Elektronen-Synchrotron, 22607Hamburg, Germany
| |
Collapse
|
4
|
Miyazaki M, Asakura M, Ide T, Hayakawa T. Random Mutational Analysis Targeting Residue K 155 within the Transmembrane β-Hairpin of the Mosquitocidal Mpp46Ab Toxin. BIOLOGY 2023; 12:1481. [PMID: 38132307 PMCID: PMC10741074 DOI: 10.3390/biology12121481] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/29/2023] [Accepted: 11/30/2023] [Indexed: 12/23/2023]
Abstract
Mpp46Ab is a mosquito-larvicidal pore-forming toxin derived from Bacillus thuringiensis TK-E6. Pore formation is believed to be a central mode of Mpp46Ab action, and the cation selectivity of the channel pores, in particular, is closely related to its mosquito-larvicidal activity. In the present study, we constructed a mutant library in which residue K155 within the transmembrane β-hairpin was randomly replaced with other amino acid residues. Upon mutagenesis and following primary screening using Culex pipiens mosquito larvae, we obtained 15 mutants in addition to the wild-type toxin. Bioassays using purified proteins revealed that two mutants, K155E and K155I, exhibited toxicity significantly higher than that of the wild-type toxin. Although increased cation selectivity was previously reported for K155E channel pores, we demonstrated in the present study that the cation selectivity of K155I channel pores was also significantly increased. Considering the characteristics of the amino acids, the charge of residue 155 may not directly affect the cation selectivity of Mpp46Ab channel pores. Replacement of K155 with glutamic acid or isoleucine may induce a similar conformational change in the region associated with the ion selectivity of the Mpp46Ab channel pores. Mutagenesis targeting the transmembrane β-hairpin may be an effective strategy for enhancing the ion permeability of the channel pores and the resulting mosquito-larvicidal activity of Mpp46Ab.
Collapse
Affiliation(s)
| | | | | | - Tohru Hayakawa
- Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan; (M.M.); (M.A.); (T.I.)
| |
Collapse
|
5
|
Kumkoon T, Noree C, Boonserm P. Engineering BinB Pore-Forming Toxin for Selective Killing of Breast Cancer Cells. Toxins (Basel) 2023; 15:toxins15040297. [PMID: 37104235 PMCID: PMC10145556 DOI: 10.3390/toxins15040297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/07/2023] [Accepted: 04/13/2023] [Indexed: 04/28/2023] Open
Abstract
Breast cancer is one of the most common cancers in women worldwide. Conventional cancer chemotherapy always has adverse side effects on the patient's healthy tissues. Consequently, combining pore-forming toxins with cell-targeting peptides (CTPs) is a promising anticancer strategy for selectively destroying cancer cells. Here, we aim to improve the target specificity of the BinB toxin produced from Lysinibacillus sphaericus (Ls) by fusing a luteinizing hormone-releasing hormone (LHRH) peptide to its pore-forming domain (BinBC) to target MCF-7 breast cancer cells as opposed to human fibroblast cells (Hs68). The results showed that LHRH-BinBC inhibited MCF-7 cell proliferation in a dose-dependent manner while leaving Hs68 cells unaffected. BinBC, at any concentration tested, did not affect the proliferation of MCF-7 or Hs68 cells. In addition, the LHRH-BinBC toxin caused the efflux of the cytoplasmic enzyme lactate dehydrogenase (LDH), demonstrating the efficacy of the LHRH peptide in directing the BinBC toxin to damage the plasma membranes of MCF-7 cancer cells. LHRH-BinBC also caused MCF-7 cell apoptosis by activating caspase-8. In addition, LHRH-BinBC was predominantly observed on the cell surface of MCF-7 and Hs68 cells, without colocalization with mitochondria. Overall, our findings suggest that LHRH-BinBC could be investigated further as a potential cancer therapeutic agent.
Collapse
Affiliation(s)
- Tipaporn Kumkoon
- Institute of Molecular Biosciences, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand
| | - Chalongrat Noree
- Institute of Molecular Biosciences, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand
| | - Panadda Boonserm
- Institute of Molecular Biosciences, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand
| |
Collapse
|
6
|
da Costa RA, Dutra TTB, Pereira Costa Andrade IE, Monnerat RG, Barreto CC, Dias SC. Pelgipeptins, a Nonribosomal Lipopeptide Family, Show Larvicidal Activity against Vectors Transmitting Viruses. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:1921-1929. [PMID: 36688912 DOI: 10.1021/acs.jafc.2c05458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Aedes aegypti and Culex quinquefasciatus are vectors of numerous diseases of worldwide public importance, such as arboviruses and filariasis. The main strategy for controlling these vectors is the use of chemicals, which can induce the appearance of resistant insects. The use of Bacillus thuringiensis (Bt) and Lysinibacillus sphaericus (Ls) with larvicidal activity against arboviral-transmitting insects has been successful in many studies. In contrast, the use and knowledge of peptides with insecticidal activity are so far scarce. In this work, 25 peptides and 5 strains of each bacterial species were prospected individually or together regarding their insecticidal activity. Initially, in vitro assays of cellular cytotoxicity of the peptides against SF21 cells of Spodoptera frugiperda were performed. The peptides Polybia-MPII and pelgipeptin caused 69 and 60% of cell mortality, respectively, at the concentration of 10 μM. Thus, they were evaluated in vivo against second-stage larvae of the two Culicidae. However, in the in vivo bioassays, only pelgipeptin showed larvicidal mortality against both larvae (LC50 6.40 μM against A. aegypti, and LC50 1.22 μM against C. quinquefasciatus). The toxin-producing bacterial strain that showed the lowest LC50 against A. aegypti was Bt S8 (LC50 = 0.71 ng/mL) and against C. quinquefasciatus, it was Ls S260 (LC50 = 2.32 ng/mL). So, the synergistic activity between the association of the bacterial toxins and pelgipeptin was evaluated. A synergic effect of pelgipeptin was observed with Ls strain S260 against C. quinquefasciatus. Our results demonstrate the possibility of synergistic or individual use of both biologically active larvicides against C. quinquefasciatus and A. aegypti.
Collapse
Affiliation(s)
- Rosiane Andrade da Costa
- Graduate Program in Genomic Sciences and Biotechnology, Universidade Católica de Brasília, SGAN 916, Brasília, DF 70790-160, Brazil
| | - Thaís Tavares Baraviera Dutra
- Graduate Program in Genomic Sciences and Biotechnology, Universidade Católica de Brasília, SGAN 916, Brasília, DF 70790-160, Brazil
| | | | - Rose Gomes Monnerat
- Laboratório de Bactérias Entomopatogênicas, Embrapa Recursos Genéticos e Biotecnologia, Av. W5 Norte, Brasília, DF 70770-917, Brazil
| | - Cristine Chaves Barreto
- Graduate Program in Genomic Sciences and Biotechnology, Universidade Católica de Brasília, SGAN 916, Brasília, DF 70790-160, Brazil
| | - Simoni Campos Dias
- Graduate Program in Genomic Sciences and Biotechnology, Universidade Católica de Brasília, SGAN 916, Brasília, DF 70790-160, Brazil
- Graduate Program in Animal Biology, Universidade de Brasília, Campus Darcy Ribeiro, Brasília, DF 70910-900, Brazil
| |
Collapse
|
7
|
Cao B, Nie Y, Guan Z, Chen C, Wang N, Wang Z, Shu C, Zhang J, Zhang D. The crystal structure of Cry78Aa from Bacillus thuringiensis provides insights into its insecticidal activity. Commun Biol 2022; 5:801. [PMID: 35945427 PMCID: PMC9363482 DOI: 10.1038/s42003-022-03754-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 07/22/2022] [Indexed: 11/09/2022] Open
Abstract
Genetically modified plants with insecticidal proteins from Bacillus thuringiensis (Bt) have been successfully utilized to control various kinds of pests in crop production and reduce the abuse of pesticides. However, a limited number of genes are available for the protection of crops from rice planthopper. Recently, Cry78Aa protein from Bt strain C9F1 has been found to have high insecticidal activity against Laodelphax striatellus and Nilaparvata lugens. It is the first reported single-component protein in the world to combat rice planthoppers, making it very promising for use in transgenic crops. The ambiguous mechanism of Cry78Aa functions prevented further engineering or application. Here, we report the crystal structure of Cry78Aa, which consists of two domains: a C-terminal β-pore forming domain belonging to the aerolysin family and an N-terminal trefoil domain resembling the S-type ricin B lectin. Thus, Cry78Aa could represent a distinctive type of β-pore forming toxin. We also found that Cry78Aa binds carbohydrates such as galactose derivatives and is essential for insecticidal activity against Laodelphax striatellus. Our results suggest a mechanism underlying the function of Cry78Aa against rice planthoppers and pave the way to maximizing the usage of the toxin. The crystal structure of the Bacillus thuringiensis protein Cry78Aa shows it consists of a C-terminal β-pore forming domain and an N-terminal trefoil domain and suggests a mechanism underlying the function of Cry78Aa against rice planthoppers.
Collapse
Affiliation(s)
- Beibei Cao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yangfan Nie
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zeyuan Guan
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chuanyu Chen
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Nancong Wang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zeyu Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Changlong Shu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Jie Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Delin Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
8
|
Guo Q, Gao Y, Xing C, Niu Y, Ding L, Dai X. Culex quinquefasciatus alpha-glucosidase serves as a putative receptor of the Cry48Aa toxin from Lysinibacillus sphaericus. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2022; 147:103799. [PMID: 35662624 DOI: 10.1016/j.ibmb.2022.103799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 05/20/2022] [Accepted: 05/27/2022] [Indexed: 06/15/2023]
Abstract
The Cry48Aa/Cry49Aa toxin of Lysinibacillus sphaericus shows specific toxicity towards larvae of Culex spp. Individual Cry48Aa and Cry49Aa subunits interact with distinct target sites in the larval midgut and overcome the resistance of Culex to the Bin toxin. However, the toxin-binding proteins have not yet been identified. The present study aimed to identify Cry48Aa-binding proteins in Culex quinquefasciatus. Pulldown assays using C. quinquefasciatus midgut brush-border membrane fractions (BBMFs) identified a class of proteins, including aminopeptidases (APNs), protease m1 zinc metalloproteases, alkaline phosphatases (ALPs), and maltases, that could be potentially involved in the mode of action of this toxin. RNA interference analysis showed that silenced larvae treated with dsRNA of the alpha-glucosidase (named Glu71) gene were more tolerant of the Cry48Aa/Cry49Aa toxin, which induced less than 20% mortality. The amino acid sequence of Glu71 exhibited 42% identity with Cqm1/Cpm1, which acted as a Bin toxin receptor. Toxin binding assays showed that Cry48Aa had a high specific binding capacity for the Glu71 protein, whereas Cry49Aa exhibited no specific binding. Overall, our results showed that Glu71 is a Cry48-binding protein involved in Cry48Aa/Cry49Aa toxicity.
Collapse
Affiliation(s)
- Qingyun Guo
- College of Life Sciences, Gannan Normal University, Ganzhou City of Jiangxi Province, 341000, PR China.
| | - Yuan Gao
- College of Life Sciences, Gannan Normal University, Ganzhou City of Jiangxi Province, 341000, PR China
| | - Chong Xing
- School of Information Engineering, Gannan Medical University, Ganzhou City of Jiangxi Province, 341000, PR China
| | - Yingchao Niu
- College of Life Sciences, Gannan Normal University, Ganzhou City of Jiangxi Province, 341000, PR China
| | - Lu Ding
- College of Life Sciences, Gannan Normal University, Ganzhou City of Jiangxi Province, 341000, PR China
| | - Xiaohua Dai
- College of Life Sciences, Gannan Normal University, Ganzhou City of Jiangxi Province, 341000, PR China
| |
Collapse
|
9
|
Sharma M, Kumar V. Mosquito-larvicidal Binary (BinA/B) proteins for mosquito control programs —advancements, challenges, and possibilities. CURRENT RESEARCH IN INSECT SCIENCE 2022; 2:100028. [PMID: 36003274 PMCID: PMC9387486 DOI: 10.1016/j.cris.2021.100028] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 12/11/2021] [Accepted: 12/14/2021] [Indexed: 11/18/2022]
Abstract
Binary (BinAB) toxin is primarily responsible for the larvicidal action of the WHO recognized mosquito-larvicidal bacterium Lysinibacillus sphaericus. BinAB is a single receptor-specific toxin, active against larvae of Culex and Anopheles, but not Aedes aegypti. The target receptor in Culex is Cqm1 protein, a GPI-anchored amylomaltase located apically in the lipid-rafts of the larval-midgut epithelium. Interaction of the toxin components with the receptor is critical for the larvicidal activity of the toxin. Evidences support the pore formation model for BinAB toxin internalization and the role of toxin-glycan interactions in the endoplasmic reticulum in mediating larval death. Targeted R&D efforts are required to maintain the sustainability and improve efficacy of the eco-friendly BinAB proteins for efficient mosquito control interventions.
The increasing global burden of mosquito-borne diseases require targeted, environmentally friendly, and sustainable approaches for effective vector control without endangering the non-target beneficial insect population. Biological interventions such as biopesticides, Wolbachia-mediated biological controls, or sterile insect techniques are used worldwide. Here we review Binary or BinAB toxin—the mosquito-larvicidal component of WHO-recognized Lysinibacillus sphaericus bacterium employed in mosquito control programs. Binary (BinAB) toxin is primarily responsible for the larvicidal effect of the bacterium. BinAB is a single-receptor-specific toxin and is effective against larvae of Culex and Anopheles, but not against Aedes aegypti. The receptor in Culex, the Cqm1 protein, has been extensively studied. It is a GPI-anchored amylomaltase and is located apically in the lipid rafts of the larval-midgut epithelium. The interaction of the toxin components with the receptor is crucial for the mosquito larvicidal activity of the BinAB toxin. Here we extend support for the pore formation model of BinAB toxin internalization and the role of toxin-glycan interactions in the endoplasmic reticulum in mediating larval death. BinAB is phylogenetically safe for humans, as Cqm1-like protein is not expected in the human proteome. This review aims to initiate targeted R&D efforts, such as applying fusion technologies (chimera of BinA, chemical modification of BinA), for efficient mosquito control interventions. In addition, the review also examines other areas such as bioremediation and cancer therapeutics, in which L. sphaericus is proving useful and showing potential for further development.
Collapse
Affiliation(s)
- Mahima Sharma
- Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre, Mumbai, Maharashtra 400085, India
| | - Vinay Kumar
- Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre, Mumbai, Maharashtra 400085, India
- Correspondence Author: Professor (Retired) Vinay Kumar, Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre, Mumbai, Maharashtra 400085, India
| |
Collapse
|
10
|
Guo Q, Ding L, Gao Y, Niu Y, Dai X. Cys183 and Cys258 in Cry49Aa toxin from Lysinibacillus sphaericus are essential for toxicity to Culex quinquefasciatus larvae. Arch Microbiol 2021; 203:4587-4592. [PMID: 34160628 DOI: 10.1007/s00203-021-02436-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/08/2021] [Accepted: 06/10/2021] [Indexed: 10/21/2022]
Abstract
The two-component Cry48Aa/Cry49Aa toxin produced by Lysinibacillus sphaericus shows specifically toxic to Culex quinquefasciatus mosquito larvae. Cry49Aa C-terminal domain is responsible for specific binding to the larval gut cell membrane, while its N-terminal domain is required for interaction with Cry48Aa. To investigate functional role of cysteine in Cry49Aa, four cysteine residues at positions 70, 91, 183, and 258 were substituted by alanine. All mutants showed similar crystalline morphology and comparable yield to that of the wild type except that the yield of the C91A mutant was low. Four cysteine residues did not involve in disulfide bond formation within or between Cry49Aa molecules. Cys91, Cys183, and Cys258 are essential for larvicidal activity against C. quinquefasciatus larvae, while Cys70 is not. Substitution at C91, C183, and C258 caused weaker Cry48Aa- Cry49Aa interaction, while mutations at C183 and C258 reduced the binding capacities to the larval gut cell membrane. Thus, Cysteine residues at position 91, 183, and 258 in Cry49Aa are required for full toxicity of Cry48Aa/Cry49Aa toxin.
Collapse
Affiliation(s)
- Qingyun Guo
- College of Life Sciences, Gannan Normal University, Shida South Road 1, Ganzhou City, Jiangxi Province, 341000, People's Republic of China.
| | - Lu Ding
- College of Life Sciences, Gannan Normal University, Shida South Road 1, Ganzhou City, Jiangxi Province, 341000, People's Republic of China
| | - Yuan Gao
- College of Life Sciences, Gannan Normal University, Shida South Road 1, Ganzhou City, Jiangxi Province, 341000, People's Republic of China
| | - Yingchao Niu
- College of Life Sciences, Gannan Normal University, Shida South Road 1, Ganzhou City, Jiangxi Province, 341000, People's Republic of China
| | - Xiaohua Dai
- College of Life Sciences, Gannan Normal University, Shida South Road 1, Ganzhou City, Jiangxi Province, 341000, People's Republic of China
| |
Collapse
|
11
|
Kanwal S, Abeysinghe S, Srisaisup M, Boonserm P. Cytotoxic Effects and Intracellular Localization of Bin Toxin from Lysinibacillus sphaericus in Human Liver Cancer Cell Line. Toxins (Basel) 2021; 13:toxins13040288. [PMID: 33921797 PMCID: PMC8073846 DOI: 10.3390/toxins13040288] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 04/16/2021] [Indexed: 11/16/2022] Open
Abstract
Binary toxin (Bin toxin), BinA and BinB, produced by Lysinibacillus sphaericus has been used as a mosquito-control agent due to its high toxicity against the mosquito larvae. The crystal structures of Bin toxin and non-insecticidal but cytotoxic parasporin-2 toxin share some common structural features with those of the aerolysin-like toxin family, thus suggesting a common mechanism of pore formation of these toxins. Here we explored the possible cytotoxicity of Bin proteins (BinA, BinB and BinA + BinB) against Hs68 and HepG2 cell lines. The cytotoxicity of Bin proteins was evaluated using the trypan blue exclusion assay, MTT assay, morphological analysis and LDH efflux assay. The intracellular localization of Bin toxin in HepG2 cells was assessed by confocal laser scanning microscope. HepG2 cells treated with BinA and BinB (50 µg/mL) showed modified cell morphological features and reduced cell viability. Bin toxin showed no toxicity against Hs68 cells. The EC50 values against HepG2 at 24 h were 24 ng/mL for PS2 and 46.56 and 39.72 µg/mL for BinA and BinB, respectively. The induction of apoptosis in treated HepG2 cells was confirmed by upregulation of caspase levels. The results indicated that BinB mediates the translocation of BinA in HepG2 cells and subsequently associates with mitochondria. The study supports the possible development of Bin toxin as either an anticancer agent or a selective delivery vehicle of anticancer agents to target mitochondria of human cancer cells in the future.
Collapse
|
12
|
Branching out the aerolysin, ETX/MTX-2 and Toxin_10 family of pore forming proteins. J Invertebr Pathol 2021; 186:107570. [PMID: 33775676 DOI: 10.1016/j.jip.2021.107570] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 12/15/2020] [Accepted: 03/09/2021] [Indexed: 01/28/2023]
Abstract
Organisms have evolved mechanisms in which cellular membranes can both be targeted and punctured thereby killing the targeted cell. One such mechanism involves the deployment of pore forming proteins (PFPs) which function by oligomerizing on cell membranes and inserting a physical pore spanning the membrane. This pore can lead to cell death by either causing osmotic flux or allowing the delivery of a secondary toxin. Pore forming proteins can be broadly classified into different families depending on the structure of the final pore; either α-PFPs using channels made from α -helices or β-PFPs using channels made from β-barrels. There are many different β-PFPs and an emerging superfamily is the aerolysin-ETX/MTX-2 superfamily. A comparison between the members of this superfamily reveals the pore forming domain is a common module yet the receptor binding region is highly variable. These structural and architectural variations lead to differences in the target recognition and determine the site of activity. Closer investigation of the topology of the family also suggests that the Toxin_10 family of PFPs could be considered as part of the aerolysin-ETX/MTX-2 superfamily. Comparatively, far less is known about how Toxin_10 proteins assemble into the final pore structure than aerolysin-ETX/MTX-2 proteins. This review aims to collate the pore forming protein members and bridge the structural similarities between the aerolysin-ETX/MTX-2 superfamily and the insecticidal Toxin_10 subfamily.
Collapse
|
13
|
Johnstone BA, Christie MP, Morton CJ, Parker MW. X-ray crystallography shines a light on pore-forming toxins. Methods Enzymol 2021; 649:1-46. [PMID: 33712183 DOI: 10.1016/bs.mie.2021.01.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
A common form of cellular attack by pathogenic bacteria is to secrete pore-forming toxins (PFTs). Capable of forming transmembrane pores in various biological membranes, PFTs have also been identified in a diverse range of other organisms such as sea anemones, earthworms and even mushrooms and trees. The mechanism of pore formation by PFTs is associated with substantial conformational changes in going from the water-soluble to transmembrane states of the protein. The determination of the crystal structures for numerous PFTs has shed much light on our understanding of these proteins. Other than elucidating the atomic structural details of PFTs and the conformational changes that must occur for pore formation, crystal structures have revealed structural homology that has led to the discovery of new PFTs and new PFT families. Here we review some key crystallographic results together with complimentary approaches for studying PFTs. We discuss how these studies have impacted our understanding of PFT function and guided research into biotechnical applications.
Collapse
Affiliation(s)
- Bronte A Johnstone
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, Australia
| | - Michelle P Christie
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, Australia
| | - Craig J Morton
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, Australia
| | - Michael W Parker
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, Australia; St. Vincent's Institute of Medical Research, Fitzroy, VIC, Australia.
| |
Collapse
|
14
|
Riaz MA, Adang MJ, Hua G, Rezende TMT, Rezende AM, Shen GM. Identification of Lysinibacillus sphaericus Binary toxin binding proteins in a malarial mosquito cell line by proteomics: A novel approach towards improving mosquito control. J Proteomics 2020; 227:103918. [PMID: 32712372 DOI: 10.1016/j.jprot.2020.103918] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 07/13/2020] [Accepted: 07/20/2020] [Indexed: 12/22/2022]
Abstract
Bacterial insecticidal proteins, such as the Bin toxin from Lysinibacillus sphaericus, could be used more extensively to control insecticide resistant mosquitoes. This study was aimed at identification of mosquito cell proteins binding Bin toxin. Results showed that purified toxin was toxic to Anopheles gambiae larvae and Ag55 cultured cells. Clathrin heavy chain (an endocytosis protein) and glycolytic enzymes such as pyruvate kinase, enolase and dihydrolipoamide dehydrogenase were identified as binders of Bin toxin. The viability of Ag55 cells in the presence of endocytosis inhibitor, pitstop2, was significantly decreased upon Bin treatment, while the inhibitor chlorpromazine did not affect Bin toxicity. Bin toxin treatment decreased ATP production and mitochondrial respiration in Ag55 cells, whereas non-mitochondrial oxygen consumption significantly increased after Bin toxin treatment. These findings are steps towards understanding how Bin toxin kills mosquitoes. SIGNIFICANCE: Mosquitoes are vectors of pathogens causing human diseases such as dengue fever, yellow fever, zika virus and malaria. An insecticidal toxin from Lysinibacillus sphaericus called Binary, or Bin, toxin could be used more extensively to control insecticide resistant mosquitoes. Bin toxin enter cells in susceptible mosquitoes and induces apoptosis or autophagy. In the current research, we used the malaria mosquito Anopheles gambiae Ag55 cell line as a model. A proteomic-based approach identified proteins that interact with Bin toxin. Interacting proteins include clathrin heavy chain (endocytosis protein) and glycolysis enzymes such as pyruvate kinase, enolase and dihydrolipoamide dehydrogenase. In Ag55 cell toxicity assays, an endocytosis inhibitor, pitstop2, increased Bin toxicity. Real time assays with a Seahorse™ flux analyzer showed that Bin significantly affects mitochondrial respiration, a result consistent with cell death via apoptosis or autophagy. These research findings add insights into how an unusual binary protein exploits cellular machinery to kill mosquitoes.
Collapse
Affiliation(s)
- Muhammad Asam Riaz
- Department of Entomology, College of Agriculture, University of Sargodha, Sargodha 40100, Pakistan; Department of Entomology, University of Georgia, Athens, GA 30602-2603, United States
| | - Michael J Adang
- Department of Entomology, University of Georgia, Athens, GA 30602-2603, United States; Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602-2603, United States.
| | - Gang Hua
- Department of Entomology, University of Georgia, Athens, GA 30602-2603, United States
| | - Tatiana Maria Teodoro Rezende
- Department of Entomology, University of Georgia, Athens, GA 30602-2603, United States; Instituto Aggeu Magalhaes-FIOCRUZ, Recife, PE 50740-465, Brazil
| | - Antonio Mauro Rezende
- Department of Entomology, University of Georgia, Athens, GA 30602-2603, United States; Instituto Aggeu Magalhaes-FIOCRUZ, Recife, PE 50740-465, Brazil
| | - Guang-Mao Shen
- Department of Entomology, University of Georgia, Athens, GA 30602-2603, United States; College of Plant Protection, Southwest University, Chongqing, China
| |
Collapse
|
15
|
Chankamngoen W, Janvilisri T, Promdonkoy B, Boonserm P. In vitro analysis of the anticancer activity of Lysinibacillus sphaericus binary toxin in human cancer cell lines. 3 Biotech 2020; 10:365. [PMID: 32832326 DOI: 10.1007/s13205-020-02361-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 07/25/2020] [Indexed: 11/29/2022] Open
Abstract
Binary or Bin toxin produced by Lysinibacillus sphaericus is composed of BinA (42 kDa) and BinB (51 kDa) subunits. These work together to exert maximal toxicity against mosquito larvae via pore formation and induction of apoptosis. The C-terminal domains in both subunits are homologous to those of aerolysin-type β pore-forming toxins, including parasporin-2 (PS2). The latter is one of the Bacillus thuringiensis toxins that exhibits specific cytotoxicity against human cancer cells. The present study investigates the possible anticancer activity of Bin toxin using PS2 as a control. We demonstrate that treatment with a high concentration of trypsin-activated Bin inhibits cell proliferation in human cancer cells A549, Caco-2, HepG2, HK-1 and KKU-M055. In the most susceptible cells, HK-1, Bin toxin exposure led to morphological alterations, decreased migration, decreased adhesion activity and apoptosis induction. Although these effects necessitated high concentrations, they suggest that Bin toxin may be optimized as a novel potential cancer-therapeutic agent.
Collapse
Affiliation(s)
- Wasutorn Chankamngoen
- Institute of Molecular Biosciences, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom, 73170 Thailand
| | - Tavan Janvilisri
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, 10400 Thailand
| | - Boonhiang Promdonkoy
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, 113 Phahonyothin Road, Khlong Luang, Phathum Thani, 12120 Thailand
| | - Panadda Boonserm
- Institute of Molecular Biosciences, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom, 73170 Thailand
| |
Collapse
|
16
|
Functional Bacillus thuringiensis Cyt1Aa Is Necessary To Synergize Lysinibacillus sphaericus Binary Toxin (Bin) against Bin-Resistant and -Refractory Mosquito Species. Appl Environ Microbiol 2020; 86:AEM.02770-19. [PMID: 32005737 DOI: 10.1128/aem.02770-19] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 01/21/2020] [Indexed: 11/20/2022] Open
Abstract
The binary (Bin) toxin from Lysinibacillus sphaericus is effective to mosquito larvae, but its utilization is threatened by the development of insect resistance. Bin toxin is composed of the BinB subunit required for binding to midgut receptors and the BinA subunit that causes toxicity after cell internalization, mediated by BinB. Culex quinquefasciatus resistance to this toxin is caused by mutations that prevent expression of Bin toxin receptors in the midgut. Previously, it was shown that the Cyt1Aa toxin from Bacillus thuringiensis subsp. israelensis restores Bin toxicity to Bin-resistant C. quinquefasciatus and to Aedes aegypti larvae, which are naturally devoid of functional Bin receptors. Our goal was to elucidate the mechanism involved in Cyt1Aa synergism with Bin in such larvae. In vivo assays showed that the mixture of Bin toxin, or its BinA subunit, with Cyt1Aa was effective to kill resistant larvae. However, no specific binding interaction between Cyt1Aa and the Bin toxin, or its subunits, was observed. The synergy between Cyt1Aa and Bin toxins is dependent on functional Cyt1Aa, as demonstrated by using the nontoxic Cyt1AaV122E mutant toxin affected in oligomerization and membrane insertion, which was unable to synergize Bin toxicity in resistant larvae. The synergism correlated with the internalization of Bin or BinA into anterior and medium midgut epithelial cells, which occurred only in larvae treated with wild-type Cyt1Aa toxin. This toxin is able to overcome failures in the binding step involving BinB receptor by allowing the internalization of Bin toxin, or its BinA subunit, into the midgut cells.IMPORTANCE One promising management strategy for mosquito control is the utilization of a mixture of L. sphaericus and B. thuringiensis subsp. israelensis insecticidal toxins. From this set, Bin and Cyt1Aa toxins synergize and display toxicity to resistant C. quinquefasciatus and to A. aegypti larvae, whose midgut cells lack Bin toxin receptors. Our data set provides evidence that functional Cyt1Aa is essential for internalization of Bin or its BinA subunit into such cells, but binding interaction between Bin and Cyt1Aa is not observed. Thus, this mechanism contrasts with that for the synergy between Cyt1Aa and the B. thuringiensis subsp. israelensis Cry toxins, where active Cyt1Aa is not necessary but a specific binding between Cry and Cyt1Aa is required. Our study established the initial molecular basis of the synergy between Bin and Cyt1Aa, and these findings enlarge our knowledge of their mode of action, which could help to develop improved strategies to cope with insect resistance.
Collapse
|
17
|
The Cry48Aa N-terminal Domain is Responsible for Cry48Aa–Cry49Aa Interaction in Lysinibacillus sphaericus Toxin. Curr Microbiol 2020; 77:1217-1222. [DOI: 10.1007/s00284-020-01907-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 01/29/2020] [Indexed: 10/24/2022]
|
18
|
Cao B, Shu C, Geng L, Song F, Zhang J. Cry78Ba1, One Novel Crystal Protein from Bacillus thuringiensis with High Insecticidal Activity against Rice Planthopper. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:2539-2546. [PMID: 32023056 DOI: 10.1021/acs.jafc.9b07429] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The rice planthopper is a very important hemipteran pest that preys on rice and substantially affects the safety of rice production. Moreover, the long-term prevention and control of these pests with chemical pesticides has led to an increase in the resistance of the rice planthopper as well as serious environmental pollution and food safety problems. Bacillus thuringiensis (Bt) has been used for the efficient and green control of a variety of rice pests. Therefore, based on the high-throughput screening of Bt strains that are active against the rice planthopper, we found that Bt strain B4F11 showed certain insecticidal activity against Laodelphax striatellus Fallén, and we have identified a novel insecticidal protein Cry78Ba1 from the Bt strain B4F11, which is expected to provide the specific and safe control of the rice planthopper. The Cry78Ba1 protein is composed of 380 amino acid residues with a molecular weight of 42.55 kDa and contains conserved Ricin_B_Lectin and Toxin_10 superfamily domains. It displays high insecticidal activity against L. striatellus with a lethal concentration (LC50) of 9.723 μg/mL. More importantly, this Toxin_10-like protein does not display sequence homology to any known allergen and can be degraded and inactivated rapidly when heated at 90 °C and in simulated gastrointestinal fluid. In summary, Cry78Ba1 has great potential for applications in the efficient and safe prevention and control of the rice planthopper.
Collapse
Affiliation(s)
- Beibei Cao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection , Chinese Academy of Agricultural Sciences , Beijing 100193 , People's Republic of China
| | - Changlong Shu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection , Chinese Academy of Agricultural Sciences , Beijing 100193 , People's Republic of China
| | - Lili Geng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection , Chinese Academy of Agricultural Sciences , Beijing 100193 , People's Republic of China
| | - Fuping Song
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection , Chinese Academy of Agricultural Sciences , Beijing 100193 , People's Republic of China
| | - Jie Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection , Chinese Academy of Agricultural Sciences , Beijing 100193 , People's Republic of China
| |
Collapse
|
19
|
Tharad S, Tangsongcharoen C, Boonserm P, L. Toca-Herrera J, Srisucharitpanit K. Local conformations affect the histidine tag-Ni 2+ binding affinity of BinA and BinB proteins. AIMS BIOPHYSICS 2020. [DOI: 10.3934/biophy.2020011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
20
|
An aromatic cluster in Lysinibacillus sphaericus BinB involved in toxicity and proper in-membrane folding. Arch Biochem Biophys 2018; 660:29-35. [PMID: 30321498 DOI: 10.1016/j.abb.2018.10.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 10/09/2018] [Accepted: 10/11/2018] [Indexed: 12/29/2022]
Abstract
The binary toxin from Lysinibacillus sphaericus has been successfully used for controlling mosquito-transmitted diseases. Based on structural alignments with other toxins, an aromatic cluster in the C-terminal domain of BinB (termed here BC) has been proposed to be important for toxicity. We tested this experimentally using BinB mutants bearing single mutations in this aromatic cluster. Consistent with the hypothesis, two of these mutations, F311A and F315A, were not toxic to Culex quinquefasciatus larvae and were unable to permeabilize liposomes or elicit ion channel activity, in contrast to wild-type BinB. Despite these effects, none of these mutations altered significantly the interaction between the activated forms of the two subunits in solution. These results indicate that these aromatic residues on the C-terminal domain of BinB are critical for toxin insertion in membranes. The latter can be by direct contact of these residues with the membrane surface, or by facilitating the formation a membrane-inserting oligomer.
Collapse
|
21
|
Recent advancement on chemical arsenal of Bt toxin and its application in pest management system in agricultural field. 3 Biotech 2018; 8:201. [PMID: 29607282 DOI: 10.1007/s13205-018-1223-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Accepted: 03/22/2018] [Indexed: 10/17/2022] Open
Abstract
Bacillus thuringiensis (Bt) is a Gram-positive, spore-forming, soil bacterium, which is very popular bio-control agent in agricultural and forestry. In general, B. thuringiensis secretes an array of insecticidal proteins including toxins produced during vegetative growth phase (such as secreted insecticidal protein, Sip; vegetative insecticidal proteins, Vip), parasporal crystalline δ-endotoxins produced during vegetative stationary phase (such as cytolytic toxin, Cyt; and crystal toxin, Cry), and β-exotoxins. Till date, a wide spectrum of Cry proteins has been reported and most of them belong to three-domain-Cry toxins, Bin-like toxin, and Etx_Mtx2-like toxins. To the best of our knowledge, neither Bt insecticidal toxins are exclusive to Bt nor all the strains of Bt are capable of producing insecticidal Bt toxins. The lacuna in their latest classification has also been discussed. In this review, the updated information regarding the insecticidal Bt toxins and their different mode of actions were summarized. Before applying the Bt toxins on agricultural field, the non-specific effects of toxins should be investigated. We also have summarized the problem of insect resistance and the strategies to combat with this problem. We strongly believe that this information will help a lot to the budding researchers in the field of modern pest control biotechnology.
Collapse
|
22
|
Shubin AV, Demidyuk IV, Komissarov AA, Rafieva LM, Kostrov SV. Cytoplasmic vacuolization in cell death and survival. Oncotarget 2018; 7:55863-55889. [PMID: 27331412 PMCID: PMC5342458 DOI: 10.18632/oncotarget.10150] [Citation(s) in RCA: 248] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Accepted: 06/06/2016] [Indexed: 12/15/2022] Open
Abstract
Cytoplasmic vacuolization (also called cytoplasmic vacuolation) is a well-known morphological phenomenon observed in mammalian cells after exposure to bacterial or viral pathogens as well as to various natural and artificial low-molecular-weight compounds. Vacuolization often accompanies cell death; however, its role in cell death processes remains unclear. This can be attributed to studying vacuolization at the level of morphology for many years. At the same time, new data on the molecular mechanisms of the vacuole formation and structure have become available. In addition, numerous examples of the association between vacuolization and previously unknown cell death types have been reported. Here, we review these data to make a deeper insight into the role of cytoplasmic vacuolization in cell death and survival.
Collapse
Affiliation(s)
- Andrey V Shubin
- Laboratory of Protein Engineering, Institute of Molecular Genetics, Moscow, Russia.,Laboratory of Chemical Carcinogenesis, N.N. Blokhin Russian Cancer Research Center, Moscow, Russia.,Laboratory of Biologically Active Nanostructures, N.F. Gamaleya Institute of Epidemiology and Microbiology, Moscow, Russia
| | - Ilya V Demidyuk
- Laboratory of Protein Engineering, Institute of Molecular Genetics, Moscow, Russia
| | - Alexey A Komissarov
- Laboratory of Protein Engineering, Institute of Molecular Genetics, Moscow, Russia
| | - Lola M Rafieva
- Laboratory of Protein Engineering, Institute of Molecular Genetics, Moscow, Russia
| | - Sergey V Kostrov
- Laboratory of Protein Engineering, Institute of Molecular Genetics, Moscow, Russia
| |
Collapse
|
23
|
Hu Y, Cai Q, Tian S, Ge Y, Yuan Z, Hu X. Regulator DegU is required for multicellular behavior in Lysinibacillus sphaericus. Res Microbiol 2018; 169:177-187. [PMID: 29378340 DOI: 10.1016/j.resmic.2017.12.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 12/28/2017] [Accepted: 12/29/2017] [Indexed: 11/28/2022]
Abstract
DegS and DegU make up a two component system belonging to a class of signal transduction systems that play important roles in a broad range of bacterial responses to the environment. However, little study has been done to explore the physiological functions of DegS-DegU in mosquitocidal Lysinibacillus sphaericus. In this study, it was found that deletion of degU or degS-degU inhibited the swarming motility, biofilm formation, sporulation and binary toxin production through regulating the related genes, and phosphorylation was necessary for the functions of DegU. Based on the findings, a regulation network mediated by DegU was delineated. Both DegU-pi and Spo0A-pi positively regulates genes which are linked with the transition from stage Ⅱ to the end of the sporulation process and also influences the production of binary toxins via regulation on sigE. Both DegU-pi and Spo0A-pi negatively regulate abrB/sinR and influence the biofilm formation. DegU-pi can positively regulate the motility via the regulation on sigD. Whether the regulations are directly or indirectly need to be explored. Moreover, Spo0A-pi may indirectly regulate the swarming motility through negatively regulating DegU. It was concluded that DegU is a global transcriptional regulator on cell swarming motility, biofilm formation, sporulation and virulence in L. sphaericus.
Collapse
Affiliation(s)
- Yimin Hu
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430070, China; University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Quanxin Cai
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430070, China
| | - Shen Tian
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430070, China
| | - Yong Ge
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430070, China
| | - Zhiming Yuan
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430070, China.
| | - Xiaomin Hu
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430070, China.
| |
Collapse
|
24
|
Bideshi DK, Park HW, Hice RH, Wirth MC, Federici BA. Highly Effective Broad Spectrum Chimeric Larvicide That Targets Vector Mosquitoes Using a Lipophilic Protein. Sci Rep 2017; 7:11282. [PMID: 28900215 PMCID: PMC5596012 DOI: 10.1038/s41598-017-11717-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 08/24/2017] [Indexed: 12/11/2022] Open
Abstract
Two mosquitocidal bacteria, Bacillus thuringiensis subsp. israelensis (Bti) and Lysinibacillus sphaericus (Ls) are the active ingredients of commercial larvicides used widely to control vector mosquitoes. Bti’s efficacy is due to synergistic interactions among four proteins, Cry4Aa, Cry4Ba, Cry11Aa, and Cyt1Aa, whereas Ls’s activity is caused by Bin, a heterodimer consisting of BinA, the toxin, and BinB, a midgut-binding protein. Cyt1Aa is lipophilic and synergizes Bti Cry proteins by increasing midgut binding. We fused Bti’s Cyt1Aa to Ls’s BinA yielding a broad-spectrum chimeric protein highly mosquitocidal to important vector species including Anopheles gambiae, Culex quinquefasciatus, and Aedes aegypti, the latter an important Zika and Dengue virus vector insensitive to Ls Bin. Aside from its vector control potential, our bioassay data, in contrast to numerous other reports, provide strong evidence that BinA does not require conformational interactions with BinB or microvillar membrane lipids to bind to its intracellular target and kill mosquitoes.
Collapse
Affiliation(s)
- Dennis K Bideshi
- Department of Entomology, University of California, Riverside, Riverside, CA, 92521, USA.,Department of Biological Sciences, California Baptist University, Riverside, CA, 92504, USA
| | - Hyun-Woo Park
- Department of Entomology, University of California, Riverside, Riverside, CA, 92521, USA.,Department of Biological Sciences, California Baptist University, Riverside, CA, 92504, USA
| | - Robert H Hice
- Department of Entomology, University of California, Riverside, Riverside, CA, 92521, USA
| | - Margaret C Wirth
- Department of Entomology, University of California, Riverside, Riverside, CA, 92521, USA
| | - Brian A Federici
- Department of Entomology, University of California, Riverside, Riverside, CA, 92521, USA. .,Interdepartmental Graduate Program in Microbiology and Institute for Integrative Genome Biology, University of California, Riverside, Riverside, CA, 92521, USA.
| |
Collapse
|
25
|
Tangsongcharoen C, Jupatanakul N, Promdonkoy B, Dimopoulos G, Boonserm P. Molecular analysis of Culex quinquefasciatus larvae responses to Lysinibacillus sphaericus Bin toxin. PLoS One 2017; 12:e0175473. [PMID: 28406958 PMCID: PMC5391067 DOI: 10.1371/journal.pone.0175473] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 03/26/2017] [Indexed: 12/22/2022] Open
Abstract
Lysinibacillus sphaericus produces the mosquito larvicidal binary toxin consisting of BinA and BinB, which are both required for toxicity against Culex and Anopheles larvae. The molecular mechanisms behind Bin toxin-induced damage remain unexplored. We used whole-genome microarray-based transcriptome analysis to better understand how Culex larvae respond to Bin toxin treatment at the molecular level. Our analyses of Culex quinquefasciatus larvae transcriptome changes at 6, 12, and 18 h after Bin toxin treatment revealed a wide range of transcript signatures, including genes linked to the cytoskeleton, metabolism, immunity, and cellular stress, with a greater number of down-regulated genes than up-regulated genes. Bin toxin appears to mainly repress the expression of genes involved in metabolism, the mitochondrial electron transport chain, and the protein transporter of the outer/inner mitochondrial membrane. The induced genes encode proteins linked to mitochondrial-mediated apoptosis and cellular detoxification including autophagic processes and lysosomal compartments. This study is, to our knowledge, the first microarray analysis of Bin toxin-induced transcriptional responses in Culex larvae, providing a basis for an in-depth understanding of the molecular nature of Bin toxin-induced damage.
Collapse
Affiliation(s)
- Chontida Tangsongcharoen
- Institute of Molecular Biosciences, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom, Thailand
| | - Natapong Jupatanakul
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Boonhiang Promdonkoy
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Khlong Nueng, Khlong Luang, Pathum Thani, Thailand
| | - George Dimopoulos
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Panadda Boonserm
- Institute of Molecular Biosciences, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom, Thailand
| |
Collapse
|
26
|
Structural classification of insecticidal proteins – Towards an in silico characterisation of novel toxins. J Invertebr Pathol 2017; 142:16-22. [DOI: 10.1016/j.jip.2016.07.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 06/01/2016] [Accepted: 07/28/2016] [Indexed: 11/23/2022]
|
27
|
Moar WJ, Evans AJ, Kessenich CR, Baum JA, Bowen DJ, Edrington TC, Haas JA, Kouadio JLK, Roberts JK, Silvanovich A, Yin Y, Weiner BE, Glenn KC, Odegaard ML. The sequence, structural, and functional diversity within a protein family and implications for specificity and safety: The case for ETX_MTX2 insecticidal proteins. J Invertebr Pathol 2017; 142:50-59. [DOI: 10.1016/j.jip.2016.05.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 05/20/2016] [Accepted: 05/24/2016] [Indexed: 11/26/2022]
|
28
|
Colletier JP, Sawaya MR, Gingery M, Rodriguez JA, Cascio D, Brewster AS, Michels-Clark T, Hice RH, Coquelle N, Boutet S, Williams GJ, Messerschmidt M, DePonte DP, Sierra RG, Laksmono H, Koglin JE, Hunter MS, Park HW, Uervirojnangkoorn M, Bideshi DK, Brunger AT, Federici BA, Sauter NK, Eisenberg DS. De novo phasing with X-ray laser reveals mosquito larvicide BinAB structure. Nature 2016; 539:43-47. [PMID: 27680699 PMCID: PMC5161637 DOI: 10.1038/nature19825] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 09/07/2016] [Indexed: 11/30/2022]
Abstract
BinAB is a naturally occurring paracrystalline larvicide distributed worldwide to combat the devastating diseases borne by mosquitoes. These crystals are composed of homologous molecules, BinA and BinB, which play distinct roles in the multi-step intoxication process, transforming from harmless, robust crystals, to soluble protoxin heterodimers, to internalized mature toxin, and finally to toxic oligomeric pores. The small size of the crystals-50 unit cells per edge, on average-has impeded structural characterization by conventional means. Here we report the structure of Lysinibacillus sphaericus BinAB solved de novo by serial-femtosecond crystallography at an X-ray free-electron laser. The structure reveals tyrosine- and carboxylate-mediated contacts acting as pH switches to release soluble protoxin in the alkaline larval midgut. An enormous heterodimeric interface appears to be responsible for anchoring BinA to receptor-bound BinB for co-internalization. Remarkably, this interface is largely composed of propeptides, suggesting that proteolytic maturation would trigger dissociation of the heterodimer and progression to pore formation.
Collapse
Affiliation(s)
| | - Michael R Sawaya
- UCLA-DOE Institute for Genomics and Proteomics, Department of Biological Chemistry, University of California, Los Angeles, California 90095-1570, USA
- Howard Hughes Medical Institute, University of California, Los Angeles, California 90095-1570, USA
| | - Mari Gingery
- UCLA-DOE Institute for Genomics and Proteomics, Department of Biological Chemistry, University of California, Los Angeles, California 90095-1570, USA
| | - Jose A Rodriguez
- UCLA-DOE Institute for Genomics and Proteomics, Department of Biological Chemistry, University of California, Los Angeles, California 90095-1570, USA
| | - Duilio Cascio
- UCLA-DOE Institute for Genomics and Proteomics, Department of Biological Chemistry, University of California, Los Angeles, California 90095-1570, USA
| | - Aaron S Brewster
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Tara Michels-Clark
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Robert H Hice
- Department of Entomology and Graduate Program in Cell, Molecular and Developmental Biology, University of California, Riverside, California 92521, USA
| | - Nicolas Coquelle
- Institut de Biologie Structurale (IBS), Univ. Grenoble Alpes, CEA, CNRS, 38044 Grenoble, France
| | - Sébastien Boutet
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Garth J Williams
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Marc Messerschmidt
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Daniel P DePonte
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Raymond G Sierra
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Hartawan Laksmono
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Jason E Koglin
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Mark S Hunter
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Hyun-Woo Park
- Department of Entomology and Graduate Program in Cell, Molecular and Developmental Biology, University of California, Riverside, California 92521, USA
- Department of Biological Sciences, California Baptist University, Riverside, California 92504, USA
| | - Monarin Uervirojnangkoorn
- Molecular and Cellular Physiology, and Howard Hughes Medical Institute, Stanford University, Stanford, California 94305, USA
| | - Dennis K Bideshi
- Department of Entomology and Graduate Program in Cell, Molecular and Developmental Biology, University of California, Riverside, California 92521, USA
- Department of Biological Sciences, California Baptist University, Riverside, California 92504, USA
| | - Axel T Brunger
- Molecular and Cellular Physiology, and Howard Hughes Medical Institute, Stanford University, Stanford, California 94305, USA
| | - Brian A Federici
- Department of Entomology and Graduate Program in Cell, Molecular and Developmental Biology, University of California, Riverside, California 92521, USA
| | - Nicholas K Sauter
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - David S Eisenberg
- UCLA-DOE Institute for Genomics and Proteomics, Department of Biological Chemistry, University of California, Los Angeles, California 90095-1570, USA
- Howard Hughes Medical Institute, University of California, Los Angeles, California 90095-1570, USA
| |
Collapse
|
29
|
Narva KE, Wang NX, Herman R. Safety considerations derived from Cry34Ab1/Cry35Ab1 structure and function. J Invertebr Pathol 2016; 142:27-33. [PMID: 27480405 DOI: 10.1016/j.jip.2016.07.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 06/15/2016] [Accepted: 07/28/2016] [Indexed: 11/16/2022]
Abstract
Insecticidal proteins developed for in-plant protection against crop pests undergo extensive safety testing during the product development process. Safety considerations for insecticidal proteins expressed in crops follow recommended, science-based guidelines and specific studies are conducted on a case by case basis. Corn events expressing Bacillus thuringiensis (Bt) Cry34Ab1 and Cry35Ab1 were developed to protect maize from Diabrotica virgifera virgifera (western corn rootworm) feeding damage. The protein crystal structures of Cry34Ab1 and Cry35Ab1 are different from the more common three-domain Cry or Vip3 proteins expressed in insect resistant maize varieties. Cry34Ab1 is a single domain protein that folds into a beta sandwich structure that resembles membrane-active proteins, including several cytolysins, from a variety of natural sources. Cry35Ab1 has two domains, one domain with structural relatedness to sugar binding motifs and a second domain with an extended beta sheet structure that is clearly related to beta pore forming proteins, some of which are insecticidal, e.g. B. sphaericus BinA/BinB. In this review we discuss Cry34Ab1/Cry35Ab1 structure and function in the context of protein safety studies for insect resistant crops.
Collapse
Affiliation(s)
- Kenneth E Narva
- Dow AgroSciences, 9330 Zionsville Road, Indianapolis, IN 46268, USA.
| | - Nick X Wang
- Dow AgroSciences, 9330 Zionsville Road, Indianapolis, IN 46268, USA
| | - Rod Herman
- Dow AgroSciences, 9330 Zionsville Road, Indianapolis, IN 46268, USA
| |
Collapse
|
30
|
Surya W, Chooduang S, Choong YK, Torres J, Boonserm P. Binary Toxin Subunits of Lysinibacillus sphaericus Are Monomeric and Form Heterodimers after In Vitro Activation. PLoS One 2016; 11:e0158356. [PMID: 27341696 PMCID: PMC4920411 DOI: 10.1371/journal.pone.0158356] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 06/14/2016] [Indexed: 11/24/2022] Open
Abstract
The binary toxin from Lysinibacillus sphaericus has been successfully used for controlling mosquito-transmitted diseases. An activation step shortens both subunits BinA and BinB before their interaction with membranes and internalization in midgut cells, but the precise role of this activation step is unknown. Herein, we show conclusively using three orthogonal biophysical techniques that protoxin subunits form only monomers in aqueous solution. However, in vitro activated toxins readily form heterodimers. This oligomeric state did not change after incubation of these heterodimers with detergent. These results are consistent with the evidence that maximal toxicity in mosquito larvae is achieved when the two subunits, BinA and BinB, are in a 1:1 molar ratio, and directly link proteolytic activation to heterodimerization. Formation of a heterodimer must thus be necessary for subsequent steps, e.g., interaction with membranes, or with a suitable receptor in susceptible mosquito species. Lastly, despite existing similarities between BinB C-terminal domain with domains 3 and 4 of pore-forming aerolysin, no aerolysin-like SDS-resistant heptameric oligomers were observed when the activated Bin subunits were incubated in the presence of detergents or lipidic membranes.
Collapse
Affiliation(s)
- Wahyu Surya
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Sivadatch Chooduang
- Institute of Molecular Biosciences, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom, Thailand
| | - Yeu Khai Choong
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
- Persiaran Universiti, Putra Nilai, Nilai, Negeri Sembilan, Malaysia
| | - Jaume Torres
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
- * E-mail: (JT); (PB)
| | - Panadda Boonserm
- Institute of Molecular Biosciences, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom, Thailand
- * E-mail: (JT); (PB)
| |
Collapse
|
31
|
Guo QY, Hu XM, Cai QX, Yan JP, Yuan ZM. Interaction of Lysinibacillus sphaericus Cry48Aa/Cry49Aa toxin with midgut brush-border membrane fractions from Culex quinquefasciatus larvae. INSECT MOLECULAR BIOLOGY 2016; 25:163-170. [PMID: 26748768 DOI: 10.1111/imb.12209] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The Cry48Aa/Cry49Aa mosquitocidal toxin from Lysinibacillus sphaericus was uniquely composed of a three-domain (Cry) toxin and binary (Bin) toxin-like protein, with high toxicity against Culex spp. However, its mode of action against the target mosquitoes is still unknown. In this study, Cry48Aa, Cry49Aa and its N- and C-terminal truncated proteins were expressed and purified, and the binding affinities of the purified proteins with midgut brush-border membrane fractions (BBMFs) from Culex quin-quefasciatus larvae were performed. The results showed that both Cry48Aa and Cry49Aa have specific and high binding affinity to BBMFs, with dissociation constants of 9.5 ± 1.8 and 25.4 ± 3.8 nM, respectively. Competition assays demonstrated that Cry49Aa C-terminal derivatives were able to bind to the BBMFs, whereas Far-Western dot blot analysis revealed that its N-terminal constructs interacted with Cry48Aa. Nevertheless, larvicidal activity was almost lost when Cry49Aa truncated proteins, either individually or in pairs, combined with Cry48Aa. It is concluded that Cry49Aa is responsible for receptor binding and interaction with Cry48Aa and plays an important role in the mechanism of action of these two-component toxins.
Collapse
Affiliation(s)
- Q-Y Guo
- College of Life and Environmental Sciences, Gannan Normal University, Ganzhou, China
| | - X-M Hu
- Key Laboratory of Agricultural and Environmental Microbiology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Q-X Cai
- Key Laboratory of Agricultural and Environmental Microbiology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - J-P Yan
- Key Laboratory of Agricultural and Environmental Microbiology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Z-M Yuan
- Key Laboratory of Agricultural and Environmental Microbiology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
32
|
Lekakarn H, Promdonkoy B, Boonserm P. Interaction of Lysinibacillus sphaericus binary toxin with mosquito larval gut cells: Binding and internalization. J Invertebr Pathol 2015; 132:125-131. [PMID: 26408968 DOI: 10.1016/j.jip.2015.09.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 07/29/2015] [Accepted: 09/23/2015] [Indexed: 01/02/2023]
Abstract
The binary toxin produced by Lysinibacillus sphaericus is composed of BinA and BinB subunits. Together, but not separately, the two subunits are highly toxic to Culex quinquefasciatus larvae, but show no toxicity to Aedes aegypti. The molecular mechanism underlying intoxication has not been clearly elucidated. The present study compares the binding and the internalization of binary toxin into the midgut epithelial cells of susceptible C. quinquefasciatus mosquito larvae with those of Bin-refractory A. aegypti. The guts from larvae fed with fluorescently labeled toxin were dissected and analyzed using a confocal laser scanning microscope. When fed with a mixture of both components, co-localization of BinA and BinB was detected both on the cell surface and in the cytoplasm of Culex larval gut cells. However, administration of BinA alone resulted in localization only on the cell membrane, whereas BinB alone was detected both on the cell membrane and inside the cytoplasm. In contrast, when a mixture of both components, or each individual component, was fed to Aedes larvae, BinA and BinB were unable to reach the cytoplasm and were localized only on the cell membrane. These results are consistent with the suggestion that the internalization of BinA is essential for toxicity, and that BinB is required for this internalization into susceptible larval gut cells.
Collapse
Affiliation(s)
- Hataikarn Lekakarn
- Institute of Molecular Biosciences, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand
| | - Boonhiang Promdonkoy
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, 113 Pahonyothin Road, Khlong Luang, Pathumthani 12120, Thailand
| | - Panadda Boonserm
- Institute of Molecular Biosciences, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand.
| |
Collapse
|
33
|
Lysinibacillus sphaericus binary toxin induces apoptosis in susceptible Culex quinquefasciatus larvae. J Invertebr Pathol 2015; 128:57-63. [PMID: 25958262 DOI: 10.1016/j.jip.2015.04.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 04/29/2015] [Accepted: 04/30/2015] [Indexed: 11/20/2022]
Abstract
During sporulation, a Gram-positive bacterium Lysinibacillus sphaericus (Ls) produces the mosquito larvicidal binary toxin composed of 2 subunits, BinA and BinB. Full toxicity against Culex and Anopheles mosquito larvae is achieved when both subunits are administered together at equimolar amounts. Although cellular responses to Bin toxin have been reported in previous studies, it remains essential to extensively examine the cytopathic effects in vivo to define the underlying mechanism of larval death. In this study, 4th instar Culex quinquefasciatus larvae fed with different doses of Bin toxin were analyzed both for ultrastructural as well as biochemical effects. Typical morphological changes consistent with apoptosis were observed in mosquito larvae exposed to Bin toxin, including mitochondrial swelling, chromatin condensation, cytoplasmic vacuolization and apoptotic cell formation. Bin toxin also induced the activation of caspase-9 and caspase-3 in larval midgut cells. Our current observations thus suggest that Bin toxin triggers apoptosis via an intrinsic or mitochondrial pathway in vivo, possibly contributing to larval death.
Collapse
|
34
|
Palma L, Muñoz D, Berry C, Murillo J, Caballero P. Bacillus thuringiensis toxins: an overview of their biocidal activity. Toxins (Basel) 2014; 6:3296-325. [PMID: 25514092 PMCID: PMC4280536 DOI: 10.3390/toxins6123296] [Citation(s) in RCA: 401] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 11/07/2014] [Accepted: 12/03/2014] [Indexed: 11/16/2022] Open
Abstract
Bacillus thuringiensis (Bt) is a Gram positive, spore-forming bacterium that synthesizes parasporal crystalline inclusions containing Cry and Cyt proteins, some of which are toxic against a wide range of insect orders, nematodes and human-cancer cells. These toxins have been successfully used as bioinsecticides against caterpillars, beetles, and flies, including mosquitoes and blackflies. Bt also synthesizes insecticidal proteins during the vegetative growth phase, which are subsequently secreted into the growth medium. These proteins are commonly known as vegetative insecticidal proteins (Vips) and hold insecticidal activity against lepidopteran, coleopteran and some homopteran pests. A less well characterized secretory protein with no amino acid similarity to Vip proteins has shown insecticidal activity against coleopteran pests and is termed Sip (secreted insecticidal protein). Bin-like and ETX_MTX2-family proteins (Pfam PF03318), which share amino acid similarities with mosquitocidal binary (Bin) and Mtx2 toxins, respectively, from Lysinibacillus sphaericus, are also produced by some Bt strains. In addition, vast numbers of Bt isolates naturally present in the soil and the phylloplane also synthesize crystal proteins whose biological activity is still unknown. In this review, we provide an updated overview of the known active Bt toxins to date and discuss their activities.
Collapse
Affiliation(s)
- Leopoldo Palma
- Instituto de Agrobiotecnología, CSIC-UPNA-Gobierno de Navarra, Campus Arrosadía, Mutilva Baja, 31192 Navarra, Spain.
| | - Delia Muñoz
- Grupo de Protección Cultivos, Departamento de Producción Agraria, Escuela Técnica Superior de Ingenieros Agrónomos, Universidad Pública de Navarra, Pamplona, 31006 Navarra, Spain.
| | - Colin Berry
- Cardiff School of Biosciences, Cardiff University, Park Place, Cardiff CF10 3AT, UK.
| | - Jesús Murillo
- Grupo de Protección Cultivos, Departamento de Producción Agraria, Escuela Técnica Superior de Ingenieros Agrónomos, Universidad Pública de Navarra, Pamplona, 31006 Navarra, Spain.
| | - Primitivo Caballero
- Instituto de Agrobiotecnología, CSIC-UPNA-Gobierno de Navarra, Campus Arrosadía, Mutilva Baja, 31192 Navarra, Spain.
| |
Collapse
|
35
|
Kelker MS, Berry C, Evans SL, Pai R, McCaskill DG, Wang NX, Russell JC, Baker MD, Yang C, Pflugrath JW, Wade M, Wess TJ, Narva KE. Structural and biophysical characterization of Bacillus thuringiensis insecticidal proteins Cry34Ab1 and Cry35Ab1. PLoS One 2014; 9:e112555. [PMID: 25390338 PMCID: PMC4229197 DOI: 10.1371/journal.pone.0112555] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 10/07/2014] [Indexed: 11/18/2022] Open
Abstract
Bacillus thuringiensis strains are well known for the production of insecticidal proteins upon sporulation and these proteins are deposited in parasporal crystalline inclusions. The majority of these insect-specific toxins exhibit three domains in the mature toxin sequence. However, other Cry toxins are structurally and evolutionarily unrelated to this three-domain family and little is known of their three dimensional structures, limiting our understanding of their mechanisms of action and our ability to engineer the proteins to enhance their function. Among the non-three domain Cry toxins, the Cry34Ab1 and Cry35Ab1 proteins from B. thuringiensis strain PS149B1 are required to act together to produce toxicity to the western corn rootworm (WCR) Diabrotica virgifera virgifera Le Conte via a pore forming mechanism of action. Cry34Ab1 is a protein of ∼14 kDa with features of the aegerolysin family (Pfam06355) of proteins that have known membrane disrupting activity, while Cry35Ab1 is a ∼44 kDa member of the toxin_10 family (Pfam05431) that includes other insecticidal proteins such as the binary toxin BinA/BinB. The Cry34Ab1/Cry35Ab1 proteins represent an important seed trait technology having been developed as insect resistance traits in commercialized corn hybrids for control of WCR. The structures of Cry34Ab1 and Cry35Ab1 have been elucidated to 2.15 Å and 1.80 Å resolution, respectively. The solution structures of the toxins were further studied by small angle X-ray scattering and native electrospray ion mobility mass spectrometry. We present here the first published structure from the aegerolysin protein domain family and the structural comparisons of Cry34Ab1 and Cry35Ab1 with other pore forming toxins.
Collapse
Affiliation(s)
- Matthew S. Kelker
- Dow AgroSciences, LLC, Indianapolis, Indiana, United States of America
| | - Colin Berry
- Cardiff School of Biosciences, Cardiff University, Cardiff, Wales, United Kingdom
| | - Steven L. Evans
- Dow AgroSciences, LLC, Indianapolis, Indiana, United States of America
| | - Reetal Pai
- Dow AgroSciences, LLC, Indianapolis, Indiana, United States of America
| | | | - Nick X. Wang
- Dow AgroSciences, LLC, Indianapolis, Indiana, United States of America
| | - Joshua C. Russell
- Dow AgroSciences, LLC, Indianapolis, Indiana, United States of America
| | - Matthew D. Baker
- Cardiff School of Biosciences, Cardiff University, Cardiff, Wales, United Kingdom
| | - Cheng Yang
- Rigaku Americas Corporation, The Woodlands, Texas, United States of America
| | - J. W. Pflugrath
- Rigaku Americas Corporation, The Woodlands, Texas, United States of America
| | - Matthew Wade
- School of Optometry & Vision Sciences, Cardiff University, Cardiff, Wales, United Kingdom
| | - Tim J. Wess
- School of Optometry & Vision Sciences, Cardiff University, Cardiff, Wales, United Kingdom
| | - Kenneth E. Narva
- Dow AgroSciences, LLC, Indianapolis, Indiana, United States of America
| |
Collapse
|