1
|
Barrantes FJ. Structure and function meet at the nicotinic acetylcholine receptor-lipid interface. Pharmacol Res 2023; 190:106729. [PMID: 36931540 DOI: 10.1016/j.phrs.2023.106729] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 03/08/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023]
Abstract
The nicotinic acetylcholine receptor (nAChR) is a transmembrane protein that mediates fast intercellular communication in response to the endogenous neurotransmitter acetylcholine. It is the best characterized and archetypal molecule in the superfamily of pentameric ligand-gated ion channels (pLGICs). As a typical transmembrane macromolecule, it interacts extensively with its vicinal lipid microenvironment. Experimental evidence provides a wealth of information on receptor-lipid crosstalk: the nAChR exerts influence on its immediate membrane environment and conversely, the lipid moiety modulates ligand binding, affinity state transitions and gating of ion translocation functions of the receptor protein. Recent cryogenic electron microscopy (cryo-EM) studies have unveiled the occurrence of sites for phospholipids and cholesterol on the lipid-exposed regions of neuronal and electroplax nAChRs, confirming early spectroscopic and affinity labeling studies demonstrating the close contact of lipid molecules with the receptor transmembrane segments. This new data provides structural support to the postulated "lipid sensor" ability displayed by the outer ring of M4 transmembrane domains and their modulatory role on nAChR function, as we postulated a decade ago. Borrowing from the best characterized nAChR, the electroplax (muscle-type) receptor, and exploiting new structural information on the neuronal nAChR, it is now possible to achieve an improved depiction of these sites. In combination with site-directed mutagenesis, single-channel electrophysiology, and molecular dynamics studies, the new structural information delivers a more comprehensive portrayal of these lipid-sensitive loci, providing mechanistic explanations for their ability to modulate nAChR properties and raising the possibility of targetting them in disease.
Collapse
Affiliation(s)
- Francisco J Barrantes
- Laboratory of Molecular Neurobiology, Biomedical Research Institute, Faculty of Medical Sciences, Pontifical Catholic University of Argentina (UCA) - Argentine Scientific & Technol. Research Council (CONICET), Av. Alicia Moreau de Justo 1600, C1107AAZ Buenos Aires, Argentina.
| |
Collapse
|
2
|
Abstract
The synapse is a localized neurohumoral contact between a neuron and an effector cell and may be considered the quantum of fast intercellular communication. Analogously, the postsynaptic neurotransmitter receptor may be considered the quantum of fast chemical to electrical transduction. Our understanding of postsynaptic receptors began to develop about a hundred years ago with the demonstration that electrical stimulation of the vagus nerve released acetylcholine and slowed the heart beat. During the past 50 years, advances in understanding postsynaptic receptors increased at a rapid pace, owing largely to studies of the acetylcholine receptor (AChR) at the motor endplate. The endplate AChR belongs to a large superfamily of neurotransmitter receptors, called Cys-loop receptors, and has served as an exemplar receptor for probing fundamental structures and mechanisms that underlie fast synaptic transmission in the central and peripheral nervous systems. Recent studies provide an increasingly detailed picture of the structure of the AChR and the symphony of molecular motions that underpin its remarkably fast and efficient chemoelectrical transduction.
Collapse
Affiliation(s)
- Steven M Sine
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, Minnesota 55905, USA.
| |
Collapse
|
3
|
Karanjia R, García-Hernández LM, Miranda-Morales M, Somani N, Espinosa-Luna R, Montaño LM, Barajas-López C. Cross-inhibitory interactions between GABAA and P2X channels in myenteric neurones. Eur J Neurosci 2007; 23:3259-68. [PMID: 16820016 DOI: 10.1111/j.1460-9568.2006.04861.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Inhibitory interactions between GABA(A)[induced by gamma-aminobutyric acid (GABA)] and P2X [activated by adenosine 5'-triphosphate (ATP)] receptors of myenteric neurones from the guinea pig small intestine were characterized using whole-cell recordings. Currents induced by GABA (I(GABA)) or ATP (I(ATP)) were inhibited by picrotoxin or pyridoxalphosphate-6-azophenyl-2',4'-disulphonic acid, respectively. Currents induced by GABA + ATP (I(GABA+ATP)) were only as large as the current induced by the most effective transmitter, revealing current occlusion. This occlusion requires maximal activation of at least one of these receptors. Sequential applications of neurotransmitters, and kinetic and pharmacological properties of I(GABA+ATP) indicate that they are carried through both GABA(A) and P2X channels. ATP did not affect I(GABA) in neurones: (i) in which P2X channels were not present; (ii) after inhibiting P2X channels with Ca2+ (iii) in the presence of pyridoxalphosphate-6-azophenyl-2',4'-disulphonic acid, a P2X receptor antagonist; (iv) after P2X receptor desensitization or (v) at I(ATP) reversal potential. Similarly, GABA did not affect P2X-mediated currents in neurones: (i) in which GABA(A) channels were not present; (ii) in the presence of picrotoxin, a GABA(A) channel blocker; (iii) after GABA(A) receptor desensitization or (iv) at the I(GABA) reversal potential. Current occlusion occurred as fast as current activation and it was still present in the absence of Ca2+, at 11 degrees C, after adding to the pipette solution a cocktail of protein kinase inhibitors (staurosporine + genistein + K-252a), after substituting the GTP in the pipette with GDP-beta-S and after treating the cells with N-ethylmaleimide. Taken together, all of these results are consistent with a model of cross-inhibition between GABA(A) and P2X.
Collapse
Affiliation(s)
- Rustum Karanjia
- Department of Anatomy & Cell Biology, Queen's University, Kingston, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
4
|
|
5
|
Schofield CM, Jenkins A, Harrison NL. A highly conserved aspartic acid residue in the signature disulfide loop of the alpha 1 subunit is a determinant of gating in the glycine receptor. J Biol Chem 2003; 278:34079-83. [PMID: 12826676 DOI: 10.1074/jbc.m302416200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ligand-gated ion channels (LGICs) mediate rapid chemical neurotransmission. This gene superfamily includes the nicotinic acetylcholine, GABAA/C, 5-hydroxytryptamine type 3, and glycine receptors. A signature disulfide loop (Cys loop) in the extracellular domain is a structural motif common to all LGIC member subunits. Here we report that a highly conserved aspartic acid residue within the Cys loop at position 148 (Asp-148) of the glycine receptor alpha1 subunit is critical in the process of receptor activation. Mutation of this acidic residue to the basic amino acid lysine produces a large decrease in the potency of glycine, produces a decrease in the Hill slope, and converts taurine from a full agonist to a partial agonist; these data are consistent with a molecular defect in the receptor gating mechanism. Additional mutation of Asp-148 shows that alterations in the EC50 for agonists are dependent upon the charge of the side chain at this position and not molecular volume, polarity, or hydropathy. This study implicates negative charge at position Asp-148 as a critical component of the process in which agonist binding is coupled to channel gating. This finding adds to an emerging body of evidence supporting the involvement of the Cys loop in the gating mechanism of the LGICs.
Collapse
Affiliation(s)
- Claude M Schofield
- Graduate Program in Neuroscience, Weill Medical College of Cornell University, New York, New York 10021, USA.
| | | | | |
Collapse
|
6
|
|
7
|
|
8
|
Imboden M, Devignot V, Korn H, Goblet C. Regional distribution of glycine receptor messenger RNA in the central nervous system of zebrafish. Neuroscience 2001; 103:811-30. [PMID: 11274796 DOI: 10.1016/s0306-4522(00)00576-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
We report the cloning of the zebrafish beta subunit of the glycine receptor and compare the anatomical distribution of three glycine receptor subunit constituents in adult zebrafish brain (alphaZ1, alphaZ2 and betaZ) to the expression pattern of homologous receptor subunits (alpha1, alpha2 and beta) in the mammalian adult CNS. Non-radioactive hybridization was used to map the distribution of the alphaZ1, alphaZ2 and betaZ glycine receptor subunit messenger RNAs in the adult zebrafish brain. The anterior-posterior expression gradient found in adult zebrafish brain was similar to that reported in mammalian CNS. However, the glycine receptor transcripts, notably the alphaZ1 subunit, were more widely distributed in the anterior regions of the zebrafish than in the adult mammalian brain. The isoform-specific distribution pattern was less regionalized in zebrafish than in the rat mammalian CNS. Nevertheless, there was some regionalization of alphaZ1, alphaZ2 and betaZ transcripts in the diencephalic and mesencephalic nuclei where different sensory and motor centers express either alphaZ1/betaZ or alphaZ2 subunits. In contrast to the widespread distribution of the beta subunit in adult mammalian brain, alphaZ2 messenger RNA presented the widest expression territory of all three glycine receptor subunits tested. alphaZ2 messenger RNA was expressed in the absence of alphaZ1 and betaZ messenger RNA in the outer nuclear layer of the retina, the inferior olive and the raphe of the medulla oblongata, as well as in the nucleus of Cajal of the medulla spinalis. In contrast, an identified central neuron of the reticular formation, the Mauthner cell, expresses all three glycine receptor subunits (alphaZ1, alphaZ2 and betaZ). This report extends the already described glycine receptor expression in the vertebrate CNS and confirms the importance of glycine-mediated inhibition in spinal cord and brainstem.
Collapse
Affiliation(s)
- M Imboden
- Laboratoire de Biologie Cellulaire et Moléculaire du Neurone, INSERM U261, Institut Pasteur, 25, Rue du Dr Roux, F-75724, Paris Cedex 15, France.
| | | | | | | |
Collapse
|
9
|
Xue H, Hang J, Chu R, Xiao Y, Li H, Lee P, Zheng H. Delineation of a membrane-proximal beta-rich domain in the GABAA receptor by progressive deletions. J Mol Biol 1999; 285:55-61. [PMID: 9878387 DOI: 10.1006/jmbi.1998.2317] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The type A gamma-aminobutyric acid (GABAA) receptor plays a major inhibitory role in the central nervous system. Structural elucidation of the GABAA receptor has been impeded by the large size of the receptor. We present here the delineation of a minimal structural domain as the first step of dissecting the receptor structure. This was achieved through prediction-assisted progressive deletions: the prediction of a candidate structural domain rich in beta-strands with no close similarity to known structures was tested by deleting putative secondary structure elements from the ends of the proposed domain, as well as mutations within the terminal secondary structures. Such progressive deletions revealed the limits of an integral domain, spanning Cys180 to Met293 (numbering of human alpha1 subunit). Below these limits the intact domain structure, as indicated by its circular dichroism, collapses. Based on its putative position, this domain is provisionally designated the membrane-proximal beta-rich domain of GABAA receptor. The inclusion of sequences from the first two out of four previously suggested transmembrane segments and one of the two conserved Cys residues in this domain defines important constraints to the receptor structure.
Collapse
Affiliation(s)
- H Xue
- Department of Biochemistry, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong.
| | | | | | | | | | | | | |
Collapse
|
10
|
Elble RC, Widom J, Gruber AD, Abdel-Ghany M, Levine R, Goodwin A, Cheng HC, Pauli BU. Cloning and characterization of lung-endothelial cell adhesion molecule-1 suggest it is an endothelial chloride channel. J Biol Chem 1997; 272:27853-61. [PMID: 9346932 DOI: 10.1074/jbc.272.44.27853] [Citation(s) in RCA: 78] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Lung-endothelial cell adhesion molecule-1 (Lu-ECAM-1) is an endothelial cell surface molecule that mediates adhesion of metastatic melanoma cells to lung endothelium. Here we analyze the organization of the Lu-ECAM-1 protein complex, report the sequence of Lu-ECAM-1 cDNAs, and reveal a novel function of the protein. Lu-ECAM-1 immunopurified from bovine aortic endothelial cells (BAEC) consists of tightly associated glycoproteins of 90, 38, and 32 kDa, with minor components of 130 and 120 kDa. We present evidence that all of these protein species are encoded by a single open reading frame whose initial translation product is proteolytically processed to yield the other products. Correct processing in vitro was demonstrated by transfection of the longest cDNA into human embryonic kidney 293 cells; immunoblot analysis showed that the approximately 120-kDa precursor gave rise to 90- and 38-kDa products. RNA blots of BAEC mRNA detected messages in agreement with the sizes of the cDNA clones in addition to several of high molecular weight. DNA blot analysis showed that Lu-ECAM-1 is conserved throughout its length in all mammals tested, usually as a single or low copy gene. In the bovine, Lu-ECAM-1 protein is 88% identical to a calcium-dependent chloride channel described recently in tracheal epithelium, Ca-CC. Probes for Lu-ECAM-1 mRNA and protein confirmed the presence of a homolog in this tissue. We show that messages for both proteins are present in lung while only Ca-CC is present in trachea and only Lu-ECAM-1 is present in BAEC. These results suggest that endothelial cells express a chloride channel that is related to, but distinct from, that expressed in tracheal epithelium. They further suggest that an adhesion molecule can also be a chloride channel.
Collapse
Affiliation(s)
- R C Elble
- Cancer Biology Laboratories, Department of Pathology, Cornell University College of Veterinary Medicine, Ithaca, New York 14853, USA
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Venera GD, Testai FD, Peña C, Lacorazza HD, Biscoglio De Jiménez Bonino MJ. Involvement of histidine 134 in the binding of alpha-bungarotoxin to the nicotinic acetylcholine receptor. Neurochem Int 1997; 31:151-7. [PMID: 9185175 DOI: 10.1016/s0197-0186(96)00063-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Peptides corresponding to the sequence alpha 124-147 of the Torpedo californica and Homo sapiens nicotinic cholinergic receptors were synthesized. The His residue at position 134 was ethoxyformylated or substituted by Ala. Effects of such modifications were studied by: (a) a toxin blot assay and (b) a competition assay between each peptide and the Discopyge Ischudii receptor for 125I alpha-bungarotoxin, in solution. Apparent Kd values were 0.1 and 0.8 microM for Torpedo californica and Homo sapiens native peptides, respectively, and no binding was observed when the His residue was modified or substituted by Ala. ic50 values for the Torpedo californica and Homo sapiens fragments were 1.0 and 0.8 microM, respectively, and no significant displacement occurred when His 134 was ethoxyformylated or substituted by Ala. Hydroxylamine treatment restored 80-100% of their binding ability. Results strongly support the involvement of His 134 in the binding of alpha-bungarotoxin either to the Torpedo californica or the Homo sapiens receptor.
Collapse
Affiliation(s)
- G D Venera
- Instituto de Quimica y Fisicoquímica Biológicas (UBA-CONICET), Facultad de Farmacia y Bioquimica, Buenos Aires, Argentina
| | | | | | | | | |
Collapse
|
12
|
Affiliation(s)
- E A Barnard
- Molecular Neurobiology Unit, Royal Free Hospital School of Medicine, London, United Kingdom
| |
Collapse
|
13
|
Abstract
The inhibitory glycine receptor (GlyR) is a member of the ligand-gated ion channel receptor superfamily. The GlyR comprises a pentameric complex that forms a chloride-selective transmembrane channel, which is predominantly expressed in the spinal cord and brain stem. We review the pharmacological and physiological properties of the GlyR and relate this information to more recent insights that have been obtained through the cloning and recombinant expression of the GlyR subunits. We also discuss insights into our understanding of GlyR structure and function that have been obtained by the genetic characterisation of various heritable disorders of glycinergic neurotransmission.
Collapse
Affiliation(s)
- S Rajendra
- School of Physiology and Pharmacology, University of New South Wales, Sydney, Australia
| | | | | |
Collapse
|
14
|
Fu DX, Sine SM. Asymmetric contribution of the conserved disulfide loop to subunit oligomerization and assembly of the nicotinic acetylcholine receptor. J Biol Chem 1996; 271:31479-84. [PMID: 8940161 DOI: 10.1074/jbc.271.49.31479] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The acetylcholine receptor (AChR) at the motor synapse is a pentamer of homologous subunits with the composition alpha2betagammadelta. Owing to the circular arrangement of subunits that forms a central ion channel, each subunit interface contains contributions from opposite faces of each subunit, designated + and -. Common to all subunits of the AChR and members of its superfamily is a disulfide loop formed between cysteines 128 and 142 of the major extracellular domain. To gain insight into the structural contribution of the disulfide loop and its possible location, we mutated the invariant proline at position 136 to glycine (P136G) and examined subunit assembly. When introduced into any AChR subunit, P136G disrupted assembly by affecting the - face of the subunit, suggesting equivalent positioning of the loop in each subunit and localization to the - face. Also, the contribution of the loop in the overall assembly process differed for each subunit. In the beta and gamma subunits, P136G prevented assembly of higher order heteroligomers, whereas in the alpha and delta subunits, P136G prevented transport of assembled pentamers to the cell surface. The results demonstrate asymmetry in the contribution of the disulfide loop to formation of subunit interfaces, and that the loop in each subunit contributes at different stages of assembly.
Collapse
Affiliation(s)
- D X Fu
- Department of Physiology and Biophysics, Mayo Clinic, Rochester, Minnesota 55905, USA
| | | |
Collapse
|
15
|
|
16
|
Etter A, Cully DF, Schaeffer JM, Liu KK, Arena JP. An amino acid substitution in the pore region of a glutamate-gated chloride channel enables the coupling of ligand binding to channel gating. J Biol Chem 1996; 271:16035-9. [PMID: 8663156 DOI: 10.1074/jbc.271.27.16035] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Many of the subunits of ligand-gated ion channels respond poorly, if at all, when expressed as homomeric channels in Xenopus oocytes. This lack of a ligand response has been thought to result from poor surface expression, poor assembly, or lack of an agonist binding domain. The Caenorhabditis elegans glutamate-gated chloride channel subunit GluClbeta responds to glutamate as a homomeric channel while the GluClalpha subunit is insensitive. A chimera between GluClalpha and GluClbeta was used to suggest that major determinants for glutamate binding are present on the GluClalpha N terminus. Amino acid substitutions in the presumed pore of GluClalpha conferred direct glutamate gating indicating that GluClalpha is deficient in coupling of ligand binding to channel gating. Heteromeric channels of GluClalpha+beta may differ from the prototypic muscle nicotinic acetylcholine receptor in that they have the potential to bind ligand to all of the subunits forming the channel.
Collapse
Affiliation(s)
- A Etter
- Merck Research Laboratories, Department of Cell Biochemistry, Rahway, New Jersey 07065-0900, USA
| | | | | | | | | |
Collapse
|
17
|
Fraenkel Y, Shalev DE, Gershoni JM, Navon G. Nuclear magnetic resonance (NMR) analysis of ligand receptor interactions: the cholinergic system--a model. Crit Rev Biochem Mol Biol 1996; 31:273-301. [PMID: 8877268 DOI: 10.3109/10409239609106586] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Elucidation of the molecular mechanisms that govern ligand-receptor recognition is essential to the rational design of specific pharmacological reagents. Whereas often the receptor and its binding site are the target of investigation, study of the ligand in its free and bound state can also reveal important information regarding this recognition process. Nuclear magnetic resonance (NMR) spectroscopy can be extremely useful for such studies. In this review, we discuss the attributes of NMR in the study of ligand receptor interactions. The cholinergic receptor and its binding to the neurotransmitter, acetylcholine, and cholinergic antagonists serve as a model system, illustrating the power of ligand analysis by NMR. The results discussed prove that the region of residues alpha 180-205 of the nicotinic acetylcholine receptor are an essential component of the cholinergic binding site and that ligand binding involves a positively charged hydrophobic motif.
Collapse
Affiliation(s)
- Y Fraenkel
- Raymond and Beverly Sackler Faculty of Exact Sciences, School of Chemistry, Tel Aviv University, Ramat Aviv, Israel
| | | | | | | |
Collapse
|
18
|
|
19
|
Cohen BN, Figl A, Quick MW, Labarca C, Davidson N, Lester HA. Regions of beta 2 and beta 4 responsible for differences between the steady state dose-response relationships of the alpha 3 beta 2 and alpha 3 beta 4 neuronal nicotinic receptors. J Gen Physiol 1995; 105:745-64. [PMID: 7561742 PMCID: PMC2216958 DOI: 10.1085/jgp.105.6.745] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
We constructed chimeras of the rat beta 2 and beta 4 neuronal nicotinic subunits to locate the regions that contribute to differences between the acetylcholine (ACh) dose-response relationships of the alpha 3 beta 2 and alpha 3 beta 4 receptors. Expressed in Xenopus oocytes, the alpha 3 beta 2 receptor displays an EC50 for ACh approximately 20-fold less than the EC50 of the alpha 3 beta 4 receptor. The apparent Hill slope (n(app)) of alpha 3 beta 2 is near one whereas the alpha 3 beta 4 receptor displays an n(app) near two. Substitutions within the first 120 residues convert the EC50 for ACh from one wild-type value to the other. Exchanging just beta 2:104-120 for the corresponding region of beta 4 shifts the EC50 of ACh dose-response relationship in the expected direction but does not completely convert the EC50 of the dose-response relationship from one wild-type value to the other. However, substitutions in the beta 2:104-120 region do account for the relative sensitivity of the alpha 3 beta 2 receptor to cytisine, tetramethylammonium, and ACh. The expression of beta 4-like (strong) cooperativity requires an extensive region of beta 4 (beta 4:1-301). Relatively short beta 2 substitutions (beta 2:104-120) can reduce cooperativity to beta 2-like values. The results suggest that amino acids within the first 120 residues of beta 2 and the corresponding region of beta 4 contribute to an agonist binding site that bridges the alpha and beta subunits in neuronal nicotinic receptors.
Collapse
Affiliation(s)
- B N Cohen
- Division of Biomedical Sciences, University of California, Riverside 92521-0121, USA
| | | | | | | | | | | |
Collapse
|
20
|
Affiliation(s)
- V Cockcroft
- Biochemistry Department, Bath University, United Kingdom
| | | | | |
Collapse
|
21
|
Abstract
The transmitter-gated ion channels mediate rapid synaptic transmission, for example, at the neuromuscular junction using acetylcholine and in the CNS using primarily the amino acids glutamate and GABA. GABAA-receptor Cl- channels share sequence homology with a superfamily of these channels including nicotinic acetylcholine receptor and inhibitory glycine receptor. In this article, Geoffrey Smith and Richard Olsen discuss recent affinity labelling and site-directed mutagenesis studies on GABAA receptors that have identified amino acid residues essential for binding of agonists and allosteric modulators as well as the ion channel wall formation. The structural domains identified are consistent with results obtained with other members of the transmitter-gated ion channel superfamily and suggest that structural models for one member of the family may apply to the others as well.
Collapse
Affiliation(s)
- G B Smith
- Center for Molecular Recognition, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | | |
Collapse
|
22
|
Abstract
The fast-acting ligand-gated ion channels (LGICs) constitute a group that encompasses nicotinic ACh, 5-HT3, GABAA and glycine receptors. Undoubtedly, they all share a common evolutionary ancestor, and the group can therefore be considered to be a gene superfamily. Because the members of the superfamily are all receptors, it is reasonable to suppose that their common ancestor must also have been some type of receptor, and because the receptors are made of similar subunits, the ancestor was probably homo-oligomeric. Although we failed to find a group of proteins that are related evolutionarily to this superfamily, the analysis of the evolutionary relationships within the superfamily is possible and can give rise to information about the evolution of the structure and function of present-day receptors and indeed of the nervous system itself.
Collapse
Affiliation(s)
- M O Ortells
- School of Biology and Biochemistry, University of Bath, UK
| | | |
Collapse
|
23
|
|
24
|
Smith G, Olsen R. Identification of a [3H]muscimol photoaffinity substrate in the bovine gamma-aminobutyric acidA receptor alpha subunit. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)32003-3] [Citation(s) in RCA: 123] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
25
|
Dumas JP, Paul Germanas J. Design, synthesis and evaluation of a novel bicyclic lactam as a gly-pro type vi beta-turn mimic. Tetrahedron Lett 1994. [DOI: 10.1016/s0040-4039(00)76740-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
26
|
Fulachier MH, Mourier G, Cotton J, Servent D, Ménez A. Interaction of protein ligands with receptor fragments. On the residues of curaremimetic toxins that recognize fragments 128-142 and 185-199 of the alpha-subunit of the nicotinic acetylcholine receptor. FEBS Lett 1994; 338:331-8. [PMID: 8307203 DOI: 10.1016/0014-5793(94)80294-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Using a solid-phase assay, we found that 3H-labeled alpha Cobtx from Naja naja siamensis, a long-chain curaremimetic toxin, and 3H-labelled toxin alpha from Naja nigricollis, a short-chain toxin both bind specifically but with substantially different affinities (Kd = 4 x 10(-7) M and 50 x 10(-6) M) to fragment 185-199 (T alpha 185-199) of the alpha-subunit of the acetylcholine receptor (AcChoR) from Torpedo marmorata. Then we show that monoderivatizations of residues common to both long-chain and short-chain toxins (Tyr-25, Lys-27, Trp-29, and Lys-53) or to long-chain toxins only (Cys-30 and Cys-34) do not affect the binding of the toxins to T alpha 185-199, suggesting that none of these invariant residues in implicated in the recognition of this AcChoR region. alpha Cobtx and toxin alpha bind to the fragment 128-142 (T alpha 128-142) with more similar affinities (Kd = 3 x 10(-7) M and 1.4 x 10(-6) M) and their binding is dramatically affected by the single abolition of the positive charge of Lys-53, an invariant residue that contributes to AcChoR recognition. Therefore, the data indicate that Lys-53 more specifically recognizes the 128-142 region of AcChoR. Other monoderivatizations have no effect on toxin binding. The approach described in this paper may be of great help to identify toxin residues that establish direct contact with receptor fragments.
Collapse
Affiliation(s)
- M H Fulachier
- Département d'Ingénierie et d'Etudes des Protéines, C.E.A., Saclay, Gif/Yvette, France
| | | | | | | | | |
Collapse
|
27
|
Dunn SM, Bateson AN, Martin IL. Molecular neurobiology of the GABAA receptor. INTERNATIONAL REVIEW OF NEUROBIOLOGY 1994; 36:51-96. [PMID: 7822121 DOI: 10.1016/s0074-7742(08)60303-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- S M Dunn
- Department of Pharmacology, University of Alberta, Edmonton, Canada
| | | | | |
Collapse
|
28
|
Chaturvedi V, Donnelly-Roberts DL, Lentz TL. Effects of mutations of Torpedo acetylcholine receptor alpha 1 subunit residues 184-200 on alpha-bungarotoxin binding in a recombinant fusion protein. Biochemistry 1993; 32:9570-6. [PMID: 8373764 DOI: 10.1021/bi00088a008] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Residues between positions 184 and 200 of the Torpedo acetylcholine receptor alpha 1 subunit were changed by oligonucleotide-directed mutagenesis in a recombinant fusion protein containing residues 166-211. Amino acids were substituted with residues present in the snake alpha subunit, with an alanine, or with a functionally dissimilar residue. The competitive antagonist alpha-bungarotoxin bound to the fusion protein with high apparent affinity (IC50 = 3.2 x 10(-8) M), and binding was competed by agonists and antagonists. Mutation of His-186, Tyr-189, Tyr-190, Cys-192, Cys-193, Pro-194, and Asp-195 greatly reduced or abolished alpha-bungarotoxin binding, while mutation of Tyr-198 reduced binding, indicating these residues play an important role in binding either through functional interaction with neurotoxin residues or by stabilizing the conformation of the binding site. Molecular modeling of acetylcholine receptor residues 184-200 and knowledge of both neurotoxin and receptor residues essential for binding allow analysis of possible structure-function relationships of the interaction of alpha-bungarotoxin with this region of the receptor.
Collapse
Affiliation(s)
- V Chaturvedi
- Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut 06510
| | | | | |
Collapse
|
29
|
Otero de Bengtsson MS, Lacorazza HD, Biscoglio de Jiménez Bonino MJ, Medina JH. Involvement of a disulfide bond in the binding of flunitrazepam to the benzodiazepine receptor from bovine cerebral cortex. J Neurochem 1993; 60:536-42. [PMID: 8380435 DOI: 10.1111/j.1471-4159.1993.tb03182.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The effects of chemical modification of a disulfide bond(s) (-SS-) or sulfhydryl group(s) (-SH) on the [3H]-flunitrazepam ([3H]FNZ) binding to membrane-bound or immunoprecipitated benzodiazepine (BZD) receptors (BZD-R) from bovine cerebral cortex were examined. Reduction of -SS- with dithiothreitol (DTT) brought about a reversible, time- and dose-dependent inhibition of [3H]FNZ binding to the membrane-bound BZD-R. Alkylation of the membranes with the -SH-modifying reagent iodoacetamide (IAA) or 5,5'-dithiobis-(2-nitrobenzoic acid) (DTNB) produced a slight inhibition of [3H]FNZ binding in a dose-dependent manner. Scatchard analysis of saturation curves of [3H]FNZ binding in the presence and absence of 5 mM DTT revealed changes in affinity without modification in the maximal binding capacity, thus indicating a competitive mode of interaction. DTT pretreatment of both the membrane-bound and the immunoprecipitated BZD-R led to [3H]FNZ binding inhibition. Consistent with the modification of a binding site is the observation that reduction of -SS- does not bear on the binding affinity, but rather reduces the number of sites. Complete protection from DTT inhibition of [3H]FNZ binding by FNZ (an agonist) or by Ro 15-1788 (an antagonist) suggests the presence of -SS- at, or very close to, the BZD recognition binding site. No protection against IAA or DTNB inhibition was provided by FNZ. Photoaffinity labeling experiments with [3H]FNZ revealed a clear-cut band of 50 kDa in native and alkylated membranes but an extremely weak label in 5 mM DTT/IAA-treated membranes. The present results provide evidence for the participation of a disulfide bond in the recognition binding site of the bovine cerebral cortex BZD-R.
Collapse
Affiliation(s)
- M S Otero de Bengtsson
- Instituto de Quimica y Fisicoquimica Biológicas (UBA-CONICET), Facultad de Farmacia y Bioquimica, Universidad de Buenos Aires, Argentina
| | | | | | | |
Collapse
|
30
|
Changeux JP, Galzi JL, Devillers-Thiéry A, Bertrand D. The functional architecture of the acetylcholine nicotinic receptor explored by affinity labelling and site-directed mutagenesis. Q Rev Biophys 1992; 25:395-432. [PMID: 1293635 DOI: 10.1017/s0033583500004352] [Citation(s) in RCA: 128] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The scientific community will remember Peter Läuger as an exceptional man combining a generous personality and a sharp and skilful mind. He was able to attract by his views the interest of a large spectrum of biologists concerned by the mechanism of ion translocation through membranes. Yet, he was not a man with a single technique or theory. Using an authentically multidisciplinary approach, his ambition was to ‘understand transmembrane transport at the microscopic level, to capture its dynamics in the course of defined physiological processes’ (1987). According to him, ‘new concepts in the molecular physics of proteins’ had to be imagined, and ‘the traditional static picture of proteins has been replaced by the notions that proteins represent dynamic structures, subjected to conformational fluctuations covering a very wide time-range’ (1987).
Collapse
Affiliation(s)
- J P Changeux
- Institut Pasteur, CNRS D1284, Département des Biotechnologies, Paris, France
| | | | | | | |
Collapse
|
31
|
Lee CY. Ligand-activated ion channels may share common gating mechanisms with the Shaker potassium channel. FEBS Lett 1992; 311:81-4. [PMID: 1397309 DOI: 10.1016/0014-5793(92)81372-s] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
This paper proposes a detailed gating mechanism for the N-methyl-D-aspartate (NMDA) channel. In the NMDAR1 subunit, the signal of agonist binding may be carried from Y456 to W590 through an electron transport chain, including W480 which could be the glycine modulatory site. The channel's opening may arise from repulsion between negatively charged W590s, analogous to W435s of the Shaker K+ channel. The cyclic nucleotide-gated channels may be activated by a similar mechanism, but the opening of nicotinic acetylcholine receptor (nAChR) channels is likely to be initiated by the formation of tyrosine radicals. The role of disulfide-bonded cysteines in the redox modulation can also be explained.
Collapse
Affiliation(s)
- C Y Lee
- Chemical Dynamics Corporation, Guilderland, NY 12084
| |
Collapse
|
32
|
Abstract
Transmitter-gated channels, which can be selective for cations or for anions, form an important class among the membrane receptors responsible for signal transduction. Thirteen principal types of these channels can now be recognized and most of these are available for analysis in recombinant form. It is instructive to contrast their characteristic structural features with those of the two other primary classes of the signal-transducing receptors of membranes.
Collapse
Affiliation(s)
- E A Barnard
- MRC Molecular Neurobiology Unit, Medical Research Council Centre, Cambridge, UK
| |
Collapse
|
33
|
Vandenberg RJ, Handford CA, Schofield PR. Distinct agonist- and antagonist-binding sites on the glycine receptor. Neuron 1992; 9:491-6. [PMID: 1326295 DOI: 10.1016/0896-6273(92)90186-h] [Citation(s) in RCA: 110] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The distinction between receptor-binding sites for agonists and antagonists underpins the pharmacological differences between these two classes of ligands. In the glycine receptor, antagonist (strychnine) binding requires an interaction with residues Lys-200 and Tyr-202. We now demonstrate that the agonist-binding site of this receptor is located at the residue Thr-204. The agonist-binding site interaction is thus likely to be mediated by hydrogen bonding and not by ionic interactions. Our results demonstrate that, in contrast to other studies of ligand-gated ion channel receptors, agonist- and antagonist-binding sites are composed of distinct amino acid residues.
Collapse
Affiliation(s)
- R J Vandenberg
- Garvan Institute of Medical Research, Darlinghurst NSW, Australia
| | | | | |
Collapse
|
34
|
Thompson PE, Manallack DT, Blaney FE, Gallagher T. Conformational studies on (+)-anatoxin-a and derivatives. J Comput Aided Mol Des 1992; 6:287-98. [PMID: 1517779 DOI: 10.1007/bf00123382] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Anatoxin-a (AnTX) is a highly potent agonist acting at the nicotinic acetylcholine receptor (nAChR) and represents a valuable tool in the study of this receptor. Molecular mechanics, semi-empirical and ab initio molecular orbital energy minimization procedures were conducted to investigate the conformation of AnTX. For each minimization procedure, the s-trans enone isomer of protonated AnTX was the energetically favoured conformer due to intramolecular electrostatic interactions. Our studies are discussed in the light of previous experimental observations and conformational studies, in addition to their importance in the development of future pharmacophore models for nAChR agonist binding.
Collapse
|
35
|
Westkaemper RB, Glennon RA. Approaches to molecular modeling studies and specific application to serotonin ligands and receptors. Pharmacol Biochem Behav 1991; 40:1019-31. [PMID: 1816556 DOI: 10.1016/0091-3057(91)90122-i] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Molecular modeling studies are useful in as much as they may allow us to understand the activity and selectivity of currently existing agents, and, furthermore, may aid in the design of completely novel therapeutic agents. There are two basic modeling strategies: the ligand-ligand approach and the ligand-receptor approach. Both approaches possess certain inherent advantages and disadvantages and, in addition, make certain assumptions about the agents and/or receptors being investigated. Keeping with the spirit of this minisymposium, we describe these two approaches, their general usefulness, and their limitations. Using serotonin (5-HT) receptors as a focal point, we review and provide novel examples of molecular modeling studies involving both strategies. Presented for the first time are examples of ligand-receptor models to account for the binding of serotonergic agents at 5-HT2 and 5-HT1C receptors.
Collapse
Affiliation(s)
- R B Westkaemper
- Department of Medicinal Chemistry, School of Pharmacy, Medical College of Virginia, Virginia Commonwealth University, Richmond 23298
| | | |
Collapse
|
36
|
Cockcroft VB, Osguthorpe DJ, Barnard EA, Friday AE, Lunt GG. Ligand-gated ion channels. Homology and diversity. Mol Neurobiol 1990; 4:129-69. [PMID: 1725701 DOI: 10.1007/bf02780338] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
MESH Headings
- Amino Acid Sequence
- Animals
- Binding Sites
- Biological Evolution
- Consensus Sequence
- GABA-A Receptor Antagonists
- Humans
- Ion Channel Gating/drug effects
- Ion Channel Gating/physiology
- Ion Channels/drug effects
- Ion Channels/genetics
- Ion Channels/physiology
- Ligands
- Models, Molecular
- Molecular Sequence Data
- Multigene Family
- Nicotinic Antagonists
- Protein Conformation
- Receptors, GABA-A/drug effects
- Receptors, GABA-A/genetics
- Receptors, GABA-A/physiology
- Receptors, Glycine
- Receptors, Neurotransmitter/antagonists & inhibitors
- Receptors, Neurotransmitter/drug effects
- Receptors, Neurotransmitter/genetics
- Receptors, Neurotransmitter/physiology
- Receptors, Nicotinic/drug effects
- Receptors, Nicotinic/genetics
- Receptors, Nicotinic/physiology
- Sequence Alignment
- Sequence Homology, Nucleic Acid
- Signal Transduction
Collapse
|