1
|
Phillips JE, Pan D. The Hippo kinase cascade regulates a contractile cell behavior and cell density in a close unicellular relative of animals. eLife 2024; 12:RP90818. [PMID: 38517944 PMCID: PMC10959527 DOI: 10.7554/elife.90818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2024] Open
Abstract
The genomes of close unicellular relatives of animals encode orthologs of many genes that regulate animal development. However, little is known about the function of such genes in unicellular organisms or the evolutionary process by which these genes came to function in multicellular development. The Hippo pathway, which regulates cell proliferation and tissue size in animals, is present in some of the closest unicellular relatives of animals, including the amoeboid organism Capsaspora owczarzaki. We previously showed that the Capsaspora ortholog of the Hippo pathway nuclear effector Yorkie/YAP/TAZ (coYki) regulates actin dynamics and the three-dimensional morphology of Capsaspora cell aggregates, but is dispensable for cell proliferation control (Phillips et al., 2022). However, the function of upstream Hippo pathway components, and whether and how they regulate coYki in Capsaspora, remained unknown. Here, we analyze the function of the upstream Hippo pathway kinases coHpo and coWts in Capsaspora by generating mutant lines for each gene. Loss of either kinase results in increased nuclear localization of coYki, indicating an ancient, premetazoan origin of this Hippo pathway regulatory mechanism. Strikingly, we find that loss of either kinase causes a contractile cell behavior and increased density of cell packing within Capsaspora aggregates. We further show that this increased cell density is not due to differences in proliferation, but rather actomyosin-dependent changes in the multicellular architecture of aggregates. Given its well-established role in cell density-regulated proliferation in animals, the increased density of cell packing in coHpo and coWts mutants suggests a shared and possibly ancient and conserved function of the Hippo pathway in cell density control. Together, these results implicate cytoskeletal regulation but not proliferation as an ancestral function of the Hippo pathway kinase cascade and uncover a novel role for Hippo signaling in regulating cell density in a proliferation-independent manner.
Collapse
Affiliation(s)
- Jonathan E Phillips
- Department of Physiology, Howard Hughes Medical Institute, University of Texas Southwestern Medical CenterDallasUnited States
| | - Duojia Pan
- Department of Physiology, Howard Hughes Medical Institute, University of Texas Southwestern Medical CenterDallasUnited States
| |
Collapse
|
2
|
Morato A, Accornero P, Hovey RC. ERBB Receptors and Their Ligands in the Developing Mammary Glands of Different Species: Fifteen Characters in Search of an Author. J Mammary Gland Biol Neoplasia 2023; 28:10. [PMID: 37219601 DOI: 10.1007/s10911-023-09538-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 04/26/2023] [Indexed: 05/24/2023] Open
Abstract
The ERBB tyrosine kinase receptors and their ligands belong to a complex family that has diverse biological effects and expression profiles in the developing mammary glands, where its members play an essential role in translating hormone signals into local effects. While our understanding of these processes stems mostly from mouse models, there is the potential for differences in how this family functions in the mammary glands of other species, particularly in light of their unique histomorphological features. Herein we review the postnatal distribution and function of ERBB receptors and their ligands in the mammary glands of rodents and humans, as well as for livestock and companion animals. Our analysis highlights the diverse biology for this family and its members across species, the regulation of their expression, and how their roles and functions might be modulated by varying stromal composition and hormone interactions. Given that ERBB receptors and their ligands have the potential to influence processes ranging from normal mammary development to diseased states such as cancer and/or mastitis, both in human and veterinary medicine, a more complete understanding of their biological functions should help to direct future research and the identification of new therapeutic targets.
Collapse
Affiliation(s)
- Alessia Morato
- Department of Animal Science, University of California, Davis, One Shields Avenue, Davis, CA, 95616, USA.
| | - Paolo Accornero
- Department of Veterinary Science, University of Turin, Largo Paolo Braccini 2, Grugliasco, TO, 10095, Italy
| | - Russell C Hovey
- Department of Animal Science, University of California, Davis, One Shields Avenue, Davis, CA, 95616, USA
| |
Collapse
|
3
|
Targeting EGFR in melanoma - The sea of possibilities to overcome drug resistance. Biochim Biophys Acta Rev Cancer 2022; 1877:188754. [PMID: 35772580 DOI: 10.1016/j.bbcan.2022.188754] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 05/15/2022] [Accepted: 06/23/2022] [Indexed: 12/21/2022]
Abstract
Melanoma is considered one of the most aggressive skin cancers. It spreads and metastasizes quickly and is intrinsically resistant to most conventional chemotherapeutics, thereby presenting a challenge to researchers and clinicians searching for effective therapeutic strategies to treat patients with melanoma. The use of inhibitors of mutated serine/threonine-protein kinase B-RAF (BRAF), e.g., vemurafenib and dabrafenib, has revolutionized melanoma chemotherapy. Unfortunately, the response to these drugs lasts a limited time due to the development of acquired resistance. One of the proteins responsible for this process is epidermal growth factor receptor (EGFR). In this review, we summarize the role of EGFR signaling in the multidrug resistance of melanomas and discuss possible applications of EGFR inhibitors to overcome the development of drug resistance in melanoma cells during therapy.
Collapse
|
4
|
Sabbah DA, Hajjo R, Sweidan K. Review on Epidermal Growth Factor Receptor (EGFR) Structure, Signaling Pathways, Interactions, and Recent Updates of EGFR Inhibitors. Curr Top Med Chem 2021; 20:815-834. [PMID: 32124699 DOI: 10.2174/1568026620666200303123102] [Citation(s) in RCA: 298] [Impact Index Per Article: 74.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 11/21/2019] [Accepted: 12/10/2019] [Indexed: 12/13/2022]
Abstract
The epidermal growth factor receptor (EGFR) belongs to the ERBB family of tyrosine kinase receptors. EGFR signaling cascade is a key regulator in cell proliferation, differentiation, division, survival, and cancer development. In this review, the EGFR structure and its mutations, signaling pathway, ligand binding and EGFR dimerization, EGF/EGFR interaction, and the progress in the development of EGFR inhibitors have been explored.
Collapse
Affiliation(s)
- Dima A Sabbah
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, P.O. Box 130, Amman 11733, Jordan
| | - Rima Hajjo
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, P.O. Box 130, Amman 11733, Jordan
| | - Kamal Sweidan
- Department of Chemistry, The University of Jordan, Amman 11942, Jordan
| |
Collapse
|
5
|
Pan PC, Magge RS. Mechanisms of EGFR Resistance in Glioblastoma. Int J Mol Sci 2020; 21:E8471. [PMID: 33187135 PMCID: PMC7696540 DOI: 10.3390/ijms21228471] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 11/04/2020] [Accepted: 11/09/2020] [Indexed: 12/13/2022] Open
Abstract
Glioblastoma (GBM) is the most common primary malignant brain tumor in adults. Despite numerous efforts to target epidermal growth factor receptor (EGFR), commonly dysregulated in GBM, approaches directed against EGFR have not achieved the same degree of success as seen in other tumor types, particularly as compared to non-small cell lung cancer (NSCLC). EGFR alterations in glioblastoma lie primarily in the extracellular domain, unlike the kinase domain alterations seen in NSCLC. Small molecule inhibitors are difficult to develop for the extracellular domain. Monoclonal antibodies can be developed to target the extracellular domain but must contend with the blood brain barrier (BBB). We review the role of EGFR in GBM, the history of trialed treatments, and the potential paths forward to target the pathway that may have greater success.
Collapse
Affiliation(s)
- Peter C. Pan
- Division of Neuro-Oncology, NewYork-Presbyterian/Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Rajiv S. Magge
- Division of Neuro-Oncology, NewYork-Presbyterian/Weill Cornell Medicine, New York, NY 10021, USA;
| |
Collapse
|
6
|
Cai WQ, Zeng LS, Wang LF, Wang YY, Cheng JT, Zhang Y, Han ZW, Zhou Y, Huang SL, Wang XW, Peng XC, Xiang Y, Ma Z, Cui SZ, Xin HW. The Latest Battles Between EGFR Monoclonal Antibodies and Resistant Tumor Cells. Front Oncol 2020; 10:1249. [PMID: 32793499 PMCID: PMC7393266 DOI: 10.3389/fonc.2020.01249] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 06/17/2020] [Indexed: 12/31/2022] Open
Abstract
Epidermal growth factor receptor (EGFR) is a tyrosine kinase receptor involved in homeostatic regulation of normal cells and carcinogenesis of epithelial malignancies. With rapid development of the precision medicine era, a series of new therapies targeting EGFR are underway. Four EGFR monoclonal antibody drugs (cetuximab, panitumumab, nimotuzumab, and necitumumab) are already on the market, and a dozen other EGFR monoclonal antibodies are in clinical trials. Here, we comprehensively review the newly identified biological properties and anti-tumor mechanisms of EGFR monoclonal antibodies. We summarize recently completed and ongoing clinical trials of the classic and new EGFR monoclonal antibodies. More importantly, according to our new standard, we re-classify the complex evolving tumor cell resistance mechanisms, including those involving exosomes, non-coding RNA and the tumor microenvironment, against EGFR monoclonal antibodies. Finally, we analyzed the limitations of EGFR monoclonal antibody therapy, and discussed the current strategies overcoming EGFR related drug resistance. This review will help us better understand the latest battles between EGFR monoclonal antibodies and resistant tumor cells, and the future directions to develop anti-tumor EGFR monoclonal antibodies with durable effects.
Collapse
Affiliation(s)
- Wen-Qi Cai
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, China
- Department of Biochemistry and Molecular Biology, Health Science Center, School of Basic Medicine, Yangtze University, Jingzhou, China
| | - Li-Si Zeng
- State Key Laboratory of Respiratory Disease, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Li-Feng Wang
- Department of Gynaecology and Obstetrics, Lianjiang People's Hospital, Lianjiang, China
| | - Ying-Ying Wang
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, China
- Department of Biochemistry and Molecular Biology, Health Science Center, School of Basic Medicine, Yangtze University, Jingzhou, China
| | - Jun-Ting Cheng
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, China
- Department of Biochemistry and Molecular Biology, Health Science Center, School of Basic Medicine, Yangtze University, Jingzhou, China
| | - Ying Zhang
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, China
- Department of Biochemistry and Molecular Biology, Health Science Center, School of Basic Medicine, Yangtze University, Jingzhou, China
| | - Zi-Wen Han
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, China
- Department of Biochemistry and Molecular Biology, Health Science Center, School of Basic Medicine, Yangtze University, Jingzhou, China
| | - Yang Zhou
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, China
- Department of Biochemistry and Molecular Biology, Health Science Center, School of Basic Medicine, Yangtze University, Jingzhou, China
| | - Shao-Li Huang
- Department of Clinical laboratory, Lianjiang People's Hospital, Lianjiang, China
| | - Xian-Wang Wang
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, China
- Department of Laboratory Medicine, Health Science Center, School of Basic Medicine, Yangtze University, Jingzhou, China
| | - Xiao-Chun Peng
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, China
- Department of Pathophysiology, Health Science Center, School of Basic Medicine, Yangtze University, Jingzhou, China
| | - Ying Xiang
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, China
- Department of Biochemistry and Molecular Biology, Health Science Center, School of Basic Medicine, Yangtze University, Jingzhou, China
| | - Zhaowu Ma
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, China
- Department of Biochemistry and Molecular Biology, Health Science Center, School of Basic Medicine, Yangtze University, Jingzhou, China
| | - Shu-Zhong Cui
- State Key Laboratory of Respiratory Disease, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Hong-Wu Xin
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, China
- Department of Biochemistry and Molecular Biology, Health Science Center, School of Basic Medicine, Yangtze University, Jingzhou, China
| |
Collapse
|
7
|
Calarco L, Ellis J. Annotating the ‘hypothetical’ in hypothetical proteins: In-silico analysis of uncharacterised proteins for the Apicomplexan parasite, Neospora caninum. Vet Parasitol 2019; 265:29-37. [DOI: 10.1016/j.vetpar.2018.11.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 10/30/2018] [Accepted: 11/24/2018] [Indexed: 12/12/2022]
|
8
|
Nami B, Maadi H, Wang Z. Mechanisms Underlying the Action and Synergism of Trastuzumab and Pertuzumab in Targeting HER2-Positive Breast Cancer. Cancers (Basel) 2018; 10:cancers10100342. [PMID: 30241301 PMCID: PMC6210751 DOI: 10.3390/cancers10100342] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 09/13/2018] [Accepted: 09/18/2018] [Indexed: 02/08/2023] Open
Abstract
Human epidermal growth factor receptor (HER) 2 (HER2) is overexpressed in 20⁻30% of breast cancers. HER2 is a preferred target for treating HER2-positive breast cancer. Trastuzumab and pertuzumab are two HER2-targeted monoclonal antibodies approved by the Food and Drug Administration (FDA) to use as adjuvant therapy in combination with docetaxel to treat metastatic HER2-positive breast cancer. Adding the monoclonal antibodies to treatment regimen has changed the paradigm for treatment of HER2-positive breast cancer. Despite improving outcomes, the percentage of the patients who benefit from the treatment is still low. Continued research and development of novel agents and strategies of drug combinations is needed. A thorough understanding of the molecular mechanisms underlying the action and synergism of trastuzumab and pertuzumab is essential for moving forward to achieve high efficacy in treating HER2-positive breast cancer. This review examined and analyzed findings and hypotheses regarding the action and synergism of trastuzumab and pertuzumab and proposed a model of synergism based on available information.
Collapse
Affiliation(s)
- Babak Nami
- Signal Transduction Research Group, Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada.
| | - Hamid Maadi
- Signal Transduction Research Group, Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada.
| | - Zhixiang Wang
- Signal Transduction Research Group, Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada.
| |
Collapse
|
9
|
Guo Q, Li S, Lv X, Xiang J, Sagi A, Manor R, Li F. A Putative Insulin-like Androgenic Gland Hormone Receptor Gene Specifically Expressed in Male Chinese Shrimp. Endocrinology 2018; 159:2173-2185. [PMID: 29596627 DOI: 10.1210/en.2017-03253] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 03/15/2018] [Indexed: 11/19/2022]
Abstract
The insulin-like androgenic gland hormone (IAG) is the key regulator in crustacean male sexual differentiation. As a secreted peptide hormone, IAG might perform its biological function through interacting with the membrane receptor. However, the receptor of IAG remains unclear. In the current study, a putative IAG receptor gene (FcIAGR) was identified in Fenneropenaeus chinensis. The deduced amino acid sequence of FcIAGR contained several conserved domains of insulin-like receptor proteins, including two L domains (L1 and L2), a cysteine-rich domain, three fibronectin III domains, a transmembrane domain, and an intracellular tyrosine kinase domain. Tissue distribution and in situ hybridization analysis showed that FcIAGR was predominantly expressed in the androgenic gland and testis in male F. chinensis. Protein colocalization analysis in HEK293 cells showed that FcIAGR could colocalize with both FcIAG1 and FcIAG2, respectively. Yeast two-hybrid assay further confirmed the interactions between FcIAGR and FcIAGs. After a long-term silencing of FcIAGR with double-stranded RNA, most of the germ cells in the testis were arrested at the secondary spermatocytes, whereas those in the control developed into sperm cells. The data indicated that FcIAGR was the receptor of FcIAGs in F. chinensis. The current study provides insight into the mechanism that the insulin-like signaling pathway regulates the male sexual differentiation in Decapoda crustaceans.
Collapse
Affiliation(s)
- Qing Guo
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shihao Li
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Xinjia Lv
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jianhai Xiang
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Amir Sagi
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Rivka Manor
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Fuhua Li
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
10
|
Abstract
Over 90% of head and neck cancers overexpress the epidermal growth factor receptor (EGFR). In diverse tumor types, EGFR overexpression has been associated with poorer prognosis and outcomes. Therapies targeting EGFR include monoclonal antibodies, tyrosine kinase inhibitors, phosphatidylinositol 3-kinase (PI3K) inhibitors, and antisense gene therapy. Few EGFR-targeted therapeutics are approved for clinical use. The monoclonal antibody cetuximab is a Food and Drug Administration (FDA)-approved EGFR-targeted therapy, yet has exhibited modest benefit in clinical trials. The humanized monoclonal antibody nimotuzumab is also approved for head and neck cancers in Cuba, Argentina, Colombia, Peru, India, Ukraine, Ivory Coast, and Gabon in addition to nasopharyngeal cancers in China. Few other EGFR-targeted therapeutics for head and neck cancers have led to as significant responses as seen in lung carcinomas, for instance. Recent genome sequencing of head and neck tumors has helped identify patient subgroups with improved response to EGFR inhibitors, for example, cetuximab in patients with the KRAS-variant and the tyrosine kinase inhibitor erlotinib for tumors harboring MAPK1E322K mutations. Genome sequencing has furthermore broadened our understanding of dysregulated pathways, holding the potential to enhance the benefit derived from therapies targeting EGFR.
Collapse
|
11
|
Critchley WR, Pellet-Many C, Ringham-Terry B, Harrison MA, Zachary IC, Ponnambalam S. Receptor Tyrosine Kinase Ubiquitination and De-Ubiquitination in Signal Transduction and Receptor Trafficking. Cells 2018; 7:E22. [PMID: 29543760 PMCID: PMC5870354 DOI: 10.3390/cells7030022] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 03/09/2018] [Accepted: 03/13/2018] [Indexed: 12/13/2022] Open
Abstract
Receptor tyrosine kinases (RTKs) are membrane-based sensors that enable rapid communication between cells and their environment. Evidence is now emerging that interdependent regulatory mechanisms, such as membrane trafficking, ubiquitination, proteolysis and gene expression, have substantial effects on RTK signal transduction and cellular responses. Different RTKs exhibit both basal and ligand-stimulated ubiquitination, linked to trafficking through different intracellular compartments including the secretory pathway, plasma membrane, endosomes and lysosomes. The ubiquitin ligase superfamily comprising the E1, E2 and E3 enzymes are increasingly implicated in this post-translational modification by adding mono- and polyubiquitin tags to RTKs. Conversely, removal of these ubiquitin tags by proteases called de-ubiquitinases (DUBs) enables RTK recycling for another round of ligand sensing and signal transduction. The endocytosis of basal and activated RTKs from the plasma membrane is closely linked to controlled proteolysis after trafficking and delivery to late endosomes and lysosomes. Proteolytic RTK fragments can also have the capacity to move to compartments such as the nucleus and regulate gene expression. Such mechanistic diversity now provides new opportunities for modulating RTK-regulated cellular responses in health and disease states.
Collapse
Affiliation(s)
- William R Critchley
- Endothelial Cell Biology Unit, School of Molecular & Cellular Biology, University of Leeds, Leeds LS2 9JT, UK.
| | - Caroline Pellet-Many
- Centre for Cardiovascular Biology & Medicine, Rayne Building, University College London, London WC1E 6PT, UK.
| | - Benjamin Ringham-Terry
- Centre for Cardiovascular Biology & Medicine, Rayne Building, University College London, London WC1E 6PT, UK.
| | | | - Ian C Zachary
- Centre for Cardiovascular Biology & Medicine, Rayne Building, University College London, London WC1E 6PT, UK.
| | - Sreenivasan Ponnambalam
- Endothelial Cell Biology Unit, School of Molecular & Cellular Biology, University of Leeds, Leeds LS2 9JT, UK.
| |
Collapse
|
12
|
Ding Z, Roos A, Kloss J, Dhruv H, Peng S, Pirrotte P, Eschbacher JM, Tran NL, Loftus JC. A Novel Signaling Complex between TROY and EGFR Mediates Glioblastoma Cell Invasion. Mol Cancer Res 2017; 16:322-332. [PMID: 29117939 DOI: 10.1158/1541-7786.mcr-17-0454] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 10/13/2017] [Accepted: 10/27/2017] [Indexed: 12/30/2022]
Abstract
Glioblastoma is the most frequent primary brain tumor in adults and a highly lethal malignancy with a median survival of about 15 months. The aggressive invasion of the surrounding normal brain makes complete surgical resection impossible, increases the resistance to radiation and chemotherapy, and assures tumor recurrence. Thus, there is an urgent need to develop innovative therapeutics to target the invasive tumor cells for improved treatment outcomes of this disease. Expression of TROY (TNFRSF19), a member of the tumor necrosis factor (TNF) receptor family, increases with increasing glial tumor grade and inversely correlates with patient survival. Increased expression of TROY stimulates glioblastoma cell invasion in vitro and in vivo and increases resistance to temozolomide and radiation therapy. Conversely, silencing TROY expression inhibits glioblastoma cell invasion, increases temozolomide sensitivity, and prolongs survival in an intracranial xenograft model. Here, a novel complex is identified between TROY and EGFR, which is mediated predominantly by the cysteine-rich CRD3 domain of TROY. Glioblastoma tumors with elevated TROY expression have a statistically positive correlation with increased EGFR expression. TROY expression significantly increases the capacity of EGF to stimulate glioblastoma cell invasion, whereas depletion of TROY expression blocks EGF stimulation of glioblastoma cell invasion. Mechanistically, TROY expression modulates EGFR signaling by facilitating EGFR activation and delaying EGFR receptor internalization. Moreover, the association of EGFR with TROY increases TROY-induced NF-κB activation. These findings substantiate a critical role for the TROY-EGFR complex in regulation of glioblastoma cell invasion.Implications: The TROY-EGFR signaling complex emerges as a potential therapeutic target to inhibit glioblastoma cell invasion. Mol Cancer Res; 16(2); 322-32. ©2017 AACR.
Collapse
Affiliation(s)
- Zonghui Ding
- Department of Biochemistry and Molecular Biology, Mayo Clinic Arizona, Scottsdale, Arizona
| | - Alison Roos
- Departments of Cancer Biology and Neurosurgery, Mayo Clinic Arizona, Scottsdale, Arizona
| | - Jean Kloss
- Department of Biochemistry and Molecular Biology, Mayo Clinic Arizona, Scottsdale, Arizona
| | - Harshil Dhruv
- Cancer and Cell Biology Division, Translational Genomics Research Institute, Phoenix, Arizona
| | - Sen Peng
- Cancer and Cell Biology Division, Translational Genomics Research Institute, Phoenix, Arizona
| | - Patrick Pirrotte
- Cancer and Cell Biology Division, Translational Genomics Research Institute, Phoenix, Arizona.,Center for Proteomics, Translational Genomics Research Institute, Phoenix, Arizona
| | - Jennifer M Eschbacher
- Department of Neuropathology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona
| | - Nhan L Tran
- Departments of Cancer Biology and Neurosurgery, Mayo Clinic Arizona, Scottsdale, Arizona
| | - Joseph C Loftus
- Department of Biochemistry and Molecular Biology, Mayo Clinic Arizona, Scottsdale, Arizona.
| |
Collapse
|
13
|
S-nitrosylation of the IGF-1 receptor disrupts the cell proliferative action of IGF-1. Biochem Biophys Res Commun 2017; 491:870-875. [PMID: 28709872 DOI: 10.1016/j.bbrc.2017.06.177] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 06/28/2017] [Indexed: 12/13/2022]
Abstract
The insulin-like growth factor 1 receptor (IGF-1R) is a disulfide-linked heterotetramer containing two α-subunits and two β-subunits. Earlier studies demonstrate that nitric oxide (NO) can adversely affect IGF-1 action in the central nervous system. It is known that NO can induce S-nitrosylation of the cysteine residues in proteins, thereby partly contributing to the regulation of protein function. In the present study, we sought to determine whether S-nitrosylation of the cysteine residues in IGF-1R is an important post-translational modification that regulates its response to IGF-1. Using cultured SH-SY5Y human neuroblastoma cells as an in vitro model, we found that treatment of cells with S-nitroso-cysteine (SNOC), a NO donor that can nitrosylate the cysteine residues in proteins, induces S-nitrosylation of the β subunit of IGF-1R but not its α-subunit. IGF-1Rβ S-nitrosylation by SNOC is coupled with increased dissociation of the IGF-1R protein complex. In addition, disruption of the IGF-1R function resulting from S-nitrosylation of the IGF-1Rβ subunit is associated with disruption of the phosphoinositide 3-kinase (PI3K) and mitogen-activated protein kinase (MAPK) signaling pathways. Further, we observed that SNOC-induced IGF-1Rβ S-nitrosylation results in a dose-dependent inhibition of cell proliferation and survival. Together, these results suggest that elevated nitrosative stress may result in dysfunction of cellular IGF-1R signaling through S-nitrosylation of the cysteine residues in the IGF-1Rβ subunit, thereby disrupting the downstream PI3K and MAPK signaling functions and ultimately resulting in inhibition of cell proliferation and survival.
Collapse
|
14
|
Abstract
The ErbB receptor family, also known as the EGF receptor family or type I receptor family, includes the epidermal growth factor (EGF) receptor (EGFR) or ErbB1/Her1, ErbB2/Her2, ErbB3/Her3, and ErbB4/Her4. Among all RTKs, EGFR was the first RTK identified and the first one linked to cancer. Thus, EGFR has also been the most intensively studied among all RTKs. ErbB receptors are activated after homodimerization or heterodimerization. The ErbB family is unique among the various groups of receptor tyrosine kinases (RTKs) in that ErbB3 has impaired kinase activity, while ErbB2 does not have a direct ligand. Therefore, heterodimerization is an important mechanism that allows the activation of all ErbB receptors in response to ligand stimulation. The activated ErbB receptors bind to many signaling proteins and stimulate the activation of many signaling pathways. The specificity and potency of intracellular signaling pathways are determined by positive and negative regulators, the specific composition of activating ligand(s), receptor dimer components, and the diverse range of proteins that associate with the tyrosine phosphorylated C-terminal domain of the ErbB receptors. ErbB receptors are overexpressed or mutated in many cancers, especially in breast cancer, ovarian cancer, and non-small cell lung cancer. The overexpression and overactivation of ErbB receptors are correlated with poor prognosis, drug resistance, cancer metastasis, and lower survival rate. ErbB receptors, especially EGFR and ErbB2 have been the primary choices as targets for developing cancer therapies.
Collapse
Affiliation(s)
- Zhixiang Wang
- Signal Transduction Research Group, Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, 835 MSB, 114 St NW, Edmonton, AB, Canada, T6G 2H7.
| |
Collapse
|
15
|
pH dependence of ligand-induced human epidermal growth factor receptor activation investigated by molecular dynamics simulations. J Mol Model 2016; 22:131. [DOI: 10.1007/s00894-016-3000-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2014] [Accepted: 04/24/2016] [Indexed: 01/29/2023]
|
16
|
Poger D, Mark AE. Activation of the Epidermal Growth Factor Receptor: A Series of Twists and Turns. Biochemistry 2014; 53:2710-21. [DOI: 10.1021/bi401632z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- David Poger
- School
of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Alan E. Mark
- School
of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
- Institute
for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
17
|
Lemmon MA, Schlessinger J, Ferguson KM. The EGFR family: not so prototypical receptor tyrosine kinases. Cold Spring Harb Perspect Biol 2014; 6:a020768. [PMID: 24691965 DOI: 10.1101/cshperspect.a020768] [Citation(s) in RCA: 337] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The epidermal growth factor receptor (EGFR) was among the first receptor tyrosine kinases (RTKs) for which ligand binding was studied and for which the importance of ligand-induced dimerization was established. As a result, EGFR and its relatives have frequently been termed "prototypical" RTKs. Many years of mechanistic studies, however, have revealed that--far from being prototypical--the EGFR family is quite unique. As we discuss in this review, the EGFR family uses a distinctive "receptor-mediated" dimerization mechanism, with ligand binding inducing a dramatic conformational change that exposes a dimerization arm. Intracellular kinase domain regulation in this family is also unique, being driven by allosteric changes induced by asymmetric dimer formation rather than the more typical activation-loop phosphorylation. EGFR family members also distinguish themselves from other RTKs in having an intracellular juxtamembrane (JM) domain that activates (rather than autoinhibits) the receptor and a very large carboxy-terminal tail that contains autophosphorylation sites and serves an autoregulatory function. We discuss recent advances in mechanistic aspects of all of these components of EGFR family members, attempting to integrate them into a view of how RTKs in this important class are regulated at the cell surface.
Collapse
Affiliation(s)
- Mark A Lemmon
- Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104
| | | | | |
Collapse
|
18
|
Targeting tumor micro-environment for design and development of novel anti-angiogenic agents arresting tumor growth. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2013; 113:333-54. [PMID: 24139944 DOI: 10.1016/j.pbiomolbio.2013.10.001] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 10/05/2013] [Accepted: 10/08/2013] [Indexed: 12/12/2022]
Abstract
Angiogenesis: a process of generation of new blood vessels has been proved to be necessary for sustained tumor growth and cancer progression. Inhibiting angiogenesis pathway has long been remained a significant hope for the development of novel, effective and target orientated antitumor agents arresting the tumor proliferation and metastasis. The process of neoangiogenesis as a biological process is regulated by several pro- and anti-angiogenic factors, especially vascular endothelial growth factor, fibroblast growth factor, epidermal growth factor, hypoxia inducible factor 1 and transforming growth factor. Every endothelial cell destined for vessel formation is equipped with receptors for these angiogenic peptides. Moreover, numerous other angiogenic cytokines such as platelet derived growth factor (PGDF), placenta growth factor (PGF), nerve growth factor (NGF), stem-cell factor (SCF), and interleukins-2, 4, 6 etc. These molecular players performs critical role in regulating the angiogenic switch. Couple of decade's research in molecular aspects of tumor biology has unraveled numerous structural and functional mysteries of these angiogenic peptides. In present article, a detailed update on the functional and structural peculiarities of the various angiogenic peptides is described focusing on structural opportunities made available that has potential to be used to modulate function of these angiogenic peptides in developing therapeutic agents targeting neoplastic angiogenesis. The data may be useful in the mainstream of developing novel anticancer agents targeting tumor angiogenesis. We also discuss major therapeutic agents that are currently used in angiogenesis associated therapies as well as those are subject of active research or are in clinical trials.
Collapse
|
19
|
Petrenko AG, Zozulya SA, Deyev IE, Eladari D. Insulin receptor-related receptor as an extracellular pH sensor involved in the regulation of acid–base balance. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:2170-5. [DOI: 10.1016/j.bbapap.2012.11.011] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Revised: 11/16/2012] [Accepted: 11/19/2012] [Indexed: 12/25/2022]
|
20
|
Ward CW, Menting JG, Lawrence MC. The insulin receptor changes conformation in unforeseen ways on ligand binding: Sharpening the picture of insulin receptor activation. Bioessays 2013; 35:945-54, doi/10.1002/bies.201370111. [DOI: 10.1002/bies.201300065] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Colin W. Ward
- Walter and Eliza Hall Institute of Medical Research; Parkville Victoria Australia
| | - John G. Menting
- Walter and Eliza Hall Institute of Medical Research; Parkville Victoria Australia
| | - Michael C. Lawrence
- Walter and Eliza Hall Institute of Medical Research; Parkville Victoria Australia
- Department of Medical Biology; University of Melbourne; Parkville Victoria Australia
| |
Collapse
|
21
|
Yewale C, Baradia D, Vhora I, Patil S, Misra A. Epidermal growth factor receptor targeting in cancer: a review of trends and strategies. Biomaterials 2013; 34:8690-707. [PMID: 23953842 DOI: 10.1016/j.biomaterials.2013.07.100] [Citation(s) in RCA: 370] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 07/28/2013] [Indexed: 01/03/2023]
Abstract
The epidermal growth factor receptor (EGFR) is a cell-surface receptor belonging to ErbB family of tyrosine kinase and it plays a vital role in the regulation of cell proliferation, survival and differentiation. However; EGFR is aberrantly activated by various mechanisms like receptor overexpression, mutation, ligand-dependent receptor dimerization, ligand-independent activation and is associated with development of variety of tumors. Therefore, specific EGFR inhibition is one of the key targets for cancer therapy. Two major approaches have been developed and demonstrated benefits in clinical trials for targeting EGFR; monoclonal antibodies (mAbs) and tyrosine kinase inhibitors (TKIs). EGFR inhibitors like, cetuximab, panitumumab, etc. (mAbs) and gefitinib, erlotinib, lapatinib, etc. (TKIs) are now commercially available for treatment of variety of cancers. Recently, many other agents like peptides, nanobodies, affibodies and antisense oligonucleotide have also shown better efficacy in targeting and inhibiting EGFR. Now a days, efforts are being focused to identify molecular markers that can predict patients more likely to respond to anti-EGFR therapy; to find out combinatorial approaches with EGFR inhibitors and to bring new therapeutic agents with clinical efficacy. In this review we have outlined the role of EGFR in cancer, different types of EGFR inhibitors, preclinical and clinical status of EGFR inhibitors as well as summarized the recent efforts made in the field of molecular EGFR targeting.
Collapse
Affiliation(s)
- Chetan Yewale
- Pharmacy Department, Faculty of Technology & Engineering, The Maharaja Sayajirao University of Baroda, Kalabhavan, Vadodara 390 001, Gujarat, India
| | | | | | | | | |
Collapse
|
22
|
Lobito AA, Ramani SR, Tom I, Bazan JF, Luis E, Fairbrother WJ, Ouyang W, Gonzalez LC. Murine insulin growth factor-like (IGFL) and human IGFL1 proteins are induced in inflammatory skin conditions and bind to a novel tumor necrosis factor receptor family member, IGFLR1. J Biol Chem 2011; 286:18969-81. [PMID: 21454693 PMCID: PMC3099712 DOI: 10.1074/jbc.m111.224626] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Psoriasis is a human skin condition characterized by epidermal hyperproliferation and infiltration of multiple leukocyte populations. In characterizing a novel insulin growth factor (IGF)-like (IGFL) gene in mice (mIGFL), we found transcripts of this gene to be most highly expressed in skin with enhanced expression in models of skin wounding and psoriatic-like inflammation. A possible functional ortholog in humans, IGFL1, was uniquely and significantly induced in psoriatic skin samples. In vitro IGFL1 expression was up-regulated in cultured primary keratinocytes stimulated with tumor necrosis factor α but not by other psoriasis-associated cytokines. Finally, using a secreted and transmembrane protein library, we discovered high affinity interactions between human IGFL1 and mIGFL and the TMEM149 ectodomain. TMEM149 (renamed here as IGFLR1) is an uncharacterized gene with structural similarity to the tumor necrosis factor receptor family. Our studies demonstrate that IGFLR1 is expressed primarily on the surface of mouse T cells. The connection between mIGFL and IGFLR1 receptor suggests mIGFL may influence T cell biology within inflammatory skin conditions.
Collapse
Affiliation(s)
- Adrian A Lobito
- Department of Protein Chemistry, Genentech, Inc, South San Francisco, California 94080-4918, USA
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Zhang Z, Wriggers W. Polymorphism of the epidermal growth factor receptor extracellular ligand binding domain: the dimer interface depends on domain stabilization. Biochemistry 2011; 50:2144-56. [PMID: 21275429 PMCID: PMC3062653 DOI: 10.1021/bi101843s] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Epidermal growth factor receptors (EGFRs) and their cytoplasmic tyrosine kinases play important roles in cell proliferation and signaling. The EGFR extracellular domain (sEGFR) forms a dimer upon the binding of ligands, such as epidermal growth factor (EGF) and transforming growth factor α (TGFα). In this study, multiple molecular dynamics (MD) simulations of the 2:2 EGF·sEGFR3-512 dimer and the 2:2 TGFα·sEGFR3-512 dimer were performed in solvent and crystal environments. The simulations of systems comprising up to half a million atoms reveal part of the structural dynamics of which sEGFR dimers are capable. The solvent simulations consistently exhibited a prominent conformational relaxation from the initial crystal structures on the nanosecond time scale, leading to symmetry breaking and more extensive contacts between the two sEGFR monomers. In the crystal control simulation, this symmetry breaking and compaction was largely suppressed by crystal packing contacts. The simulations also provided evidence that the disordered domain IV of sEGFR may act as a stabilizing spacer in the dimer. Thus, the simulations suggest that the sEGFR dimer can take diverse configurations in solvent environments. These biologically relevant conformations of the EGFR signal transduction network can be controlled by contacts among the structural domains of sEGFR and its ligands.
Collapse
Affiliation(s)
| | - Willy Wriggers
- To whom correspondence should be addressed. Tel: (212) 403-8131. Fax: (646) 873-2131.
| |
Collapse
|
24
|
Abstract
Ever since the discovery of insulin and its role in the regulation of glucose uptake and utilization, there has been great interest in insulin, its structure and the way in which it interacts with its receptor and effects signal transduction. As the 90th anniversary of the discovery of insulin approaches, it is timely to provide an overview of the landmark discoveries relating to the structure and function of this remarkable molecule and its receptor.
Collapse
Affiliation(s)
- Colin W. Ward
- Walter and Eliza Hall Institute of Medical ResearchParkville, VIC, Australia
| | - Michael C. Lawrence
- Walter and Eliza Hall Institute of Medical ResearchParkville, VIC, Australia
- Department of Medical Biology, University of MelbourneParkville, VIC, Australia
- *Correspondence: Michael C. Lawrence, Walter and Eliza Hall Institute, 1G Royal Parade, Parkville, VIC 3052, Australia. e-mail:
| |
Collapse
|
25
|
Ward CW, Lawrence MC. Ligand-induced activation of the insulin receptor: a multi-step process involving structural changes in both the ligand and the receptor. Bioessays 2009; 31:422-34. [PMID: 19274663 DOI: 10.1002/bies.200800210] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Current models of insulin binding to the insulin receptor (IR) propose (i) that there are two binding sites on the surface of insulin which engage with two binding sites on the receptor and (ii) that ligand binding involves structural changes in both the ligand and the receptor. Many of the features of insulin binding to its receptor, namely B-chain helix interactions with the leucine-rich repeat domain and A-chain residue interactions with peptide loops from another part of the receptor, are also seen in models of relaxin and insulin-like peptide 3 binding to their receptors. We show that these principles can likely be extended to the group of mimetic peptides described by Schäffer and coworkers, which are reported to have no sequence identity with insulin. This review summarizes our current understanding of ligand-induced activation of the IR and highlights the key issues that remain to be addressed.
Collapse
Affiliation(s)
- Colin W Ward
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.
| | | |
Collapse
|
26
|
Friedländer E, Barok M, Szöllősi J, Vereb G. ErbB-directed immunotherapy: Antibodies in current practice and promising new agents. Immunol Lett 2008; 116:126-40. [DOI: 10.1016/j.imlet.2007.12.001] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2007] [Accepted: 12/01/2007] [Indexed: 01/24/2023]
|
27
|
Ward C, Lawrence M, Streltsov V, Garrett T, McKern N, Lou MZ, Lovrecz G, Adams T. Structural insights into ligand-induced activation of the insulin receptor. Acta Physiol (Oxf) 2008; 192:3-9. [PMID: 18171424 DOI: 10.1111/j.1748-1716.2007.01781.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The current model for insulin binding to the insulin receptor proposes that there are two binding sites, referred to as sites 1 and 2, on each monomer in the receptor homodimer and two binding surfaces on insulin, one involving residues predominantly from the dimerization face of insulin (the classical binding surface) and the other residues from the hexamerization face. High-affinity binding involves one insulin molecule using its two surfaces to make bridging contacts with site 1 from one receptor monomer and site 2 from the other. Whilst the receptor dimer has two identical site 1-site 2 pairs, insulin molecules cannot bridge both pairs simultaneously. Our structures of the insulin receptor (IR) ectodomain dimer and the L1-CR-L2 fragments of IR and insulin-like growth factor receptor (IGF-1R) explain many of the features of ligand-receptor binding and allow the two binding sites on the receptor to be described. The IR dimer has an unexpected folded-over conformation which places the C-terminal surface of the first fibronectin-III domain in close juxtaposition to the known L1 domain ligand-binding surface suggesting that the C-terminal surface of FnIII-1 is the second binding site involved in high-affinity binding. This is very different from previous models based on three-dimensional reconstruction from scanning transmission electron micrographs. Our single-molecule images indicate that IGF-1R has a morphology similar to that of IR. In addition, the structures of the first three domains (L1-CR-L2) of the IR and IGF-1R show that there are major differences in the two regions governing ligand specificity. The implications of these findings for ligand-induced receptor activation will be discussed. This review summarizes the key findings regarding the discovery and characterization of the insulin receptor, the identification and arrangement of its structural domains in the sequence and the key features associated with ligand binding. The remainder of the review deals with a description of the receptor structure and how it explains much of the large body of biochemical data in the literature on insulin binding and receptor activation.
Collapse
Affiliation(s)
- C Ward
- CSIRO Molecular & Health Technologies, Parkville, Vic., Australia.
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Keyhanfar M, Booker G, Whittaker J, Wallace J, Forbes B. Precise mapping of an IGF-I-binding site on the IGF-1R. Biochem J 2007; 401:269-77. [PMID: 16981855 PMCID: PMC1698672 DOI: 10.1042/bj20060890] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The IGF-1R [type 1 IGF (insulin-like growth factor) receptor] is activated upon binding to IGF-I and IGF-II leading to cell growth, survival and migration of both normal and cancerous cells. We have characterized the binding interaction between the IGF-1R and its ligands using two high-affinity mouse anti-IGF-1R mAbs (monoclonal antibodies), 7C2 and 9E11. These mAbs both block IGF-I binding to the IGF-1R but have no effect on IGF-II binding. Epitope mapping using chimaeras of the IGF-1R and insulin receptor revealed that the mAbs bind to the CR (cysteine-rich) domain of IGF-1R. The epitope was finely mapped using single point mutations in the IGF-1R. Mutation of Phe241, Phe251 or Phe266 completely abolished 7C2 and 9E11 binding. The three-dimensional structure showed that these residues cluster on the surface of the CR-domain. BIAcore analyses revealed that IGF-I and a chimaeric IGF-II with the IGF-I C-domain competed for the binding of both mAbs with the IGF-1R, whereas neither IGF-II nor a chimaeric IGF-I with the IGF-II C-domain affected antibody binding. We therefore conclude the IGF-I C-domain interacts with the CR (cysteine-rich) domain of the receptor at the cluster of residues Phe241, Phe251 and Phe266. These results allow precise orientation of IGF-I within the IGF-I-IGF-1R complex involving the IGF-I C-domain binding to the IGF-1R CR domain. In addition, mAbs 7C2 and 9E11 inhibited both IGF-I- and IGF-II-induced cancer cell proliferation, migration and IGF-1R down-regulation, demonstrating that targeting the IGF-1R is an effective strategy for inhibition of cancer cell growth.
Collapse
Affiliation(s)
- Mehrnaz Keyhanfar
- *School of Molecular and Biomedical Science, The University of Adelaide, Adelaide 5005, South Australia, Australia
- †Bu-Ali Sina University, Hamedan, Iran
| | - Grant W. Booker
- *School of Molecular and Biomedical Science, The University of Adelaide, Adelaide 5005, South Australia, Australia
| | - Jonathan Whittaker
- ‡Departments of Nutrition and Biochemistry, Case Western Reserve University, Cleveland, Ohio 44106-4906, U.S.A
| | - John C. Wallace
- *School of Molecular and Biomedical Science, The University of Adelaide, Adelaide 5005, South Australia, Australia
| | - Briony E. Forbes
- *School of Molecular and Biomedical Science, The University of Adelaide, Adelaide 5005, South Australia, Australia
- To whom correspondence should be addressed (email )
| |
Collapse
|
29
|
Ramsauer VP, Pino V, Farooq A, Carothers Carraway CA, Salas PJ, Carraway KL. Muc4-ErbB2 complex formation and signaling in polarized CACO-2 epithelial cells indicate that Muc4 acts as an unorthodox ligand for ErbB2. Mol Biol Cell 2006; 17:2931-41. [PMID: 16624867 PMCID: PMC1483030 DOI: 10.1091/mbc.e05-09-0895] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Muc4 serves as an intramembrane ligand for the receptor tyrosine kinase ErbB2. The time to complex formation and the stoichiometry of the complex were determined to be <15 min and 1:1 by analyses of Muc4 and ErbB2 coexpressed in insect cells and A375 tumor cells. In polarized CACO-2 cells, Muc4 expression causes relocalization of ErbB2, but not its heterodimerization partner ErbB3, to the apical cell surface, effectively segregating the two receptors. The apically located ErbB2 is phosphorylated on tyrosines 1139 and 1248. The phosphorylated ErbB2 in CACO-2 cells recruits the cytoplasmic adaptor protein Grb2, consistent with previous studies showing phosphotyrosine 1139 to be a Grb2 binding site. To address the issue of downstream signaling from apical ErbB2, we analyzed the three MAPK pathways of mammalian cells, Erk, p38, and JNK. Consistent with the more differentiated phenotype of the CACO-2 cells, p38 phosphorylation was robustly increased by Muc4 expression, with a consequent activation of Akt. In contrast, Erk and JNK phosphorylation was not changed. The ability of Muc4 to segregate ErbB2 and other ErbB receptors and to alter downstream signaling cascades in polarized epithelial cells suggests that it has a role in regulating ErbB2 in differentiated epithelia.
Collapse
Affiliation(s)
| | - Vanessa Pino
- Biochemistry and Molecular Biology, University of Miami School of Medicine, Miami, FL 33101
| | - Amjad Farooq
- Biochemistry and Molecular Biology, University of Miami School of Medicine, Miami, FL 33101
| | | | | | | |
Collapse
|
30
|
Nour N, Mayer G, Mort JS, Salvas A, Mbikay M, Morrison CJ, Overall CM, Seidah NG. The cysteine-rich domain of the secreted proprotein convertases PC5A and PACE4 functions as a cell surface anchor and interacts with tissue inhibitors of metalloproteinases. Mol Biol Cell 2005; 16:5215-26. [PMID: 16135528 PMCID: PMC1266420 DOI: 10.1091/mbc.e05-06-0504] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The proprotein convertases PC5, PACE4 and furin contain a C-terminal cysteine-rich domain (CRD) of unknown function. We demonstrate that the CRD confers to PC5A and PACE4 properties to bind tissue inhibitors of metalloproteinases (TIMPs) and the cell surface. Confocal microscopy and biochemical analyses revealed that the CRD is essential for cell surface tethering of PC5A and PACE4 and that it colocalizes and coimmunoprecipitates with the full-length and C-terminal domain of TIMP-2. Surface-bound PC5A in TIMP-2 null fibroblasts was only observed upon coexpression with TIMP-2. In COS-1 cells, plasma membrane-associated PC5A can be displaced by heparin, suramin, or heparinases I and III and by competition with excess exogenous TIMP-2. Furthermore, PC5A and TIMP-2 are shown to be colocalized over the surface of enterocytes in the mouse duodenum and jejunum, as well as in liver sinusoids. In conclusion, the CRD of PC5A and PACE4 functions as a cell surface anchor favoring the processing of their cognate surface-anchored substrates, including endothelial lipase.
Collapse
Affiliation(s)
- Nadia Nour
- Laboratory of Biochemical Neuroendocrinology, Clinical Research Institute of Montreal, Montreal, Quebec H2W 1R7, Canada
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
I present here a personal perspective on more than three decades of research into the structural biology of the insulin-receptor interaction. The solution of the three-dimensional structure of insulin in 1969 provided a detailed understanding of the insulin surfaces involved in self-assembly. In subsequent years, hundreds of insulin analogues were prepared by insulin chemists and molecular biologists, with the goal of relating the structure to the biological function of the molecule. The design of methods for direct receptor-binding studies in the 1970s, and the cloning of the receptor in the mid 1980s, provided the required tools for detailed structure-function studies. In the absence of a full three-dimensional structure of the insulin-receptor complex, I attempt to assemble the existing pieces of the puzzle generated by our and other laboratories, in order to generate a plausible mechanistic model of the insulin-receptor interaction that explains its kinetics and negative cooperativity.
Collapse
Affiliation(s)
- Pierre De Meyts
- Receptor Biology Laboratory, Hagedorn Research Institute, Niels Steensens Vej 6, DK-2820 Gentofte, Denmark.
| |
Collapse
|
32
|
Leahy DJ. Structure and Function of the Epidermal Growth Factor (EGF⧸ErbB) Family of Receptors. CELL SURFACE RECEPTORS 2004; 68:1-27. [PMID: 15500857 DOI: 10.1016/s0065-3233(04)68001-6] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Daniel J Leahy
- Department of Biophysics & Biophysical Chemistry and HHMI, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| |
Collapse
|
33
|
Burgess AW, Cho HS, Eigenbrot C, Ferguson KM, Garrett TPJ, Leahy DJ, Lemmon MA, Sliwkowski MX, Ward CW, Yokoyama S. An Open-and-Shut Case? Recent Insights into the Activation of EGF/ErbB Receptors. Mol Cell 2003; 12:541-52. [PMID: 14527402 DOI: 10.1016/s1097-2765(03)00350-2] [Citation(s) in RCA: 642] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Recent crystallographic studies have provided significant new insight into how receptor tyrosine kinases from the EGF receptor or ErbB family are regulated by their growth factor ligands. EGF receptor dimerization is mediated by a unique dimerization arm, which becomes exposed only after a dramatic domain rearrangement is promoted by growth factor binding. ErbB2, a family member that has no ligand, has its dimerization arm constitutively exposed, and this explains several of its unique properties. We outline a mechanistic view of ErbB receptor homo- and heterodimerization, which suggests new approaches for interfering with these processes when they are implicated in human cancers.
Collapse
Affiliation(s)
- Antony W Burgess
- Cooperative Research Centre for Cellular Growth Factors, P.O. Box 2008, Royal Melbourne Hospital, Parkville, Victoria 3050, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Kumagai T, Katsumata M, Hasegawa A, Furuuchi K, Funakoshi T, Kawase I, Greene MI. Role of extracellular subdomains of p185c-neu and the epidermal growth factor receptor in ligand-independent association and transactivation. Proc Natl Acad Sci U S A 2003; 100:9220-5. [PMID: 12867596 PMCID: PMC170899 DOI: 10.1073/pnas.1633546100] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We investigated the assembly and activation of the epidermal growth factor receptor (EGFR)-p185c-neu heterodimer by using a sequential immunoprecipitation methodology. Using this approach we detected heterodimers and also higher-ordered oligomeric complexes. Phosphorylated EGFR-p185c-neu heterodimeric forms were detected in the absence of EGF, but the species became highly phosphorylated after EGF stimulation. To evaluate heterodimer formation and additional transactivation by EGF, we investigated the roles of the four extracellular subdomains of p185c-neu and the EGFR. Subdomains I-IV of the EGFR dimerized with subdomains I-IV of p185c-neu, respectively, in a parallel manner. In addition, subdomains I-IV of the EGFR also associated with p185c-neu subdomains III, IV, I, and II, respectively. A lack of one of the p185c-neu cysteine-rich domains (subdomains II or IV) resulted in a loss of EGF-induced transactivation. These data suggest that two cysteine-rich domains play defining roles in ligand-dependent transactivation and that both of these cysteine-rich extracellular subdomains as well as non-cysteine-rich extracellular subdomains are involved in ligand-independent interactions with the EGFR. Our studies provide biochemical evidence of the role of the cysteine-rich domains of p185c-neu in assembly and transactivation of erbB complexes and also indicate that these subdomains might be useful clinical targets.
Collapse
Affiliation(s)
- Toru Kumagai
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | |
Collapse
|
35
|
Yip YL, Novotny J, Edwards M, Ward RL. Structural analysis of the ErbB-2 receptor using monoclonal antibodies: Implications for receptor signalling. Int J Cancer 2003; 104:303-9. [PMID: 12569553 DOI: 10.1002/ijc.10951] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The extracellular part of ErbB-2 is formed by 4 domains, specifically, L1, L2 that adopt a beta-helical structure and S1, S2 that consist of several cysteine-rich, EGF-fold modules. These ectodomains mediate ErbB-2 dimerisation with itself or with other members of the epidermal growth factor receptor (EGFR) family, events essential to both ErbB-2 signaling and the development of certain malignancies. The anti-ErbB-2 monoclonal antibodies N12, N28 and L87 bind to the polypeptides C531-A586, T216-C235 and C220-C235 respectively. In this study, glycine walking and random mutagenesis were used to further delineate the critical residues involved in antibody binding. A molecular model of ErbB-2 ectodomains was then constructed based on the recently published coordinates of the EGFR (EGFR) model. This model rationalized successfully many features of our epitope mapping, including their location in modules within the S1 and S2 domains and the importance of Arg545, Gln548 and Leu561 for N12 binding. Further investigation of the functional effects of the anti-ErbB-2 monoclonal antibodies demonstrated that N28 strongly stimulated ErbB-2 phosphorylation and MAPK activation whereas N12 had no effect. As bivalency is required for the action of these antibodies we propose that at least 2 different kinds of ErbB-2 homodimers can be formed as relative rotational isomers and that the S1 and S2 domains are instrumental in determining the relative orientations of the ErbB-2 homodimers, such that different signaling effects are induced.
Collapse
Affiliation(s)
- Yum L Yip
- School of Medicine, University of New South Wales, Sydney, Australia
| | | | | | | |
Collapse
|
36
|
Garrett TPJ, McKern NM, Lou M, Elleman TC, Adams TE, Lovrecz GO, Kofler M, Jorissen RN, Nice EC, Burgess AW, Ward CW. The crystal structure of a truncated ErbB2 ectodomain reveals an active conformation, poised to interact with other ErbB receptors. Mol Cell 2003; 11:495-505. [PMID: 12620236 DOI: 10.1016/s1097-2765(03)00048-0] [Citation(s) in RCA: 427] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
ErbB2 does not bind ligand, yet appears to be the major signaling partner for other ErbB receptors by forming heteromeric complexes with ErbB1, ErbB3, or ErbB4. The crystal structure of residues 1-509 of ErbB2 at 2.5 A resolution reveals an activated conformation similar to that of the EGFR when complexed with ligand and very different from that seen in the unactivated forms of ErbB3 or EGFR. The structure explains the inability of ErbB2 to bind known ligands and suggests why ErbB2 fails to form homodimers. Together, the data suggest a model in which ErbB2 is already in the activated conformation and ready to interact with other ligand-activated ErbB receptors.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Base Sequence
- Binding Sites
- CHO Cells
- Cricetinae
- Crystallography, X-Ray
- DNA, Complementary/genetics
- ErbB Receptors/chemistry
- ErbB Receptors/genetics
- ErbB Receptors/metabolism
- Humans
- In Vitro Techniques
- Ligands
- Models, Molecular
- Molecular Sequence Data
- Peptide Fragments/chemistry
- Peptide Fragments/genetics
- Peptide Fragments/metabolism
- Protein Conformation
- Protein Structure, Tertiary
- Receptor, ErbB-2/chemistry
- Receptor, ErbB-2/genetics
- Receptor, ErbB-2/metabolism
- Receptor, ErbB-3/chemistry
- Receptor, ErbB-3/genetics
- Receptor, ErbB-3/metabolism
- Recombinant Proteins/chemistry
- Recombinant Proteins/genetics
- Recombinant Proteins/metabolism
- Sequence Homology, Amino Acid
- Static Electricity
Collapse
Affiliation(s)
- Thomas P J Garrett
- Walter and Eliza Hall Institute of Medical Research, Royal Melbourne Hospital, 3050, Parkville, Victoria, Australia.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Whittaker J, Sørensen H, Gadsbøll VL, Hinrichsen J. Comparison of the Functional Insulin Binding Epitopes of the A and B Isoforms of the Insulin Receptor. J Biol Chem 2002; 277:47380-4. [PMID: 12270939 DOI: 10.1074/jbc.m208371200] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The human insulin receptor is expressed as two isoforms that are generated by alternate splicing of its mRNA; the B isoform has 12 additional amino acids (718-729) encoded by exon 11 of the gene. The isoforms have been reported to have different ligand binding properties. To further characterize their insulin binding properties, we have performed structure-directed alanine-scanning mutagenesis of a major insulin binding site of the receptor, formed from the receptor L1 domain (amino acids 1-470) and amino acids 705-715 at the C terminus of the alpha subunit. Alanine mutants of each isoform were transiently expressed as recombinant secreted extracellular domain in 293 cells, and their insulin binding properties were evaluated by competitive binding assays. Mutation of Arg(86) and Phe(96) of each isoform resulted in receptors that were not secreted. The Kds of unmutated receptors were almost identical for both isoforms. Several new mutations compromising insulin binding were identified. In L1, mutation of Leu(37) decreased affinity 20- to 40-fold and mutations of Val(94), Glu(97), Glu(120), and Lys(121) 3 to 10-fold for each isoform. A number of mutations produced differential effects on the two isoforms. Mutation of Asn(15) in the L1 domain and Phe(714) at the C terminus of the alpha subunit inactivated the A isoform but only reduced the affinity of the B isoform 40- to 60-fold. At the C terminus of the alpha subunit, mutations of Asp(707), Val(713), and Val(715) produced 7- to 16-fold reductions in affinity of the A isoform but were without effect on the B isoform. In contrast, alanine mutations of Tyr(708) and Asn(711) inactivated the B isoform but only reduced the affinities of the A isoform 11- and 6-fold, respectively. In conclusion, alanine-scanning mutagenesis of the insulin receptor A and B isoforms has identified several new side chains contributing to insulin binding and indicates that the energetic contributions of certain side chains differ in each isoform, suggesting that different molecular mechanisms are used to obtain the same affinity.
Collapse
Affiliation(s)
- Jonathan Whittaker
- Receptor Biology Laboratory, Hagedorn Research Institute, 2820 Gentofte, Denmark
| | | | | | | |
Collapse
|
38
|
Grötzinger J. Molecular mechanisms of cytokine receptor activation. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1592:215-23. [PMID: 12421667 DOI: 10.1016/s0167-4889(02)00316-6] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Cytokine receptors are transmembrane proteins that transmit a signal into the cell upon ligand binding. Commonly, these molecules have one hydrophobic segment of about 20-26 amino acids that is believed to span the membrane as a helix and this divides these receptors into extra- and intracellular components. By utilizing two different epitopes, the cytokines bridge two receptor chains, resulting in a close proximity of the intracellular component and thereby initiating the intracellular signalling cascade. The dimerization event is believed to be the mechanism by which the signal is transmitted across a membrane. In the light of new results obtained for the erythropoietin receptor, James A. Wells questioned whether any dimer would be sufficient. This review will expand upon the above question by discussing the more complex signal-transducing receptor subunits of the Interleukin-6 type family of cytokines. Based on the recently solved quaternary structure of the Insulin receptor, possible analogies will be confronted.
Collapse
Affiliation(s)
- Joachim Grötzinger
- Department of Biochemistry, Christian-Albrechts-Universität zu Kiel, Germany.
| |
Collapse
|
39
|
Ogiso H, Ishitani R, Nureki O, Fukai S, Yamanaka M, Kim JH, Saito K, Sakamoto A, Inoue M, Shirouzu M, Yokoyama S. Crystal structure of the complex of human epidermal growth factor and receptor extracellular domains. Cell 2002; 110:775-87. [PMID: 12297050 DOI: 10.1016/s0092-8674(02)00963-7] [Citation(s) in RCA: 870] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Epidermal growth factor (EGF) regulates cell proliferation and differentiation by binding to the EGF receptor (EGFR) extracellular region, comprising domains I-IV, with the resultant dimerization of the receptor tyrosine kinase. In this study, the crystal structure of a 2:2 complex of human EGF and the EGFR extracellular region has been determined at 3.3 A resolution. EGFR domains I-III are arranged in a C shape, and EGF is docked between domains I and III. The 1:1 EGF*EGFR complex dimerizes through a direct receptor*receptor interaction, in which a protruding beta-hairpin arm of each domain II holds the body of the other. The unique "receptor-mediated dimerization" was verified by EGFR mutagenesis.
Collapse
Affiliation(s)
- Hideo Ogiso
- RIKEN Genomic Sciences Center, 1-7-22 Suehiro-cho, Tsurumi, 230-0045, Yokohama, Kanagawa, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Garrett TPJ, McKern NM, Lou M, Elleman TC, Adams TE, Lovrecz GO, Zhu HJ, Walker F, Frenkel MJ, Hoyne PA, Jorissen RN, Nice EC, Burgess AW, Ward CW. Crystal structure of a truncated epidermal growth factor receptor extracellular domain bound to transforming growth factor alpha. Cell 2002; 110:763-73. [PMID: 12297049 DOI: 10.1016/s0092-8674(02)00940-6] [Citation(s) in RCA: 577] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
We report the crystal structure, at 2.5 A resolution, of a truncated human EGFR ectodomain bound to TGFalpha. TGFalpha interacts with both L1 and L2 domains of EGFR, making many main chain contacts with L1 and interacting with L2 via key conserved residues. The results indicate how EGFR family members can bind a family of highly variable ligands. In the 2:2 TGFalpha:sEGFR501 complex, each ligand interacts with only one receptor molecule. There are two types of dimers in the asymmetric unit: a head-to-head dimer involving contacts between the L1 and L2 domains and a back-to-back dimer dominated by interactions between the CR1 domains of each receptor. Based on sequence conservation, buried surface area, and mutagenesis experiments, the back-to-back dimer is favored to be biologically relevant.
Collapse
Affiliation(s)
- Thomas P J Garrett
- Walter and Eliza Hall Institute of Medical Research, Post Office Royal Melbourne Hospital, Parkville, 3050, Victoria, Australia.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
De Meyts P, Whittaker J. Structural biology of insulin and IGF1 receptors: implications for drug design. Nat Rev Drug Discov 2002; 1:769-83. [PMID: 12360255 DOI: 10.1038/nrd917] [Citation(s) in RCA: 440] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Type 2 diabetes mellitus -- in which the body produces insufficient amounts of insulin or the insulin that is produced does not function properly to control blood glucose -- is an increasingly common disorder. Prospective clinical studies have proven the benefits of tighter glucose control in reducing the frequency and severity of complications of the disease, leading to the advocation of earlier and more aggressive use of insulin therapy. Given the reluctance of patients with type 2 diabetes to inject themselves with insulin, orally active insulin mimetics would be a major therapeutic advance. Here, we discuss recent progress in understanding the structure-function relationships of the insulin and insulin-like growth factor 1 (IGF1) receptors, their mechanism of activation and their implications for the design of insulin-receptor agonists for diabetes therapy and IGF1-receptor antagonists for cancer therapy.
Collapse
Affiliation(s)
- Pierre De Meyts
- Receptor Biology Laboratory, Hagedorn Research Institute, Niels Steensens Vej 6, DK-2820 Gentofte, Denmark.
| | | |
Collapse
|
42
|
Chen JZ, Wang S, Tang R, Yang QS, Zhao E, Chao Y, Ying K, Xie Y, Mao YM. Cloning and identification of a cDNA that encodes a novel human protein with thrombospondin type I repeat domain, hPWTSR. Mol Biol Rep 2002; 29:287-92. [PMID: 12463421 DOI: 10.1023/a:1020479301379] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
A cDNA was isolated from the fetal brain cDNA library by high throughput cDNA sequencing. The 2390 bp cDNA with an open reading fragment (ORF) of 816 bp encodes a 272 amino acids putative protein with a thrombospondin type I repeat (TSR) domain and a cysteine-rich region at the N-terminus, so it is named hPWTSR. We used Northern blot detected two bands with length of about 3 kb and 4 kb respectively, which expressed in human adult tissues with different intensities. The expression pattern was verified by RT-PCR, revealing that the transcripts were expressed ubiquitously in fetal tissues and human tumor tissues too. However, the transcript was detected neither in ovarian carcinoma GI-102 nor in lung carcinoma LX-1. Blast analysis against NCBI database revealed that the new gene contained at least 5 exons and located in human chromosome 6q22.33. Our results demonstrate that the gene is a novel member of TSR supergene family.
Collapse
Affiliation(s)
- Jin-Zhong Chen
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200433, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Kristensen C, Andersen AS, Ostergaard S, Hansen PH, Brandt J. Functional reconstitution of insulin receptor binding site from non-binding receptor fragments. J Biol Chem 2002; 277:18340-5. [PMID: 11901156 DOI: 10.1074/jbc.m112249200] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have previously shown that a minimized insulin receptor (IR) consisting of the first 468 amino acids of the insulin receptor fused to 16 amino acids from the C terminus of the alpha-subunit (CT domain) bound insulin with nanomolar affinity (Kristensen, C., Wiberg, F. C., Schäffer, L., and Andersen, A. S. (1998) J. Biol. Chem. 273, 17780-17786). In the present study, we show that a smaller construct that has the first 308 residues fused to the CT domain also binds insulin. Insulin receptor fragments consisting of the first 468 or 308 residues did not bind insulin. However, when these fragments were mixed with a synthetic peptide corresponding to the CT domain, insulin binding was detectable. At concentrations of 10 microm CT peptide, insulin binding was fully reconstituted yielding apparent affinities of 9-11 nm. To further investigate the minimum requirement for the length of the N terminus of IR, we tested smaller receptor fragments for insulin binding in the presence of the CT peptide and found that a fragment consisting of the first 255 amino acids of IR was able to fully reconstitute the insulin binding site, yielding an apparent affinity of 11 +/- 4 nm for insulin.
Collapse
Affiliation(s)
- Claus Kristensen
- Departments of Protein Expression and Insulin Research, Novo Nordisk A/S, 2880 Bagsvaerd, Denmark
| | | | | | | | | |
Collapse
|
44
|
Tang CK. Role of Epidermal Growth Factor Receptor in Breast Carcinoma. HANDBOOK OF IMMUNOHISTOCHEMISTRY AND IN SITU HYBRIDIZATION OF HUMAN CARCINOMAS 2002. [DOI: 10.1016/s1874-5784(04)80052-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
45
|
Lycett G, Blass C, Louis C. Developmental variation in epidermal growth factor receptor size and localization in the malaria mosquito, Anopheles gambiae. INSECT MOLECULAR BIOLOGY 2001; 10:619-628. [PMID: 11903632 DOI: 10.1046/j.0962-1075.2001.00302.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The AGER gene encoding the epidermal growth factor receptor (EGFR) of the malaria mosquito Anopheles gambiae was cloned and sequenced. It represents a canonical member of this family of tyrosine kinase proteins exhibiting many similarities to orthologues from other species, both on the level of genomic organization and protein structure. The mRNA can be detected throughout development. Western analysis with an antibody raised against the extracellular domain of the mosquito protein suggests developmental variation in protein size and location that may be involved in the function of EGFR in the mosquito.
Collapse
Affiliation(s)
- G Lycett
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas, Vassilika Vouton, 711 10 Heraklion, Crete, Greece
| | | | | |
Collapse
|
46
|
Ward CW, Garrett TPJ. The relationship between the L1 and L2 domains of the insulin and epidermal growth factor receptors and leucine-rich repeat modules. BMC Bioinformatics 2001; 2:4. [PMID: 11504559 PMCID: PMC37351 DOI: 10.1186/1471-2105-2-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2001] [Accepted: 07/27/2001] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Leucine-rich repeats are one of the more common modules found in proteins. The leucine-rich repeat consensus motif is LxxLxLxxNxLxxLxxLxxLxx- where the first 11-12 residues are highly conserved and the remainder of the repeat can vary in size Leucine-rich repeat proteins have been subdivided into seven subfamilies, none of which include members of the epidermal growth factor receptor or insulin receptor families despite the similarity between the 3D structure of the L domains of the type I insulin-like growth factor receptor and some leucine-rich repeat proteins. RESULTS Here we have used profile searches and multiple sequence alignments to identify the repeat motif Ixx-LxIxx-Nx-Lxx-Lxx-Lxx-Lxx- in the L1 and L2 domains of the insulin receptor and epidermal growth factor receptors. These analyses were aided by reference to the known three dimensional structures of the insulin-like growth factor type I receptor L domains and two members of the leucine rich repeat family, porcine ribonuclease inhibitor and internalin 1B. Pectate lyase, another beta helix protein, can also be seen to contain the sequence motif and much of the structural features characteristic of leucine-rich repeat proteins, despite the existence of major insertions in some of its repeats. CONCLUSION Multiple sequence alignments and comparisons of the 3D structures has shown that right-handed beta helix proteins such as pectate lyase and the L domains of members of the insulin receptor and epidermal growth factor receptor families, are members of the leucine-rich repeat superfamily.
Collapse
Affiliation(s)
- Colin W Ward
- CSIRO Health Sciences and Nutrition, 343 Royal Parade Parkville, Victoria 3052, Australia
- Cooperative Research Centre for Cellular Growth Factors, Royal Melbourne Hospital, Parkville, Victoria, 3050, Australia
| | - Thomas PJ Garrett
- Walter and Elisa Hall Institute, Royal Melbourne Hospital, Parkville, Victoria 3052, Australia
- Cooperative Research Centre for Cellular Growth Factors, Royal Melbourne Hospital, Parkville, Victoria, 3050, Australia
| |
Collapse
|
47
|
Ward CW, Garrett TP, McKern NM, Lou M, Cosgrove LJ, Sparrow LG, Frenkel MJ, Hoyne PA, Elleman TC, Adams TE, Lovrecz GO, Lawrence LJ, Tulloch PA. The three dimensional structure of the type I insulin-like growth factor receptor. Mol Pathol 2001; 54:125-32. [PMID: 11376122 PMCID: PMC1187049 DOI: 10.1136/mp.54.3.125] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2000] [Indexed: 11/04/2022]
Abstract
Ever since the discovery of insulin and its role in the regulation of glucose metabolism, there has been great interest in the molecule itself, the insulin-like growth factors (IGFs), and their receptors (IR and IGF-R). These receptors form a subfamily of tyrosine kinase receptors which are large, transmembrane proteins consisting of several structural domains. Their ectodomains have a similar arrangement of two homologous domains (L1 and L2) separated by a Cys rich region. The C-terminal half of their ectodomains consists of three fibronectin type 3 repeats, and an insert domain that contains the alpha-beta cleavage site. This review summarises the key developments in the understanding of the structure of this family of receptors and their relation to other multidomain proteins. Data presented will include multiple sequence analyses, single molecule electron microscope images of the IGF-1R, insulin receptor (IR), and IR-Fab complexes, and the three dimensional structure of the first three domains of the IGF-1R determined to 2.6 A resolution by x ray crystallography. The L domains each adopt a compact shape consisting of a single stranded, right handed beta-helix. The Cys rich region is composed of eight disulphide bonded modules, seven of which form a rod shaped domain with modules associated in an unusual manner.
Collapse
Affiliation(s)
- C W Ward
- CSIRO Health Sciences and Nutrition, Parkville Laboratory, 343 Royal Parade, Parkville, Victoria, 3052, Australia.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Kumagai T, Davis JG, Horie T, O'Rourke DM, Greene MI. The role of distinct p185neu extracellular subdomains for dimerization with the epidermal growth factor (EGF) receptor and EGF-mediated signaling. Proc Natl Acad Sci U S A 2001; 98:5526-31. [PMID: 11320205 PMCID: PMC33246 DOI: 10.1073/pnas.071060598] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The extracellular domain of p185(c-neu) can be viewed as a complex structure of four subdomains, two of which are cysteine-rich subdomains. We have investigated the contribution of these distinct p185(c-neu) extracellular subdomains to p185/epidermal growth factor receptor (EGFR) heteromer formation and EGF-induced heteromeric signaling. Our studies indicate that at least two separate p185 subdomains, a region spanning subdomains I and II and subdomain IV are involved in association of p185 with the EGFR. We also demonstrated that subdomain IV reduced the heteromeric signaling and transforming activities induced by EGF after associating with EGFR. When 126 aa were deleted from subdomain IV, this small subdomain IV-derived fragment could still lead to heterodimers with EGFR and suppress EGF-induced mitogen-activated protein kinase activation and subsequent transformation abilities. These data provide information about trans-inhibitory mechanisms of mutant p185 species and also indicate that both the entire and a part of subdomain IV may represent a therapeutic target for erbB-overexpressing tumors. Finally, these studies define a basic feature of receptor-receptor associations that are determined by cystine-knot containing subdomains.
Collapse
Affiliation(s)
- T Kumagai
- Department of Pathology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | | | | | | | |
Collapse
|
49
|
Schlein M, Havelund S, Kristensen C, Dunn MF, Kaarsholm NC. Ligand-induced conformational change in the minimized insulin receptor. J Mol Biol 2000; 303:161-9. [PMID: 11023783 DOI: 10.1006/jmbi.2000.4134] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Within the class of insulin and insulin-like growth factor receptors, detailed information about the molecular recognition event at the hormone-receptor interface is limited by the absence of suitable co-crystals. We describe the use of a biologically active insulin derivative labeled with the NBD fluorophore (B29NBD-insulin) to characterize the mechanism of reversible 1:1 complex formation with a fragment of the insulin receptor ectodomain. The accompanying 40 % increase in the fluorescence quantum yield of the label provides the basis for a dynamic study of the hormone-receptor binding event. Stopped-flow fluorescence experiments show that the kinetics of complex formation are biphasic comprising a bimolecular binding event followed by a conformational change. Displacement with excess unlabeled insulin gave monophasic kinetics of dissociation. The rate data are rationalized in terms of available experiments on mutant receptors and the X-ray structure of a non-binding fragment of the receptor of the homologous insulin-like growth factor (IGF-1).
Collapse
Affiliation(s)
- M Schlein
- Health Care Discovery, Novo Nordisk A/S, Novo Alle 1, DK 2880, Bagsvaerd, Denmark
| | | | | | | | | |
Collapse
|
50
|
Hoyne PA, Elleman TC, Adams TE, Richards KM, Ward CW. Properties of an insulin receptor with an IGF-1 receptor loop exchange in the cysteine-rich region. FEBS Lett 2000; 469:57-60. [PMID: 10708756 DOI: 10.1016/s0014-5793(00)01237-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The insulin receptor (IR) and the insulin-like growth factor-I receptor (IGF-1R) show differential binding of insulin and IGFs. The specificity determinants for IGF-1 binding are known to be located in the cysteine-rich (Cys-rich) region between residues 223 and 274 of human IGF-1R, which includes a loop that protrudes into the putative ligand binding site. In this report we have replaced residues 260-277 of human IR with residues 253-266 of the human IGF-1R to produce an IR-based, cysteine loop exchange chimaera, termed hIR-Cys loop exchange (CLX), in which all 14 amino acid residues in the exchanged loop differ from wild-type insulin receptor. This loop exchange had a detrimental effect on the efficiency of pro-receptor processing and on the binding of the mouse monoclonal antibody 83-7. However, this antibody, which binds hIR but not hIGF-1R, was still capable of immunoprecipitating the mature chimaeric receptor, indicating that the conformational epitope recognised by this antibody is not primarily determined by the loop region exchanged. The loop exchange did not significantly affect the ability of insulin to displace bound radiolabelled insulin, but increased the capacity of IGF-1 to competitively displace labelled insulin by at least 10 fold.
Collapse
Affiliation(s)
- P A Hoyne
- CSIRO Health Sciences and Nutrition, 343 Royal Parade, Parkville, Australia
| | | | | | | | | |
Collapse
|