1
|
Ding J, Zhang SS, Fernandopulle NA, Karas JA, Li J, Ziogas J, Velkov T, Mackay GA. Differential MRGPRX2-dependent activation of human mast cells by polymyxins and octapeptins. Eur J Pharmacol 2024; 984:177050. [PMID: 39389528 DOI: 10.1016/j.ejphar.2024.177050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 09/24/2024] [Accepted: 10/07/2024] [Indexed: 10/12/2024]
Abstract
The emergence of multi-drug resistant Gram-negative bacteria has led to renewed interest in the antimicrobial activity of polymyxins and novel polymyxin analogues (e.g. nonapeptides and octapeptin). In some individuals, clinically used polymyxins can cause acute hypersensitivity reactions through mast cell activation, with a recent study attributing this effect to activation of the MAS-related G protein-coupled receptor X2 (MRGPRX2). In the present study, HEK293 cells expressing human MRGPRX2 and the human mast cell line LAD2 were used to characterize the activity of the broader family of polymyxins. Octapeptin C4, polymyxin B and colistin produced concentration-dependent calcium mobilization, degranulation, and CCL-2 (MCP-1) release in LAD2 mast cells, with the former being highly potent. CRISPR-Cas9 knockdown of MRGPRX2 in LAD2 cells and a MRGPRX2 inverse agonist caused a significant reduction in calcium mobilization, degranulation, and CCL-2 release, demonstrating dependency on MRGPRX2 expression. In contrast, polymyxin nonapeptides were far less potent calcium mobilisers and failed to induce functional degranulation in LAD2 cells. Our results confirm that activation of mast cells induced by polymyxin-related antibiotics is MRGPRX2-dependent and reveal that octapeptin C4 might be more liable, whilst nonapeptides are less liable, to trigger immediate hypersensitivity reactions clinically. The mechanism underpinning the difference in MRGPRX2 activation between polymyxin-related antibiotics is important to better understand as it may help design new, safer polymyxins and guide the optimal clinical use of existing polymyxin drugs.
Collapse
Affiliation(s)
- Jie Ding
- Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, Victoria, Australia
| | - Stephanie S Zhang
- Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, Victoria, Australia
| | - Nithya A Fernandopulle
- Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, Victoria, Australia
| | - John A Karas
- School of Chemistry, The University of Melbourne, Parkville, Victoria, Australia
| | - Jian Li
- Monash Biomedicine Discovery Institute, Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - James Ziogas
- Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, Victoria, Australia
| | - Tony Velkov
- Monash Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Clayton, Victoria, Australia
| | - Graham A Mackay
- Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
2
|
Lyu S, Oliver ET, Dispenza MC, Chichester KL, Hoffman J, MacGlashan DW, Adkinson NF, Phillips EJ, Alvarez-Arango S. A Skin Testing Strategy for Non-IgE-Mediated Reactions Associated With Vancomycin. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2024; 12:3025-3033.e6. [PMID: 39117269 PMCID: PMC11560520 DOI: 10.1016/j.jaip.2024.07.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 08/10/2024]
Abstract
BACKGROUND Vancomycin infusion reaction (VIR), reportedly mediated through Mas-Related G Protein-Coupled Receptor-X2, is the primary vancomycin-induced immediate drug reaction. Clinically, distinguishing the underlying drug-induced immediate drug reaction mechanisms is crucial for future treatment strategies, including drug restriction, re-administration, and pretreatment considerations. However, the lack of validated diagnostic tests makes this challenging, often leading to unnecessary drug restriction. OBJECTIVE To determine whether intradermal tests (IDTs) and, separately, the basophil activation test (BAT) differentiate VIR from vancomycin-tolerant subjects. METHODS This was a cross-sectional study of vancomycin-exposed adults with and without a history of VIR. Data on demographics, allergy-related comorbidities, history of vancomycin exposures, and VIR characteristics were collected. IDT with vancomycin was performed. IDT dose-response EC50, IDT-related local symptoms, and BAT results were compared between groups. RESULTS A total of 11 VIR and 10 vancomycin-tolerant subjects were enrolled. The most reported VIR symptoms were pruritus (82%), flushing (82%), hives (46%), angioedema (27%), and dyspnea (19%). The IDT dose-response mean EC50 was 328 μg/mL (95% CI, 296-367) in the VIR versus 1166 μg/mL (95% CI, 1029-1379) in the tolerant group (P < .0001). All VIR subjects reported IDT-related local pruritus compared with 60% of tolerant subjects (P = .0185). The %CD63+ basophils were consistently less than 2%, without significant differences between groups (P < .54). CONCLUSIONS Variations in skin test methodologies could help identify other immediate drug reaction mechanisms beyond IgE. This skin test protocol holds the potential for identifying VIR, particularly in cases where patients have received multiple drugs while BAT is insufficient. Future studies will validate and delineate its predictive value, assessing the risk of VIR.
Collapse
Affiliation(s)
- Siyan Lyu
- Johns Hopkins University, Baltimore, Md
| | - Eric T Oliver
- Division of Allergy and Clinical Immunology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Md
| | - Melanie C Dispenza
- Division of Allergy and Clinical Immunology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Md
| | - Kristin L Chichester
- Division of Allergy and Clinical Immunology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Md
| | - Jennifer Hoffman
- Division of Clinical Pharmacology, Departments of Medicine and Pharmacology and Molecular Science, Johns Hopkins School of Medicine, Baltimore, Md
| | - Donald W MacGlashan
- Division of Allergy and Clinical Immunology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Md
| | - N Franklin Adkinson
- Division of Allergy and Clinical Immunology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Md
| | - Elizabeth J Phillips
- Center for Drug Safety and Immunology, Departments of Medicine, Dermatology, Pharmacology, Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tenn
| | - Santiago Alvarez-Arango
- Division of Allergy and Clinical Immunology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Md; Division of Clinical Pharmacology, Departments of Medicine and Pharmacology and Molecular Science, Johns Hopkins School of Medicine, Baltimore, Md.
| |
Collapse
|
3
|
Wollam J, Solomon M, Villescaz C, Lanier M, Evans S, Bacon C, Freeman D, Vasquez A, Vest A, Napora J, Charlot B, Cavarlez C, Kim A, Dvorak L, Selfridge B, Huang L, Nevarez A, Dedman H, Brooks J, Frischbutter S, Metz M, Serhan N, Gaudenzio N, Timony G, Martinborough E, Boehm MF, Viswanath V. Inhibition of mast cell degranulation by novel small molecule MRGPRX2 antagonists. J Allergy Clin Immunol 2024; 154:1033-1043. [PMID: 38971540 DOI: 10.1016/j.jaci.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/22/2024] [Accepted: 07/02/2024] [Indexed: 07/08/2024]
Abstract
BACKGROUND Mas-related G protein-coupled receptor X2 (MRGPRX2) is a promiscuous receptor on mast cells that mediates IgE-independent degranulation and has been implicated in multiple mast cell-mediated disorders, including chronic urticaria, atopic dermatitis, and pain disorders. Although it is a promising therapeutic target, few potent, selective, small molecule antagonists have been identified, and functional effects of human MRGPRX2 inhibition have not been evaluated in vivo. OBJECTIVE We sought to identify and characterize novel, potent, and selective orally active small molecule MRGPRX2 antagonists for potential treatment of mast cell-mediated disease. METHODS Antagonists were identified using multiple functional assays in cell lines overexpressing human MRGPRX2, LAD2 mast cells, human peripheral stem cell-derived mast cells, and isolated skin mast cells. Skin mast cell degranulation was evaluated in Mrgprb2em(-/-) knockout and Mrgprb2em(MRGPRX2) transgenic human MRGPRX2 knock-in mice by assessment of agonist-induced skin vascular permeability. Ex vivo skin mast cell degranulation and associated histamine release was evaluated by microdialysis of human skin tissue samples. RESULTS MRGPRX2 antagonists potently inhibited agonist-induced MRGPRX2 activation and mast cell degranulation in all mast cell types tested in an IgE-independent manner. Orally administered MRGPRX2 antagonists also inhibited agonist-induced degranulation and resulting vascular permeability in MRGPRX2 knock-in mice. In addition, antagonist treatment dose dependently inhibited agonist-induced degranulation in ex vivo human skin. CONCLUSIONS MRGPRX2 small molecule antagonists potently inhibited agonist-induced mast cell degranulation in vitro and in vivo as well as ex vivo in human skin, supporting potential therapeutic utility as a novel treatment for multiple human diseases involving clinically relevant mast cell activation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Alan Vest
- Escient Pharmaceuticals, San Diego, Calif
| | - Jim Napora
- Escient Pharmaceuticals, San Diego, Calif
| | | | | | - Andrew Kim
- Escient Pharmaceuticals, San Diego, Calif
| | | | | | | | | | | | | | - Stefan Frischbutter
- Institute of Allergology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Fraunhofer Institute for Translational Medicine and Pharmacology, Immunology and Allergology, Berlin, Germany
| | - Martin Metz
- Institute of Allergology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Fraunhofer Institute for Translational Medicine and Pharmacology, Immunology and Allergology, Berlin, Germany
| | - Nadine Serhan
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity)-University Toulouse III, Toulouse, France
| | - Nicolas Gaudenzio
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity)-University Toulouse III, Toulouse, France; Genoskin SAS, Toulouse, France
| | | | | | | | | |
Collapse
|
4
|
Lv Y, Wang Y, Guo N, Bai H, Jiang Y, Huang Y, Du H, Han S, He L. Construction of Cell Membrane Chromatography Screening Materials Based on Avi-Tag Fused G Protein-Coupled Receptors. Anal Chem 2024; 96:12927-12935. [PMID: 39041225 DOI: 10.1021/acs.analchem.4c03451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Mas-related G protein-coupled receptor X2 (MrgprX2) plays a crucial role in anaphylactoid reactions and allergic diseases. Some antagonists with reasonable potency and selectivity have been reported. Cell membrane chromatography (CMC) is effective for discovering ligands. Protein-tag-based CMC models (e.g., SNAP tags and HALO tags) have enhanced performance but also increased nonspecific adsorption of small molecules. The Avi tag, a short peptide sequence, binds biotin specifically via BirA catalysis. Our study showed that 2-iminobiotin (IB) can be a BirA substrate, enabling the development of a new cell membrane stationary phase (CMSP) based on the chemical properties (modifying carboxyl silica gel and specifically labeling the Avi tag) of IB. First, we constructed the MrgprX2-Avi-tag HEK293T cell line. Next, we synthesized IB-modified silica gel (SiO2-IB) stepwise. Finally, we immobilized Avi-tagged MrgprX2 cell membranes on SiO2-IB under BirA catalysis. We characterized the developed CMSP and used it to establish a MrgprX2-Avi-tag/CMC-HPLC/MS two-dimensional screening platform, successfully screening vitexicarpin fromViticis Fructus extract via a 2D/CMC platform. In vitro and in vivo experiments confirmed that vitexicarpin targets the MrgprX2 receptor, demonstrating antiallergic effects. Our IB-Avi tag-based CMC approach effectively decreased nonspecific adsorption of the screening materials. The Avi-tag-based 2D/CMC platform is suitable for screening potential drug candidates.
Collapse
Affiliation(s)
- Yanni Lv
- School of Pharmacy, Xi'an Jiaotong University, 76# Yanta West Road, Xi'an 710061, China
- Institute of Pharmaceutical Science and Technology, Western China Science and Technology Innovation Harbour, Xi'an 710115, China
| | - Yamin Wang
- School of Pharmacy, Xi'an Jiaotong University, 76# Yanta West Road, Xi'an 710061, China
- Institute of Pharmaceutical Science and Technology, Western China Science and Technology Innovation Harbour, Xi'an 710115, China
- Department of Pharmacy, Xi'an Hospital of Traditional Chinese Medicine, Xi'an 710021, China
| | - Na Guo
- School of Pharmacy, Xi'an Jiaotong University, 76# Yanta West Road, Xi'an 710061, China
- Institute of Pharmaceutical Science and Technology, Western China Science and Technology Innovation Harbour, Xi'an 710115, China
| | - Haoyun Bai
- School of Pharmacy, Xi'an Jiaotong University, 76# Yanta West Road, Xi'an 710061, China
- Institute of Pharmaceutical Science and Technology, Western China Science and Technology Innovation Harbour, Xi'an 710115, China
| | - Yuhan Jiang
- School of Pharmacy, Xi'an Jiaotong University, 76# Yanta West Road, Xi'an 710061, China
- Institute of Pharmaceutical Science and Technology, Western China Science and Technology Innovation Harbour, Xi'an 710115, China
| | - Yihan Huang
- School of Pharmacy, Xi'an Jiaotong University, 76# Yanta West Road, Xi'an 710061, China
- Institute of Pharmaceutical Science and Technology, Western China Science and Technology Innovation Harbour, Xi'an 710115, China
| | - Hongfen Du
- School of Pharmacy, Xi'an Jiaotong University, 76# Yanta West Road, Xi'an 710061, China
- Institute of Pharmaceutical Science and Technology, Western China Science and Technology Innovation Harbour, Xi'an 710115, China
| | - Shengli Han
- School of Pharmacy, Xi'an Jiaotong University, 76# Yanta West Road, Xi'an 710061, China
- Institute of Pharmaceutical Science and Technology, Western China Science and Technology Innovation Harbour, Xi'an 710115, China
| | - Langchong He
- School of Pharmacy, Xi'an Jiaotong University, 76# Yanta West Road, Xi'an 710061, China
- Institute of Pharmaceutical Science and Technology, Western China Science and Technology Innovation Harbour, Xi'an 710115, China
| |
Collapse
|
5
|
Brennan RJ, Jenkinson S, Brown A, Delaunois A, Dumotier B, Pannirselvam M, Rao M, Ribeiro LR, Schmidt F, Sibony A, Timsit Y, Sales VT, Armstrong D, Lagrutta A, Mittlestadt SW, Naven R, Peri R, Roberts S, Vergis JM, Valentin JP. The state of the art in secondary pharmacology and its impact on the safety of new medicines. Nat Rev Drug Discov 2024; 23:525-545. [PMID: 38773351 DOI: 10.1038/s41573-024-00942-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/05/2024] [Indexed: 05/23/2024]
Abstract
Secondary pharmacology screening of investigational small-molecule drugs for potentially adverse off-target activities has become standard practice in pharmaceutical research and development, and regulatory agencies are increasingly requesting data on activity against targets with recognized adverse effect relationships. However, the screening strategies and target panels used by pharmaceutical companies may vary substantially. To help identify commonalities and differences, as well as to highlight opportunities for further optimization of secondary pharmacology assessment, we conducted a broad-ranging survey across 18 companies under the auspices of the DruSafe leadership group of the International Consortium for Innovation and Quality in Pharmaceutical Development. Based on our analysis of this survey and discussions and additional research within the group, we present here an overview of the current state of the art in secondary pharmacology screening. We discuss best practices, including additional safety-associated targets not covered by most current screening panels, and present approaches for interpreting and reporting off-target activities. We also provide an assessment of the safety impact of secondary pharmacology screening, and a perspective on opportunities and challenges in this rapidly developing field.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Mohan Rao
- Janssen Research & Development, San Diego, CA, USA
- Neurocrine Biosciences, San Diego, CA, USA
| | - Lyn Rosenbrier Ribeiro
- UCB Biopharma, Braine-l'Alleud, Belgium
- AstraZeneca, Cambridge, UK
- Grunenthal, Berkshire, UK
| | | | | | - Yoav Timsit
- Novartis Biomedical Research, Cambridge, MA, USA
- Blueprint Medicines, Cambridge, MA, USA
| | | | - Duncan Armstrong
- Novartis Biomedical Research, Cambridge, MA, USA
- Armstrong Pharmacology, Macclesfield, UK
| | | | | | - Russell Naven
- Takeda Pharmaceuticals, Cambridge, MA, USA
- Novartis Biomedical Research, Cambridge, MA, USA
| | - Ravikumar Peri
- Takeda Pharmaceuticals, Cambridge, MA, USA
- Alexion Pharmaceuticals, Wilmington, DE, USA
| | - Sonia Roberts
- Roche Pharma Research and Early Development, Roche Innovation Center, Basel, Switzerland
| | - James M Vergis
- Faegre Drinker Biddle and Reath, LLP, Washington, DC, USA
| | | |
Collapse
|
6
|
Sugiyama Y, Kawarai S, Ansai S, Bist P, Abraham SN, Maruo T. Cutaneous anaphylactoid reaction to polyoxyethylene hydrogenated castor oil in dogs. Vet Dermatol 2024; 35:263-272. [PMID: 38111025 DOI: 10.1111/vde.13228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 08/07/2023] [Accepted: 12/05/2023] [Indexed: 12/20/2023]
Abstract
BACKGROUND Polyoxyethylene hydrogenated castor oil (HCO ethoxylates) is a nonionic surfactant used as an excipient for ointments and injections in human and veterinary drugs. Several polyethylene glycol (PEG) derivatives can be obtained depending on the number of moles of ethylene oxide (EO). HCO ethoxylates have the potential to cause anaphylactoid reactions. There is little published information about these types of reactions in dogs. OBJECTIVE To determine the potential for HCO-ethoxylate-containing drugs to cause anaphylactoid reactions in dogs, employing intradermal testing (IDT) with various concentrations of HCO ethoxylates (HCO-25, -40, -60 and -80). ANIMALS Four healthy male laboratory dogs. MATERIALS AND METHODS We performed IDT with drugs containing HCO ethoxylates and HCO ethoxylates alone to determine threshold concentrations. The IDT scores and threshold concentrations were compared. Analysis of skin biopsies from IDT sites was used to measure the percentage of degranulated mast cells. The effect of histamine at IDT sites was investigated by pre-treatment with an antihistamine. RESULTS All HCO-ethoxylate-containing drugs caused a wheal-and-flare reaction. The threshold concentrations (0.001% and 0.00001%) of each HCO-ethoxylate depended on the number of moles of EO (p < 0.05). Mast cell degranulation was enhanced by all HCO ethoxylates. The HCO-60-induced reaction was suppressed by an oral antihistamine. CONCLUSIONS AND CLINICAL RELEVANCE The threshold concentration can serve as a consideration for developing safe new drug formulations and for clinical decision-making around using drugs containing PEG derivatives. IDT is useful to predict the risk of adverse effects. Antihistamines could demonstrate a prophylactic effect.
Collapse
Affiliation(s)
- Yukina Sugiyama
- Laboratory of Small Animal Clinics, Veterinary Teaching Hospital, Azabu University, Sagamihara, Kanagawa, Japan
- Sugiyama Veterinary Clinic, Shizuoka, Japan
| | - Shinpei Kawarai
- Laboratory of Small Animal Clinics, Veterinary Teaching Hospital, Azabu University, Sagamihara, Kanagawa, Japan
| | - Shinichi Ansai
- Division of Dermatology and Dermatopathology, Nippon Medical School, Musashi Kosugi Hospital, Kawasaki, Kanagawa, Japan
| | - Pradeep Bist
- Program in Emerging Infectious Diseases, Duke-National University of Singapore, Singapore City, Singapore
| | - Soman N Abraham
- Program in Emerging Infectious Diseases, Duke-National University of Singapore, Singapore City, Singapore
- Department of Pathology, Duke University Medical Center, Durham, North Carolina, USA
- Department of Immunology, Duke University Medical Center, Durham, North Carolina, USA
- Department of Molecular Genetics & Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Takuya Maruo
- Laboratory of Veterinary Radiology, Department of Veterinary Medicine, School of Veterinary Medicine, Azabu University, Sagamihara, Kanagawa, Japan
| |
Collapse
|
7
|
Ding Y, Dang B, Zhang Y, Hu S, Wang Y, Zhao C, Zhang T, Gao Z. Paeonol attenuates Substance P-induced urticaria by inhibiting Src kinase phosphorylation in mast cells. Cell Immunol 2023; 388-389:104728. [PMID: 37224634 DOI: 10.1016/j.cellimm.2023.104728] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 05/08/2023] [Accepted: 05/09/2023] [Indexed: 05/26/2023]
Abstract
BACKGROUND Treatment of chronic urticaria is challenging, the discovery of effective therapeutic drugs is urgently in demand. PURPOSE To study the effect and mechanism of Paeonol targeting mast cells and its therapeutic effect on chronic urticaria. STUDY DESIGN We developed a chronic urticaria model in vivo and mast cell model in vitro examined the effect of Paeonol in the treatment of chronic urticaria and its mechanism of action in mast cells. METHOD The anti-anaphylactoid effect of Paeonol was evaluated in PCA and systemic anaphylaxis models. The treatment role of Paeonol was studied in urticaria model. The release of cytokines and chemokines was measured using enzyme immunoassay kits. Western blot analysis was conducted to investigate phosphorylation of Src, PI3K, and PLC. In vitro kinase assays were conducted to investigate the kinase activity of Lyn, PLC, PI3K and Src. RESULTS In our study, Paeonol was able to attenuate evans blue leakage, serum histamine and chemokine release in a passive skin allergic reaction model. Simultaneously, Paeonol inhibited vasodilation and mast cell degranulation in C57BL/6 mice. Further research found that Paeonol alleviated symptoms such as erythema and rash in the Substance P-induced urticaria model, this is accompanied by inhibiting the release of related inflammatory factors. Validation experiments on mast cells in vitro found that Paeonol inhibited the activation of Src-PI3K/Lyn-PLC-NF-κB signaling pathway by crosslinking with Src kinase. Moreover, calcium influx, mast cell degranulation, cytokines generation and chemotaxis were reduced in LAD2 cells. Molecular docking experiments revealed that Paeonol is a specific antagonist targeting Src kinase in the treatment of skin diseases such as urticaria. CONCLUSION Paeonol, a herb-derived phenolic compound, can provide drug candidate for developing new drug in treatment of skin disease such as urticaria. SIGNIFICANCE STATEMENT In this study, we primarily examined the effect of Paeonol in the treatment of chronic urticaria and its mechanism of action in mast cells. Interestingly, Paeonol was found to regulate Src kinase activity downstream of MRGPRX2 triggered signaling cascade in mast cells. Therefore, this plant-derived phenolic compound may provide a therapeutic option for the treatment of chronic urticaria.
Collapse
Affiliation(s)
- Yuanyuan Ding
- College of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, China
| | - Baowen Dang
- College of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, China
| | - Yonghui Zhang
- College of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, China
| | - Shiting Hu
- College of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, China
| | - Yuejin Wang
- College of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, China
| | - Chenrui Zhao
- College of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, China
| | - Tao Zhang
- College of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, China
| | - Zijun Gao
- Department of Anesthesiology, Xi'an Honghui Hospital, Xi'an Jiaotong University, Xi'an 710054, China.
| |
Collapse
|
8
|
Cao C, Roth BL. The structure, function, and pharmacology of MRGPRs. Trends Pharmacol Sci 2023; 44:237-251. [PMID: 36870785 PMCID: PMC10066734 DOI: 10.1016/j.tips.2023.02.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/01/2023] [Accepted: 02/09/2023] [Indexed: 03/06/2023]
Abstract
Mas-related G protein-coupled receptor (MRGPR) family members play important roles in the sensation of noxious stimuli and represent novel targets for the treatment of itch and pain. MRGPRs recognize a diversity of agonists and display complicated downstream signaling profiles, high sequence diversity across species, and many polymorphisms in humans. The recent structural advances on MRGPRs reveal unique structural features and diverse agonist recognition modes of this receptor family, which should facilitate the structure-based drug discovery at MRGPRs. In addition, the newly discovered ligands also provide valuable tools to explore the function and the therapeutic potential of MRGPRs. In this review, we discuss these progresses in our understanding of MRGPRs and highlight the challenges and potential opportunities for the future drug discovery at these receptors.
Collapse
Affiliation(s)
- Can Cao
- Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Bryan L Roth
- Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA; Division of Chemical Biology and Medicinal Chemistry, Eschelman School of Pharmacy and NIMH Psychoactive Drug Screening Program, University of North Carolina, Chapel Hill, NC 27599, USA.
| |
Collapse
|
9
|
Chimbetete T, Buck C, Choshi P, Selim R, Pedretti S, Divito SJ, Phillips EJ, Lehloenya R, Peter J. HIV-Associated Immune Dysregulation in the Skin: A Crucible for Exaggerated Inflammation and Hypersensitivity. J Invest Dermatol 2023; 143:362-373. [PMID: 36549954 PMCID: PMC9974923 DOI: 10.1016/j.jid.2022.07.035] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 07/22/2022] [Accepted: 07/25/2022] [Indexed: 12/24/2022]
Abstract
Skin diseases are hallmarks of progressive HIV-related immunosuppression, with severe noninfectious inflammatory and hypersensitivity conditions as common as opportunistic infections. Conditions such as papular pruritic eruption are AIDS defining, whereas delayed immune-mediated adverse reactions, mostly cutaneous, occur up to 100-fold more during HIV infection. The skin, constantly in contact with the external environment, has a complex immunity. A dense, tightly junctioned barrier with basal keratinocytes and epidermal Langerhans cells with antimicrobial, innate-activating, and antigen-presenting functions form the frontline. Resident dermal dendritic, mast, macrophage, and innate lymphoid cells play pivotal roles in directing and polarizing appropriate adaptive immune responses and directing effector immune cell trafficking. Sustained viral replication leads to progressive declines in CD4 T cells, whereas Langerhans and dermal dendritic cells serve as viral reservoirs and points of first viral contact in the mucosa. Cutaneous cytokine responses and diminished lymphoid populations create a crucible for exaggerated inflammation and hypersensitivity. However, beyond histopathological description, these manifestations are poorly characterized. This review details normal skin immunology, changes associated with progressive HIV-related immunosuppression, and the characteristic conditions of immune dysregulation increased with HIV. We highlight the main research gaps and several novel tissue-directed strategies to define mechanisms that will provide targeted approaches to prevention or treatment.
Collapse
Affiliation(s)
- Tafadzwa Chimbetete
- Division of Allergology and Clinical Immunology, Department of Medicine, Groote Schuur Hospital, University of Cape Town, Cape Town, South Africa
| | - Chloe Buck
- Division of Allergology and Clinical Immunology, Department of Medicine, Groote Schuur Hospital, University of Cape Town, Cape Town, South Africa
| | - Phuti Choshi
- Division of Allergology and Clinical Immunology, Department of Medicine, Groote Schuur Hospital, University of Cape Town, Cape Town, South Africa
| | - Rose Selim
- Division of Allergology and Clinical Immunology, Department of Medicine, Groote Schuur Hospital, University of Cape Town, Cape Town, South Africa
| | - Sarah Pedretti
- Allergy and Immunology Unit, University of Cape Town Lung Institute, Cape Town, South Africa
| | - Sherrie Jill Divito
- Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | | - Rannakoe Lehloenya
- Division of Dermatology, Department of Medicine, Groote Schuur Hospital, University of Cape Town, Cape Town, South Africa; Combined Drug Allergy Clinic, Groote Schuur Hospital, Cape Town, South Africa
| | - Jonny Peter
- Division of Allergology and Clinical Immunology, Department of Medicine, Groote Schuur Hospital, University of Cape Town, Cape Town, South Africa; Allergy and Immunology Unit, University of Cape Town Lung Institute, Cape Town, South Africa; Combined Drug Allergy Clinic, Groote Schuur Hospital, Cape Town, South Africa.
| |
Collapse
|
10
|
Sabato V, Ebo DG, Van Der Poorten MLM, Toscano A, Van Gasse AL, Mertens C, Van Houdt M, Beyens M, Elst J. Allergenic and Mas-Related G Protein-Coupled Receptor X2-Activating Properties of Drugs: Resolving the Two. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2023; 11:395-404. [PMID: 36581077 DOI: 10.1016/j.jaip.2022.12.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/02/2022] [Accepted: 12/11/2022] [Indexed: 12/27/2022]
Abstract
Since the seminal description implicating occupation of the Mas-related G protein-coupled receptor X2 (MRGPRX2) in mast cell (MC) degranulation by drugs, many investigations have been undertaken into this potential new endotype of immediate drug hypersensitivity reaction. However, current evidence for this mechanism predominantly comes from (mutant) animal models or in vitro studies, and irrefutable clinical evidence in humans is still missing. Moreover, translation of these preclinical findings into clinical relevance in humans is difficult and should be critically interpreted. Starting from our clinical priorities and experience with flow-assisted functional analyses of basophils and cultured human MCs, the objectives of this rostrum are to identify some of these difficulties, emphasize the obstacles that might hamper translation from preclinical observations into the clinics, and highlight differences between IgE- and MRPGRX2-mediated reactions. Inevitably, as with any subject still beset by many questions, alternative interpretations, hypotheses, or explanations expressed here may not find universal acceptance. Nevertheless, we believe that for the time being, many questions remain unanswered. Finally, a theoretical mechanistic algorithm is proposed that might advance discrimination between MC degranulation from MRGPRX2 activation and cross-linking of membrane-bound drug-reactive IgE antibodies.
Collapse
Affiliation(s)
- Vito Sabato
- Faculty of Medicine and Health Sciences, Department of Immunology, Allergology, Rheumatology and the Infla-Med Centre of Excellence, Antwerp (Belgium) and Immunology, Allergology, Rheumatology, Antwerp University Hospital, University of Antwerp, Antwerp, Belgium; Department of Immunology and Allergology, AZ Jan Palfijn Gent, Ghent, Belgium
| | - Didier G Ebo
- Faculty of Medicine and Health Sciences, Department of Immunology, Allergology, Rheumatology and the Infla-Med Centre of Excellence, Antwerp (Belgium) and Immunology, Allergology, Rheumatology, Antwerp University Hospital, University of Antwerp, Antwerp, Belgium; Department of Immunology and Allergology, AZ Jan Palfijn Gent, Ghent, Belgium.
| | - Marie-Line M Van Der Poorten
- Faculty of Medicine and Health Sciences, Department of Immunology, Allergology, Rheumatology and the Infla-Med Centre of Excellence, Antwerp (Belgium) and Immunology, Allergology, Rheumatology, Antwerp University Hospital, University of Antwerp, Antwerp, Belgium; Faculty of Medicine and Health Sciences, Department of Paediatrics and the Infla-Med Centre of Excellence, Antwerp, Belgium, and Paediatrics, Antwerp University Hospital, University of Antwerp, Antwerp, Belgium
| | - Alessandro Toscano
- Faculty of Medicine and Health Sciences, Department of Immunology, Allergology, Rheumatology and the Infla-Med Centre of Excellence, Antwerp (Belgium) and Immunology, Allergology, Rheumatology, Antwerp University Hospital, University of Antwerp, Antwerp, Belgium
| | - Athina L Van Gasse
- Faculty of Medicine and Health Sciences, Department of Immunology, Allergology, Rheumatology and the Infla-Med Centre of Excellence, Antwerp (Belgium) and Immunology, Allergology, Rheumatology, Antwerp University Hospital, University of Antwerp, Antwerp, Belgium; Faculty of Medicine and Health Sciences, Department of Paediatrics and the Infla-Med Centre of Excellence, Antwerp, Belgium, and Paediatrics, Antwerp University Hospital, University of Antwerp, Antwerp, Belgium
| | - Christel Mertens
- Faculty of Medicine and Health Sciences, Department of Immunology, Allergology, Rheumatology and the Infla-Med Centre of Excellence, Antwerp (Belgium) and Immunology, Allergology, Rheumatology, Antwerp University Hospital, University of Antwerp, Antwerp, Belgium
| | - Michel Van Houdt
- Faculty of Medicine and Health Sciences, Department of Immunology, Allergology, Rheumatology and the Infla-Med Centre of Excellence, Antwerp (Belgium) and Immunology, Allergology, Rheumatology, Antwerp University Hospital, University of Antwerp, Antwerp, Belgium
| | - Michiel Beyens
- Faculty of Medicine and Health Sciences, Department of Immunology, Allergology, Rheumatology and the Infla-Med Centre of Excellence, Antwerp (Belgium) and Immunology, Allergology, Rheumatology, Antwerp University Hospital, University of Antwerp, Antwerp, Belgium
| | - Jessy Elst
- Faculty of Medicine and Health Sciences, Department of Immunology, Allergology, Rheumatology and the Infla-Med Centre of Excellence, Antwerp (Belgium) and Immunology, Allergology, Rheumatology, Antwerp University Hospital, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
11
|
Han J, Pan C, Tang X, Li Q, Zhu Y, Zhang Y, Liang A. Hypersensitivity reactions to small molecule drugs. Front Immunol 2022; 13:1016730. [PMID: 36439170 PMCID: PMC9684170 DOI: 10.3389/fimmu.2022.1016730] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 10/20/2022] [Indexed: 02/02/2024] Open
Abstract
Drug hypersensitivity reactions induced by small molecule drugs encompass a broad spectrum of adverse drug reactions with heterogeneous clinical presentations and mechanisms. These reactions are classified into allergic drug hypersensitivity reactions and non-allergic drug hypersensitivity reactions. At present, the hapten theory, pharmacological interaction with immune receptors (p-i) concept, altered peptide repertoire model, and altered T-cell receptor (TCR) repertoire model have been proposed to explain how small molecule drugs or their metabolites induce allergic drug hypersensitivity reactions. Meanwhile, direct activation of mast cells, provoking the complement system, stimulating or inhibiting inflammatory reaction-related enzymes, accumulating bradykinin, and/or triggering vascular hyperpermeability are considered as the main factors causing non-allergic drug hypersensitivity reactions. To date, many investigations have been performed to explore the underlying mechanisms involved in drug hypersensitivity reactions and to search for predictive and preventive methods in both clinical and non-clinical trials. However, validated methods for predicting and diagnosing hypersensitivity reactions to small molecule drugs and deeper insight into the relevant underlying mechanisms are still limited.
Collapse
Affiliation(s)
- Jiayin Han
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Chen Pan
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xuan Tang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qi Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yan Zhu
- Institute of Information on Traditional Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yushi Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Aihua Liang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
12
|
Yang F, Limjunyawong N, Peng Q, Schroeder JT, Saini S, MacGlashan D, Dong X, Gao L. Biological screening of a unique drug library targeting MRGPRX2. Front Immunol 2022; 13:997389. [DOI: 10.3389/fimmu.2022.997389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 09/26/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundAllergic drug reaction or drug allergy is an immunologically mediated drug hypersensitivity reaction (DHR). G-protein coupled receptors (GPCRs) are common drug targets and communicate extracellular signals that initiate cellular responses. Recent evidence shows that GPCR MRGPRX2 is of major importance in IgE-independent pseudo-allergic DHRs based on the suspected interactions between many FDA-approved peptidergic compounds and MRGPRX2.ObjectiveOur aim was to uncover novel MRGPRX2-selective and -potent agonists as drug candidates responsible for clinical features of pseudo-allergic DHRs.MethodsWe conducted a primary high-throughput screening (HTS), coupled with mutagenesis targeting the MRGPRX2 N62S mutation, on a panel of 3,456 library compounds. We discovered pharmacologically active hit compounds as agonists of the MRGPRX2 protein according to high degrees of potency evaluated by the calcium response and validated by the degranulation assay. Using the molecular tool Forge, we also characterized the structure-activity relationship shared by identified hit compounds.ResultsThe alternative allele of single nucleotide polymorphism rs10833049 (N62S) in MRGPRX2 demonstrated loss-of-function property in response to substance P and antineoplastic agent daunorubicin hydrochloride. We applied a unique assay system targeting the N62S mutation to the HTS and identified 84 MRGPRX2-selective active hit compounds representing diverse classes according to primary drug indications. The top five highly represented groups included fluoroquinolone and non-fluoroquinolone antibiotics; antidepressive/antipsychotic; antihistaminic and antineoplastic agents. We classified hit compounds into 14 clusters representing a variety of chemical and drug classes beyond those reported, such as opioids, neuromuscular blocking agents, and fluoroquinolones. We further demonstrated MRGPRX2-dependent degranulation in the human mast cell line LAD2 cells induced by three novel agonists representing the non-fluoroquinolone antibiotics (bacitracin A), anti-allergic agents (brompheniramine maleate) and tyrosine-kinase inhibitors (imatinib mesylate).ConclusionOur findings could facilitate the development of interventions for personalized prevention and treatment of DHRs, as well as future pharmacogenetic investigations of MRGPRX2 in relevant disease cohorts.
Collapse
|
13
|
MAS-related G protein-coupled receptors X (MRGPRX): Orphan GPCRs with potential as targets for future drugs. Pharmacol Ther 2022; 238:108259. [DOI: 10.1016/j.pharmthera.2022.108259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/30/2022] [Accepted: 08/01/2022] [Indexed: 11/20/2022]
|
14
|
Assessment of the safety of the cationic arginine-rich peptides (CARPs) poly-arginine-18 (R18 and R18D) in ex vivo models of mast cell degranulation and red blood cell hemolysis. Biochem Biophys Rep 2022; 31:101305. [PMID: 35812346 PMCID: PMC9257347 DOI: 10.1016/j.bbrep.2022.101305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/16/2022] [Accepted: 06/27/2022] [Indexed: 11/23/2022] Open
Abstract
Our laboratory focuses on the development of novel neuroprotective cationic peptides, such poly-arginine-18 (R18: 18-mer of l-arginine; net charge +18) and its d-enantiomer R18D in stroke and other brain injuries. In the clinical development of R18/R18D, their cationic property raises potential safety concerns on their non-specific effects to induce mast cell degranulation and hemolysis. To address this, we first utilised primary human cultured mast cells (HCMCs) to examine anaphylactoid effects. We also included as controls, the well-characterised neuroprotective TAT-NR2B9c peptide and the widely used heparin reversal peptide, protamine. Degranulation assay based on β-hexosaminidase release demonstrated that R18 and R18D did not induce significant mast cell degranulation in both untreated (naïve) and IgE-sensitised HCMCs in a dose-response study to a maximum peptide concentration of 16 μM. Similarly, TAT-NR2B9c and protamine did not induce significant mast cell degranulation. To examine hemolytic effects, red blood cells (RBCs), were incubated with the peptides at a concentration range of 1–16 μM in the absence or presence of 2% plasma. Measurement of hemoglobin absorbance revealed that only R18 induced a modest, but significant degree of hemolysis at the 16 μM concentration, and only in the absence of plasma. This study addressed the potential safety concern of the application of the cationic neuroprotective peptides, especially, R18D, on anaphylactoid responses and hemolysis. The findings indicate that R18, R18D, TAT-NR2B9c and protamine are unlikely to induce histamine mediated anaphylactoid reactions or RBC hemolysis when administered intravenously to patients. Cationic peptides R18, R18D, TAT-NR2B9c and protamine do not stimulate the degranulation of ex vivo untreated (naïve) and IgE-sensitised primary human cultured mast cells (HCMCs). R18, R18D, TAT-NR2B9c and protamine do not induce significant hemolysis of human red blood cells (RBCs). R18, R18D, TAT-NR2B9c and protamine are unlikely to induce histamine mediated anaphylactoid reactions or hemolysis when administered intravenously to patients.
Collapse
|
15
|
Wang Z, Li Z, Bal G, Franke K, Zuberbier T, Babina M. β-arrestin-1 and β-arrestin-2 Restrain MRGPRX2-Triggered Degranulation and ERK1/2 Activation in Human Skin Mast Cells. FRONTIERS IN ALLERGY 2022; 3:930233. [PMID: 35910860 PMCID: PMC9337275 DOI: 10.3389/falgy.2022.930233] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 06/24/2022] [Indexed: 12/19/2022] Open
Abstract
As a novel receptor that efficiently elicits degranulation upon binding to one of its numerous ligands, MRGPRX2 has moved to the center of attention in mast cell (MC) research. Indeed, MRGPRX2 is believed to be a major component of pseudo-allergic reactions to drugs and of neuropeptide-elicited MC activation in skin diseases alike. MRGPRX2 signals via G proteins which organize downstream events ultimately leading to granule discharge. Skin MCs require both PI3K and ERK1/2 cascades for efficient exocytosis. β-arrestins act as opponents of G proteins and lead to signal termination with or without subsequent internalization. We recently demonstrated that ligand-induced internalization of MRGPRX2 requires the action of β-arrestin-1, but not of β-arrestin-2. Here, by using RNA interference, we find that both isoforms counter skin MC degranulation elicited by three MRGPRX2 agonists but not by FcεRI-aggregation. Analyzing whether this occurs through MRGPRX2 stabilization under β-arrestin attenuation, we find that reduction of β-arrestin-1 indeed leads to increased MRGPRX2 abundance, while this is not observed for β-arrestin-2. This led us speculate that β-arrestin-2 is involved in signal termination without cellular uptake of MRGPRX2. This was indeed found to be the case, whereby interference with β-arrestin-2 has an even stronger positive effect on ERK1/2 phosphorylation compared to β-arrestin-1 perturbation. Neither β-arrestin-1 nor β-arrestin-2 had an impact on AKT phosphorylation nor affected signaling via the canonical FcεRI-dependent route. We conclude that in skin MCs, β-arrestin-2 is chiefly involved in signal termination, whereas β-arrestin-1 exerts its effects by controlling MRGPRX2 abundance.
Collapse
Affiliation(s)
- Zhao Wang
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology IA, Berlin, Germany.,Institute for Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Berlin Institute of Health, Humboldt-Universität zu Berlin, Berlin, Germany.,Department of Dermatology, The Second Affiliated Hospital, Northwest Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Zhuoran Li
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology IA, Berlin, Germany.,Institute for Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Berlin Institute of Health, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Gürkan Bal
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology IA, Berlin, Germany.,Institute for Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Berlin Institute of Health, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Kristin Franke
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology IA, Berlin, Germany.,Institute for Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Berlin Institute of Health, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Torsten Zuberbier
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology IA, Berlin, Germany.,Institute for Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Berlin Institute of Health, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Magda Babina
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology IA, Berlin, Germany.,Institute for Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Berlin Institute of Health, Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
16
|
Wang C, Hu T, Lu J, Lv Y, Ge S, Hou Y, He H. Convenient Diaryl Ureas as Promising Anti-pseudo-allergic Agents. J Med Chem 2022; 65:10626-10637. [PMID: 35876064 DOI: 10.1021/acs.jmedchem.2c00846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Cheng Wang
- School of Pharmacy, Health Science Center, Xi’an Jiaotong University, No. 76, Yanta West Road, Xi’an, Shaanxi 710061, China
| | - Tian Hu
- Department of Pharmacy, 3201 Hospital Affiliated to Xi’an Jiaotong University, Hanzhong, Shaanxi 723000, China
| | - Jiayu Lu
- School of Pharmacy, Health Science Center, Xi’an Jiaotong University, No. 76, Yanta West Road, Xi’an, Shaanxi 710061, China
| | - Yuexin Lv
- School of Pharmacy, Health Science Center, Xi’an Jiaotong University, No. 76, Yanta West Road, Xi’an, Shaanxi 710061, China
| | - Shuai Ge
- School of Pharmacy, Health Science Center, Xi’an Jiaotong University, No. 76, Yanta West Road, Xi’an, Shaanxi 710061, China
| | - Yajing Hou
- Department of Pharmacy, Shaanxi Province People’s Hospital, Xi’an, Shaanxi 710068, China
| | - Huaizhen He
- School of Pharmacy, Health Science Center, Xi’an Jiaotong University, No. 76, Yanta West Road, Xi’an, Shaanxi 710061, China
| |
Collapse
|
17
|
Wang C, Hou Y, Ge S, Lu J, Wang X, Lv Y, Wang N, He H. Synthetic imperatorin derivatives alleviate allergic reactions via mast cells. Biomed Pharmacother 2022; 150:112982. [PMID: 35483187 DOI: 10.1016/j.biopha.2022.112982] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/23/2022] [Accepted: 04/14/2022] [Indexed: 11/02/2022] Open
Abstract
Anaphylaxis is a severe systemic allergic reaction that exhibits multiple clinical symptoms. The Mas-related G protein-coupled receptor X2 (MRGPRX2) is recognized as a key cell receptor mediating allergic diseases and drug-induced anaphylactoid reactions. Thus, it has been a promising target for preventing and treating these reactions. Based on the potential activity of imperatorin and active structural feature of MRGPRX2, we first demonstrated that the synthetic imperatorin derivatives (IDs) could significantly inhibit MRGPRX2 agonist-induced degranulation and cytokine release in LAD2 cells, as well as alleviate local and systemic anaphylaxis in mice. The IC50 value of the most promising compound is an order of magnitude lower than that of imperatorin. IDs were further identified to display anti-pseudo-allergic activity by binding MRGPRX2 with the tertiary nitrogen substructures, just liking the reported MRGPRX2-ligand. These results would propose evidence for discovery of agents for treating MCs-dependent allergic disorders.
Collapse
Affiliation(s)
- Cheng Wang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Yajing Hou
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Shuai Ge
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Jiayu Lu
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Xiangjun Wang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Yuexin Lv
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Nan Wang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Huaizhen He
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China.
| |
Collapse
|
18
|
Azimi SF, Mainella V, Jeffres MN. Immediate hypersensitivity to fluoroquinolones: a cohort assessing cross-reactivity. Open Forum Infect Dis 2022; 9:ofac106. [PMID: 35355888 PMCID: PMC8962755 DOI: 10.1093/ofid/ofac106] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 03/01/2022] [Indexed: 11/12/2022] Open
Abstract
Abstract
Background
Fluoroquinolones are the second-most prescribed antimicrobial and are frequently associated with causing hypersensitivity reactions. Existing evidence regarding cross-reactivity of fluoroquinolones is limited, offering clinicians little guidance in understanding the implications of selecting an in-class alternative among patients with histories of allergic reactions to fluoroquinolones. The aim of this study was to compare the frequency of immediate hypersensitivity reactions to either ciprofloxacin, levofloxacin, and/or moxifloxacin among patients with a history of immediate hypersensitivity to a different fluoroquinolone.
Methods
This retrospective chart review included adult patients with a history of an immediate hypersensitivity reaction to ciprofloxacin, levofloxacin, and/or moxifloxacin and a documented prescription for a different fluoroquinolone. The primary outcome was documentation of a hypersensitivity reaction upon second fluoroquinolone exposure.
Results
A total of 321 cases met inclusion criteria. Of these cases, 2.5% experienced an immediate hypersensitivity reaction after second fluoroquinolone exposure to ciprofloxacin, levofloxacin, and/or moxifloxacin. Within the ciprofloxacin, levofloxacin, and moxifloxacin index allergy cohorts, the frequency of cross-reactivity were 2.7%, 2.2%, and 5.3%, respectively.
Conclusion
Our data suggest that patients with a history of immediate hypersensitivity reaction to ciprofloxacin, levofloxacin, and/or moxifloxacin are at low risk of experiencing a cross-reaction when exposed to a different fluoroquinolone. Avoidance of all fluoroquinolones in this patient population may not be warranted.
Collapse
Affiliation(s)
- Sara F Azimi
- University of Colorado Anschutz Medical Campus, Skaggs School of Pharmacy and Pharmaceutical Sciences, Aurora, CO, USA
| | - Vincent Mainella
- University of Colorado Anschutz Medical Campus, Skaggs School of Pharmacy and Pharmaceutical Sciences, Aurora, CO, USA
| | - Meghan N Jeffres
- University of Colorado Anschutz Medical Campus, Skaggs School of Pharmacy and Pharmaceutical Sciences, Aurora, CO, USA
| |
Collapse
|
19
|
Synthesis and evaluation of new potential anti-pseudo-allergic agents. Bioorg Med Chem Lett 2022; 59:128575. [DOI: 10.1016/j.bmcl.2022.128575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 01/05/2022] [Accepted: 01/15/2022] [Indexed: 11/17/2022]
|
20
|
Hypersensitivity Reactions and Immune-Related Adverse Events to Immune Checkpoint Inhibitors: Approaches, Mechanisms, and Models. Immunol Allergy Clin North Am 2022; 42:285-305. [DOI: 10.1016/j.iac.2021.12.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
21
|
Adams GL, Pall PS, Grauer SM, Zhou X, Ballard JE, Vavrek M, Kraus RL, Morissette P, Li N, Colarusso S, Bianchi E, Palani A, Klein R, John CT, Wang D, Tudor M, Nolting AF, Biba M, Nowak T, Makarov AA, Reibarkh M, Buevich AV, Zhong W, Regalado EL, Wang X, Gao Q, Shahripour A, Zhu Y, de Simone D, Frattarelli T, Pasquini NM, Magotti P, Iaccarino R, Li Y, Solly K, Lee KJ, Wang W, Chen F, Zeng H, Wang J, Regan H, Amin RP, Regan CP, Burgey CS, Henze DA, Sun C, Tellers DM. Development of ProTx-II Analogues as Highly Selective Peptide Blockers of Na v1.7 for the Treatment of Pain. J Med Chem 2021; 65:485-496. [PMID: 34931831 DOI: 10.1021/acs.jmedchem.1c01570] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Inhibitor cystine knot peptides, derived from venom, have evolved to block ion channel function but are often toxic when dosed at pharmacologically relevant levels in vivo. The article describes the design of analogues of ProTx-II that safely display systemic in vivo blocking of Nav1.7, resulting in a latency of response to thermal stimuli in rodents. The new designs achieve a better in vivo profile by improving ion channel selectivity and limiting the ability of the peptides to cause mast cell degranulation. The design rationale, structural modeling, in vitro profiles, and rat tail flick outcomes are disclosed and discussed.
Collapse
Affiliation(s)
- Gregory L Adams
- Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Parul S Pall
- Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Steven M Grauer
- Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Xiaoping Zhou
- Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | | | - Marissa Vavrek
- Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Richard L Kraus
- Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | | | - Nianyu Li
- Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Stefania Colarusso
- Peptides and Small Molecules R&D Department, IRBM Spa, Via Pontina km 30.600, 00071 Pomezia (RM), Italy
| | - Elisabetta Bianchi
- Peptides and Small Molecules R&D Department, IRBM Spa, Via Pontina km 30.600, 00071 Pomezia (RM), Italy
| | - Anandan Palani
- Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Rebecca Klein
- Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | | | - Deping Wang
- Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Matthew Tudor
- Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Andrew F Nolting
- Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Mirlinda Biba
- Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Timothy Nowak
- Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | | | | | | | - Wendy Zhong
- Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | | | - Xiao Wang
- Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Qi Gao
- Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | | | - Yuping Zhu
- Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Daniele de Simone
- Peptides and Small Molecules R&D Department, IRBM Spa, Via Pontina km 30.600, 00071 Pomezia (RM), Italy
| | - Tommaso Frattarelli
- Peptides and Small Molecules R&D Department, IRBM Spa, Via Pontina km 30.600, 00071 Pomezia (RM), Italy
| | - Nicolo' Maria Pasquini
- Peptides and Small Molecules R&D Department, IRBM Spa, Via Pontina km 30.600, 00071 Pomezia (RM), Italy
| | - Paola Magotti
- Peptides and Small Molecules R&D Department, IRBM Spa, Via Pontina km 30.600, 00071 Pomezia (RM), Italy
| | - Roberto Iaccarino
- Peptides and Small Molecules R&D Department, IRBM Spa, Via Pontina km 30.600, 00071 Pomezia (RM), Italy
| | - Yuxing Li
- Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Kelli Solly
- Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Keun-Joong Lee
- Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Weixun Wang
- Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Feifei Chen
- Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Haoyu Zeng
- Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Jixin Wang
- Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Hilary Regan
- Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Rupesh P Amin
- Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | | | | | - Darrell A Henze
- Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Chengzao Sun
- Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - David M Tellers
- Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| |
Collapse
|
22
|
Mackay GA, Fernandopulle NA, Ding J, McComish J, Soeding PF. Antibody or Anybody? Considering the Role of MRGPRX2 in Acute Drug-Induced Anaphylaxis and as a Therapeutic Target. Front Immunol 2021; 12:688930. [PMID: 34867939 PMCID: PMC8639860 DOI: 10.3389/fimmu.2021.688930] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 11/03/2021] [Indexed: 12/29/2022] Open
Abstract
Acute anaphylaxis to small molecule drugs is largely considered to be antibody-mediated with immunogloblin E (IgE) and mast cell activation being key. More recently, a role for drug-reactive immunoglobulin G (IgG) with neutrophil activation has also been suggested, at least in reactions to neuromuscular blocking agents (NMBAs). However, the mast cell receptor MRGPRX2 has also been highlighted as a possible triggering mechanism in acute anaphylaxis to many clinically used drugs. Significantly, MRGPRX2 activation is not dependent upon the presence of drug-recognising antibody. Given the reasonable assumption that MRGPRX2 is expressed in all individuals, the corollary of this is that in theory, anybody could respond detrimentally to triggering drugs (recently suggested to be around 20% of a drug-like compound library). But this clearly is not the case, as the incidence of acute drug-induced anaphylaxis is very low. In this mini-review we consider antibody-dependent and -independent mechanisms of mast cell activation by small molecule drugs with a focus on the MRGPRX2 pathway. Moreover, as a juxtaposition to these adverse drug actions, we consider how increased understanding of the role of MRGPRX2 in anaphylaxis is important for future drug development and can complement exploration of this receptor as a drug target in broader clinical settings.
Collapse
Affiliation(s)
- Graham A Mackay
- Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, VIC, Australia
| | - Nithya A Fernandopulle
- Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, VIC, Australia
| | - Jie Ding
- Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, VIC, Australia
| | - Jeremy McComish
- Department of Clinical Immunology and Allergy, The Royal Melbourne Hospital, Parkville, VIC, Australia
| | - Paul F Soeding
- Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, VIC, Australia.,Department of Anaesthesia and Pain Medicine, The Royal Melbourne Hospital, Parkville, VIC, Australia
| |
Collapse
|
23
|
Lu L, Raj S, Arizmendi N, Ding J, Eitzen G, Kwan P, Kulka M, Unsworth LD. Identification of short peptide sequences that activate human mast cells via Mas-related G-protein coupled receptor member X2. Acta Biomater 2021; 136:159-169. [PMID: 34530142 DOI: 10.1016/j.actbio.2021.09.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 08/24/2021] [Accepted: 09/07/2021] [Indexed: 11/19/2022]
Abstract
Peptide based therapeutics are desirable owing to their high biological specificity. However, a number of these fail in clinical testing due to an adverse inflammatory response. Mast cells play a key role in directing the host response to drugs and related products. Although the role of FcεRI receptor is well known, Mas-related G-protein coupled receptor X2 (MRGPRX2) binding of endogenous peptides, and drugs will activate mast cells independent of FcεRI. Identifying peptides that activate mast cells through MRGPRX2, and their respective activation potency, can be used to reduce the failure rate of peptide therapeutics at clinical trial. Moreover, it will allow for peptide design where mast cell activation is actually desired. It was found that FRKKW and WNKWAL are two motifs that activate human LAD2 cells similar to PAMP-12 controls. Peptide activators of MRGPRX2 could be reduced to Xa-(Y)(n ≥ 3)-Xb where: Xa is an aromatic residue; Xb is a hydrophobic residue; and Y is a minimum 3 residue long sequence, containing a minimum of one positively charged residue with the remainder being uncharged residues. Artificial peptides WKKKW and FKKKF were constructed to test this structural functionality and were similar to PAMP-12 controls. Peptides with different activation potentials were found where FRKKW = WKKKW = FKKKF > PAMP-12 = WNKWAL > YKKKY > FRKKANKWALSR = FRKKWNKAALSR > KWKWK > FRKK = WNKWA > KYKYK > NKWALSR = YKKY = WNK. These sequences should be considered when designing peptide-based therapeutics. STATEMENT OF SIGNIFICANCE: Mast cells release immune regulating molecules upon activation that direct host's immune response. MRGPRX2 receptor provides an alternate pathway for mast cell activation that is independent of FcεRI receptor. It is thought that mast cell activation through MRGPRX2 plays a critical role in high failure rates of drugs in clinical trials. Identifying peptide sequences that activate mast cells through MRGPRX2 can serve two important purposes, namely, sequences to avoid when designing peptide therapeutics, and artificial peptides with different activation potentials for mast cells. Herein, we have identified a general amino acid sequence that induces mast cell activation through MRGPRX2. Furthermore, by modulating the identified sequence, artificial peptides have been designed which activate mast cells by varying degrees for therapeutic applications.
Collapse
Affiliation(s)
- Lei Lu
- Department of Chemical and Materials Engineering, Donadeo Innovation Center for Engineering, University of Alberta, 9211-116 Street NW, Edmonton, AB T6G1H9, Canada; School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Shammy Raj
- Department of Chemical and Materials Engineering, Donadeo Innovation Center for Engineering, University of Alberta, 9211-116 Street NW, Edmonton, AB T6G1H9, Canada
| | - Narcy Arizmendi
- Nanotechnology Research Council (Canada), 11421 Saskatchewan Drive NW, Edmonton, AB T6G2M9, Canada
| | - Jie Ding
- Wound Healing Research Group, Division of Plastic and Reconstructive Surgery, University of Alberta, 2D2.28 WMC, 8440-112 Street, Edmonton, AB T6G2B7, Canada
| | - Gary Eitzen
- Department of Cell Biology, MSB 5-14, University of Alberta, Edmonton, AB T6G2H7, Canada
| | - Peter Kwan
- Wound Healing Research Group, Division of Plastic and Reconstructive Surgery, University of Alberta, 2D2.28 WMC, 8440-112 Street, Edmonton, AB T6G2B7, Canada
| | - Marianna Kulka
- Nanotechnology Research Council (Canada), 11421 Saskatchewan Drive NW, Edmonton, AB T6G2M9, Canada; Department of Medical Microbiology and Immunology, University of Alberta, 6-020 Katz Group Center, Edmonton, AB T6G2E1, Canada.
| | - Larry D Unsworth
- Department of Chemical and Materials Engineering, Donadeo Innovation Center for Engineering, University of Alberta, 9211-116 Street NW, Edmonton, AB T6G1H9, Canada.
| |
Collapse
|
24
|
Morissette P, Li N, Ballard JE, Vavrek M, Adams GL, Regan C, Regan H, Lee KJ, Wang W, Burton A, Chen F, Gerenser P, Li Y, Kraus RL, Tellers D, Palani A, Zhu Y, Sun C, Bianchi E, Colarusso S, De Simone D, Frattarelli T, Pasquini NM, Amin RP. Guiding Chemically Synthesized Peptide Drug Lead Optimization by Derisking Mast Cell Degranulation-Related Toxicities of a NaV1.7 Peptide Inhibitor. Toxicol Sci 2021; 185:170-183. [PMID: 34897513 DOI: 10.1093/toxsci/kfab138] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Studies have shown that some peptides and small molecules can induce non IgE-mediated anaphylactoid reactions through mast cell activation. Upon activation, mast cells degranulate and release vasoactive and proinflammatory mediators, from cytoplasmic granules into the extracellular environment which can induce a cascade of severe adverse reactions. This study describes a lead optimization strategy to select NaV1.7 inhibitor peptides that minimize acute mast cell degranulation (MCD) toxicities. Various in vitro, in vivo, and PKPD models were used to screen candidates and guide peptide chemical modifications to mitigate this risk. Anesthetized rats dosed with peptides demonstrated treatment-related decreases in blood pressure and increases in plasma histamine concentrations which were reversible with a mast cell stabilizer, supporting the MCD mechanism. In vitro testing in rat mast cells with NaV1.7 peptides demonstrated a concentration-dependent increase in histamine. Pharmacodynamic modeling facilitated establishing an in vitro to in vivo correlation for histamine as a biomarker for blood pressure decline via the MCD mechanism. These models enabled assessment of structure-activity relationship (SAR) to identify substructures that contribute to peptide-mediated MCD. Peptides with hydrophobic and cationic characteristics were determined to have an elevated risk for MCD, which could be reduced or avoided by incorporating anionic residues into the protoxin II scaffold. Our analyses support that in vitro MCD assessment in combination with PKPD modeling can guide SAR to improve peptide lead optimization and ensure an acceptable early in vivo tolerability profile with reduced resources, cycle time, and animal use.
Collapse
Affiliation(s)
- Pierre Morissette
- Nonclinical Drug Safety (NDS), Merck & Co., Inc, West Point, Pennsylvania 19486, USA
| | - Nianyu Li
- Nonclinical Drug Safety (NDS), Merck & Co., Inc, West Point, Pennsylvania 19486, USA
| | - Jeanine E Ballard
- Pharmacokinetics, Pharmacodynamics and Drug Metabolism (PPDM), Merck & Co., Inc, West Point, Pennsylvania 19486, USA
| | - Marissa Vavrek
- Pharmacokinetics, Pharmacodynamics and Drug Metabolism (PPDM), Merck & Co., Inc, West Point, Pennsylvania 19486, USA
| | - Gregory L Adams
- Discovery Chemistry Peptide, Merck & Co., Inc, West Point, Pennsylvania 19486, USA
| | - Chris Regan
- Nonclinical Drug Safety (NDS), Merck & Co., Inc, West Point, Pennsylvania 19486, USA
| | - Hillary Regan
- Nonclinical Drug Safety (NDS), Merck & Co., Inc, West Point, Pennsylvania 19486, USA
| | - K J Lee
- Pharmacokinetics, Pharmacodynamics and Drug Metabolism (PPDM), Merck & Co., Inc, West Point, Pennsylvania 19486, USA
| | - Weixun Wang
- Pharmacokinetics, Pharmacodynamics and Drug Metabolism (PPDM), Merck & Co., Inc, West Point, Pennsylvania 19486, USA
| | - Aimee Burton
- Nonclinical Drug Safety (NDS), Merck & Co., Inc, West Point, Pennsylvania 19486, USA
| | - Feifei Chen
- Nonclinical Drug Safety (NDS), Merck & Co., Inc, West Point, Pennsylvania 19486, USA
| | - Pamela Gerenser
- Nonclinical Drug Safety (NDS), Merck & Co., Inc, West Point, Pennsylvania 19486, USA
| | - Yuxing Li
- Nonclinical Drug Safety (NDS), Merck & Co., Inc, West Point, Pennsylvania 19486, USA
| | - Richard L Kraus
- Nonclinical Drug Safety (NDS), Merck & Co., Inc, West Point, Pennsylvania 19486, USA
| | - David Tellers
- Discovery Chemistry Peptide, Merck & Co., Inc, West Point, Pennsylvania 19486, USA
| | - Anand Palani
- Discovery Chemistry Peptide, Merck & Co., Inc, West Point, Pennsylvania 19486, USA
| | - Yuping Zhu
- Discovery Chemistry Peptide, Merck & Co., Inc, West Point, Pennsylvania 19486, USA
| | - Chengzao Sun
- Discovery Chemistry Peptide, Merck & Co., Inc, West Point, Pennsylvania 19486, USA
| | - Elisabetta Bianchi
- Peptides and Small Molecules R&D Department, IRBM Spa , Pomezia, Rome 00071, Italy
| | - Stefania Colarusso
- Peptides and Small Molecules R&D Department, IRBM Spa , Pomezia, Rome 00071, Italy
| | - Daniele De Simone
- Peptides and Small Molecules R&D Department, IRBM Spa , Pomezia, Rome 00071, Italy
| | - Tommaso Frattarelli
- Peptides and Small Molecules R&D Department, IRBM Spa , Pomezia, Rome 00071, Italy
| | | | - Rupesh P Amin
- Nonclinical Drug Safety (NDS), Merck & Co., Inc, West Point, Pennsylvania 19486, USA
| |
Collapse
|
25
|
Structure, function and pharmacology of human itch receptor complexes. Nature 2021; 600:164-169. [PMID: 34789875 DOI: 10.1038/s41586-021-04077-y] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 09/30/2021] [Indexed: 11/08/2022]
Abstract
In the clades of animals that diverged from the bony fish, a group of Mas-related G-protein-coupled receptors (MRGPRs) evolved that have an active role in itch and allergic signals1,2. As an MRGPR, MRGPRX2 is known to sense basic secretagogues (agents that promote secretion) and is involved in itch signals and eliciting pseudoallergic reactions3-6. MRGPRX2 has been targeted by drug development efforts to prevent the side effects induced by certain drugs or to treat allergic diseases. Here we report a set of cryo-electron microscopy structures of the MRGPRX2-Gi1 trimer in complex with polycationic compound 48/80 or with inflammatory peptides. The structures of the MRGPRX2-Gi1 complex exhibited shallow, solvent-exposed ligand-binding pockets. We identified key common structural features of MRGPRX2 and describe a consensus motif for peptidic allergens. Beneath the ligand-binding pocket, the unusual kink formation at transmembrane domain 6 (TM6) and the replacement of the general toggle switch from Trp6.48 to Gly6.48 (superscript annotations as per Ballesteros-Weinstein nomenclature) suggest a distinct activation process. We characterized the interfaces of MRGPRX2 and the Gi trimer, and mapped the residues associated with key single-nucleotide polymorphisms on both the ligand and G-protein interfaces of MRGPRX2. Collectively, our results provide a structural basis for the sensing of cationic allergens by MRGPRX2, potentially facilitating the rational design of therapies to prevent unwanted pseudoallergic reactions.
Collapse
|
26
|
Abstract
Many adverse reactions to therapeutic drugs appear to be allergic in nature, and are thought to be triggered by patient-specific Immunoglobulin E (IgE) antibodies that recognize the drug molecules and form complexes with them that activate mast cells. However, in recent years another mechanism has been proposed, in which some drugs closely associated with allergic-type events can bypass the antibody-mediated pathway and trigger mast cell degranulation directly by activating a mast cell-specific receptor called Mas-related G protein-coupled receptor X2 (MRGPRX2). This would result in symptoms similar to IgE-mediated events, but would not require immune priming. This review will cover the frequency, severity, and dose-responsiveness of allergic-type events for several drugs shown to have MRGPRX2 agonist activity. Surprisingly, the analysis shows that mild-to-moderate events are far more common than currently appreciated. A comparison with plasma drug levels suggests that MRGPRX2 mediates many of these mild-to-moderate events. For some of these drugs, then, MRGPRX2 activation may be considered a regular and predictable feature after administration of high doses.
Collapse
Affiliation(s)
- Benjamin D. McNeil
- Division of Allergy and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| |
Collapse
|
27
|
Roy S, Chompunud Na Ayudhya C, Thapaliya M, Deepak V, Ali H. Multifaceted MRGPRX2: New insight into the role of mast cells in health and disease. J Allergy Clin Immunol 2021; 148:293-308. [PMID: 33957166 PMCID: PMC8355064 DOI: 10.1016/j.jaci.2021.03.049] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 03/03/2021] [Accepted: 03/16/2021] [Indexed: 02/07/2023]
Abstract
Cutaneous mast cells (MCs) express Mas-related G protein-coupled receptor-X2 (MRGPRX2; mouse ortholog MrgprB2), which is activated by an ever-increasing number of cationic ligands. Antimicrobial host defense peptides (HDPs) generated by keratinocytes contribute to host defense likely by 2 mechanisms, one involving direct killing of microbes and the other via MC activation through MRGPRX2. However, its inappropriate activation may cause pseudoallergy and likely contribute to the pathogenesis of rosacea, atopic dermatitis, allergic contact dermatitis, urticaria, and mastocytosis. Gain- and loss-of-function missense single nucleotide polymorphisms in MRGPRX2 have been identified. The ability of certain ligands to serve as balanced or G protein-biased agonists has been defined. Small-molecule HDP mimetics that display both direct antimicrobial activity and activate MCs via MRGPRX2 have been developed. In addition, antibodies and reagents that modulate MRGPRX2 expression and signaling have been generated. In this article, we provide a comprehensive update on MrgprB2 and MRGPRX2 biology. We propose that harnessing MRGPRX2's host defense function by small-molecule HDP mimetics may provide a novel approach for the treatment of antibiotic-resistant cutaneous infections. In contrast, MRGPRX2-specific antibodies and inhibitors could be used for the modulation of allergic and inflammatory diseases that are mediated via this receptor.
Collapse
Affiliation(s)
- Saptarshi Roy
- Department of Basic and Translational Sciences, University of Pennsylvania, School of Dental Medicine, Philadelphia, Pa
| | - Chalatip Chompunud Na Ayudhya
- Department of Basic and Translational Sciences, University of Pennsylvania, School of Dental Medicine, Philadelphia, Pa
| | - Monica Thapaliya
- Department of Basic and Translational Sciences, University of Pennsylvania, School of Dental Medicine, Philadelphia, Pa
| | - Vishwa Deepak
- Department of Basic and Translational Sciences, University of Pennsylvania, School of Dental Medicine, Philadelphia, Pa
| | - Hydar Ali
- Department of Basic and Translational Sciences, University of Pennsylvania, School of Dental Medicine, Philadelphia, Pa.
| |
Collapse
|
28
|
Lafleur MA, Werner J, Fort M, Lobenhofer EK, Balazs M, Goyos A. MRGPRX2 activation as a rapid, high-throughput mechanistic-based approach for detecting peptide-mediated human mast cell degranulation liabilities. J Immunotoxicol 2021; 17:110-121. [PMID: 32525431 DOI: 10.1080/1547691x.2020.1757793] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Mast cells play key roles in allergy, anaphylaxis/anaphylactoid reactions, and defense against pathogens/toxins. These cells contain cytoplasmic granules with a wide spectrum of pleotropic mediators that are released upon activation. While mast cell degranulation (MCD) occurs upon clustering of the IgE receptor bound to IgE and antigen, MCD is also triggered through non-IgE-mediated mechanisms, one of which is via Mas-related G protein-coupled receptor X2 (MRGPRX2). MRGPRX2 can be activated by many basic biogenic amines and peptides. Consequently, MRGPRX2-mediated MCD is an important potential safety liability for peptide therapeutics. To facilitate peptide screening for this liability in early preclinical drug development, a rapid, high-throughput engineered CHO-K1 cell-based MRGPRX2 activation assay was evaluated and compared to histamine release in CD34+ stem cell-derived mature human mast cells as a reference assay, using 30 positive control and 29 negative control peptides for MCD. Both G protein-dependent (Ca2+ endpoint) and -independent (β-arrestin endpoint) pathways were assessed in the MRGPRX2 activation assay. The MRGPRX2 activation assay had a sensitivity of 100% for both Ca2+ and β-arrestin endpoints and a specificity of 93% (β-arrestin endpoint) and 83% (Ca2+ endpoint) compared to histamine release in CD34+ stem cell-derived mature human mast cells. These findings suggest that assessing MRGPRX2 activation in an engineered cell model can provide value as a rapid, high-throughput, economical mechanism-based screening tool for early MCD hazard identification during preclinical safety evaluation of peptide-based therapeutics.
Collapse
Affiliation(s)
- Marc A Lafleur
- Translational Safety & Bioanalytical Sciences, Amgen Research, Amgen Inc., Thousand Oaks, CA, USA
| | - Jonathan Werner
- Translational Safety & Bioanalytical Sciences, Amgen Research, Amgen Inc., Thousand Oaks, CA, USA
| | - Madeline Fort
- Translational Safety & Bioanalytical Sciences, Amgen Research, Amgen Inc., Thousand Oaks, CA, USA
| | - Edward K Lobenhofer
- Translational Safety & Bioanalytical Sciences, Amgen Research, Amgen Inc., Thousand Oaks, CA, USA
| | - Mercedesz Balazs
- Translational Safety & Bioanalytical Sciences, Amgen Research, Amgen, Inc., South San Francisco, CA, USA
| | - Ana Goyos
- Translational Safety & Bioanalytical Sciences, Amgen Research, Amgen, Inc., South San Francisco, CA, USA
| |
Collapse
|
29
|
Karczewski J, Brown CM, Maezato Y, Krasucki SP, Streatfield SJ. Efficacy of a novel lantibiotic, CMB001, against MRSA. J Antimicrob Chemother 2021; 76:1532-1538. [PMID: 33582800 DOI: 10.1093/jac/dkab040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 01/22/2021] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVES To evaluate the efficacy of a novel lantibiotic, CMB001, against MRSA biofilms in vitro and in an in vivo experimental model of bacterial infection. METHODS Antibacterial activity of CMB001 was measured in vitro after its exposure to whole blood or to platelet-poor plasma. In vitro efficacy of CMB001 against a Staphylococcus aureus biofilm was studied using scanning electron microscopy. The maximum tolerable dose in mice was determined and a preliminary pharmacokinetic analysis for CMB001 was performed in mice. In vivo efficacy was evaluated in a neutropenic mouse thigh model of infection. RESULTS CMB001 maintained its antibacterial activity in the presence of blood or plasma for up to 24 h at 37°C. CMB001 efficiently killed S. aureus within the biofilm by causing significant damage to the bacterial cell wall. The maximum tolerable dose in mice was established to be 10 mg/kg and could be increased to 30 mg/kg in mice pretreated with antihistamines. In neutropenic mice infected with MRSA, treatment with CMB001 reduced the bacterial burden with an efficacy equivalent to that of vancomycin. CONCLUSIONS CMB001 offers potential as an alternative treatment option to combat MRSA. It will be of interest to evaluate the in vivo efficacy of CMB001 against infections caused by other pathogens, including Clostridioides difficile and Acinetobacter baumannii, and to expand its pharmacokinetic/pharmacodynamic parameters and safety profile.
Collapse
Affiliation(s)
- Jerzy Karczewski
- Fraunhofer USA Center for Molecular Biotechnology, Newark, DE 19711, USA
| | - Christine M Brown
- Fraunhofer USA Center for Molecular Biotechnology, Newark, DE 19711, USA
| | - Yukari Maezato
- Fraunhofer USA Center for Molecular Biotechnology, Newark, DE 19711, USA
| | - Stephen P Krasucki
- Fraunhofer USA Center for Molecular Biotechnology, Newark, DE 19711, USA
| | | |
Collapse
|
30
|
Babina M, Wang Z, Roy S, Guhl S, Franke K, Artuc M, Ali H, Zuberbier T. MRGPRX2 Is the Codeine Receptor of Human Skin Mast Cells: Desensitization through β-Arrestin and Lack of Correlation with the FcεRI Pathway. J Invest Dermatol 2021; 141:1286-1296.e4. [PMID: 33058860 PMCID: PMC8041898 DOI: 10.1016/j.jid.2020.09.017] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 08/23/2020] [Accepted: 09/17/2020] [Indexed: 12/28/2022]
Abstract
Codeine stimulates skin mast cells and is therefore used in skin tests and as an inducer of experimental itch. MRGPRX2 responds to various drugs, including opioids, to elicit pseudoallergic reactions, but whether it represents the main opiate receptor of skin mast cells remains unknown. By combining a number of approaches, including the silencing of MRGPRX2, we now report that MRGPRX2 is indeed the dominant codeine receptor of dermal mast cells. Activation by codeine displayed profound subject variability and correlated with secretion elicited by compound 48/80 or substance P but not by FcεRI aggregation. Degranulation by codeine was attenuated by stem cell factor, whereas the opposite was found for FcεRI. Compound 48/80 or codeine alone was able to achieve maximum MRGPRX2 activation. MRGPRX2 was rapidly internalized on codeine binding in a β-arrestin-1‒dependent manner. Codeine-triggered β-arrestin activation was also established by the Tango assay. Prestimulation with MRGPRX2 agonists (but not C3a or FcεRI aggregation) resulted in refractoriness to further stimulation by the same or another MRGPRX2 ligand (cross desensitization). This was duplicated in a cell line (RBL-MRGPRX2). Collectively, codeine degranulates skin mast cells through MRGPRX2, at which it acts as a balanced ligand. It has yet to be determined whether codeine-induced refractoriness could be exploited to desensitize MRGPRX2 to prevent severe pseudoallergic reactions.
Collapse
Affiliation(s)
- Magda Babina
- Department of Dermatology and Allergy, Allergy Center Charité, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.
| | - Zhao Wang
- Department of Dermatology and Allergy, Allergy Center Charité, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Saptarshi Roy
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Sven Guhl
- Department of Dermatology and Allergy, Allergy Center Charité, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Kristin Franke
- Department of Dermatology and Allergy, Allergy Center Charité, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Metin Artuc
- Department of Dermatology and Allergy, Allergy Center Charité, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Hydar Ali
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Torsten Zuberbier
- Department of Dermatology and Allergy, Allergy Center Charité, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
31
|
A group of cationic amphiphilic drugs activates MRGPRX2 and induces scratching behavior in mice. J Allergy Clin Immunol 2021; 148:506-522.e8. [PMID: 33617860 DOI: 10.1016/j.jaci.2020.12.655] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 11/10/2020] [Accepted: 12/28/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND Mas gene-related G protein-coupled receptors (MRGPRs) are a G protein-coupled receptor family responsive to various exogenous and endogenous agonists, playing a fundamental role in pain and itch sensation. The primate-specific family member MRGPRX2 and its murine orthologue MRGPRB2 are expressed by mast cells mediating IgE-independent signaling and pseudoallergic drug reactions. OBJECTIVES Our aim was to increase knowledge about the function and regulation of MRGPRX2/MRGPRB2, which is of major importance in prevention of drug hypersensitivity reactions and drug-induced pruritus. METHODS To identify novel MRGPR (ant)agonists, we screened a library of pharmacologically active compounds by utilizing a high-throughput calcium mobilization assay. The identified hit compounds were analyzed for their pseudoallergic and pruritogenic effects in mice and human. RESULTS We found a class of commonly used drugs activating MRGPRX2 that, to a large extent, consists of antidepressants, antiallergic drugs, and antipsychotics. Three-dimensional pharmacophore modeling revealed structural similarities of the identified agonists, classifying them as cationic amphiphilic drugs. Mast cell activation was investigated by using the 3 representatively selected antidepressants clomipramine, paroxetine, and desipramine. Indeed, we were able to show a concentration-dependent activation and MRGPRX2-dependent degranulation of the human mast cell line LAD2 (Laboratory of Allergic Diseases-2). Furthermore, clomipramine, paroxetine, and desipramine were able to induce degranulation of human skin and murine peritoneal mast cells. These substances elicited dose-dependent scratching behavior following intradermal injection into C57BL/6 mice but less so in MRGPRB2-mutant mice, as well as wheal-and-flare reactions following intradermal injections in humans. CONCLUSION Our results contribute to the characterization of structure-activity relationships and functionality of MRGPRX2 ligands and facilitate prediction of adverse reactions such as drug-induced pruritus to prevent severe drug hypersensitivity reactions.
Collapse
|
32
|
Minireview: Mas-related G protein-coupled receptor X2 activation by therapeutic drugs. Neurosci Lett 2021; 751:135746. [PMID: 33610674 DOI: 10.1016/j.neulet.2021.135746] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 02/05/2021] [Accepted: 02/11/2021] [Indexed: 12/18/2022]
Abstract
Symptoms that resemble allergic reactions, such as pruritus, flushing, and hypotension, are common side effects of therapeutic drugs. In a true allergic reaction, Immunoglobulin E (IgE) antibodies recognize the drug and trigger mediator release from mast cells through cross-linking of IgE receptors. However, many drugs can bypass this pathway and can activate mast cells directly through MRGPRX2, a G protein-coupled receptor that responds to a wide range of small molecules, peptides, and proteins that have little in common except for a net positive charge. This review will provide an overview of MRGPRX2, including its expression pattern, studies of its pharmacology, and its orthologs. It also will review evidence for MRGPRX2 activation by many drugs closely associated with these reactions.
Collapse
|
33
|
Gao Y, Zhang X, Li X, Qi R, Han Y, Kang Y, Cai R, Peng C, Qi Y. Aloe-emodin, a naturally occurring anthraquinone, is a highly potent mast cell stabilizer through activating mitochondrial calcium uniporter. Biochem Pharmacol 2021; 186:114476. [PMID: 33607072 DOI: 10.1016/j.bcp.2021.114476] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 02/09/2021] [Accepted: 02/10/2021] [Indexed: 01/07/2023]
Abstract
Mast cells play a fundamental role in immune system. Upon stimulation, they are activated via IgE dependent or independent pathway and then release granules which contain plenty of preformed constituents. Mast cell stabilizers are commonly used clinically for inhibiting the degranulation of mast cells. In the current study, we firstly identified aloe-emodin, a naturally occurring anthraquinone, was a prominent mast cell stabilizer. It could strikingly dampen IgE/FcεRI- and MAS-related G protein coupled receptor (Mrgpr)-mediated mast cell degranulation in vitro and in vivo. Mechanism study indicated that aloe-emodin rapidly and reversibly decreased cytosolic Ca2+ (Ca2+[c]) concentration through enhancing the mitochondrial Ca2+ (Ca2+[m]) uptake. After genetically silencing or pharmacologic inhibiting mitochondrial calcium uniporter (MCU), the effects of aloe-emodin on the Ca2+[c] level and mast cell degranulation were significantly weakened. In contrast to six clinical drugs with mast cell stabilizing properties (amlexanox, tranilast, ketotifen, cromolyn disodium salt, dexamethasone and pimecrolimus), aloe-emodin showed an impressive and potent inhibitory action on the mast cell degranulation. Collectively, aloe-emodin is a highly potent mast cell stabilizer. By directly activating MCU, it decreases Ca2+[c] level to suppress mast cell degranulation. Our study may provide a promising candidate for the treatment of mast cell activation-related diseases.
Collapse
Affiliation(s)
- Yuan Gao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Xiaoyu Zhang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Ximeng Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Ruijuan Qi
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Yixin Han
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Yuan Kang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Runlan Cai
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Cheng Peng
- Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China.
| | - Yun Qi
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China.
| |
Collapse
|
34
|
John LM, Dalsgaard CM, Jeppesen CB, Conde-Frieboes KW, Baumann K, Knudsen NPH, Skov PS, Wulff BS. In vitro prediction of in vivo pseudo-allergenic response via MRGPRX2. J Immunotoxicol 2021; 18:30-36. [PMID: 33570451 DOI: 10.1080/1547691x.2021.1877375] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
In development of peptide therapeutics, rodents are commonly-used preclinical models when screening compounds for efficacy endpoints in the early stages of discovery projects. During the screening process, some peptides administered subcutaneously to rodents caused injection site reactions manifesting as localized swelling. Screening by postmortem evaluations of injection site swelling as a marker for local subcutaneous histamine release, were conducted in rats to select drug candidates without this adverse effect. Histological analysis of skin samples revealed that the injection site reactions were concurrent with mast cell degranulation, resulting in histamine release. Mast cell activation can be mediated by MRGPRX2, a GPCR that induces a pseudo-allergenic immune response. The present study demonstrates that a commercially-available cell-based MRGPRX2 assay reliably identifies compounds that induce histamine release or localized edema in ex vivo human and rodent skin samples. In vitro screening was subsequently implemented using the MRGPRX2 assay as a substitute for postmortem injection site evaluation, thus achieving a significant reduction in animal use. Thus, in cases where injection site reactions are encountered during in vivo screening, to enable faster screening during the early drug discovery process, an MRGPRX2 in vitro assay can be used as an efficient, more ethical tool with human translational value for the development of safer pharmacotherapies for patients.
Collapse
Affiliation(s)
- Linu M John
- Global Research, Novo Nordisk A/S, Maaloev, Denmark
| | | | | | | | | | | | - Per S Skov
- RefLab ApS, Copenhagen N, Denmark.,Odense Research Center of Anaphylaxis, Odense University Hospital, Odense, Denmark
| | | |
Collapse
|
35
|
Fernandopulle N, Zhang S, Soeding P, Mackay G. Reply to correspondence of Elst et al. Clin Exp Allergy 2021; 51:978-979. [PMID: 33548115 DOI: 10.1111/cea.13844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Nithya Fernandopulle
- Department of Biochemistry and Pharmacology, The University of Melbourne, Melbourne, VIC, Australia
| | - Stephanie Zhang
- Department of Biochemistry and Pharmacology, The University of Melbourne, Melbourne, VIC, Australia
| | - Paul Soeding
- Department of Biochemistry and Pharmacology, The University of Melbourne, Melbourne, VIC, Australia.,Department of Anaesthetics and Pain Management, Royal Melbourne Hospital, Parkville, VIC, Australia
| | - Graham Mackay
- Department of Biochemistry and Pharmacology, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
36
|
Prior H, Haworth R, Labram B, Roberts R, Wolfreys A, Sewell F. Justification for species selection for pharmaceutical toxicity studies. Toxicol Res (Camb) 2020; 9:758-770. [PMID: 33442468 PMCID: PMC7786171 DOI: 10.1093/toxres/tfaa081] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/17/2020] [Accepted: 09/22/2020] [Indexed: 12/15/2022] Open
Abstract
Toxicity studies using mammalian species are generally required to provide safety data to support clinical development and licencing registration for potential new pharmaceuticals. International regulatory guidelines outline recommendations for the order (rodent and/or non-rodent) and number of species, retaining flexibility for development of a diverse range of drug modalities in a manner relevant for each specific new medicine. Selection of the appropriate toxicology species involves consideration of scientific, ethical and practical factors, with individual companies likely having different perspectives and preferences regarding weighting of various aspects dependent upon molecule characteristics and previous experience of specific targets or molecule classes. This article summarizes presentations from a symposium at the 2019 Annual Congress of the British Toxicology Society on the topic of species selection for pharmaceutical toxicity studies. This symposium included an overview of results from a National Centre for the Replacement, Refinement and Reduction of Animals in Research (NC3Rs) and Association of British Pharmaceutical Industry (ABPI) international collaboration that reviewed the use of one or two species in regulatory toxicology studies and justification for the species selected within each programme. Perspectives from two pharmaceutical companies described their processes for species selection for evaluation of biologics, and justification for selection of the minipig as a toxicological species for small molecules. This article summarizes discussions on the scientific justification and other considerations taken into account to ensure the most appropriate animal species are used for toxicity studies to meet regulatory requirements and to provide the most value for informing project decisions.
Collapse
Affiliation(s)
- Helen Prior
- National Centre for the Replacement, Refinement and Reduction of Animals in Research (NC3Rs), 215 Euston Rd, London, NW1 2BE, UK
| | | | - Briony Labram
- National Centre for the Replacement, Refinement and Reduction of Animals in Research (NC3Rs), 215 Euston Rd, London, NW1 2BE, UK
| | - Ruth Roberts
- ApconiX, Alderley Park, Alderley Edge, SK10 4TG, UK
| | | | - Fiona Sewell
- National Centre for the Replacement, Refinement and Reduction of Animals in Research (NC3Rs), 215 Euston Rd, London, NW1 2BE, UK
| |
Collapse
|
37
|
Kühn H, Kolkhir P, Babina M, Düll M, Frischbutter S, Fok JS, Jiao Q, Metz M, Scheffel J, Wolf K, Kremer AE, Maurer M. Mas-related G protein-coupled receptor X2 and its activators in dermatologic allergies. J Allergy Clin Immunol 2020; 147:456-469. [PMID: 33071069 DOI: 10.1016/j.jaci.2020.08.027] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 07/28/2020] [Accepted: 08/21/2020] [Indexed: 12/13/2022]
Abstract
The Mas-related G protein-coupled receptor X2 (MRGPRX2) is a multiligand receptor responding to various exogenous and endogenous stimuli. Being highly expressed on skin mast cells, MRGPRX2 triggers their degranulation and release of proinflammatory mediators, and it promotes multicellular signaling cascades, such as itch induction and transmission in sensory neurons. The expression of MRGPRX2 by skin mast cells and the levels of the MRGPRX2 agonists (eg, substance P, major basic protein, eosinophil peroxidase) are upregulated in the serum and/or skin of patients with inflammatory and pruritic skin diseases, such as chronic spontaneous urticaria or atopic dermatitis. Therefore, MRGPRX2 and its agonists might be potential biomarkers for the progression of cutaneous inflammatory diseases and the response to treatment. In addition, they may represent promising targets for prevention and treatment of signs and symptoms in patients with skin diseases or drug reactions. To assess this possibility, this review explores the role and relevance of MRGPRX2 and its activators in cutaneous inflammatory disorders and chronic pruritus.
Collapse
Affiliation(s)
- Helen Kühn
- Department of Medicine 1, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Pavel Kolkhir
- Dermatological Allergology, Allergie-Centrum-Charité, Department of Dermatology and Allergy, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany; I.M. Sechenov First Moscow State Medical University (Sechenov University), Division of Immune-mediated Skin Diseases, Moscow, Russia
| | - Magda Babina
- Dermatological Allergology, Allergie-Centrum-Charité, Department of Dermatology and Allergy, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Miriam Düll
- Department of Medicine 1, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Stefan Frischbutter
- Dermatological Allergology, Allergie-Centrum-Charité, Department of Dermatology and Allergy, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Jie Shen Fok
- Dermatological Allergology, Allergie-Centrum-Charité, Department of Dermatology and Allergy, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany; Department of Respiratory Medicine, Box Hill Hospital, Melbourne, Australia; Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Australia
| | - Qingqing Jiao
- Dermatological Allergology, Allergie-Centrum-Charité, Department of Dermatology and Allergy, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany; Department of Dermatology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Martin Metz
- Dermatological Allergology, Allergie-Centrum-Charité, Department of Dermatology and Allergy, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Jörg Scheffel
- Dermatological Allergology, Allergie-Centrum-Charité, Department of Dermatology and Allergy, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Katharina Wolf
- Department of Medicine 1, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Andreas E Kremer
- Department of Medicine 1, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Marcus Maurer
- Dermatological Allergology, Allergie-Centrum-Charité, Department of Dermatology and Allergy, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.
| |
Collapse
|
38
|
Hamamura-Yasuno E, Iguchi T, Kumagai K, Tsuchiya Y, Mori K. Identification of the dog orthologue of human MAS-related G protein coupled receptor X2 (MRGPRX2) essential for drug-induced pseudo-allergic reactions. Sci Rep 2020; 10:16146. [PMID: 32999394 PMCID: PMC7527510 DOI: 10.1038/s41598-020-72819-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 09/07/2020] [Indexed: 12/03/2022] Open
Abstract
MAS-related G protein coupled receptor-X2 (MRGPRX2), expressed in human mast cells, is associated with drug-induced pseudo-allergic reactions. Dogs are highly susceptible to drug-induced anaphylactoid reactions caused by various drugs; however, the distribution and physiological function of canine MRGPR family genes, including MRGPRX2, remain largely unknown. In the present study, we clarified the distribution of dog MRGPR family genes by real-time quantitative PCR and in situ hybridisation. We also investigated the stimulatory effects of various histamine-releasing agents, including fluoroquinolones, on HEK293 cells transiently transfected with dog MRGPR family genes to identify their physiological function. Dog MRGPRX2 and MRGPRG were distributed in a limited number of tissues, including the skin (from the eyelid, abdomen, and cheek), whereas MRGPRD and MRGPRF were extensively expressed in almost all tissues examined. Histochemical and in situ hybridisation analyses revealed that MRGPRX2 was expressed in dog connective tissue-type mast cells in the skin. Intracellular Ca2+ mobilisation assay revealed that HEK293 cells, expressing dog MRGPRX2 or human MRGPRX2, but not dog MRGPRD, MRGPRF, and MRGPRG, responded to histamine-releasing agents. Our results suggest that dog MRGPRX2 is the functional orthologue of human MRGPRX2 and plays an essential role in drug-induced anaphylactoid reactions in dogs.
Collapse
Affiliation(s)
- Eri Hamamura-Yasuno
- Medicinal Safety Research Laboratories, Daiichi Sankyo Co., Ltd., 1-16-13 Kitakasai, Edogawa-ku, Tokyo, 134-8630, Japan.
| | - Takuma Iguchi
- Medicinal Safety Research Laboratories, Daiichi Sankyo Co., Ltd., 1-16-13 Kitakasai, Edogawa-ku, Tokyo, 134-8630, Japan
| | - Kazuyoshi Kumagai
- Medicinal Safety Research Laboratories, Daiichi Sankyo Co., Ltd., 1-16-13 Kitakasai, Edogawa-ku, Tokyo, 134-8630, Japan
| | - Yoshimi Tsuchiya
- Medicinal Safety Research Laboratories, Daiichi Sankyo Co., Ltd., 1-16-13 Kitakasai, Edogawa-ku, Tokyo, 134-8630, Japan
| | - Kazuhiko Mori
- Medicinal Safety Research Laboratories, Daiichi Sankyo Co., Ltd., 1-16-13 Kitakasai, Edogawa-ku, Tokyo, 134-8630, Japan
| |
Collapse
|
39
|
Callahan BN, Kammala AK, Syed M, Yang C, Occhiuto CJ, Nellutla R, Chumanevich AP, Oskeritzian CA, Das R, Subramanian H. Osthole, a Natural Plant Derivative Inhibits MRGPRX2 Induced Mast Cell Responses. Front Immunol 2020; 11:703. [PMID: 32391014 PMCID: PMC7194083 DOI: 10.3389/fimmu.2020.00703] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 03/30/2020] [Indexed: 12/14/2022] Open
Abstract
Mast cells are tissue-resident innate immune cells known for their prominent role in mediating allergic reactions. MAS-related G-protein coupled receptor-X2 (MRGPRX2) is a promiscuous G-protein coupled receptor (GPCR) expressed on mast cells that is activated by several ligands that share cationic and amphipathic properties. Interestingly, MRGPRX2 ligands include certain FDA-approved drugs, antimicrobial peptides, and neuropeptides. Consequently, this receptor has been implicated in causing mast cell-dependent pseudo-allergic reactions to these drugs and chronic inflammation associated with asthma, urticaria and rosacea in humans. In the current study we examined the role of osthole, a natural plant coumarin, in regulating mast cell responses when activated by the MRGPRX2 ligands, including compound 48/80, the neuropeptide substance P, and the cathelicidin LL-37. We demonstrate that osthole attenuates both the early (Ca2+ mobilization and degranulation) and delayed events (chemokine/cytokine production) of mast cell activation via MRGPRX2 in vitro. Osthole also inhibits MrgprB2- (mouse ortholog of human MRGPRX2) dependent inflammation in in vivo mouse models of pseudo-allergy. Molecular docking analysis suggests that osthole does not compete with the MRGPRX2 ligands for interaction with the receptor, but rather regulates MRGPRX2 activation via allosteric modifications. Furthermore, flow cytometry and confocal microscopy experiments reveal that osthole reduces both surface and intracellular expression levels of MRGPRX2 in mast cells. Collectively, our data demonstrate that osthole inhibits MRGPRX2/MrgprB2-induced mast cell responses and provides a rationale for the use of this natural compound as a safer alternative treatment for pseudo-allergic reactions in humans.
Collapse
MESH Headings
- Animals
- Calcium Signaling/drug effects
- Cell Degranulation/drug effects
- Cell Line, Tumor
- Coumarins/administration & dosage
- Disease Models, Animal
- Edema/drug therapy
- Edema/immunology
- Female
- Humans
- Male
- Mast Cells/drug effects
- Mast Cells/immunology
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Molecular Docking Simulation
- Nerve Tissue Proteins/antagonists & inhibitors
- Nerve Tissue Proteins/chemistry
- Nerve Tissue Proteins/metabolism
- Phytotherapy/methods
- Plant Extracts/administration & dosage
- Rats
- Receptors, G-Protein-Coupled/antagonists & inhibitors
- Receptors, G-Protein-Coupled/chemistry
- Receptors, G-Protein-Coupled/metabolism
- Receptors, Neuropeptide/antagonists & inhibitors
- Receptors, Neuropeptide/chemistry
- Receptors, Neuropeptide/metabolism
- Tissue Donors
- Treatment Outcome
Collapse
Affiliation(s)
- Brianna N. Callahan
- Department of Physiology, Michigan State University, East Lansing, MI, United States
| | - Ananth K. Kammala
- Department of Physiology, Michigan State University, East Lansing, MI, United States
| | - Meesum Syed
- Department of Physiology, Michigan State University, East Lansing, MI, United States
| | - Canchai Yang
- Department of Physiology, Michigan State University, East Lansing, MI, United States
| | | | - Rithvik Nellutla
- Department of Physiology, Michigan State University, East Lansing, MI, United States
| | - Alena P. Chumanevich
- Department of Pathology, Microbiology, and Immunology, School of Medicine, University of South Carolina, Columbia, SC, United States
| | - Carole A. Oskeritzian
- Department of Pathology, Microbiology, and Immunology, School of Medicine, University of South Carolina, Columbia, SC, United States
| | - Rupali Das
- Department of Physiology, Michigan State University, East Lansing, MI, United States
| | - Hariharan Subramanian
- Department of Physiology, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
40
|
Kumar M, Singh K, Duraisamy K, Allam AA, Ajarem J, Kwok Chong CHOW B. Protective Effect of Genistein against Compound 48/80 Induced Anaphylactoid Shock via Inhibiting MAS Related G Protein-Coupled Receptor X2 (MRGPRX2). Molecules 2020; 25:molecules25051028. [PMID: 32106575 PMCID: PMC7179155 DOI: 10.3390/molecules25051028] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 02/20/2020] [Accepted: 02/24/2020] [Indexed: 12/11/2022] Open
Abstract
Anaphylactoid shock is a fatal hypersensitivity response caused by non-IgE mediated mast cell activation. These reactions are mediated by a family of G protein-coupled receptors (GPCRs) known as Mas related GPCRX2 (MRGPRX2). Several US FDA approved drugs which are used in day to day life have been reported to cause anaphylactoid shock. Surprisingly, no therapeutic drugs are available which can directly target MRGPRX2 for treatment of anaphylactoid shock. Genistein is a non-steroidal polyphenol known for its diverse physiological and pharmacological activities. In recent studies, Genistein has been reported for its anti-inflammatory activity on mast cells. However, the effects and mechanistic pathways of Genistein on anaphylactoid reaction remain unknown. In the present study, we designed a battery of in-vitro, in-silico and in-vivo experiments to evaluate the anti-anaphylactoid activity of Genistein in order to understand the possible molecular mechanisms of its action. The in-vitro results demonstrated the inhibitory activity of Genistein on MRGPRX2 activation. Further, a mouse model of anaphylactoid shock was used to evaluate the inhibitory activity of Genistein on blood vessel leakage and hind paw edema. Taken together, our findings have demonstrated a therapeutic potential of Genistein as a lead compound in the treatment of anaphylactoid shock via MRGPRX2.
Collapse
Affiliation(s)
- Mukesh Kumar
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China; (M.K.); (K.S.); (K.D.)
| | - Kailash Singh
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China; (M.K.); (K.S.); (K.D.)
| | - Karthi Duraisamy
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China; (M.K.); (K.S.); (K.D.)
| | - Ahmed A. Allam
- Department of Zoology, Faculty of Science, Beni-Suef University, Beni-Suef 62511, Egypt;
| | - Jamaan Ajarem
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Billy Kwok Chong CHOW
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China; (M.K.); (K.S.); (K.D.)
- Correspondence: ; Tel.: +852-2299-0850; Fax: +852-2559-9114
| |
Collapse
|