1
|
Ou Y, Guo X, Zhang Q, Zhang W, Gan X. Design, synthesis, and nematicidal activity of novel 1,2,4-oxadiazole derivatives containing amide fragments. Mol Divers 2025; 29:2293-2304. [PMID: 39327355 DOI: 10.1007/s11030-024-10992-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 09/12/2024] [Indexed: 09/28/2024]
Abstract
Plant-parasitic nematodes are seriously affecting agricultural production worldwide and there are few highly effective and low-risk nematicides to control nematode diseases. In order to discover new nematicides, a series of 1,2,4-oxadiazole derivatives containing amide fragments have been designed and synthesized with the principle of active substructure splicing. The nematicidal activity of the target compounds was evaluated in vitro and it indicated that compound C3 exhibited the most nematicidal activity against Bursaphelenchus xylophilus, Aphelenchoides besseyi, and Ditylenchus destructor with the LC50 values of 37.2, 36.6, and 43.4 μg/mL, respectively, which were superior to positive agent tioxazafen. The preliminary mechanism results revealed that compound C3 not only inhibited the reproduction of B. xylophilus populations, but also affected the production of ROS and the accumulation of lipofuscin and lipids. Furthermore, compound C3 showed good inhibition of succinate dehydrogenase (SDH) with the IC50 value of 45.5 µmol/L. Molecular docking indicated that compound C3 had excellent binding to amino acids around the SDH active pocket. This work indicated that 1,2,4-oxadiazole derivative containing amide fragment is a promising template for the discovery of new nematicides and compound C3 can be used as a potential nematicide candidate.
Collapse
Affiliation(s)
- Yuqin Ou
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, China
| | - Xue Guo
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, China
| | - Qi Zhang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, China
| | - Wei Zhang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, China
| | - Xiuhai Gan
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
2
|
Xu X, Wu C, Fan L, Zhang F, Yao J, Liu Z, Yao Y. Separation and identification of nematicidal active compounds in culture filtrate of Streptomyces aquilus JXGZ01 based on metabolomic analysis. PEST MANAGEMENT SCIENCE 2025. [PMID: 40186508 DOI: 10.1002/ps.8816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 01/24/2025] [Accepted: 03/25/2025] [Indexed: 04/07/2025]
Abstract
BACKGROUND Meloidogyne incognita is one of the pathogenic nematodes with the widest range and most serious damage, which can infest many food and cash crops. We screened a strain of Streptomyces aquilus JXGZ01, whose culture filtrate showed excellent nematicidal activity and egg hatching inhibition activity against M. incognita. In this study, we performed metabolomic analysis of the culture filtrate of this strain. RESULTS The data showed that of the total 304 differential metabolites, 244 were significantly up-regulated and 60 were significantly down-regulated. Seven compounds with large fold changes were selected from the up-regulated metabolites to test the nematicidal activity against M. incognita. The mortality of M. incognita in both 5 and 10 mg mL-1 of 4-acetylaminobutyric acid was more than 85%. The mortality of M. incognita in both 10 and 100 mg mL-1 of (R)-(-)-2-phenylglycinol was more than 70%. The mortality rate of M. incognita in 100 mg of N-acetyl-l-glutamic acid was 78.25%. In addition, the hatching inhibition rate of egg masses were more than 90% for both 5 and 10 mg mL-1 of 4-acetylaminobutyric acid. The hatching inhibition rate of egg masses were more than 80% for 100 mg and 10 mg (R)-(-)-2-phenylglycinol. The hatching inhibition rate of 100 mg N-acetyl-l-glutamic acid on eggs was 93.47%. CONCLUSION The results demonstrate that S. aquilus can be a candidate microorganism for the biological control of M. incognita, and its metabolites 4-acetylaminobutyric acid and (R)-(-)-2-phenylglycinol had great potential as nematicides. © 2025 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xueliang Xu
- Jiangxi Provincial Key Laboratory of Agricultural Non-point Source Pollution Control and Waste Comprehensive Utilization, Institute of Agricultural Applied Microbiology, Jiangxi Academy of Agricultural Sciences, Nanchang, China
| | - Caiyun Wu
- Jiangxi Provincial Key Laboratory of Agricultural Non-point Source Pollution Control and Waste Comprehensive Utilization, Institute of Agricultural Applied Microbiology, Jiangxi Academy of Agricultural Sciences, Nanchang, China
| | - Linjuan Fan
- Jiangxi Provincial Key Laboratory of Agricultural Non-point Source Pollution Control and Waste Comprehensive Utilization, Institute of Agricultural Applied Microbiology, Jiangxi Academy of Agricultural Sciences, Nanchang, China
| | - Fan Zhang
- Jiangxi Provincial Key Laboratory of Agricultural Non-point Source Pollution Control and Waste Comprehensive Utilization, Institute of Agricultural Applied Microbiology, Jiangxi Academy of Agricultural Sciences, Nanchang, China
| | - Jian Yao
- Jiangxi Provincial Key Laboratory of Agricultural Non-point Source Pollution Control and Waste Comprehensive Utilization, Institute of Agricultural Applied Microbiology, Jiangxi Academy of Agricultural Sciences, Nanchang, China
| | - Zirong Liu
- Jiangxi Provincial Key Laboratory of Agricultural Non-point Source Pollution Control and Waste Comprehensive Utilization, Institute of Agricultural Applied Microbiology, Jiangxi Academy of Agricultural Sciences, Nanchang, China
| | - Yingjuan Yao
- Jiangxi Provincial Key Laboratory of Agricultural Non-point Source Pollution Control and Waste Comprehensive Utilization, Institute of Agricultural Applied Microbiology, Jiangxi Academy of Agricultural Sciences, Nanchang, China
| |
Collapse
|
3
|
Zhu J, Deng C, Zhang Y, Liu M, Zhou G, Liu J. Pine Rhizosphere Soil Microorganisms Enhance the Growth and Resistance of Pinus massoniana Against Nematode Infection. Microorganisms 2025; 13:790. [PMID: 40284626 PMCID: PMC12029673 DOI: 10.3390/microorganisms13040790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 03/19/2025] [Accepted: 03/20/2025] [Indexed: 04/29/2025] Open
Abstract
Pine wilt disease, caused by Bursaphelenchus xylophilus, poses severe ecological and economic threats to coniferous forests. This study isolated two fungal (Arthropsis hispanica, Penicillium sclerotiorum) and two bacterial (Bacillus amyloliquefaciens, Enterobacter hormaechei) strains from Pinus massoniana rhizospheres, evaluating their biocontrol potential against pine wood nematodes. Molecular characterization confirmed strain identities. In vitro assays demonstrated that combined fermentation filtrates of CSX134+CSZ71 and CSX60+CSZ71 significantly enhanced plant growth parameters (height, biomass) and root-associated soil enzyme activities (urease, acid phosphatase) in P. massoniana. Treated plants exhibited elevated defense enzyme activities and upregulated defense-related gene expression. The treatments achieved 75.07% and 69.65% nematode control efficacy, respectively, compared to controls. These findings highlight the potential of microbial consortia in activating systemic resistance and suppressing pine wilt disease through the dual mechanisms of growth promotion and defense induction.
Collapse
Affiliation(s)
- Jiacheng Zhu
- Key Laboratory of National Forestry and Grassland Administration on Control of Artificial Forest Diseases and Pests in South China, Central South University of Forestry and Technology, Changsha 410004, China;
| | - Chenxi Deng
- Hunan Provincial Key Laboratory for Control of Forest Diseases and Pests, Central South University of Forestry and Technology, Changsha 410004, China;
| | - Yichi Zhang
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Central South University of Forestry and Technology, Changsha 410004, China; (Y.Z.); (M.L.)
| | - Manman Liu
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Central South University of Forestry and Technology, Changsha 410004, China; (Y.Z.); (M.L.)
| | - Guoying Zhou
- Key Laboratory of National Forestry and Grassland Administration on Control of Artificial Forest Diseases and Pests in South China, Central South University of Forestry and Technology, Changsha 410004, China;
- Hunan Provincial Key Laboratory for Control of Forest Diseases and Pests, Central South University of Forestry and Technology, Changsha 410004, China;
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Central South University of Forestry and Technology, Changsha 410004, China; (Y.Z.); (M.L.)
| | - Junang Liu
- Key Laboratory of National Forestry and Grassland Administration on Control of Artificial Forest Diseases and Pests in South China, Central South University of Forestry and Technology, Changsha 410004, China;
- Hunan Provincial Key Laboratory for Control of Forest Diseases and Pests, Central South University of Forestry and Technology, Changsha 410004, China;
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Central South University of Forestry and Technology, Changsha 410004, China; (Y.Z.); (M.L.)
| |
Collapse
|
4
|
Song H, Yang Q, Wang S, Xing Z, Gan X, Chen J. Nematicidal activity of pyrazine compounds against Meloidogyne incongnita, Burshaphelenchus xylophilus, and Aphelenchoides besseyi. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2025; 208:106298. [PMID: 40015890 DOI: 10.1016/j.pestbp.2025.106298] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 12/26/2024] [Accepted: 01/08/2025] [Indexed: 03/01/2025]
Abstract
The increase of plant parasitic nematode resistance poses a great threat to agricultural and forestry production. To search for nematicides with novel mechanism of action, nematicidal activity of the 29 pyrazine compounds were tested. Compound C2 showed excellent nematicidal activity against Bursaphelenchus xylophilus, Meloidogyne incongnita, and Aphelenchoides besseyi, with LC50 values were 2.3, 3.3, and 10.6 mg/L, respectively, and the pot experiment showed that C2 reduced the number of tomato roots knots to a certain extent. In addition, C2 significantly inhibited egg hatching, locomotion and reproductive ability of B. xylophilus, and also reduced the levels of protein and antioxidant enzyme activity to some extent, and the indexes related to oxidative stress showed an increasing trend after treatment. The novel chemical structure of compound D was designed and synthesized based on the lead compound C2 by the scaffold hopping strategy. Interestingly, compound D also has excellent nematicidal activity. Compound D can be used as an excellent scaffold in the discovery of novel nematicides and we will continue to work on the optimization and modification of this scaffold structure in the future.
Collapse
Affiliation(s)
- Hongyi Song
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, PR China
| | - Qiuxia Yang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, PR China
| | - Sheng Wang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, PR China
| | - Zhifu Xing
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, PR China
| | - Xiuhai Gan
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, PR China
| | - Jixiang Chen
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, PR China.
| |
Collapse
|
5
|
Zhao J, Xing Z, Sikandar A, Duan Y. Nematicidal potential of Microbacterium maritypicum Sneb159 against Heterodera glycines and the complete genome sequence analysis. FRONTIERS IN PLANT SCIENCE 2025; 16:1485160. [PMID: 39990708 PMCID: PMC11842320 DOI: 10.3389/fpls.2025.1485160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 01/13/2025] [Indexed: 02/25/2025]
Abstract
Introduction Heterodera glycines is one of the most important pathogens of soybean production worldwide. Biological control provides a strategy for sustainable and environmentally friendly nematode management. Methods In this study, solid-phase microextraction gas chromatography-mass spectrometry (SPME-GC-MS) was used to reveal the volatile nematicidal compounds of Microbacterium maritypicum Sneb159 and the mode of action was further elucidated via whole genome sequencing. Results The present study demonstrated that M. maritypicum Sneb159 fermentation broth showed strong nematicidal activities against H. glycines. The filtrate rather than bacterial cells played a role in the nematicidal character, and reduced the invasion number as well as suppressed the development of juveniles in soybean. The analysis of chemotaxis showed that M. maritypicum Sneb159 has a repellent effect on H. glycines in pot experiments. The volatiles produced by M. maritypicum Sneb159 are toxic to H. glycines for both juveniles and eggs. The seven compounds were analyzed using SPME-GC-MS. In the bioassays, dimethyl disulfide and dimethyl trisulfide showed both direct contact and fumigated effect on juveniles and eggs. The complete genome sequence of the bacterium M. maritypicum Sneb159 was completed using the PacBio sequencing platform. The genome comprised 3895529 bp and a 68.63% G + C content. Three secondary metabolites gene clusters were predicted by the antiSMASH system. Discussion The findings reveal multifunction of M. maritypicum Sneb159 towards H. glycines, and has the potential to be developed as a safe nematicidal agent.
Collapse
Affiliation(s)
- Jing Zhao
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, China
- School of Tropical Agriculture and Forestry, Hainan University, Danzhou, China
- College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Zhifu Xing
- College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Aatika Sikandar
- College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Yuxi Duan
- College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
6
|
Magar RT, Sohng JK. Natural products with γ-pyrone scaffold from Streptomyces. Appl Microbiol Biotechnol 2024; 108:471. [PMID: 39316232 PMCID: PMC11422467 DOI: 10.1007/s00253-024-13296-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/22/2024] [Accepted: 08/23/2024] [Indexed: 09/25/2024]
Abstract
The Streptomyces sp. is considered the vast reservoir of bioactive natural products belonging to different classes like polyketides, terpenoids, lanthipeptides, and non-ribosomal peptides to name a few. The ubiquitous distribution of the genus makes them capable of producing distinct compounds. Many of those compounds contain a unique γ-pyrone with various chemical structures and exhibit different bioactivities. One such class, nitrophenyl-γ-pyrone, constitutes different bioactive compounds isolated from Streptomyces sp. from different sources ranging from soil to marine environments. In addition, such compounds have antinematodal, cytotoxicity activities, and inhibition of adipogenesis. These compounds include aureothin (3), spectinabilin (7), and their derivatives. Moreover, there are other compounds like actinopyrones (11-16), benwamycins (22-23), and peucemycin and its derivatives (24-26) that also have antibacterial and anticancer activities. The other group classified as anthra-γ-pyrone has various bioactive natural products. For instance, tetrahydroanthra-γ-pyrone, shellmycin A-D (27-30) possess antibacterial as well as anticancer activities. In addition, the pluramycin family compounds belonging to anthra-γ-pyrone group also possess cytotoxic activity, for instance, kidamycin (31), rubiflavin, and their derivatives (33-37). Xanthones are another important group of natural products that also contain γ-pyrone ring producing different bioactivities. Albofungin (42) and its derivatives (43-46) belong to subgroup polycyclic tetrahydro xanthones that possess antibacterial, anticancer, and antibiofilm, antimacrofouling activities. Similarly, other compounds, belonging to this subgroup, exhibit different bioactivities like antifungal, antimalarial, and antibacterial activities and block transient receptor potential vanilloid 1 (TRPV1). These compounds include cervinomycins (48-55), citreamycins (56-57), sattahipmycin (59), and chrexanthomycins (60-63). This review gives succinct information on the γ-pyrone containing natural products isolated from Streptomyces sp. focusing on their structure and bioactivities. KEY POINTS: • The Streptomyces sp. is the producer of various bioactive natural products including the one with γ-pyrone ring. • These γ-pyrone compounds are structurally different and possess different bioactivities. • The Streptomyces has the potential to produce such compounds and the reservoir of these compounds is expected to increase in the future.
Collapse
Affiliation(s)
- Rubin Thapa Magar
- Department of Life Science and Biochemical Engineering, Sun Moon University, 70 Sun Moon-Ro 221, Tangjeong-Myeon, Asan-Si, 31460, Chungnam, Korea
| | - Jae Kyung Sohng
- Department of Life Science and Biochemical Engineering, Sun Moon University, 70 Sun Moon-Ro 221, Tangjeong-Myeon, Asan-Si, 31460, Chungnam, Korea.
- Department of Pharmaceutical Engineering and Biotechnology, Sun Moon University, 70 Sun Moon-Ro 221, Tangjeong-Myeon, Asan-Si, 31460, Chungnam, Korea.
| |
Collapse
|
7
|
Fan Z, Gao K, Wang L, Qin Y, Liu S, Xing R, Yu H, Li K, Li P. Sulfonamide modified chitosan oligosaccharide with high nematicidal activity against Meloidogyne incognita. Int J Biol Macromol 2024; 269:132131. [PMID: 38719017 DOI: 10.1016/j.ijbiomac.2024.132131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 04/02/2024] [Accepted: 05/05/2024] [Indexed: 05/12/2024]
Abstract
Chitosan oligosaccharide (COS) modification is a feasible way to develop novel green nematicides. This study involved the synthesis of various COS sulfonamide derivatives via hydroxylated protection and deprotection, which were then characterized using NMR, FTIR, MS, elemental analysis, XRD, and TG/DTG. In vitro experiments found that COS-alkyl sulfonamide derivatives (S6 and S11-S13) exhibited high mortality (>98 % at 1 mg/mL) against Meloidogyne incognita second-instar larvaes (J2s) among the derivatives. S6 can cause vacuole-like structures in the middle and tail regions of the nematode body and effectively inhibit egg hatching. In vivo tests have found that S6 has well control effects and low plant toxicity. Additionally, the structure-activity studies revealed that S6 with a high degree of substitution, a low molecular weight, and a sulfonyl bond on the amino group of the COS backbone exhibited increased nematicidal activity. The sulfonamide group is a potential active group for developing COS-based nematicides.
Collapse
Affiliation(s)
- Zhaoqian Fan
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| | - Kun Gao
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| | - Linsong Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| | - Yukun Qin
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China.
| | - Song Liu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| | - Ronge Xing
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| | - Huahua Yu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| | - Kecheng Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| | - Pengcheng Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China.
| |
Collapse
|
8
|
Wang Y, Song H, Wang S, Cai Q, Chen J. Design, Synthesis, Nematicidal Activity, and Mechanism of Novel Amide Derivatives Containing an 1,2,4-Oxadiazole Moiety. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:128-139. [PMID: 38154095 DOI: 10.1021/acs.jafc.3c04945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2023]
Abstract
To discover new nematicides, a series of novel amide derivatives containing 1,2,4-oxadiazole were designed and synthesized. Several compounds showed excellent nematicidal activity. The LC50 values of compounds A7, A18, and A20-A22 against pine wood nematode (Bursaphelenchus xylophilus), rice stem nematode (Aphelenchoides besseyi), and sweet potato stem nematode (Ditylenchus destructor) were 1.39-3.09 mg/L, which were significantly better than the control nematicide tioxazafen (106, 49.0, and 75.0 mg/L, respectively). Compound A7 had an outstanding inhibitory effect on nematode feeding, reproductive ability, and egg hatching. Compound A7 effectively promoted the oxidative stress of nematodes and caused intestinal damage to nematodes. Compound A7 significantly inhibited the activity of succinate dehydrogenase (SDH) in nematodes, leading to blockage of electron transfer in the respiratory chain and thereby hindering the synthesis of adenosine triphosphate (ATP), which consequently affects the entire oxidative phosphorylation process to finally cause nematode death. Therefore, compound A7 can be used as a potential SDH inhibitor in nematicide applications.
Collapse
Affiliation(s)
- Yu Wang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Hongyi Song
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Sheng Wang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Qingfeng Cai
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Jixiang Chen
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| |
Collapse
|
9
|
Sun Y, Xie J, Tang L, Odiba AS, Chen Y, Fang W, Wu X, Wang B. Isolation, Identification and Molecular Mechanism Analysis of the Nematicidal Compound Spectinabilin from Newly Isolated Streptomyces sp. DT10. Molecules 2023; 28:4365. [PMID: 37298840 PMCID: PMC10254515 DOI: 10.3390/molecules28114365] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
Plant parasitic nematodes (PPNs) are highly destructive and difficult to control, while conventional chemical nematicides are highly toxic and cause serious environmental pollution. Additionally, resistance to existing pesticides is becoming increasingly common. Biological control is the most promising method for the controlling of PPNs. Therefore, the screening of nematicidal microbial resources and the identification of natural products are of great significance and urgency for the environmentally friendly control of PPNs. In this study, the DT10 strain was isolated from wild moss samples and identified as Streptomyces sp. by morphological and molecular analysis. Using Caenorhabditis elegans as a model, the extract of DT10 was screened for nematicidal activity, which elicited 100% lethality. The active compound was isolated from the extracts of strain DT10 using silica gel column chromatography and semipreparative high-performance liquid chromatography (HPLC). The compound was identified as spectinabilin (chemical formula C28H31O6N) using liquid chromatography mass spectrometry (LC-MS) and nuclear magnetic resonance (NMR). Spectinabilin exhibited a good nematicidal activity on C. elegans L1 worms, with a half-maximal inhibitory concentration (IC50) of 2.948 μg/mL at 24 h. The locomotive ability of C. elegans L4 worms was significantly reduced when treated with 40 μg/mL spectinabilin. Further analysis of spectinabilin against known nematicidal drug target genes in C. elegans showed that it acts via target(s) different from those of some currently used nematicidal drugs such as avermectin and phosphine thiazole. This is the first report on the nematicidal activity of spectinabilin on C. elegans and the southern root-knot nematode Meloidogyne incognita. These findings may pave the way for further research and application of spectinabilin as a potential biological nematicide.
Collapse
Affiliation(s)
- Yuchen Sun
- College of Agriculture, Guangxi University, Nanning 530004, China
- Institute of Biological Sciences and Technology, Guangxi Academy of Sciences, Nanning 530007, China (W.F.)
| | - Jin Xie
- Institute of Biological Sciences and Technology, Guangxi Academy of Sciences, Nanning 530007, China (W.F.)
| | - Lihua Tang
- College of Agriculture, Guangxi University, Nanning 530004, China
- Institute of Biological Sciences and Technology, Guangxi Academy of Sciences, Nanning 530007, China (W.F.)
| | - Arome Solomon Odiba
- Institute of Biological Sciences and Technology, Guangxi Academy of Sciences, Nanning 530007, China (W.F.)
| | - Yanlu Chen
- Institute of Biological Sciences and Technology, Guangxi Academy of Sciences, Nanning 530007, China (W.F.)
| | - Wenxia Fang
- Institute of Biological Sciences and Technology, Guangxi Academy of Sciences, Nanning 530007, China (W.F.)
| | - Xiaogang Wu
- College of Agriculture, Guangxi University, Nanning 530004, China
| | - Bin Wang
- Institute of Biological Sciences and Technology, Guangxi Academy of Sciences, Nanning 530007, China (W.F.)
| |
Collapse
|
10
|
Feng J, Qin C, Liu X, Li R, Wang C, Li C, Du G, Guo Q. Nematicidal Coumarins from Cnidium monnieri Fruits and Angelica dahurica Roots and Their Physiological Effect on Pine Wood Nematode ( Bursaphelenchus xylophilus). Molecules 2023; 28:molecules28104109. [PMID: 37241850 DOI: 10.3390/molecules28104109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/02/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
Pine wood nematode (PWN), Bursaphelenchus xylophilus, is a major pathogen of pine wilt disease (PWD), which is a devastating disease affecting pine trees. Eco-friendly plant-derived nematicides against PWN have been considered as promising alternatives to control PWD. In this study, the ethyl acetate extracts of Cnidium monnieri fruits and Angelica dahurica roots were confirmed to have significant nematicidal activity against PWN. Through bioassay-guided fractionations, eight nematicidal coumarins against PWN were separately isolated from the ethyl acetate extracts of C. monnieri fruits and A. dahurica roots, and they were identified to be osthol (Compound 1), xanthotoxin (Compound 2), cindimine (Compound 3), isopimpinellin (Compound 4), marmesin (Compound 5), isoimperatorin (Compound 6), imperatorin (Compound 7), and bergapten (Compound 8) by mass and nuclear magnetic resonance (NMR) spectral data analysis. Coumarins 1-8 were all determined to have inhibitory effects on the egg hatching, feeding ability, and reproduction of PWN. Moreover, all eight nematicidal coumarins could inhibit the acetylcholinesterase (AChE) and Ca2+ ATPase of PWN. Cindimine 3 from C. monnieri fruits showed the strongest nematicidal activity against PWN, with an LC50 value of 64 μM at 72 h, and the highest inhibitory effect on PWN vitality. In addition, bioassays on PWN pathogenicity demonstrated that the eight nematicidal coumarins could effectively relieve the wilt symptoms of black pine seedlings infected by PWN. The research identified several potent botanical nematicidal coumarins for use against PWN, which could contribute to the development of greener nematicides for PWD control.
Collapse
Affiliation(s)
- Jiale Feng
- College of Life Sciences, Qingdao University, Qingdao 266071, China
| | - Chenglei Qin
- College of Life Sciences, Qingdao University, Qingdao 266071, China
| | - Xiaohong Liu
- School of Pharmacy, Qingdao University, Qingdao 266071, China
| | - Ronggui Li
- College of Life Sciences, Qingdao University, Qingdao 266071, China
| | - Chao Wang
- College of Life Sciences, Qingdao University, Qingdao 266071, China
| | - Chunhan Li
- College of Life Sciences, Qingdao University, Qingdao 266071, China
| | - Guicai Du
- College of Life Sciences, Qingdao University, Qingdao 266071, China
| | - Qunqun Guo
- College of Life Sciences, Qingdao University, Qingdao 266071, China
| |
Collapse
|
11
|
Li GH, Zhang KQ. Natural nematicidal metabolites and advances in their biocontrol capacity on plant parasitic nematodes. Nat Prod Rep 2023; 40:646-675. [PMID: 36597965 DOI: 10.1039/d2np00074a] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Covering: 2010 to 2021Natural nematicidal metabolites are important sources of nematode control. This review covers the isolation and structural determination of nematicidal metabolites from 2010 to 2021. We summarise chemical structures, bioactivity, metabolic regulation and biosynthesis of potential nematocides, and structure-activity relationship and application potentiality of natural metabolites in plant parasitic nematodes' biocontrol. In doing so, we aim to provide a comprehensive overview of the potential roles that natural metabolites can play in anti-nematode strategies.
Collapse
Affiliation(s)
- Guo-Hong Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan University, Kunming, 650091, China.
| | - Ke-Qin Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan University, Kunming, 650091, China.
| |
Collapse
|
12
|
Yi JS, Kim JM, Ban YH, Yoon YJ. Modular polyketide synthase-derived insecticidal agents: from biosynthesis and metabolic engineering to combinatorial biosynthesis for their production. Nat Prod Rep 2023; 40:972-987. [PMID: 36691749 DOI: 10.1039/d2np00078d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Covering: up to 2022Polyketides derived from actinomycetes are a valuable source of eco-friendly biochemical insecticides. The development of new insecticides is urgently required, as the number of insects resistant to more than one drug is rapidly increasing. Moreover, significant enhancement of the production of such biochemical insecticides is required for economical production. There has been considerable improvement in polyketide insecticidal agent production and development of new insecticides. However, most commercially important biochemical insecticides are synthesized by modular type I polyketide synthases (PKSs), and their structural complexities make chemical modification challenging. A detailed understanding of the biosynthetic mechanisms of potent polyketide insecticides and the structure-activity relationships of their analogs will provide insight into the comprehensive design of new insecticides with improved efficacies. Further metabolic engineering and combinatorial biosynthesis efforts, reinvigorated by synthetic biology, can eventually produce designed analogs in large quantities. This highlight reviews the biosynthesis of representative insecticides produced by modular type I PKSs, such as avermectin, spinosyn, and spectinabilin, and their insecticidal properties. Metabolic engineering and combinatorial biosynthetic strategies for the development of high-yield strains and analogs with insecticidal activities are emphasized, proposing a way to develop a next-generation insecticide.
Collapse
Affiliation(s)
- Jeong Sang Yi
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea.
| | - Jung Min Kim
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea.
| | - Yeon Hee Ban
- College of Biomedical Science, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| | - Yeo Joon Yoon
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
13
|
Wang Y, Song H, Wang S, Cai Q, Zhang Y, Zou Y, Liu X, Chen J. Discovery of quinazoline compound as a novel nematicidal scaffold. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 189:105310. [PMID: 36549817 DOI: 10.1016/j.pestbp.2022.105310] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 11/14/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
With the aim of discovering novel nematicidal scaffolds, the nematicidal activities of a series of quinazoline compounds were tested, with some compounds showing excellent results. Among them, the LC50 values of compound K11 against Bursaphelenchus xylophilus, Aphelenchoides besseyi, and Ditylenchus destructor were 7.33, 6.09, and 10.95 mg/L, respectively. In addition, the nematicidal activity of compound K11 against Meloidogyne incognita was 98.77% at 100 mg/L. Compound K11 not only increased the production of reactive oxygen species and the accumulation of lipofuscin and lipids in nematodes, but it also attenuated nematode pathogenicity by reducing the nematodes' antioxidant capacity. Transcriptomic analysis showed that compound K11 had significant effects on fatty acid degradation, metabolic pathways, and the differentially expressed genes related to redox processes in nematodes. Furthermore, the expression levels of the corresponding differentially expressed genes were verified using real-time quantitative polymerase chain reaction. Quinazoline can be used as a new nematicidal scaffold, and it is expected that more work will be done on the discovery of novel nematicides based on the lead compound K11 in the future.
Collapse
Affiliation(s)
- Yu Wang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Hongyi Song
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Sheng Wang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Qingfeng Cai
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Yong Zhang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Yue Zou
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Xing Liu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Jixiang Chen
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China.
| |
Collapse
|
14
|
Ran Y, Zhang Y, Wang X, Li G. Nematicidal Metabolites from the Actinomycete Micromonospora sp. WH06. Microorganisms 2022; 10:microorganisms10112274. [PMID: 36422344 PMCID: PMC9693860 DOI: 10.3390/microorganisms10112274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/11/2022] [Accepted: 11/11/2022] [Indexed: 11/18/2022] Open
Abstract
A nematicidal actinomycete strain WH06 was isolated from soil samples and was identified using 16S rRNA as Micromonospora sp. Through medium screening and fermentation, 10 metabolites were isolated from the ethyl acetate extract of its fermentation broth using Sephadex LH-20 and silica gel column chromatography. These compounds were identified as N-acetyltyramine (1), N-acetyltryptamine (2), 1-methylhydantoin (3), benzenepropanoic acid (4), cyclo-(L-Pro-L-Tyr) (5), cyclo(L-Phe-Gly) (6), catechol (7), methyl (4-hydroxyphenyl)acetate (8), 3-hydroxybenzoic acid (9), and 4-hydroxybenzoic acid (10). In an in vitro assay against Meloidogyne incognita, a root-knot nematode, compounds 1, 4, 9, and 10 show nematicidal activity. Among them, benzenepropanoic acid (4) causes 99.02% mortality of nematode at 200 μg mL−1 after 72 h. Moreover, compound 4 also displays activity in inhibiting egg hatching of M. incognita. This suggests that Micromonospora sp. WH06 is a promising candidate for biocontrol of M. incognita.
Collapse
|
15
|
Montecillo JAV, Bae H. In silico analysis of koranimine, a cyclic imine compound from Peribacillus frigoritolerans reveals potential nematicidal activity. Sci Rep 2022; 12:18883. [PMID: 36344604 PMCID: PMC9640594 DOI: 10.1038/s41598-022-20461-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 09/13/2022] [Indexed: 11/09/2022] Open
Abstract
Pine wilt disease (PWD) is a destructive vector-borne forest disease caused by the nematode Bursaphelenchus xylophilus. To date, several options are available for the management of pine wilt disease; however constant development and search for natural products with potential nematicidal activity are imperative to diversify management options and to cope with the possible future emergence of resistance in parasitic nematodes. Here, a combined metabolomics and genomics approach was employed to investigate the chemical repertoire and biosynthetic potential of the bacterial endophyte Peribacillus frigoritolerans BE93, previously characterized to exhibit nematicidal activity against B. xylophilus. Feature-based molecular networking revealed the presence of diverse secondary metabolites. A cyclic imine heptapeptide, koranimine, was found to be among the most abundant secondary metabolites produced. Genome mining displayed the presence of several putative biosynthetic gene clusters (BGCs), including a dedicated non-ribosomal peptide synthase (NRPS) BGC for koranimine. Given the non-ribosomal peptide nature of koranimine, in silico molecular docking analysis was conducted to investigate its potential nematicidal activity against the target receptor ivermectin-sensitive invertebrate α glutamate-gated chloride channel (GluCl). Results revealed the binding of koranimine at the allosteric site of the channel-the ivermectin binding site. Moreover, the ligand-receptor interactions observed were mostly shared between koranimine and ivermectin when bound to the α GluCl receptor thus, suggesting a possibly shared mechanism of potential nematicidal activity. This study highlights the efficiency of combined metabolomics and genomics approach in the identification of candidate compounds.
Collapse
Affiliation(s)
- Jake Adolf V Montecillo
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Republic of Korea
| | - Hanhong Bae
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Republic of Korea.
| |
Collapse
|
16
|
Shen J, Zhang C, Zhang S, Chen F, Pei F, Zhou S, Lin H. Screening, isolation and mechanism of a nematicidal extract from actinomycetes against the pine wood nematode Bursaphelenchus xylophilus. Heliyon 2022; 8:e11713. [DOI: 10.1016/j.heliyon.2022.e11713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/06/2022] [Accepted: 11/11/2022] [Indexed: 11/18/2022] Open
|
17
|
Whole-genome sequencing and analysis of Streptomyces strains producing multiple antinematode drugs. BMC Genomics 2022; 23:610. [PMID: 35996099 PMCID: PMC9396898 DOI: 10.1186/s12864-022-08847-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 08/16/2022] [Indexed: 11/18/2022] Open
Abstract
Background Nematodes are parasitic animals that cause over 100 billion US dollars loss in agricultural business. The whole-genomes of two Streptomyces strains, Streptomyces spectabilis KCTC9218T and Streptomyces sp. AN091965, were sequenced. Both strains produce spectinabilin, an antinematode drug. Its secondary metabolism was examined to aid the development of an efficient nematicidal drug-producing host strain. Results The whole-genome sequences of S. spectabilis KCTC9218T and Streptomyces sp. AN091965 were analyzed using PacBio and Illumina sequencing platforms, and assembled using hybrid methodology. The total contig lengths for KCTC9218T and AN091965 were 9.97 Mb and 9.84 Mb, respectively. A total of 8,374 and 8,054 protein-coding genes, as well as 39 and 45 secondary metabolite biosynthetic gene clusters were identified in KCTC9218T and AN091965, respectively. 18.4 ± 6.45 mg/L and 213.89 ± 21.30 mg/L of spectinabilin were produced by S. spectabilis KCTC9218T and Streptomyces sp. AN091965, respectively. Pine wilt disease caused by nematode was successfully prevented by lower concentration of spectinabilin injection than that of abamectin recommended by its manufacturer. Production of multiple antinematode drugs, including spectinabilin, streptorubin B, and undecylprodigiosin was observed in both strains using high-resolution liquid chromatography mass spectrometry (LC–MS) analysis. Conclusions Whole-genome sequencing of spectinabilin-producing strains, coupled with bioinformatics and mass spectrometry analyses, revealed the production of multiple nematicidal drugs in the KCTC9218T and AN091965 strains. Especially, Streptomyces sp. AN091965 showed high production level of spectinabilin, and this study provides crucial information for the development of potential nematicidal drug producers. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08847-4.
Collapse
|
18
|
Two Nematicidal Compounds from Lysinimonas M4 against the Pine Wood Nematode, Bursaphelenchus xylophilus. FORESTS 2022. [DOI: 10.3390/f13081191] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A rich source of bioactive secondary metabolites from microorgannisms are widely used to control plant diseases in an eco-friendly way. To explore ideal candidates for prevention of pine wilt disease (PWD), a bacterial strain from rhizosphere of Pinus thunbergii, Lysinimonas M4, with nematicidal activity against pine wood nematode (PWN), Bursaphelenchus xylophilus, was isolated. Two nematicidal compounds were obtained from the culture of Lysinimonas M4 by silica gel chromatography based on bioactivity-guided fractionation and were subsequently identified as 2-coumaranone and cyclo-(Phe-Pro) by nuclear magnetic resonance (NMR) and mass spectrometry (MS). The 2-coumaranone and cyclo-(Phe-Pro) showed significant nematicidal activity against PWN, with LC50 values at 24 h of 0.196 mM and 0.425 mM, respectively. Both compounds had significant inhibitory effects on egg hatching, feeding, and reproduction. The study on nematicidal mechanisms revealed that 2-coumaranone and cyclo-(Phe-Pro) caused the accumulation of reactive oxygen species (ROS) in nematodes, along with a notable decrease in CAT and POS activity and an increase in SOD activity in nematodes, which might contribute to the death of pine wood nematodes. Bioassay tests demonstrated that the two compounds could reduce the incidence of wilting in Japanese black pine seedlings. This research offers a new bacterial strain and two metabolites for biocontrol against PWN.
Collapse
|
19
|
Zhao Y, Yuan Z, Wang S, Wang H, Chao Y, Sederoff RR, Sederoff H, Yan H, Pan J, Peng M, Wu D, Borriss R, Niu B. Gene sdaB Is Involved in the Nematocidal Activity of Enterobacter ludwigii AA4 Against the Pine Wood Nematode Bursaphelenchus xylophilus. Front Microbiol 2022; 13:870519. [PMID: 35602027 PMCID: PMC9121001 DOI: 10.3389/fmicb.2022.870519] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 03/25/2022] [Indexed: 11/13/2022] Open
Abstract
Bursaphelenchus xylophilus, a plant parasitic nematode, is the causal agent of pine wilt, a devastating forest tree disease. Essentially, no efficient methods for controlling B. xylophilus and pine wilt disease have yet been developed. Enterobacter ludwigii AA4, isolated from the root of maize, has powerful nematocidal activity against B. xylophilus in a new in vitro dye exclusion test. The corrected mortality of the B. xylophilus treated by E. ludwigii AA4 or its cell extract reached 98.3 and 98.6%, respectively. Morphological changes in B. xylophilus treated with a cell extract from strain AA4 suggested that the death of B. xylophilus might be caused by an increased number of vacuoles in non-apoptotic cell death and the damage to tissues of the nematodes. In a greenhouse test, the disease index of the seedlings of Scots pine (Pinus sylvestris) treated with the cells of strain AA4 plus B. xylophilus or those treated by AA4 cell extract plus B. xylophilus was 38.2 and 30.3, respectively, was significantly lower than 92.5 in the control plants treated with distilled water and B. xylophilus. We created a sdaB gene knockout in strain AA4 by deleting the gene that was putatively encoding the beta-subunit of L-serine dehydratase through Red homologous recombination. The nematocidal and disease-suppressing activities of the knockout strain were remarkably impaired. Finally, we revealed a robust colonization of P. sylvestris seedling needles by E. ludwigii AA4, which is supposed to contribute to the disease-controlling efficacy of strain AA4. Therefore, E. ludwigii AA4 has significant potential to serve as an agent for the biological control of pine wilt disease caused by B. xylophilus.
Collapse
Affiliation(s)
- Yu Zhao
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Zhibo Yuan
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Shuang Wang
- Administrative Office of the Summer Palace, Beijing Municipal Administration Center of Parks, Beijing, China
| | - Haoyu Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Yanjie Chao
- The Center for Microbes, Development and Health (CMDH), Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Ronald R. Sederoff
- Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC, United States
| | - Heike Sederoff
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, United States
| | - He Yan
- Center for Biological Disaster Prevention and Control, National Forestry and Grassland Administration, Shenyang, China
| | - Jialiang Pan
- Center for Biological Disaster Prevention and Control, National Forestry and Grassland Administration, Shenyang, China
| | - Mu Peng
- College of Biological Science and Technology, Hubei Minzu University, Enshi, China
| | - Di Wu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Rainer Borriss
- Nord Reet UG, Greifswald, Germany
- Institute of Marine Biotechnology e.V. (IMaB), Greifswald, Germany
- *Correspondence: Rainer Borriss,
| | - Ben Niu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
- Ben Niu,
| |
Collapse
|
20
|
New discovery on the nematode activity of aureothin and alloaureothin isolated from endophytic bacteria Streptomyces sp. AE170020. Sci Rep 2022; 12:3947. [PMID: 35273247 PMCID: PMC8913828 DOI: 10.1038/s41598-022-07879-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 01/18/2022] [Indexed: 11/08/2022] Open
Abstract
Endophytic bacteria, a rich source of bioactive secondary metabolites, are ideal candidates for environmentally benign agents. In this study, an endophytic strain, Streptomyces sp. AE170020, was isolated and selected for the purification of nematicidal substances based on its high nematicidal activity. Two highly active components, aureothin and alloaureothin, were identified, and their chemical structures were determined using spectroscopic analysis. Both compounds suppressed the growth, reproduction, and behavior of Bursaphelenchus xylophilus. In in vivo experiments, the extracts of strain Streptomyces sp. AE170020 effectively suppressed the development of pine wilt disease in 4-year-old plants of Pinus densiflora. The potency of secondary metabolites isolated from endophytic strains suggests applications in controlling Bursaphelenchus xylophilus and opens an avenue for further research on exploring bioactive substances against the pine wood nematode.
Collapse
|
21
|
Wang DY, Wu CR, Xuan ZQ, Wu HY. Biological pesticides and solvents with low toxicity reduce motility and activity of Bursaphelenchus xylophilus. NEMATOLOGY 2022. [DOI: 10.1163/15685411-bja10143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Summary
Pine wilt disease (PWD), caused by the pine wood nematode, Bursaphelenchus xylophilus, is an international quarantine forest disease that damages pine forests over extensive areas and causes massive economic losses. To provide valuable guidelines on screening pesticides against B. xylophilus and the selection of common solvents, we investigated the effects of different concentrations of emamectin benzoate, matrine and four solvents (methanol, ethanol, acetone and dimethyl sulfoxide) on the mortality and locomotor behaviour of B. xylophilus. Emamectin abamectin has nematicidal activity and mitigates locomotor activity of B. xylophilus at a low concentration. The LC50 of emamectin benzoate was 0.0354 mg l−1 at 72 h. Bursaphelenchus xylophilus mortality following exposure to matrine was low; however, nematode locomotor activity decreased by 62.5% following exposure to 500 mg l−1 matrine for 8 h. Additionally, B. xylophilus locomotor activity decreased significantly following exposure to 5 and 10% methanol, ethanol, acetone and dimethyl sulfoxide (DMSO) when compared with that of the water control. Emamectin benzoate and matrine, and high concentrations of four solvents (methanol, ethanol, acetone, and DMSO) inhibit B. xylophilus movement, which, in turn, could affect nematode infectivity. Moreover, low concentrations of non-lethal doses of emamectin benzoate should be considered for application in the control of nematodes, with matrine being an environmentally friendly and potentially nematicidal agent.
Collapse
Affiliation(s)
- Dong Ya Wang
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, Agricultural College of Guangxi University, Nanning 530004, P.R. China
| | - Chao Rong Wu
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, Agricultural College of Guangxi University, Nanning 530004, P.R. China
| | - Zi Qi Xuan
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, Agricultural College of Guangxi University, Nanning 530004, P.R. China
| | - Hai Yan Wu
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, Agricultural College of Guangxi University, Nanning 530004, P.R. China
| |
Collapse
|
22
|
Li H, Chen H, Wang J, Li J, Liu S, Tu J, Chen Y, Zong Y, Zhang P, Wang Z, Liu X. Influence of Microplastics on the Growth and the Intestinal Microbiota Composition of Brine Shrimp. Front Microbiol 2021; 12:717272. [PMID: 34659145 PMCID: PMC8511709 DOI: 10.3389/fmicb.2021.717272] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 08/23/2021] [Indexed: 01/21/2023] Open
Abstract
Microplastics (MPs) are ubiquitous in the aquatic environment and can be frequently ingested by zooplankton, leading to various effects. Brine shrimp (Artemia parthenogenetica) has an important role in the energy flow through trophic levels in different seawater systems. In this work, the influence of polyethylene (PE) and polystyrene (PS) MPs on the growth of brine shrimp and corresponding changes of gut microbiota were investigated. Our results showed that the MPs remarkably reduced the growth rate of brine shrimp, and the two types of MPs have different impacts. The average body length of brine shrimps was reduced by 17.92 and 14.95% in the PE group and PS group, respectively. MPs are mainly found in the intestine, and their exposure evidently affects the gut microbiota. By using 16S rRNA gene high-throughput sequencing, 32 phyla of bacteria were detected in the intestine, and the microbiome consisted mainly of Proteobacteria, Firmicutes, and Actinobacteria. MPs’ exposure significantly increased the gut microbial diversity. For the PE group, the proportion of Actinobacteria and Bacteroidetes increased by 45.26 and 2.73%, respectively. For the PS group, it was 54.95 and 1.27%, respectively. According to the analysis on genus level, the proportions of Ponticoccus, Seohaeicola, Polycyclovorans, and Methylophaga decreased by 46.38, 1.24, 1.07, and 2.66%, respectively, for the PE group and 57.87, 1.43, 0.88, and 2.24%, respectively, for the PS group. In contrast, the proportions of Stappia, Microbacterium, and Dietzia increased by 1.12, 23.27, and 11.59%, respectively, for the PE group, and 1.09, 3.79, and 42.96%, respectively, for the PS group. These experimental results demonstrated that the ingestion of MPs by brine shrimp can alter the composition of the gut microbiota and lead to a slow growth rate. This study provides preliminary data support for understanding the biotoxicity of MPs to invertebrate zooplankton and is conducive to the further risk assessment of MP exposure.
Collapse
Affiliation(s)
- Hongyu Li
- School of Environmental Science and Engineering, Tianjin University, Tianjin, China
| | - Hongwei Chen
- School of Environmental Science and Engineering, Tianjin University, Tianjin, China
| | - Jiao Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, China
| | - Jiayao Li
- School of Environmental Science and Engineering, Tianjin University, Tianjin, China
| | - Sitong Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin, China
| | - Jianbo Tu
- Tianjin Marine Environment Monitoring Center Station of State Oceanic Administration, Tianjin, China
| | - Yanzhen Chen
- Tianjin Marine Environment Monitoring Center Station of State Oceanic Administration, Tianjin, China
| | - Yanping Zong
- Tianjin Marine Environment Monitoring Center Station of State Oceanic Administration, Tianjin, China
| | - Pingping Zhang
- College of Food Science and Engineering, Tianjin Agricultural University, Tianjin, China
| | - Zhiyun Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, China
| | - Xianhua Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin, China
| |
Collapse
|
23
|
Seong J, Shin J, Kim K, Cho BK. Microbial production of nematicidal agents for controlling plant-parasitic nematodes. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.06.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
24
|
Xing Y, Zhang S, Qu G, Dai J, Yao J, Feng B. Discovery and Validation of a Novel Target of Molluscicides against Oncomelania hupensis, the Intermediate Host of Schistosoma japonicum. Acta Trop 2021; 221:106003. [PMID: 34118205 DOI: 10.1016/j.actatropica.2021.106003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/31/2021] [Accepted: 06/01/2021] [Indexed: 11/25/2022]
Abstract
In this study, 196 strains of actinomycetes isolated from marshland soil samples were tested for molluscicidal activity against Oncomelania hupensis. Five strains demonstrated molluscicidal activity, of which the molluscicidal efficiency of Actinomycetes strain A183 was the maximum. After the fermentation supernatant of actinomycetes A183 was extracted with ethyl acetate (EWEA), the LC50 of the EWEA after leaching for 48 h and 72 h were 0.2688 and 0.2195 mg/L, respectively. The effect of EWEA on the key points of energy metabolism was determined. We noted that 1 mg/L of EWEA (A813) significantly reduced the activity of mitochondrial respiratory chain complex I (P < 0.05), while no significant changes were observed in the activities of complexes II, III, and IV. In addition, EWEA (A813) could decrease the membrane potential of O. hupensis purified mitochondria in vitro. The LC50 of the 3 uncoupler (FCCP, DNP, and Tyrphostin A9) after immersion for 24 h were 0.065, 0.135, and 0.110 mg/L, respectively; LC50 after 48 h treatment was 0.064, 0.124, and 0.082 mg/L, respectively; LC50 after 72 h treatment was 0.063, 0.129, and 0.061 mg/L, respectively, and all uncoupler showed strong molluscicidal activities, demonstrating that the mitochondrial membrane potential uncoupling is a potential target for molluscicides against O. hupensis. Moreover, the molluscicidal active substance of strain A183 needs to be further isolated, purified, and structurally characterized considering its promising potential applications.
Collapse
|
25
|
Kang MK, Kim MH, Liu MJ, Jin CZ, Park SH, Lee JM, Kim J, Park DJ, Park HR, Kim YH, Kim CJ. Nematicidal activity of teleocidin B4 isolated from Streptomyces sp. against pine wood nematode, Bursaphelenchus xylophilus. PEST MANAGEMENT SCIENCE 2021; 77:1607-1615. [PMID: 32954637 DOI: 10.1002/ps.6095] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 09/21/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Pine wilt disease (PWD) is a plant disease that causes serious damage to pine trees. PWD occurs when the host plant is infected with pinewood nematode (PWN), Bursaphelenchus xylophilus. In this study, a compound with nematicidal activity was isolated from actinomycetes and its efficacy was investigated in vitro. RESULT We screened and selected Streptomyces sp. 680560, which had nematicidal activity against B. xylophilus. Based on 16S rRNA sequence analysis, it showed 99.93% similarity with Streptomyces blastmyceticus NRRB-5480T . Furthermore, the active compound was isolated and identified as teleocidin B4. Teleocidin B4 at concentrations ranging from 6.25 to 100 μM had low nematicidal activity after 24 and 36 h against adult and stage juveniles (J2) of B. xylophilus, but after 48 h nematicidal activity exceeded 95%. The rate of inhibition of egg hatching for Teleocidin B4 6.25, 12.5, 25, 50, and 100 μM was confirmed to be dose-dependently inhibited after 48 h of treatment. Teleocidin B4 is not only toxic to hatched B. xylophilus, but also affects egg hatching. CONCLUSION This study was carried out to isolate actinomycete metabolites from pine tree endophytes from various natural environments for control of PWD. A compound with nematicidal activity was isolated from a selected strain and its structure was identified as teleocidin B4. The nematicidal effect of the isolated active substance, teleocidin B4, was confirmed. This is the first report of the effect of teleocidin B4 on B. xylophilus, suggesting its possibility as a PWD control agent. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Min-Kyoung Kang
- Industrial Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
- College of Pharmacy, Chungnam National University, Daejeon, South Korea
| | - Min-Hee Kim
- Anticancer Agent Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju-si, South Korea
- Department of Food Science and Biotechnology, Kyungnam University, Changwon-si, South Korea
| | - Min-Jiao Liu
- Industrial Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
| | - Chun Zhi Jin
- Industrial Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
| | - So Hee Park
- Industrial Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
| | - Jong Min Lee
- Industrial Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
| | - Junheon Kim
- Forest Insect Pests and Diseases, National Institute of Forest Science, Seoul, South Korea
| | - Dong-Jin Park
- Industrial Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
| | - Hae-Ryong Park
- Department of Food Science and Biotechnology, Kyungnam University, Changwon-si, South Korea
| | - Young Ho Kim
- College of Pharmacy, Chungnam National University, Daejeon, South Korea
| | - Chang-Jin Kim
- Industrial Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
| |
Collapse
|
26
|
Kim J, Lee SJ, Park JO, Yoon KA. Nematicidal Activity of Benzyloxyalkanols against Pine Wood Nematode. Biomolecules 2021; 11:384. [PMID: 33807784 PMCID: PMC7999353 DOI: 10.3390/biom11030384] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/19/2021] [Accepted: 03/02/2021] [Indexed: 11/16/2022] Open
Abstract
Pine wilt disease (PWD) is caused by the pine wood nematode (PWN; Bursaphelenchus xylophilus) and causes severe environmental damage to global pine forest ecosystems. The current strategies used to control PWN are mainly chemical treatments. However, the continuous use of these reagents could result in the development of pesticide-resistant nematodes. Therefore, the present study was undertaken to find potential alternatives to the currently used PWN control agents abamectin and emamectin. Benzyloxyalkanols (BzOROH; R = C2-C9) were synthesized and the nematicidal activity of the synthetic compounds was investigated. Enzymatic inhibitory assays (acetylcholinesterase (AChE) and glutathione S-transferase (GST)) were performed with BzOC8OH and BzOC9OH to understand their mode of action. The benzyloxyalkanols showed higher nematicidal activity than did benzyl alcohol. Among the tested BzOROHs, BzC8OH and BzC9OH showed the strongest nematicidal activity. The LD50 values of BzC8OH and BzC9OH were 246.1 and 158.0 ppm, respectively. No enzyme inhibitory activity was observed for BzC8OH and BzC9OH. The results suggested that benzyloxyalcohols could be an alternative nematicidal agent.
Collapse
Affiliation(s)
- Junheon Kim
- Forest Insect Pests and Disease Division, National Institute of Forest Science, Seoul 02455, Korea; (S.J.L.); (J.O.P.)
| | - Su Jin Lee
- Forest Insect Pests and Disease Division, National Institute of Forest Science, Seoul 02455, Korea; (S.J.L.); (J.O.P.)
| | - Joon Oh Park
- Forest Insect Pests and Disease Division, National Institute of Forest Science, Seoul 02455, Korea; (S.J.L.); (J.O.P.)
| | - Kyungjae Andrew Yoon
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea;
| |
Collapse
|
27
|
Chen J, Li QX, Song B. Chemical Nematicides: Recent Research Progress and Outlook. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:12175-12188. [PMID: 33079521 DOI: 10.1021/acs.jafc.0c02871] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Plant-parasitic nematodes have caused huge economic losses to agriculture worldwide and seriously threaten the sustainable development of modern agriculture. Chemical nematicides are still the most effective means to manage nematodes. However, the long-term use of organophosphorus and carbamate nematicides has led to a lack of field control efficacy and increased nematode resistance. To meet the huge market demand and slow the growth of resistance, new nematicides are needed to enter the market. The rational design and synthesis of new chemical scaffolds to screen for new nematicides is still a difficult task. We reviewed the latest research progress of nematicidal compounds in the past decade, discussed the structure-activity relationship and mechanism of action, and recommended some nematicidal active fragments. It is hoped that this review can update the recent progress on nematicide discoveries and provide new ideas for the design and mechanism of action studies of nematicides.
Collapse
Affiliation(s)
- Jixiang Chen
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Qing X Li
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, Hawaii 96822, United States
| | - Baoan Song
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| |
Collapse
|
28
|
Antimicrobial and Antioxidant Effects of a Forest Actinobacterium V 002 as New Producer of Spectinabilin, Undecylprodigiosin and Metacycloprodigiosin. Curr Microbiol 2020; 77:2575-2583. [PMID: 32372105 DOI: 10.1007/s00284-020-02007-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 04/24/2020] [Indexed: 10/24/2022]
Abstract
The aim of the study is the research and identification of a Streptomyces strain as a new producer of spectinabilin, undecylprodigiosin and metacycloprodigiosin. Among 54 actinomycete isolates isolated from El-Ogbane forest soils in Algeria, only one isolate, designated V002, was selected for its ability to produce prodigiosins. The selected strain was analysed for its ability to produce three different secondary metabolites as well as their biological activities. V002 belongs to the Streptomyces genus and has significant antimicrobial and antioxidant activities. The taxonomic position of V002 by 16S rRNA sequence analysis showed a similarity of 99.93% with Streptomyces lasiicapitis DSM 103124T and 98.96% with Streptomyces spectabilis DSM 40512T. Fractionation of crude secondary metabolites produced by the strain using HPLC-MS revealed the presence of spectinabilin, undecylprodigiosin and metacycloprodigiosin, which demonstrated significant activity. Strain V002 is considered a new producer of spectinabilin, undecylprodigiosin and metacycloprodigiosin with significant antimicrobial and antioxidant activity.
Collapse
|
29
|
Kim JH, Choi JY, Park DH, Park DJ, Park MG, Kim SY, Ju YJ, Kim JY, Wang M, Kim CJ, Je YH. Isolation and characterization of the insect growth regulatory substances from actinomycetes. Comp Biochem Physiol C Toxicol Pharmacol 2020; 228:108651. [PMID: 31678310 DOI: 10.1016/j.cbpc.2019.108651] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 10/21/2019] [Accepted: 10/26/2019] [Indexed: 11/19/2022]
Abstract
Insect growth regulators (IGRs) are attractive alternatives to chemical insecticides. Since it has been reported that secondary metabolites from actinomycetes show insecticidal activities against various insect pests, actinomycetes could be a potential source of novel IGR compounds. In the present study, insect juvenile hormone antagonists (JHANs) were identified from actinomycetes and their insect growth regulatory and insecticidal activities were investigated. A total of 363 actinomycetes were screened for their insect growth regulatory and insecticidal activities against Aedes albopictus and Plutella xylostella. Among them, Streptomyces sp. AN120537 showed the highest JHAN and insecticidal activities. Five antimycins were isolated as active compounds by assay-guided fractionation and showed high JHAN activities. These antimycins also exhibited significant insecticidal activities against A. albopictus, P. xylostella, F. occidentalis, and T. urticae. Moreover, dead larvae treated with these antimycins displayed morphological deformities that are similar to those of JH-based IGR-treated insects. This is the first report demonstrating that the insecticidal activities of antimycins resulted from their possible JHAN activity. Based on our results, it is expected that novel JHAN compounds potentially derived from actinomycetes could be efficiently applied as IGR insecticides with a broad insecticidal spectrum.
Collapse
Affiliation(s)
- Jong Hoon Kim
- Department of Agricultural Biotechnology, College of Agriculture & Life Science, Seoul National University, Seoul 08826, Republic of Korea
| | - Jae Young Choi
- Department of Agricultural Biotechnology, College of Agriculture & Life Science, Seoul National University, Seoul 08826, Republic of Korea
| | - Dong Hwan Park
- Department of Agricultural Biotechnology, College of Agriculture & Life Science, Seoul National University, Seoul 08826, Republic of Korea
| | - Dong-Jin Park
- Industrial Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Min Gu Park
- Department of Agricultural Biotechnology, College of Agriculture & Life Science, Seoul National University, Seoul 08826, Republic of Korea
| | - So Young Kim
- Industrial Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Yoon Jung Ju
- Industrial Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Jun Young Kim
- Department of Agricultural Biotechnology, College of Agriculture & Life Science, Seoul National University, Seoul 08826, Republic of Korea
| | - Minghui Wang
- Department of Agricultural Biotechnology, College of Agriculture & Life Science, Seoul National University, Seoul 08826, Republic of Korea
| | - Chang-Jin Kim
- Industrial Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Yeon Ho Je
- Department of Agricultural Biotechnology, College of Agriculture & Life Science, Seoul National University, Seoul 08826, Republic of Korea; Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
30
|
Affiliation(s)
| | - Jintae Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan, Republic of Korea
| |
Collapse
|
31
|
Hu W, Strom NB, Haarith D, Chen S, Bushley KE. Seasonal Variation and Crop Sequences Shape the Structure of Bacterial Communities in Cysts of Soybean Cyst Nematode. Front Microbiol 2019; 10:2671. [PMID: 31824456 PMCID: PMC6882411 DOI: 10.3389/fmicb.2019.02671] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 11/04/2019] [Indexed: 12/03/2022] Open
Abstract
Soybean cyst nematode (SCN), Heterodera glycines Ichinohe, is the number 1 pathogen of the important economic crop soybean. Bacteria represent potential biocontrol agents of the SCN, but few studies have characterized the dynamics of bacterial communities associated with cysts under different crop rotation sequences. The bacterial communities in SCN cysts in a long-term soybean–corn crop rotation experiment were investigated over 2 years. The crop sequences included long-term soybean monoculture (Ss), years 1–5 of soybean following 5 years corn (S1–S5), years 1 and 2 of corn following 5 years soybean (C1 and C2), and soybean–corn annual rotation (Sa and Ca). The bacterial 16S rRNA V4 region was amplified from DNA isolated from SCN cysts collected in spring at planting, midseason (2 months later), and fall at harvest and sequenced on the Illumina MiSeq platform. The SCN cyst microbiome was dominated by Proteobacteria followed by Actinobacteria, Bacteroidetes, and Verrucomicrobia. The bacterial community composition was influenced by both crop sequence and season. Although differences by crop sequence were not significant in the spring of each year, bacterial communities in cysts from annual rotation (Sa and Ca) or crop sequences of early years of monoculture following a 5-year rotation of the alternate crop (S1 and C1) became rapidly differentiated by crop over a single growing season. In the fall, genera of cyst bacteria associated with soybean crop sequences included Rhizobacter, Leptothrix, Cytophaga, Chitinophaga, Niastella, Streptomyces, and Halangium. The discovery of diverse bacterial taxa in SCN cysts and their dynamics across crop rotation sequences provides invaluable information for future development of biological control of the SCN.
Collapse
Affiliation(s)
- Weiming Hu
- Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, MN, United States.,Department of Entomology and Nematology, University of Florida, Gainesville, FL, United States
| | - Noah Bernard Strom
- Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, MN, United States
| | - Deepak Haarith
- Department of Plant Pathology, University of Minnesota, Saint Paul, MN, United States
| | - Senyu Chen
- Department of Plant Pathology, University of Minnesota, Saint Paul, MN, United States.,Southern Research and Outreach Center, University of Minnesota, Waseca, MN, United States
| | - Kathryn E Bushley
- Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, MN, United States
| |
Collapse
|
32
|
Gao X, Yao H, Mu Y, Guan P, Li G, Lin B, Jiang Y, Han L, Huang X, Jiang C. The antiproliferative effect of spectinabilins from Streptomyces spectabilis on hepatocellular carcinoma cells in vitro and in vivo. Bioorg Chem 2019; 93:103311. [PMID: 31586709 DOI: 10.1016/j.bioorg.2019.103311] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 09/20/2019] [Accepted: 09/22/2019] [Indexed: 10/26/2022]
Abstract
Spectinabilin (1), spectinabilin derivative (2), and a new analogue, 2-demethyl-spectinabilin (3) were isolated from the fermentation broth of a soil-borne Streptomyces spectabilis strain. The structure of the new compound was elucidated by a detailed spectroscopic data analysis including data from CD spectra. Spectinabilin (1) demonstrated cytotoxicity against five human cancer cell lines, with IC50 values ranging from 18.7 ± 3.1 to 34.6 ± 4.7 μM, while derivatives 2 and 3 showed weak cytotoxicities. Notably, 1 inhibited the growth and proliferation of the hepatocellular carcinoma cell lines SMMC7721 and HepG2 in a time- and dose-dependent manner. Further study demonstrated that 1 caused G2/M phase cell cycle arrest in SMMC7721 and HepG2 cells through decreasing the protein levels of cyclin B1 and cdc2 as well as increasing that of p21. Compound 1 downregulated the protein expression of Bcl-2, upregulated Bax, and activated the cleavage of caspase-9 and -3 as a result of inducing apoptosis in SMMC7721 and HepG2 cells. Furthermore, the antitumor effect of 1 in SMMC7721 and HepG2 cells was mediated by the PI3K/AKT signaling pathway. In addition, 1 also suppressed tumor growth in vivo though inducing cell cycle arrest and apoptosis.
Collapse
Affiliation(s)
- Xiaoxiao Gao
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University, Shenyang 110819, People's Republic of China
| | - Hongzhi Yao
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University, Shenyang 110819, People's Republic of China
| | - Yu Mu
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University, Shenyang 110819, People's Republic of China
| | - Peipei Guan
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University, Shenyang 110819, People's Republic of China
| | - Guiding Li
- Yunnan Institute of Microbiology, Yunnan University, Kunming 650091, People's Republic of China
| | - Bin Lin
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Yi Jiang
- Yunnan Institute of Microbiology, Yunnan University, Kunming 650091, People's Republic of China.
| | - Li Han
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University, Shenyang 110819, People's Republic of China.
| | - Xueshi Huang
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University, Shenyang 110819, People's Republic of China.
| | - Chenglin Jiang
- Yunnan Institute of Microbiology, Yunnan University, Kunming 650091, People's Republic of China
| |
Collapse
|