1
|
Kewedar S, Chen QR, Moural TW, Lo C, Umbel E, Forrence PJ, Walsh DB, Zhu F. Acaricide Resistance Monitoring and Structural Insights for Precision Tetranychus urticae Management. INSECTS 2025; 16:440. [PMID: 40429153 PMCID: PMC12112526 DOI: 10.3390/insects16050440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 04/11/2025] [Accepted: 04/17/2025] [Indexed: 05/29/2025]
Abstract
The two-spotted spider mite (Tetranychus urticae) is a highly destructive and economically significant pest in agricultural, horticultural, and ornamental agroecosystems worldwide, including hop (Humulus lupulus) and mint (Mentha spp.) fields in the Pacific Northwest (PNW) region of the United States. Repeated acaricide applications and rotations have led to widespread resistance, resulting in control failures. In this study, we investigated the mechanisms of resistance to four different acaricides (bifenthrin, bifenazate, etoxazole, and abamectin) across 23 field-collected TSSM populations by integrating diagnostic bioassays, genetic screening for resistance-associated mutations, structural modeling, and molecular docking. Several kdr mutations and mutation combinations were detected in TuVGSC across all tested populations. The G132A in Tucytb was identified in 68.75% of hop and 40% of mint TSSM populations, while the I1017F in TuCHS 1 was found in 94% of hop and 100% of mint populations. Structural analysis revealed key interactions between acaricides and target proteins in both wild-type and mutant variants, providing novel insights into the functional impacts of these mutations. Our findings enhance the understanding of TSSM adaptation to acaricides among different crops, supporting the development of more effective resistance management strategies to mitigate economic losses in hops, mint, and other crop production.
Collapse
Affiliation(s)
- Said Kewedar
- Department of Entomology, Penn State University, University Park, PA 16802, USA; (S.K.); (Q.-R.C.); (T.W.M.); (C.L.); (E.U.)
| | - Qi-Ren Chen
- Department of Entomology, Penn State University, University Park, PA 16802, USA; (S.K.); (Q.-R.C.); (T.W.M.); (C.L.); (E.U.)
| | - Timothy W. Moural
- Department of Entomology, Penn State University, University Park, PA 16802, USA; (S.K.); (Q.-R.C.); (T.W.M.); (C.L.); (E.U.)
| | - Carah Lo
- Department of Entomology, Penn State University, University Park, PA 16802, USA; (S.K.); (Q.-R.C.); (T.W.M.); (C.L.); (E.U.)
| | - Elsie Umbel
- Department of Entomology, Penn State University, University Park, PA 16802, USA; (S.K.); (Q.-R.C.); (T.W.M.); (C.L.); (E.U.)
| | - Peter J. Forrence
- Irrigated Agriculture Research and Extension Center, Washington State University, Prosser, WA 99350, USA; (P.J.F.); (D.B.W.)
- Department of Entomology, Washington State University, Pullman, WA 99164, USA
| | - Douglas B. Walsh
- Irrigated Agriculture Research and Extension Center, Washington State University, Prosser, WA 99350, USA; (P.J.F.); (D.B.W.)
- Department of Entomology, Washington State University, Pullman, WA 99164, USA
| | - Fang Zhu
- Department of Entomology, Penn State University, University Park, PA 16802, USA; (S.K.); (Q.-R.C.); (T.W.M.); (C.L.); (E.U.)
- Huck Institutes of the Life Sciences, Penn State University, University Park, PA 16802, USA
| |
Collapse
|
2
|
Zong X, Song J, Huang X, Zhu Y, Yu H, Ning G, Zhao J. Monitoring acaricide resistance and the frequency of associated target-site mutations in Tetranychus urticae populations from rose glasshouses in China. PEST MANAGEMENT SCIENCE 2025; 81:1579-1591. [PMID: 39588633 DOI: 10.1002/ps.8561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/17/2024] [Accepted: 11/10/2024] [Indexed: 11/27/2024]
Abstract
BACKGROUND The two-spotted spider mite, Tetranychus urticae, is a serious pest of glasshouse roses. The rapid development of resistance to acaricides has severely impacted rose production. To investigate the resistance status of T. urticae in glasshouse rose cultivation in China, we tested the susceptibility of 10 populations to 12 commonly used acaricides and examined the frequency of target-site mutations associated with acaricide resistance. RESULTS All of the tested populations showed resistance to at least eight types of acaricides and exhibited high levels of resistance to abamectin, diafenthiuron, hexythiazox and spirodiclofen. The JN-YN and LZ-GS populations even developed >70 000-fold resistance to abamectin. Additionally, resistance to the newly applied bifenazate or cyetpyrafen was detected in eight populations. Many glasshouse-collected populations showed significantly increased activity of detoxifying enzymes and harbored high frequencies of target-site mutations known to be associated with resistance. A newly discovered I136A mutation in cytb was detected at >85% frequencies in two populations with high levels of bifenazate resistance, and its frequency showed a strong correlation with the median lethal concentration values in all of the populations. CONCLUSIONS Multiple-acaricide resistance exists extensively in all collected populations. The high resistance levels of collected populations to many acaricides, together with multiple target-site mutations, indicate a serious resistance status of T. urticae in rose glasshouses in China. The role of the newly discovered I136A mutation in bifenazate resistance requires further verification. These results will be essential for implementing a well-thought-out resistance management program for rose cultivation in China. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xinyu Zong
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jiawen Song
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xingting Huang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yuhang Zhu
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Haiwei Yu
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Guogui Ning
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, China
- The Institute of Flowers Research, Huazhong Agricultural University, Wuhan, China
| | - Jing Zhao
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- The Institute of Flowers Research, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
3
|
Koirala B K S, Bhattarai G, Adesanya AW, Moural TW, Lavine LC, Walsh DB, Zhu F. Transcriptome Analysis Unveils Molecular Mechanisms of Acaricide Resistance in Two-Spotted Spider Mite Populations on Hops. Int J Mol Sci 2024; 25:13298. [PMID: 39769060 PMCID: PMC11678639 DOI: 10.3390/ijms252413298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/29/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
Broad-spectrum crop protection technologies, such as abamectin and bifenthrin, are globally relied upon to curb the existential threats from economic crop pests such as the generalist herbivore Tetranychus urticae Koch (TSSM). However, the rising cost of discovering and registering new acaricides, particularly for specialty crops, along with the increasing risk of pesticide resistance development, underscores the urgent need to preserve the efficacy of currently registered acaricides. This study examined the overall genetic mechanism underlying adaptation to abamectin and bifenthrin in T. urticae populations from commercial hop fields in the Pacific Northwestern region of the USA. A transcriptomic study was conducted using four populations (susceptible, abamectin-resistant, and two bifenthrin-resistant populations). Differential gene expression analysis revealed a notable disparity, with significantly more downregulated genes than upregulated genes in both resistant populations. Gene ontology enrichment analysis revealed a striking consistency among all three resistant populations, with downregulated genes predominately associated with chitin metabolism. In contrast, upregulated genes in the resistant populations were linked to biological processes, such as peptidase activity and oxidoreductase activity. Proteolytic activity by peptidase enzymes in abamectin- and bifenthrin-resistant TSSM populations may suggest their involvement in acaricide metabolism. These findings provide valuable insights into the molecular mechanisms underlying acaricide resistance in the TSSM. This knowledge can be utilized to develop innovative pesticides and molecular diagnostic tools for effectively monitoring and managing resistant TSSM populations.
Collapse
Affiliation(s)
- Sonu Koirala B K
- Department of Entomology, Pennsylvania State University, University Park, PA 16802, USA; (S.K.B.K.); (T.W.M.)
| | - Gaurab Bhattarai
- Institute of Plant Breeding, Genetics & Genomics, University of Georgia, Athens, GA 30602, USA;
| | - Adekunle W. Adesanya
- Department of Entomology, Washington State University, Pullman, WA 99164, USA (L.C.L.); (D.B.W.)
- Irrigated Agriculture Research and Extension Center, Washington State University, Prosser, WA 99350, USA
| | - Timothy W. Moural
- Department of Entomology, Pennsylvania State University, University Park, PA 16802, USA; (S.K.B.K.); (T.W.M.)
| | - Laura C. Lavine
- Department of Entomology, Washington State University, Pullman, WA 99164, USA (L.C.L.); (D.B.W.)
| | - Douglas B. Walsh
- Department of Entomology, Washington State University, Pullman, WA 99164, USA (L.C.L.); (D.B.W.)
- Irrigated Agriculture Research and Extension Center, Washington State University, Prosser, WA 99350, USA
| | - Fang Zhu
- Department of Entomology, Pennsylvania State University, University Park, PA 16802, USA; (S.K.B.K.); (T.W.M.)
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
4
|
Zhou H, Wan F, Lai X, Yan F, Zhang M, Ni Y, Guo Y, Zhang P, Guo F, Klakong M, Peng G, Guo W, Zeng X, Zhang Z, Pan X, Liu Y, Yang L, Li S, Ding W. Synergistic action and mechanism of scoparone, a key bioactive component of Artemisia capillaris, and spirodiclofen against spider mites. PEST MANAGEMENT SCIENCE 2024; 80:5035-5049. [PMID: 38847112 DOI: 10.1002/ps.8228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/07/2024] [Accepted: 05/22/2024] [Indexed: 10/12/2024]
Abstract
BACKGROUND Plants have numerous defensive secondary metabolites to withstand insect attacks. Scoparone, which is extracted from the medicinal plant Artemisia capillaris, has potent acaricidal effects on Tetranychus cinnabarinus. Spirodiclofen, derived from a tetronic acid derivative, is a potent commercial acaricide that is extensively used globally. However, whether scoparone has synergistic effects when used in conjunction with spirodiclofen and the underlying synergistic mechanism remains unclear. RESULTS Scoparone exhibited a potent synergistic effect when it was combined with spirodiclofen at a 1:9 ratio. Subsequently, cytochrome P450 monooxygenase (P450) activity, RNA-Seq and qPCR assays indicated that the enzyme activity of P450 and the expression of one P450 gene from T. cinnabarinus, TcCYP388A1, were significantly inhibited by scoparone and spirodiclofen + scoparone; conversely, P450 was activated in spirodiclofen-exposed mites. Importantly, RNAi-mediated silencing of the TcCYP388A1 gene markedly increased the susceptibility of spider mites to spirodiclofen, scoparone and spirodiclofen + scoparone, and in vitro, the recombinant TcCYP388A1 protein could metabolize spirodiclofen. Molecular docking and functional analyses further indicated that R117, which is highly conserved in Arachnoidea species, may be a vital specific binding site for scoparone in the mite TcCYP388A1 protein. This binding site was subsequently confirmed using mutagenesis data, which revealed that this binding site was the sole site selected by scoparone in spider mites over mammalian or fly CYP388A1. CONCLUSIONS These results indicate that the synergistic effects of scoparone and spirodiclofen on mites occurs through the inhibition of P450 activity, thus reducing spirodiclofen metabolism. The synergistic effect of this potent natural product on the detoxification enzyme-targeted activity of commercial acaricides may offer a sustainable strategy for pest mite resistance management. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Hong Zhou
- Institute of Pesticide Science, College of Plant Protection, Southwest University, Chongqing, China
| | - Fenglin Wan
- Institute of Pesticide Science, College of Plant Protection, Southwest University, Chongqing, China
| | - Xiangning Lai
- Institute of Pesticide Science, College of Plant Protection, Southwest University, Chongqing, China
| | - Fangfang Yan
- Panzhihua City Company, Sichuan Tobacco Company, China National Tobacco Corporation, Panzhihua, China
| | - Miao Zhang
- Institute of Pesticide Science, College of Plant Protection, Southwest University, Chongqing, China
| | - Yi Ni
- Institute of Pesticide Science, College of Plant Protection, Southwest University, Chongqing, China
| | - Yutong Guo
- Institute of Pesticide Science, College of Plant Protection, Southwest University, Chongqing, China
| | - Pan Zhang
- Key Laboratory of Molecular Genetics, Guizhou Institute of Tobacco Science, China National Tobacco Corporation, Guiyang, China
| | - Fuyou Guo
- Institute of Pesticide Science, College of Plant Protection, Southwest University, Chongqing, China
| | - Matthana Klakong
- Institute of Pesticide Science, College of Plant Protection, Southwest University, Chongqing, China
| | - Gen Peng
- Institute of Pesticide Science, College of Plant Protection, Southwest University, Chongqing, China
| | - Wenhan Guo
- Institute of Pesticide Science, College of Plant Protection, Southwest University, Chongqing, China
| | - Xinru Zeng
- Institute of Pesticide Science, College of Plant Protection, Southwest University, Chongqing, China
| | - Zongjin Zhang
- Panzhihua City Company, Sichuan Tobacco Company, China National Tobacco Corporation, Panzhihua, China
| | - Xingbing Pan
- Panzhihua City Company, Sichuan Tobacco Company, China National Tobacco Corporation, Panzhihua, China
| | - Yu Liu
- Panzhihua City Company, Sichuan Tobacco Company, China National Tobacco Corporation, Panzhihua, China
| | - Liang Yang
- Institute of Pesticide Science, College of Plant Protection, Southwest University, Chongqing, China
| | - Shili Li
- Institute of Pesticide Science, College of Plant Protection, Southwest University, Chongqing, China
| | - Wei Ding
- Institute of Pesticide Science, College of Plant Protection, Southwest University, Chongqing, China
| |
Collapse
|
5
|
Xu L, Ren C, Qiang P, Zhao M, Wen X, Li J, Dou W, Feng K, He L. Differences in Mitochondrial Cytochrome b Binding Mediate Selectivity of Bifenazate toward Phytophagous and Predatory Mites. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:19699-19709. [PMID: 39190753 DOI: 10.1021/acs.jafc.4c06169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Bifenazate, a potent acaricide that targets mitochondrial complex III, exhibits selective toxicity (>280-fold) toward phytophagous mites versus predatory mites. Here, a systematic study was conducted to clarify the selective mechanism. Nontarget factors were excluded through epidermal penetration tests and assessment of detoxification enzymes' activities. Quantification of IC50 values, ATP content, and reactive oxygen species (ROS) levels revealed that differences in drug-target binding determine the toxicity selectivity. Structural modeling and molecular docking revealed that variations in key amino acid sites within the cytochrome b (cytb) target might regulate this selectivity, which was validated through a microscale thermophoresis assay. Significant disparities were observed in the binding affinity between bifenazate and recombinant cytb proteins derived from phytophagous mites and predatory mites. Mutating isoleucine 139 to leucine notably reduced the binding affinity of bifenazate to cytb. Insights into bifenazate selectivity between phytophagous and predatory mites inform a basis for developing compounds that target cytochrome b.
Collapse
Affiliation(s)
- Lin Xu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, 400715 Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, Ministry of Education, 400715 Chongqing, China
- National Citrus Engineering Research Center, Southwest University, 400712 Chongqing, China
| | - Changwei Ren
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, 400715 Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, Ministry of Education, 400715 Chongqing, China
- National Citrus Engineering Research Center, Southwest University, 400712 Chongqing, China
| | - Peipei Qiang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, 400715 Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, Ministry of Education, 400715 Chongqing, China
- National Citrus Engineering Research Center, Southwest University, 400712 Chongqing, China
| | - Mingyu Zhao
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, 400715 Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, Ministry of Education, 400715 Chongqing, China
- National Citrus Engineering Research Center, Southwest University, 400712 Chongqing, China
| | - Xiang Wen
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, 400715 Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, Ministry of Education, 400715 Chongqing, China
- National Citrus Engineering Research Center, Southwest University, 400712 Chongqing, China
| | - Jinhang Li
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, 400715 Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, Ministry of Education, 400715 Chongqing, China
- National Citrus Engineering Research Center, Southwest University, 400712 Chongqing, China
| | - Wei Dou
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, 400715 Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, Ministry of Education, 400715 Chongqing, China
- National Citrus Engineering Research Center, Southwest University, 400712 Chongqing, China
| | - Kaiyang Feng
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, 400715 Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, Ministry of Education, 400715 Chongqing, China
- National Citrus Engineering Research Center, Southwest University, 400712 Chongqing, China
| | - Lin He
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, 400715 Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, Ministry of Education, 400715 Chongqing, China
- National Citrus Engineering Research Center, Southwest University, 400712 Chongqing, China
| |
Collapse
|
6
|
Chen Y, Nguyen DT, Wheeler D, Herron GA. A novel mutation in mitochondrial cytochrome b conferring resistance to bifenazate in two-spotted spider mite Tetranychus urticae Koch (Acarina: Tetranychidae). PEST MANAGEMENT SCIENCE 2024; 80:3612-3619. [PMID: 38451019 DOI: 10.1002/ps.8065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/04/2024] [Accepted: 03/07/2024] [Indexed: 03/08/2024]
Abstract
BACKGROUND The two-spotted spider mite Tetranychus urticae causes significant damage to ornamental, cotton, sugarcane and horticultural crops in Australia. It has a long history of developing resistance to many acaricides including bifenazate. A mutation in the conserved cd1- and ef-helices of the Qo pocket of cytochrome b is recognized as the primary mechanism of bifenazate resistance. To investigate the resistance mechanisms against bifenazate in Australian two-spotted spider mite, we sequenced the complete mitochondrion genome of five mite strains including a susceptible and bifenazate-resistant strain. RESULTS We identified a novel mutation D252N in the G126S background at cytochrome b being the cause of bifenazate resistance in a bifenazate-resistant strain, Bram. We validated the role of this mutation combination by reciprocal crosses between a bifenazate resistant and susceptible strain. By doing these crosses we confirmed the pattern of inheritance was maternal. Additionally, mitochondrial heteroplasmy was not observed by single mite genotyping of the mutations in cytb in a known bifenazate-resistant strain Bram. The phylogenetic analysis with the complete mitochondrion genome sequences revealed that Australian two-spotted spider mite strains are closely related to the green form of T. urticae found in China. CONCLUSIONS The novel mutation D252N found in the cytochrome b in the G126S background was revealed to be the main cause of bifenazate resistance in the Australian T. urticae strain Bram. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yizhou Chen
- New South Wales Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Menangle, New South Wales, Australia
| | - Duong T Nguyen
- New South Wales Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Menangle, New South Wales, Australia
| | - David Wheeler
- New South Wales Department of Primary Industries, Orange Agricultural Institute, Orange, New South Wales, Australia
| | - Grant A Herron
- New South Wales Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Menangle, New South Wales, Australia
| |
Collapse
|
7
|
Jiang SD, Wang L, Wang L, Sun J, Wang JJ, Wei DD. Mitochondrial coding genes mediate insecticide tolerance in the oriental fruit fly, Bactrocera dorsalis (Hendel). PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 199:105763. [PMID: 38458663 DOI: 10.1016/j.pestbp.2023.105763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 12/06/2023] [Accepted: 12/26/2023] [Indexed: 03/10/2024]
Abstract
The oriental fruit fly, Bactrocera dorsalis (Hendel), an invasive insect pest infesting fruits and vegetables, possesses a remarkable capacity for environmental adaptation. The investigation of behind mechanisms of the stress adaptability in B. dorsalis holds significantly practical relevance. Previous studies on the molecular mechanism underlying stress resistance in B. dorsalis have predominantly focused on nuclear-coding genes, with limited exploration on organelle-coding genes. In this study, we assessed alterations in the mitochondrial physiological parameters of B. dorsalis under exposure to malathion, avermectin, and beta-cypermethrin at LD50 dosages. The results showed that all three insecticides were capable of reducing mitochondrial complex IV activity and ATP content. Expression patterns of mitochondrial coding genes across different developmental stages, tissues and insecticide exposures were analyzed by RT-qPCR. The results revealed that these mitochondrial coding genes were expressed in various tissues and at different developmental stages. Particularly noteworthy, atp6, cox2, and cytb exhibited substantial up-regulation in response to malathion and avermectin treatment. Furthermore, RNAi-mediated knockdown of atp6 and cox2 resulted in the increased toxicity of malathion and avermectin against B. dorsalis, and cox2 silencing was also associated with the decreased complex IV activity. These findings suggest that atp6 and cox2 most likely play pivotal roles in mediating tolerance or resistance to malathion and avermectin in B. dorsalis. Our results provide novel insights into the role of mitochondrial coding genes in conferring tolerance to insecticides in B. dorsalis, with practical implications for controlling this pest in the field.
Collapse
Affiliation(s)
- Shi-Die Jiang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China.
| | - Lei Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China.
| | - Lin Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China.
| | - Jun Sun
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China.
| | - Jin-Jun Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China; Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China.
| | - Dan-Dan Wei
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China; Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China.
| |
Collapse
|
8
|
Zhou H, Jian Y, Shao Q, Guo F, Zhang M, Wan F, Yang L, Liu Y, Yang L, Li Y, Yang P, Li Z, Li S, Ding W. Development of Sustainable Insecticide Candidates for Protecting Pollinators: Insight into the Bioactivities, Selective Mechanism of Action and QSAR of Natural Coumarin Derivatives against Aphids. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:18359-18374. [PMID: 37965968 DOI: 10.1021/acs.jafc.3c03493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Plants employ abundant toxic secondary metabolites to withstand insect attack, while pollinators can tolerate some natural defensive compounds. Coumarins, as promising green alternatives to chemical insecticides, possess wide application prospects in the crop protection field. Herein, the bioactivities of 30 natural coumarin derivatives against Aphis gossypii were assessed and revealed that 6-methylcoumarin exhibited potent aphicidal activity against aphids but displayed no toxicity to honeybees. Additionally, using biochemical, bioinformatic, and molecular assays, we confirmed that the action mode of 6-methylcoumarin against aphids was by inhibiting acetylcholinesterase (AChE). Meanwhile, functional assays revealed that the difference in action site, which located in Lys585 in aphid AChE (equivalent to Val548 in honeybee AChE), was the principal reason for 6-methylcoumarin being toxic to aphids but safe to pollinators. This action site was further validated by mutagenesis data, which uncovered how 6-methylcoumarin was unique selective to the aphid over honeybee or mammalian AChE. Furthermore, a 2D-QSAR model was established, revealing that the central structural feature was H3m, which offers guidance for the future design of more potent coumarin compounds. This work provides a sustainable strategy to take advantage of coumarin analogues for pest management while protecting nontarget pollinators.
Collapse
Affiliation(s)
- Hong Zhou
- Institute of Pesticide Science, College of Plant Protection, Southwest University, Chongqing 400715, P.R. China
| | - Yufan Jian
- Institute of Pesticide Science, College of Plant Protection, Southwest University, Chongqing 400715, P.R. China
| | - Qingyi Shao
- Institute of Pesticide Science, College of Plant Protection, Southwest University, Chongqing 400715, P.R. China
| | - Fuyou Guo
- Institute of Pesticide Science, College of Plant Protection, Southwest University, Chongqing 400715, P.R. China
| | - Miao Zhang
- Institute of Pesticide Science, College of Plant Protection, Southwest University, Chongqing 400715, P.R. China
| | - Fenglin Wan
- Institute of Pesticide Science, College of Plant Protection, Southwest University, Chongqing 400715, P.R. China
| | - Liang Yang
- Institute of Pesticide Science, College of Plant Protection, Southwest University, Chongqing 400715, P.R. China
| | - Ying Liu
- Institute of Pesticide Science, College of Plant Protection, Southwest University, Chongqing 400715, P.R. China
| | - Li Yang
- Institute of Pesticide Science, College of Plant Protection, Southwest University, Chongqing 400715, P.R. China
| | - Yanhong Li
- Institute of Pesticide Science, College of Plant Protection, Southwest University, Chongqing 400715, P.R. China
| | - Pinglong Yang
- Institute of Pesticide Science, College of Plant Protection, Southwest University, Chongqing 400715, P.R. China
| | - Zongquan Li
- Institute of Pesticide Science, College of Plant Protection, Southwest University, Chongqing 400715, P.R. China
| | - Shili Li
- Institute of Pesticide Science, College of Plant Protection, Southwest University, Chongqing 400715, P.R. China
| | - Wei Ding
- Institute of Pesticide Science, College of Plant Protection, Southwest University, Chongqing 400715, P.R. China
| |
Collapse
|
9
|
Njiru C, Saalwaechter C, Mavridis K, Vontas J, Geibel S, Wybouw N, Van Leeuwen T. The complex II resistance mutation H258Y in succinate dehydrogenase subunit B causes fitness penalties associated with mitochondrial respiratory deficiency. PEST MANAGEMENT SCIENCE 2023; 79:4403-4413. [PMID: 37394630 DOI: 10.1002/ps.7640] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/31/2023] [Accepted: 07/03/2023] [Indexed: 07/04/2023]
Abstract
BACKGROUND The acaricides cyflumetofen, cyenopyrafen and pyflubumide inhibit the mitochondrial electron transport chain at complex II [succinate dehydrogenase (SDH) complex]. A target site mutation H258Y was recently discovered in a resistant strain of the spider mite pest Tetranychus urticae. H258Y causes strong cross-resistance between cyenopyrafen and pyflubumide, but not cyflumetofen. In fungal pests, fitness costs associated with substitutions at the corresponding H258 position that confer resistance to fungicidal SDH inhibitors have not been uncovered. Here, we used H258 and Y258 near-isogenic lines of T. urticae to quantify potential pleiotropic fitness effects on mite physiology. RESULTS The H258Y mutation was not associated with consistent significant changes of single generation life history traits and fertility life table parameters. In contrast, proportional Sanger sequencing and droplet digital polymerase chain reaction showed that the frequency of the resistant Y258 allele decreased when replicated 50:50 Y258:H258 experimentally evolving populations were maintained in an acaricide-free environment for approximately 12 generations. Using in vitro assays with mitochondrial extracts from resistant (Y258) and susceptible (H258) lines, we identified a significantly reduced SDH activity (48% lower activity) and a slightly enhanced combined complex I and III activity (18% higher activity) in the Y258 lines. CONCLUSION Our findings suggest that the H258Y mutation is associated with a high fitness cost in the spider mite T. urticae. Importantly, while it is the most common approach, it is clear that only comparing life history traits and life table fecundity does not allow to reliably estimate fitness costs of target site mutations in natural pest populations. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Christine Njiru
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | | | - Konstantinos Mavridis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece
- Pesticide Science Laboratory, Department of Crop Science, Agricultural University of Athens, Athens, Greece
| | - John Vontas
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece
- Pesticide Science Laboratory, Department of Crop Science, Agricultural University of Athens, Athens, Greece
| | - Sven Geibel
- Crop Science Division, Bayer AG, Monheim, Germany
| | - Nicky Wybouw
- Terrestrial Ecology Unit, Department of Biology, Faculty of Science, Ghent University, Ghent, Belgium
| | - Thomas Van Leeuwen
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| |
Collapse
|
10
|
De Rouck S, İnak E, Dermauw W, Van Leeuwen T. A review of the molecular mechanisms of acaricide resistance in mites and ticks. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2023; 159:103981. [PMID: 37391089 DOI: 10.1016/j.ibmb.2023.103981] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/12/2023] [Accepted: 06/11/2023] [Indexed: 07/02/2023]
Abstract
The Arachnida subclass of Acari comprises many harmful pests that threaten agriculture as well as animal health, including herbivorous spider mites, the bee parasite Varroa, the poultry mite Dermanyssus and several species of ticks. Especially in agriculture, acaricides are often used intensively to minimize the damage they inflict, promoting the development of resistance. Beneficial predatory mites used in biological control are also subjected to acaricide selection in the field. The development and use of new genetic and genomic tools such as genome and transcriptome sequencing, bulked segregant analysis (QTL mapping), and reverse genetics via RNAi or CRISPR/Cas9, have greatly increased our understanding of the molecular genetic mechanisms of resistance in Acari, especially in the spider mite Tetranychus urticae which emerged as a model species. These new techniques allowed to uncover and validate new resistance mutations in a larger range of species. In addition, they provided an impetus to start elucidating more challenging questions on mechanisms of gene regulation of detoxification associated with resistance.
Collapse
Affiliation(s)
- Sander De Rouck
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Emre İnak
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium; Department of Plant Protection, Faculty of Agriculture, Ankara University, Dıskapı, 06110, Ankara, Turkiye
| | - Wannes Dermauw
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium; Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Plant Sciences Unit, 9820 Merelbeke, Belgium
| | - Thomas Van Leeuwen
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium.
| |
Collapse
|
11
|
Lu X, Vandenhole M, Tsakireli D, Pergantis SA, Vontas J, Jonckheere W, Van Leeuwen T. Increased metabolism in combination with the novel cytochrome b target-site mutation L258F confers cross-resistance between the Q o inhibitors acequinocyl and bifenazate in Tetranychus urticae. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 192:105411. [PMID: 37105638 DOI: 10.1016/j.pestbp.2023.105411] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 06/19/2023]
Abstract
Acequinocyl and bifenazate are potent acaricides acting at the Qo site of complex III of the electron transport chain, but frequent applications of these acaricides have led to the development of resistance in spider mites. Target-site resistance caused by mutations in the conserved cd1- and ef-helices of the Qo pocket of cytochrome b has been elucidated as the main resistance mechanism. We therefore monitored Qo pocket mutations in European field populations of Tetranychus urticae and uncovered a new mutation, L258F. The role of this mutation was validated by revealing patterns of maternal inheritance and by the independently replicated introgression in an unrelated susceptible genetic background. However, the parental strain exhibited higher resistance levels than conferred by the mutation alone in isogenic lines, especially for acequinocyl, implying the involvement of strong additional resistance mechanisms. This was confirmed by revealing a polygenic inheritance pattern with classical genetic crosses and via synergism experiments. Therefore, a genome-wide expression analysis was conducted that identified a number of highly overexpressed detoxification genes, including many P450s. Functional expression revealed that the P450 CYP392A11 can metabolize bifenazate by hydroxylation of the ring structure. In conclusion, the novel cytochrome b target-site mutation L258F was uncovered in a recently collected field strain and its role in acequinocyl and bifenazate resistance was validated. However, the high level of resistance in this strain is most likely caused by a combination of target-site resistance and P450-based increased detoxification, potentially acting in synergism.
Collapse
Affiliation(s)
- Xueping Lu
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Coupure Links 653, Ghent University, B-9000 Ghent, Belgium.
| | - Marilou Vandenhole
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Coupure Links 653, Ghent University, B-9000 Ghent, Belgium.
| | - Dimitra Tsakireli
- Laboratory of Pesticide Science, Department of Crop Science, Agricultural University of Athens, 75 Iera Odos Street, GR-11855 Athens, Greece; Institute of Molecular Biology & Biotechnology, Foundation for Research & Technology, Hellas, 100 N. Plastira Street, GR-700 13 Heraklion, Crete, Greece.
| | - Spiros A Pergantis
- Environmental Chemical Processes Laboratory, Department of Chemistry, University of Crete, Voutes Campus, 70013 Heraklion, Crete, Greece.
| | - John Vontas
- Laboratory of Pesticide Science, Department of Crop Science, Agricultural University of Athens, 75 Iera Odos Street, GR-11855 Athens, Greece; Institute of Molecular Biology & Biotechnology, Foundation for Research & Technology, Hellas, 100 N. Plastira Street, GR-700 13 Heraklion, Crete, Greece.
| | - Wim Jonckheere
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Coupure Links 653, Ghent University, B-9000 Ghent, Belgium.
| | - Thomas Van Leeuwen
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Coupure Links 653, Ghent University, B-9000 Ghent, Belgium.
| |
Collapse
|
12
|
Shen XJ, Zhang YJ, Wang SY, Chen JC, Cao LJ, Gong YJ, Pang BS, Hoffmann AA, Wei SJ. A high-throughput KASP assay provides insights into the evolution of multiple resistant mutations in populations of the two-spotted spider mite Tetranychus urticae across China. PEST MANAGEMENT SCIENCE 2023; 79:1702-1712. [PMID: 36594581 DOI: 10.1002/ps.7344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 12/24/2022] [Accepted: 01/03/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND The two-spotted spider mite (TSSM), Tetranychus urticae (Acari: Tetranychidae), is a cosmopolitan phytophagous pest in agriculture and horticulture. It has developed resistance to many acaricides by target-site mutations. Understanding the status and evolution of resistant mutations in the field is essential for resistance management. Here, we applied a high-throughput Kompetitive allele-specific polymerase chain reaction (KASP) method for detecting six mutations conferring resistance to four acaricides of the TSSM. We genotyped 3274 female adults of TSSM from 43 populations collected across China in 2017, 2020, and 2021. RESULTS The KASP genotyping of 24 testing individuals showed 99% agreement with Sanger sequencing results. KASP assays showed that most populations had a high frequency of mutations conferring avermectin (G314D and G326E) and pyridaben (H92R) resistance. The frequency of mutation conferring bifenazate (A269V and G126S) and etoxazole (I1017F) resistance was relatively low. Multiple mutations were common in the TSSM, with 70.2% and 24.6% of individuals having 2-6 and 7-10 of 10 possible resistant alleles, respectively. No loci were linked in most populations among the six mutations, indicating the development of multiple resistance is mainly by independent selection. However, G314D and I1017F on the nuclear genome deviated from Hardy-Weinberg equilibrium in most populations, indicating significant selective pressure on TSSM populations by acaricides or fitness cost of the mutations in the absence of acaricide selection. CONCLUSION Our study revealed that the high frequency of TSSMs evolved multiple resistant mutations in population and individual levels by independent selection across China, alarming for managing multiple-acaricides resistance. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xiu-Jing Shen
- Institute of Plant Protection and Institute of Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Yu-Jie Zhang
- Institute of Plant Protection and Institute of Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | | | - Jin-Cui Chen
- Institute of Plant Protection and Institute of Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Li-Jun Cao
- Institute of Plant Protection and Institute of Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Ya-Jun Gong
- Institute of Plant Protection and Institute of Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Bin-Shuang Pang
- Institute of Plant Protection and Institute of Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Ary Anthony Hoffmann
- Bio21 Institute, School of BioSciences, University of Melbourne, Parkville, Victoria, Australia
| | - Shu-Jun Wei
- Institute of Plant Protection and Institute of Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| |
Collapse
|
13
|
Pan D, Xia MH, Luo QJ, Liu XY, Li CZ, Yuan GR, Wang JJ, Dou W. Resistance of Panonychus citri (McGregor) (Acari: Tetranychidae) to pyridaben in China: monitoring and fitness costs. PEST MANAGEMENT SCIENCE 2023; 79:996-1004. [PMID: 36318043 DOI: 10.1002/ps.7270] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/18/2022] [Accepted: 11/01/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Panonychus citri is a major citrus pest worldwide. The short life cycle and high reproductive potential of P. citri, combined with heavy acaricide use, have led to high levels of resistance to acaricides, posing a threat to global resistance management programs. Here, resistance monitoring was established to determine the pyridaben resistance status of ten P. citri populations in China from 2014 to 2021 using a leaf-dipping assay. Four characterized strains-the susceptible strain (Lab_S), the resistant strain (Pyr_R), as well as the segregated resistant strain (Pyr_Rs) and the segregated susceptible strain (Pyr_Control) derived from the crossing of the Lab_S and Pyr_R strains, were used to evaluate the life-history characteristics using age-stage, two-sex life tables. RESULTS Most P. citri populations developed high resistance to pyridaben. Resistance levels exceeded 1000-fold in Yuxi, Anyue, Nanning, and Ganzhou populations compared with the Lab_S strain. Compared with Pyr_Control, two key fitness cost criteria, developmental period and fecundity, showed significant differences in Pyr_Rs under consistent conditions. The intrinsic rate of increase, net reproductive rate and gross reproductive rate were lower in the resistant strain compared with the Pyr_Control strain. The Pyr_Rs strain had a lower relative fitness of 0.934 compared with the Pyr_Control. Moreover, the life-history traits and population parameters of the Pyr_R strain also showed significant differences compared with the Lab_S strain. CONCLUSION The resistance levels to pyridaben varied greatly among the different P. citri populations and showed regional differences. Substantial fitness costs are associated with pyridaben resistance. This study provides potential implications for developing strategies for resistance management in P. citri. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Deng Pan
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Meng-Hao Xia
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
| | - Qiu-Juan Luo
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Xun-Yan Liu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Chuan-Zhen Li
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Guo-Rui Yuan
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Jin-Jun Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Wei Dou
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| |
Collapse
|
14
|
Feng K, Liu J, Zhao M, Jiang Z, Liu P, Wei P, Dou W, He L. The dynamic changes of genes revealed that persistently overexpressed genes drive the evolution of cyflumetofen resistance in Tetranychus cinnabarinus. INSECT SCIENCE 2022. [PMID: 36380571 DOI: 10.1111/1744-7917.13151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 11/02/2022] [Accepted: 11/07/2022] [Indexed: 06/16/2023]
Abstract
Changes in gene expression are associated with the evolution of pesticide resistance in arthropods. In this study, transcriptome sequencing was performed in 3 different resistance levels (low, L; medium, M; and high, H) of cyflumetofen-resistant strain (YN-CyR). A total of 1 685 genes, including 97 detoxification enzyme genes, were upregulated in all 3 stages, of which 192 genes, including 11 detoxification enzyme genes, showed a continuous increase in expression level with resistance development (L to H). RNA interference experiments showed that overexpression of 7 genes (CYP392A1, TcGSTd05, CCE06, CYP389A1, TcGSTz01, CCE59, and CYP389C2) is involved in the development of cyflumetofen resistance in Tetranychus cinnabarinus. The recombinant CYP392A1 can effectively metabolize cyflumetofen, while CCE06 can bind and sequester cyflumetofen in vitro. We compared 2 methods for rapid screening of resistance molecular markers, including short-term induction and 1-time high-dose selection. Two detoxification enzyme genes were upregulated in the field susceptible strain (YN-S) by induction with 20% lethal concentration (LC20 ) of cyflumetofen. However, 16 detoxification enzyme genes were upregulated by 1-time selection with LC80 of cyflumetofen. Interestingly, the 16 genes were overexpressed in all 3 resistance stages. These results indicated that 1 685 genes that were upregulated at the L stage constituted the basis of cyflumetofen resistance, of which 192 genes in which upregulation continued to increase were the main driving force for the development of resistance. Moreover, the 1-time high-dose selection is an efficient way to rapidly obtain the resistance-related genes that can aid in the development of resistance markers and resistance management in mites.
Collapse
Affiliation(s)
- Kaiyang Feng
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Southwest University, Chongqing, China
| | - Jialu Liu
- Key Scientific Research Base of Pest and Mold Control of Heritage Collection (Chongqing China Three Gorges Museum), State Administration of Cultural Heritage, Chongqing, China
| | - Mingyu Zhao
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Southwest University, Chongqing, China
- Key Scientific Research Base of Pest and Mold Control of Heritage Collection (Chongqing China Three Gorges Museum), State Administration of Cultural Heritage, Chongqing, China
| | - Zhixin Jiang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Southwest University, Chongqing, China
| | - Peilin Liu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Southwest University, Chongqing, China
| | - Peng Wei
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Southwest University, Chongqing, China
| | - Wei Dou
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Southwest University, Chongqing, China
| | - Lin He
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Southwest University, Chongqing, China
| |
Collapse
|
15
|
Tixier MS, Tabary L, Douin M. Drivers for mutation in amino acid sequences of two mitochondrial proteins (Cytb and COI) in Phytoseiidae mites (Acari: Mesostigmata). EXPERIMENTAL & APPLIED ACAROLOGY 2022; 88:1-40. [PMID: 36287353 DOI: 10.1007/s10493-022-00741-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 09/10/2022] [Indexed: 06/16/2023]
Abstract
Mutations in amino acid sequences can affect protein function. Such aspects have been poorly studied for arthropods. As recent studies have shown mutations in cytochrome b (Cytb) associated with geographic locations in several Phytoseiidae species, the present study aims at investigating (i) the mutation pattern in additional species for the Cytb fragment, (ii) the mutation pattern for another mitochondrial amino acid sequence, cytochrome c oxidase subunit 1 (COI), and (iii) factors affecting the mutations observed (taxonomy, plant support, climatic variables, wild vs. commercialised species). Mutations in amino acid sequences were assessed in seven Phytoseiidae species, with populations collected in contrasted environments. The DNA sequences were mainly obtained from published studies and some were newly obtained. Mutations were observed within and between the populations considered for both fragments, with higher mutation rates in Cytb than in COI sequences, confirming the robustness of this former fragment. Plant support and taxonomic position were not related to mutation patterns. A lower number of mutations was observed in commercialised populations than in wild ones. As preliminary tendencies, mutations in Cytb and COI sequences seem associated to temperature and moisture. Such a preliminary approach, attempting to relate mutation to functional adaptations, clearly opens new research tracks for better assessment of the drivers of mite adaptation, in a context of climate change.
Collapse
Affiliation(s)
- Marie-Stéphane Tixier
- CBGP, Institut Agro Montpellier, INRAE, CIRAD, IRD, University Montpellier, 755 Avenue du Campus Agropolis, CS 30016, 34988, Montferrier-sur-Lez cedex, France.
| | - Lou Tabary
- CBGP, Institut Agro Montpellier, INRAE, CIRAD, IRD, University Montpellier, 755 Avenue du Campus Agropolis, CS 30016, 34988, Montferrier-sur-Lez cedex, France
| | - Martial Douin
- CBGP, Institut Agro Montpellier, INRAE, CIRAD, IRD, University Montpellier, 755 Avenue du Campus Agropolis, CS 30016, 34988, Montferrier-sur-Lez cedex, France
| |
Collapse
|
16
|
Zhang Y, Xu D, Zhang Y, Wu Q, Xie W, Guo Z, Wang S. Frequencies and mechanisms of pesticide resistance in Tetranychus urticae field populations in China. INSECT SCIENCE 2022; 29:827-839. [PMID: 34309214 DOI: 10.1111/1744-7917.12957] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 06/09/2021] [Accepted: 07/14/2021] [Indexed: 06/13/2023]
Abstract
The two-spotted spider mite Tetranychus urticate is an important agricultural pest worldwide. It is extremely polyphagous and has developed resistance to many pesticides. Here, we assessed the pesticide resistance of seven field populations of T. urticae in China, their target site mutations and the activities of their detoxification enzymes. The results showed that abamectin and the traditional pesticides pyridaben, profenofos and bifenthrin had higher resistance or lower toxicity than more recently developed pesticides including chlorfenapyr, spinetoram, cyflumetofen, cyenopyrafen, bifenazate and B-azolemiteacrylic. The frequency of point mutations related to abamectin resistance, G314D in the glutamate-gated chloride channel 1 (GluCl1) and G326E in GluCl3, ranged 47%-70% and 0%-97%, respectively. The frequency of point mutations in A1215D and F1538I of the voltage-gated sodium channel gene (VGSC), which may increase resistance to pyrethroids, ranged 88%-100% and 10%-100%, respectively. For target sites related to organophosphate resistance, mutation frequencies ranged 25%-92% for G119S and 0%-23% for A201S in the acetycholinesterase gene (Ace). Mutation G126S in the bifenazate resistance-related cytochrome b gene (Cytb) was observed in three of the seven T. urticae populations. Higher activities of detoxification enzymes (P450, GST, CarEs and UGTs) were observed in two T. urticae populations, with significant difference in the XY-SX population. These results provide useful information on the status of pesticide resistance of T. urticae in China and suggest that T. urticae field populations may have multiple resistance mechanisms.
Collapse
Affiliation(s)
- Yan Zhang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Dandan Xu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Youjun Zhang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Qingjun Wu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Wen Xie
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Zhaojiang Guo
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Shaoli Wang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| |
Collapse
|
17
|
De Beer B, Villacis-Perez E, Khalighi M, Saalwaechter C, Vandenhole M, Jonckheere W, Ismaeil I, Geibel S, Van Leeuwen T, Dermauw W. QTL mapping suggests that both cytochrome P450-mediated detoxification and target-site resistance are involved in fenbutatin oxide resistance in Tetranychus urticae. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2022; 145:103757. [PMID: 35301092 DOI: 10.1016/j.ibmb.2022.103757] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 02/17/2022] [Accepted: 03/05/2022] [Indexed: 06/14/2023]
Abstract
The organotin acaricide fenbutatin oxide (FBO) - an inhibitor of mitochondrial ATP-synthase - has been one of the most extensively used acaricides for the control of spider mites, and is still in use today. Resistance against FBO has evolved in many regions around the world but only few studies have investigated the molecular and genetic mechanisms of resistance to organotin acaricides. Here, we found that FBO resistance is polygenic in two genetically distant, highly resistant strains of the spider mite Tetranychus urticae, MAR-AB and MR-VL. To identify the loci underlying FBO resistance, two independent bulked segregant analysis (BSA) based QTL mapping experiments, BSA MAR-AB and BSA MR-VL, were performed. Two QTLs on chromosome 1 were associated with FBO resistance in each mapping experiment. At the second QTL of BSA MAR-AB, several cytochrome P450 monooxygenase (CYP) genes were located, including CYP392E4, CYP392E6 and CYP392E11, the latter being overexpressed in MAR-AB. Synergism tests further implied a role for CYPs in FBO resistance. Subunit c of mitochondrial ATP-synthase was located near the first QTL of both mapping experiments and harbored a unique V89A mutation enriched in the resistant parents and selected BSA populations. Marker-assisted introgression into a susceptible strain demonstrated a moderate but significant effect of the V89A mutation on toxicity of organotin acaricides. The impact of the mutation on organotin inhibition of ATP synthase was also functionally confirmed by ATPase assays on mitochondrial preparations. To conclude, our findings suggest that FBO resistance in the spider mite T. urticae is a complex interplay between CYP-mediated detoxification and target-site resistance.
Collapse
Affiliation(s)
- Berdien De Beer
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Ernesto Villacis-Perez
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium; Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam (UvA), Science Park 904, 1908, XH, Amsterdam, the Netherlands
| | - Mousaalreza Khalighi
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | | | - Marilou Vandenhole
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Wim Jonckheere
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Ibrahim Ismaeil
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Sven Geibel
- Bayer AG, CropScience Division, 40789, Monheim, Germany
| | - Thomas Van Leeuwen
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium.
| | - Wannes Dermauw
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium; Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Plant Sciences Unit, Burgemeester Van Gansberghelaan 96, 9820, Merelbeke, Belgium.
| |
Collapse
|
18
|
Njiru C, Saalwaechter C, Gutbrod O, Geibel S, Wybouw N, Van Leeuwen T. A H258Y mutation in subunit B of the succinate dehydrogenase complex of the spider mite Tetranychus urticae confers resistance to cyenopyrafen and pyflubumide, but likely reinforces cyflumetofen binding and toxicity. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2022; 144:103761. [PMID: 35341907 DOI: 10.1016/j.ibmb.2022.103761] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 03/18/2022] [Accepted: 03/22/2022] [Indexed: 06/14/2023]
Abstract
Succinate dehydrogenase (SDH) inhibitors such as cyflumetofen, cyenopyrafen and pyflubumide, are selective acaricides that control plant-feeding spider mite pests. Resistance development to SDH inhibitors has been investigated in a limited number of populations of the spider mite Tetranychus urticae and is associated with cytochrome P450 based detoxification and target-site mutations such as I260 T/V in subunit B and S56L in subunit C of SDH. Here, we report the discovery of a H258Y substitution in subunit B of SDH in a highly pyflubumide resistant population of T. urticae. As this highly conserved residue corresponds to one of the ubiquinone binding residues in fungi and bacteria, we hypothesized that H258Y could have a strong impact on SDH inhibitors toxicity. Marker assisted introgression and toxicity bioassays revealed that H258Y caused high cross resistance between cyenopyrafen and pyflubumide, but increased cyflumetofen toxicity. Resistance associated with H258Y was determined as dominant for cyenopyrafen, but recessive for pyflubumide. In vitro SDH assays with extracted H258 mitochondria showed that cyenopyrafen and the active metabolites of pyflubumide and cyflumetofen, interacted strongly with complex II. However, a clear shift in IC50s was observed for cyenopyrafen and the metabolite of pyflubumide when Y258 mitochondria were investigated. In contrast, the mutation slightly increased affinity of the cyflumetofen metabolite, likely explaining its increased toxicity for the mite lines carrying the substitution. Homology modeling and ligand docking further revealed that, although the three acaricides share a common binding motif in the Q-site of SDH, H258Y eliminated an important hydrogen bond required for cyenopyrafen and pyflubumide binding. In addition, the hydrogen bond between cyenopyrafen and Y117 in subunit D was also lost upon mutation. In contrast, cyflumetofen affinity was enhanced due to an additional hydrogen bond to W215 and hydrophobic interactions with the introduced Y258 in subunit B. Altogether, our findings not only highlight the importance of the highly conserved histidine residue in the binding of SDH inhibitors, but also reveal that a resistance mutation can provide both positive and negative cross-resistance within the same acaricide mode of action group.
Collapse
Affiliation(s)
- Christine Njiru
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Corinna Saalwaechter
- Bayer AG, Crop Science Division, Alfred-Nobel-Straße 50, 40789, Monheim, Germany
| | - Oliver Gutbrod
- Bayer AG, Crop Science Division, Alfred-Nobel-Straße 50, 40789, Monheim, Germany
| | - Sven Geibel
- Bayer AG, Crop Science Division, Alfred-Nobel-Straße 50, 40789, Monheim, Germany
| | - Nicky Wybouw
- Terrestrial Ecology Unit, Department of Biology, Faculty of Science, Ghent University, K.L. Ledeganckstraat 35, 9000, Ghent, Belgium.
| | - Thomas Van Leeuwen
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium.
| |
Collapse
|
19
|
Bajda SA, De Clercq P, Van Leeuwen T. Selectivity and molecular stress responses to classical and botanical acaricides in the predatory mite Phytoseiulus persimilis Athias-Henriot (Acari: Phytoseiidae). PEST MANAGEMENT SCIENCE 2022; 78:881-895. [PMID: 34862726 DOI: 10.1002/ps.6747] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/28/2021] [Accepted: 12/04/2021] [Indexed: 05/13/2023]
Abstract
BACKGROUND Acaricide application remains an integral component of integrated pest management (IPM) for the two-spotted spider mite Tetranychus urticae. Species and strains of phytoseiid predatory mites vary significantly in their response to acaricides. For the success of IPM, it is imperative to identify the determinants of selectivity and molecular stress responses of acaricides in predatory mites. RESULTS The three classical acaricides bifenazate, cyflumetofen, and fenbutatin oxide did not affect the survival and fecundity of Phytoseiulus persimilis regardless of the route of exposure. Selectivity of the orange oil and terpenoid blend-based botanical acaricides was low via a combination of direct exposure, acaricide-laced diet, and residual exposure but improved when limiting exposure only to diet. To gain insights into the molecular stress responses, the transcriptome of P. persimilis was assembled. Subsequent gene expression analysis of predatory mites orally exposed to fenbutatin oxide and orange oil yielded only a limited xenobiotic stress response. In contrast, P. persimilis exhibited target-site resistance mutations, including I260M in SdhB, I1017M in CHS1, and kdr and super-kdr in VGSC. Extending the screen using available Phytoseiidae sequences uncovered I136T, S141F in cytb, G119S in AChE, and A2083V in ACC, well-known target-sites of acaricides. CONCLUSION Selectivity of the tested botanical acaricides to P. persimilis was low but could be enhanced by restricting exposure to a single route. Differential gene expression analysis did not show a robust induced stress response after sublethal exposure. In contrast, this study uncovered target-site mutations that may help to explain the physiological selectivity of several classical acaricides to phytoseiid predators.
Collapse
Affiliation(s)
- Sabina A Bajda
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Patrick De Clercq
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Thomas Van Leeuwen
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| |
Collapse
|
20
|
Mavridis K, Papapostolou KM, Riga M, Ilias A, Michaelidou K, Bass C, Van Leeuwen T, Tsagkarakou A, Vontas J. Multiple TaqMan qPCR and droplet digital PCR (ddPCR) diagnostics for pesticide resistance monitoring and management, in the major agricultural pest Tetranychus urticae. PEST MANAGEMENT SCIENCE 2022; 78:263-273. [PMID: 34480408 DOI: 10.1002/ps.6632] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/16/2021] [Accepted: 09/03/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Decisions on which pesticide to use in agriculture are expected to become more difficult, as the number of available chemicals is decreasing. For Tetranychus urticae (T. urticae), a major pest for which a number of candidate markers for pesticide resistance are in place, molecular diagnostics could support decision-making for the rational use of acaricides. RESULTS A suite of 12 TaqMan qPCR assays [G314D (GluCl1), G326E, I321T (GluCl3), G119S, F331W (Ace-1), H92R (PSST), L1024V, F1538I (VGSC), I1017F (CHS1), G126S, S141F, P262T (cytb)], were validated against Sanger-sequencing, and subsequently adapted for use with the ddPCR technology. The concordance correlation coefficient between the actual and ddPCR measured mutant allelic frequencies was 0.995 (95% CI = 0.991-0.998), and no systematic, proportional, or random differences were detected. The achieved Limit of Detection (LoD) was 0.1% (detection of one mutant in a background of 999 wild type mites). The ddPCR assay panel was then assessed in terms of agreement with phenotypic resistance, through a pilot application in field populations from Crete, with strong correlation and thus predictive and diagnostic value of the molecular assays in some cases (e.g., etoxazole and abamectin resistance). Molecular diagnostics were able to capture incipient resistance that was otherwise missed by phenotypic bioassays. The molecular and phenotypic resistance screening of T. urticae field populations from Crete, revealed both multi-resistant and susceptible populations. CONCLUSION The highly sensitive T. urticae molecular diagnostic platforms developed in this study could prove a valuable tool for pesticide resistance management. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Konstantinos Mavridis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece
| | - Kyriaki Maria Papapostolou
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece
- Department of Biology, University of Crete, Heraklion, Greece
| | - Maria Riga
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece
| | - Aris Ilias
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece
| | - Kleita Michaelidou
- Laboratory of Translational Oncology, School of Medicine, University of Crete, Heraklion, Greece
| | - Chris Bass
- College of Life and Environmental Sciences, Biosciences, University of Exeter, Penryn, UK
| | - Thomas Van Leeuwen
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Anastasia Tsagkarakou
- Institute of Olive Tree, Subtropical Crops and Viticulture, Hellenic Agricultural Organization "DIMITRA", Heraklion, Greece
| | - John Vontas
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece
- Pesticide Science Laboratory, Department of Crop Science, Agricultural University of Athens, Athens, Greece
| |
Collapse
|
21
|
Xue W, Wybouw N, Van Leeuwen T. The G126S substitution in mitochondrially encoded cytochrome b does not confer bifenazate resistance in the spider mite Tetranychus urticae. EXPERIMENTAL & APPLIED ACAROLOGY 2021; 85:161-172. [PMID: 34693496 DOI: 10.1007/s10493-021-00668-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 10/11/2021] [Indexed: 06/13/2023]
Abstract
Several genetic variants of the cd1- and ef-helices of the Qo site of mitochondrial cytochrome b have been associated with bifenazate resistance in the spider mite Tetranychus urticae, an important crop pest around the world. Maternal inheritance of bifenazate resistance has provided strong evidence for the involvement of many of these mutations alone or in combination. A number of populations highly resistant to bifenazate were uncovered that carried the G126S substitution in combination with other target-site mutations. This G126S mutation has therefore been investigated in several studies in the context of resistance evolution and the development of diagnostic markers. However, experimental data that link bifenazate resistance with the presence of the G126S mutation without additional cd1- and ef-helices mutations, remain very limited. Here, we genotyped 38 T. urticae field populations for cytochrome b and uncovered nine field populations with a fixed or segregating G126S substitution without other target-site mutations in the conserved cd1- and ef-helices of the cytochrome b Qo pocket. Toxicity bioassays showed that all nine field populations were very susceptible to bifenazate, providing strong evidence that G126S alone does not confer bifenazate resistance. These findings also implicate that previous T. urticae populations with G126S found to be low to moderately resistant to bifenazate, evolved alternative mechanisms of resistance, and more importantly, that this mutation cannot be used as a molecular diagnostic for bifenazate resistance.
Collapse
Affiliation(s)
- Wenxin Xue
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Nicky Wybouw
- Terrestrial Ecology Unit, Department of Biology, Faculty of Science, Ghent University, K.L. Ledeganckstraat 35, 9000, Ghent, Belgium
| | - Thomas Van Leeuwen
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium.
| |
Collapse
|
22
|
Maeoka A, Osakabe M. Co-occurrence of subunit B and C mutations in respiratory complex II confers high resistance levels to pyflubumide and cyenopyrafen in the two-spotted spider mite Tetranychus urticae (Acari: Tetranychidae). PEST MANAGEMENT SCIENCE 2021; 77:5149-5157. [PMID: 34255424 DOI: 10.1002/ps.6555] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 07/13/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Pyflubumide and cyenopyrafen are respiratory complex II (complex II) inhibitors. Previous quantitative trait locus analyses suggested associations of I260V and S56L in complex II subunit B (B-I260V) and subunit C (C-S56L) with pyflubumide and cyenopyrafen resistance, respectively, in Tetranychus urticae. However, although resistant strains had been selected separately by these acaricides, all strains were homozygous for both B-I260V and C-S56L. Hence, the effects of each mutation on resistance development remain unclear. RESULTS We established strains homozygous for B-I260V with C-S56 (B-I260V_I260V/C-S56_S56) and for C-S56L with B-I260 (B-I260_I260/C-S56L_S56L). High resistance levels (LC50 > 1000 mg L-1 ) to pyflubumide and cyenopyrafen was not conferred by B-I260V or C-S56L alone. Next, we prepared intermixed strains by crossing B-I260V_I260V/C-S56_S56 and B-I260_I260/C-S56L_S56L. Selection of the intermixed strains by either acaricide caused very high resistance levels (LC50 ≥ 10 000 mg L-1 ) to both acaricides and fixed both mutations. Allele-selected recoupling of the mutations without acaricide selection also conferred very high resistance levels to both acaricides in the intermixed strains. Unlike these, B-I260V or C-S56L alone conferred very high and high resistance levels to cyflumetofen, respectively. CONCLUSION We conclude that the effect of individual mutations characteristically varies among complex II inhibitors. Moreover, very high resistance levels to pyflubumide and cyenopyrafen is conferred by the co-occurrence of B-I260V and C-S56L mutations, which alone have limited effects on resistance level.
Collapse
Affiliation(s)
- Ayumu Maeoka
- Laboratory of Ecological Information, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Masahiro Osakabe
- Laboratory of Ecological Information, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| |
Collapse
|
23
|
Zhou H, Liu J, Wan F, Guo F, Ning Y, Liu S, Ding W. Insight into the mechanism of action of scoparone inhibiting egg development of Tetranychus cinnabarinus Boisduval. Comp Biochem Physiol C Toxicol Pharmacol 2021; 246:109055. [PMID: 33894369 DOI: 10.1016/j.cbpc.2021.109055] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 03/17/2021] [Accepted: 04/07/2021] [Indexed: 01/03/2023]
Abstract
Investigating the mechanisms of action of natural bioactive products against pests is a vital strategy to develop novel promising biopesticides. Scoparone, isolated from Artemisia capillaris, exhibited potent oviposition inhibition activity against Tetranychus cinnabarinus (a crop-threatening mite pests with strong fecundity). To explore the underlying mechanism, the vitellogenin (Vg) protein content, and Vg gene expression of mites from three consecutive generations of G0 individuals exposed to scoparone were determined, revealing marked inhibition. This study is the first to explore the egg development defect behaviour of mite pests induced by scoparone. The egg-laying inhibition of mites by scoparone was significantly increased by 47.43% compared with that of the control when TcVg was silenced by RNA interference (RNAi), suggesting that egg-development inhibition of female T. cinnabarinus by scoparone was mediated by low Vg gene expression. Furthermore, scoparone bound to the Vg protein in vitro, and its Kd value was 218.9 μM, implying its potential function in inhibiting the egg development of mites by directly targeting the Vg protein. This study will lay the foundation for the future applications of scoparone as an agrochemical for controlling the strong egg-laying capacity mite pests in agriculture.
Collapse
Affiliation(s)
- Hong Zhou
- Institute of Pesticide Science, College of Plant Protection, Southwest University, Chongqing 400715, PR China
| | - Jinlin Liu
- Institute of Pesticide Science, College of Plant Protection, Southwest University, Chongqing 400715, PR China
| | - Fenglin Wan
- Institute of Pesticide Science, College of Plant Protection, Southwest University, Chongqing 400715, PR China
| | - Fuyou Guo
- Institute of Pesticide Science, College of Plant Protection, Southwest University, Chongqing 400715, PR China
| | - Yeshuang Ning
- Institute of Pesticide Science, College of Plant Protection, Southwest University, Chongqing 400715, PR China
| | - Sisi Liu
- Institute of Pesticide Science, College of Plant Protection, Southwest University, Chongqing 400715, PR China
| | - Wei Ding
- Institute of Pesticide Science, College of Plant Protection, Southwest University, Chongqing 400715, PR China.
| |
Collapse
|
24
|
Queiroz MCV, Douin M, Sato ME, Tixier MS. Molecular variation of the cytochrome b DNA and protein sequences in Phytoseiulus macropilis and P. persimilis (Acari: Phytoseiidae) reflect population differentiation. EXPERIMENTAL & APPLIED ACAROLOGY 2021; 84:687-701. [PMID: 34324135 DOI: 10.1007/s10493-021-00648-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 07/23/2021] [Indexed: 06/13/2023]
Abstract
Several phytoseiid mite species are important natural enemies used in biological control strategies. In the present study, Cytb mtDNA sequences of various populations of two species, Phytoseiulus macropolis and P. persimilis, were compared to determine whether the specimens collected in Brazil could belong to P. persimilis as this latter species is reported in South America but not in Brazil. The Cytb marker was used because of its high evolution rate, assumed to capture intraspecific variation. No overlap between intra- and interspecific distances was observed but the distances were quite low for interspecific variation. This can be due to the particular biology of Phytoseiulus species and this shows the difficulty to apply a universal threshold in genetic distances to conclude about the existence of one or several species. Cytb mtDNA sequences were also considered to assess intraspecific variation. The DNA sequences of P. persimilis populations were very similar, probably because they all originated from the West Palearctic region or because of a prevalence of commercialized specimens in natura. For P. macropilis, higher genetic distances were observed and differentiation was noted according to geographic location and, to a smaller extent, pyrethroid resistance. To determine how DNA variation might impact the protein function (CytB fragment considered), the amino acid compositions of the populations studied were compared. No diagnostic mutation was observed between pyrethroid resistant and susceptible populations, whereas four mutations were identified between populations of P. macropilis separated by 1300 km (different climatic conditions). The impact of such mutations is discussed but knowledge is scarce, which makes it difficult to root testable hypotheses. The protein analysis clearly opens new perspectives in Phytoseiidae studies.
Collapse
Affiliation(s)
| | - Martial Douin
- CBGP, Montpellier SupAgro, INRA, CIRAD, IRD, Univ. Montpellier, Campus International de Baillarguet, CS 30016, Montferrier-sur-Lez cedex, 34988, Montpellier, France
| | - Mario Eidi Sato
- Instituto Biológico, APTA, Caixa Postal 70, Campinas, SP, 13001-970, Brazil
| | - Marie-Stéphane Tixier
- CBGP, Montpellier SupAgro, INRA, CIRAD, IRD, Univ. Montpellier, Campus International de Baillarguet, CS 30016, Montferrier-sur-Lez cedex, 34988, Montpellier, France.
| |
Collapse
|
25
|
Xue W, Mermans C, Papapostolou KM, Lamprousi M, Christou IK, Inak E, Douris V, Vontas J, Dermauw W, Van Leeuwen T. Untangling a Gordian knot: the role of a GluCl3 I321T mutation in abamectin resistance in Tetranychus urticae. PEST MANAGEMENT SCIENCE 2021; 77:1581-1593. [PMID: 33283957 DOI: 10.1002/ps.6215] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 11/03/2020] [Accepted: 12/07/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND The cys-loop ligand-gated ion channels, including the glutamate-gated chloride channel (GluCl) and GABA-gated chloride channel (Rdl) are important targets for drugs and pesticides. The macrocyclic lactone abamectin primarily targets GluCl and is commonly used to control the spider mite Tetranychus urticae, an economically important crop pest. However, abamectin resistance has been reported for multiple T. urticae populations worldwide, and in several cases was associated with the mutations G314D in GluCl1 and G326E in GluCl3. Recently, an additional I321T mutation in GluCl3 was identified in several abamectin resistant T. urticae field populations. Here, we aim to functionally validate this mutation and determine its phenotypic strength. RESULTS The GluCl3 I321T mutation was introgressed into a T. urticae susceptible background by marker-assisted backcrossing, revealing contrasting results in phenotypic strength, ranging from almost none to 50-fold. Next, we used CRISPR-Cas9 to introduce I321T, G314D and G326E in the orthologous Drosophila GluCl. Genome modified flies expressing GluCl I321T were threefold less susceptible to abamectin, while CRISPRed GluCl G314D and G326E flies were lethal. Last, functional analysis in Xenopus oocytes revealed that the I321T mutation might reduce GluCl3 sensitivity to abamectin, but also suggested that all three T. urticae Rdls are affected by abamectin. CONCLUSION Three different techniques were used to characterize the role of I321T in GluCl3 in abamectin resistance and, combining all results, our analysis suggests that the I321T mutation has a complex role in abamectin resistance. Given the reported subtle effect, additional synergistic factors in resistance warrant more investigation. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Wenxin Xue
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Catherine Mermans
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Kyriaki-Maria Papapostolou
- Institute of Molecular Biology & Biotechnology, Foundation for Research & Technology Hellas, Heraklion, Greece
- Department of Biology, University of Crete, Heraklion, Greece
| | - Mantha Lamprousi
- Institute of Molecular Biology & Biotechnology, Foundation for Research & Technology Hellas, Heraklion, Greece
- Department of Biology, University of Crete, Heraklion, Greece
| | - Iason-Konstantinos Christou
- Institute of Molecular Biology & Biotechnology, Foundation for Research & Technology Hellas, Heraklion, Greece
- Department of Biology, University of Crete, Heraklion, Greece
| | - Emre Inak
- Department of Plant Protection, Faculty of Agriculture, Ankara University, Ankara, Turkey
| | - Vassilis Douris
- Institute of Molecular Biology & Biotechnology, Foundation for Research & Technology Hellas, Heraklion, Greece
- Department of Biological Applications and Technology, University of Ioannina, Ioannina, Greece
| | - John Vontas
- Institute of Molecular Biology & Biotechnology, Foundation for Research & Technology Hellas, Heraklion, Greece
- Laboratory of Pesticide Science, Department of Crop Science, Agricultural University of Athens, Athens, Greece
| | - Wannes Dermauw
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Thomas Van Leeuwen
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| |
Collapse
|
26
|
Papapostolou KM, Riga M, Charamis J, Skoufa E, Souchlas V, Ilias A, Dermauw W, Ioannidis P, Van Leeuwen T, Vontas J. Identification and characterization of striking multiple-insecticide resistance in a Tetranychus urticae field population from Greece. PEST MANAGEMENT SCIENCE 2021; 77:666-676. [PMID: 33051974 DOI: 10.1002/ps.6136] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 09/18/2020] [Accepted: 10/13/2020] [Indexed: 05/23/2023]
Abstract
BACKGROUND Tetranychus urticae is a notorious crop pest with a worldwide distribution that has developed resistance to a wide range of acaricides. Here, we investigated the resistance levels of a T. urticae population collected from an ornamental greenhouse in Peloponnese, Greece, and analyzed its resistance mechanisms at the molecular level. RESULTS Toxicological assays showed resistance against compounds with different modes of action, with resistance ratios of: 89-fold for abamectin; > 1000-fold for clofentezine; > 5000-fold for etoxazole; 27-fold for fenpyroximate and pyridaben; 20- and 36-fold for spirodiclofen and spirotetramat, respectively; and 116- and > 500-fold for cyenopyrafen and cyflumetofen, respectively. Bioassays with synergists indicated the involvement of detoxification enzymes in resistance to abamectin, but not to cyflumetofen and spirodiclofen. RNA sequencing (RNA-seq) analysis showed significant over-expression of several genes encoding detoxification enzymes such as cytochrome P450 monooxygenases and UDP-glycosyltransferases, which have been previously associated with acaricide resistance. Known target-site resistance mutations were identified in acetyl-choline esterase, chitin synthase 1 and NDUFS7/psst, but putative novel resistance mutations were also discovered in targets such as glutamate-gated chloride channel subunit 3. Interestingly, target-site resistance mutations against pyrethroids or bifenazate were not identified, possibly indicating a recent reduced selection pressure in Greece, as well as a possible opportunity to rotate these chemistries. CONCLUSION We identified and characterized a striking case of multiple acaricide resistance in a field population of T. urticae. Exceptionally strong resistance phenotypes, with accumulation of multiple resistance mutations and over-expression of P450s and other detoxification genes in the same field population are reported.
Collapse
Affiliation(s)
- Kyriaki Maria Papapostolou
- Institute of Molecular Biology & Biotechnology, Foundation of Research & Technology Hellas, Heraklion, Greece
- Department of Biology, University of Crete, Heraklion, Greece
| | - Maria Riga
- Institute of Molecular Biology & Biotechnology, Foundation of Research & Technology Hellas, Heraklion, Greece
| | - Jason Charamis
- Institute of Molecular Biology & Biotechnology, Foundation of Research & Technology Hellas, Heraklion, Greece
- Department of Biology, University of Crete, Heraklion, Greece
| | - Evangelia Skoufa
- Institute of Molecular Biology & Biotechnology, Foundation of Research & Technology Hellas, Heraklion, Greece
- Department of Biology, University of Crete, Heraklion, Greece
| | - Vassilis Souchlas
- Laboratory of Pesticide Science, Department of Crop Science, Agricultural University of Athens, Athens, Greece
| | - Aris Ilias
- Institute of Molecular Biology & Biotechnology, Foundation of Research & Technology Hellas, Heraklion, Greece
| | - Wannes Dermauw
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Panagiotis Ioannidis
- Institute of Molecular Biology & Biotechnology, Foundation of Research & Technology Hellas, Heraklion, Greece
| | - Thomas Van Leeuwen
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - John Vontas
- Institute of Molecular Biology & Biotechnology, Foundation of Research & Technology Hellas, Heraklion, Greece
- Laboratory of Pesticide Science, Department of Crop Science, Agricultural University of Athens, Athens, Greece
| |
Collapse
|
27
|
Simma EA, Hailu B, Jonckheere W, Rogiers C, Duchateau L, Dermauw W, Van Leeuwen T. Acaricide resistance status and identification of resistance mutations in populations of the two-spotted spider mite Tetranychus urticae from Ethiopia. EXPERIMENTAL & APPLIED ACAROLOGY 2020; 82:475-491. [PMID: 33174613 DOI: 10.1007/s10493-020-00567-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 11/02/2020] [Indexed: 06/11/2023]
Abstract
The intensive use of pesticides is a common practice for the management of the two-spotted spider mite, Tetranychus urticae, in greenhouses and field farms of Ethiopia. However, incidence of resistance and possible resistance mechanisms in T. urticae populations from Ethiopia have not yet been studied. Here, we assessed the toxicity of various acaricides-bifenazate, abamectin, emamectin benzoate, profenofos, fenbutatin oxide, fenpyroximate, amitraz and chlorfenapyr-on T. urticae populations sampled from six flower greenhouse farms, three strawberry greenhouse farms, one field-grown vegetable farm and two wild populations. In parallel, all populations were screened for known target-site mutations. All tested populations were fully susceptible to bifenazate, abamectin, emamectin benzoate and profenofos, but resistant against fenbutatin oxide and fenpyroximate. Four populations showed considerable levels of resistance against amitraz and one population was resistant to chlorfenapyr. Several target-site mutations were identified in the tested populations, including G119S, A201S, T280A, G328A and F331W/C/Y in acetylcholinesterase and the F1538I and L1024V mutation in the voltage-gated sodium channel. The F1538I mutation was found in eight out of 12 populations, whereas the L1024V mutation was only found in two populations. The H92R mutation in the PSST subunit of complex I and the I1017F mutation in chitin synthase 1 was detected in half of the tested populations. The G326E and I321T mutations in the glutamate-gated chloride channel 3 were also detected, but more rarely, whereas mitochondrial cytochrome b mutations were not detected. The current study revealed multiple resistance patterns in Ethiopian T. urticae populations and together with the wide presence of target-site mutations, calls for the wise use of acaricides in the management of T. urticae in Ethiopia.
Collapse
Affiliation(s)
- Eba A Simma
- Department of Biology, College of Natural Sciences, Jimma University, Jimma, Ethiopia
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000, Ghent, Belgium
| | - Bereket Hailu
- Department of Biology, College of Natural Sciences, Jimma University, Jimma, Ethiopia
| | - Wim Jonckheere
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000, Ghent, Belgium
| | - Carolien Rogiers
- Biometrics Research Center, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| | - Luc Duchateau
- Biometrics Research Center, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| | - Wannes Dermauw
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000, Ghent, Belgium
| | - Thomas Van Leeuwen
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000, Ghent, Belgium.
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium.
| |
Collapse
|
28
|
Co-Expression of a Homologous Cytochrome P450 Reductase Is Required for In Vivo Validation of the Tetranychus urticae CYP392A16-Based Abamectin Resistance in Drosophila. INSECTS 2020; 11:insects11120829. [PMID: 33255521 PMCID: PMC7761253 DOI: 10.3390/insects11120829] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 11/22/2020] [Accepted: 11/23/2020] [Indexed: 01/20/2023]
Abstract
Simple Summary The two-spotted spider mite, Tetranychus urticae, is one of the most damaging agricultural pests worldwide, feeding on over 1100 plant species and causing extensive damage to several crops. Chemical acaricides remain the most widely used strategy to control this pest. However, T. urticae has developed significant resistance to numerous acaricide compounds, due to certain features of mite biology and extensive acaricide applications that lead to the selection of resistant pests and subsequently the emergence of resistant populations. Several molecular/genetic mechanisms may contribute to these highly resistant phenotypes. Such mechanisms frequently involve expression of P450 detoxification enzymes, which act together with a partner protein named cytochrome P450 reductase (CPR). In this study, we investigated the potential of a mite P450 enzyme, CYP392A16, to confer resistance to the acaricide abamectin in vivo, when expressed in tissues of the model fruit fly Drosophila melanogaster. We confirmed that expression of this enzyme contributes to abamectin resistance in the fruit fly model, but only when a homologous mite CPR is co-expressed. Our findings indicate that the Drosophila model system can be engineered to facilitate validation of the candidate mite P450s, in order to elucidate resistance mechanisms and their underlying interactions. Abstract Overexpression of the cytochrome P450 monooxygenase CYP392A16 has been previously associated with abamectin resistance using transcriptional analysis in the two-spotted spider mite Tetranychus urticae, an important pest species worldwide; however, this association has not been functionally validated in vivo despite the demonstrated ability of CYP392A16 to metabolize abamectin in vitro. We expressed CYP392A16 in vivo via a Gal4 transcription activator protein/Upstream Activating Sequence (GAL4/UAS) system in Drosophila melanogaster flies, driving expression with detoxification tissue-specific drivers. We demonstrated that CYP392A16 expression confers statistically significant abamectin resistance in toxicity bioassays in Drosophila only when its homologous redox partner, cytochrome P450 reductase (TuCPR), is co-expressed in transgenic flies. Our study shows that the Drosophila model can be further improved, to facilitate the functional analysis of insecticide resistance mechanisms acting alone or in combination.
Collapse
|
29
|
Tixier MS, Perez Martinez S, Douin M. Markers of life history traits: variation in morphology, molecular and amino acid sequences within Typhlodromus (Anthoseius) recki Wainstein (Acari: Mesostigmata: Phytoseiidae). Biol J Linn Soc Lond 2020. [DOI: 10.1093/biolinnean/blaa103] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Abstract
In this study we investigated morphological and molecular variation within the predatory mite Typhlodromus (Anthoseius) recki, and their relationships to ecological features. In total, 42 morphological characters were measured on 87 specimens from seven populations in the south of France and Sicily living on plants of four families. DNA sequences (two mitochondrial markers) and the amino acid sequences of the CytB protein were assessed. A relationship between morphological variation and plant families was observed. The 12S rRNA gene showed differentiation that appeared to be related to feeding habit, in agreement with the findings for two other Phytoseiidae species. CytB mitochondrial DNA showed variation related to geographical location. Four amino acid mutations separated the Sicilian and the French populations. CytB amino acid sequences were analysed for three other Phytoseiidae species, and again diagnostic mutations associated with geographical location were observed, as already shown for Phytoseiulus macropilis. The population differentiation observed for each marker (morphological, DNA fragments) appeared to be related to ecological/biological features, revealing new perspectives for forecasting functional characteristics based on morphotypes and genotypes. However, additional studies are needed to confirm these observations and to explain such functional relationships.
Collapse
Affiliation(s)
- Marie-Stéphane Tixier
- CBGP, Institut Agro, INRA, CIRAD, IRD, Univ. Montpellier, Campus International de Baillarguet, Montpellier, France
| | - Sandra Perez Martinez
- CBGP, Institut Agro, INRA, CIRAD, IRD, Univ. Montpellier, Campus International de Baillarguet, Montpellier, France
| | - Martial Douin
- CBGP, Institut Agro, INRA, CIRAD, IRD, Univ. Montpellier, Campus International de Baillarguet, Montpellier, France
| |
Collapse
|
30
|
Choi J, Koo HN, Kim SI, Park B, Kim H, Kim GH. Target-Site Mutations and Glutathione S-Transferases Are Associated with Acequinocyl and Pyridaben Resistance in the Two-Spotted Spider Mite Tetranychus urticae (Acari: Tetranychidae). INSECTS 2020; 11:insects11080511. [PMID: 32784738 PMCID: PMC7469217 DOI: 10.3390/insects11080511] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/04/2020] [Accepted: 08/06/2020] [Indexed: 02/01/2023]
Abstract
Simple Summary The two-spotted spider mite Tetranychus urticae is a difficult-to-control pest due to its short life cycle and rapid resistance development. In this study, we characterized field strains collected in 2001 and 2003 that have been selected for acequinocyl resistance and pyridaben resistance, respectively. These strains displayed resistance ratios of 1798.6 and 5555.6, respectively, and were screened for cross-resistance against several currently used acaricides. The acequinocyl resistant strain exhibited pyridaben cross-resistance, but the pyridaben resistant strain showed no cross-resistance. The acequinocyl resistant strain exhibited point mutations in cytb (I256V and N321S) and PSST (H92R). In contrast, the pyridaben resistant strain exhibited the H92R but not the I256V and N321S point mutations. In addition, the increased GST metabolism and GST delta expression might be related to acequinocyl resistance in Tetranychus urticae. We hope that the data and patterns described here can now be exploited in the continued quest for rational resistance management strategies. Abstract The two-spotted spider mite Tetranychus urticae is a difficult-to-control pest due to its short life cycle and rapid resistance development. In this study, we characterized field strains collected in 2001 and 2003 that were selected for acequinocyl resistance (AR) and pyridaben resistance (PR), respectively. These strains displayed resistance ratios of 1798.6 (susceptible vs. AR) and 5555.6 (susceptible vs. PR), respectively, and were screened for cross-resistance against several currently used acaricides. The AR strain exhibited pyridaben cross-resistance, but the PR strain showed no cross-resistance. The AR strain exhibited point mutations in cytb (I256V, N321S) and PSST (H92R). In contrast, the PR strain exhibited the H92R but not the I256V and N321S point mutations. In some cases increased glutathione S-transferase (GST) activity has previously been linked to enhanced detoxification. The AR strain exhibited approximately 2.3-, 1.8-, and 2.2-fold increased GST activity against 1-chloro-2,4-dinitrobenzene (CDNB), 1,2-dichloro-4-nitrobenzene (DCNB), and 4-nitrobenzyl chloride (NBC), respectively. Among the five GST subclass genes (delta, omega, mu, zeta, and kappa), the relative expression of delta class GSTs in the AR strain were significantly higher than the PR and susceptible strain. These results suggest that the I256V and N321S mutations and the increased GST metabolism and GST delta overexpression might be related to acequinocyl resistance in T. urticae.
Collapse
Affiliation(s)
- Jihye Choi
- Department of Plant Medicine, College of Agriculture, Life and Environment Sciences, Chungbuk National University, Cheongju 28644, Korea; (J.C.); (H.-N.K.); (S.I.K.); (H.K.)
| | - Hyun-Na Koo
- Department of Plant Medicine, College of Agriculture, Life and Environment Sciences, Chungbuk National University, Cheongju 28644, Korea; (J.C.); (H.-N.K.); (S.I.K.); (H.K.)
| | - Sung Il Kim
- Department of Plant Medicine, College of Agriculture, Life and Environment Sciences, Chungbuk National University, Cheongju 28644, Korea; (J.C.); (H.-N.K.); (S.I.K.); (H.K.)
| | - Bueyong Park
- Crop Protection Division, National Institute of Agricultural Science, Wanju 55365, Korea;
| | - Hyunkyung Kim
- Department of Plant Medicine, College of Agriculture, Life and Environment Sciences, Chungbuk National University, Cheongju 28644, Korea; (J.C.); (H.-N.K.); (S.I.K.); (H.K.)
| | - Gil-Hah Kim
- Department of Plant Medicine, College of Agriculture, Life and Environment Sciences, Chungbuk National University, Cheongju 28644, Korea; (J.C.); (H.-N.K.); (S.I.K.); (H.K.)
- Correspondence: ; Tel.: +82-43-261-2555
| |
Collapse
|
31
|
Xue W, Snoeck S, Njiru C, Inak E, Dermauw W, Van Leeuwen T. Geographical distribution and molecular insights into abamectin and milbemectin cross-resistance in European field populations of Tetranychus urticae. PEST MANAGEMENT SCIENCE 2020; 76:2569-2581. [PMID: 32237053 DOI: 10.1002/ps.5831] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 03/23/2020] [Accepted: 04/01/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Milbemectin and abamectin are frequently used to control the spider mite Tetranychus urticae. The development of abamectin resistance in this major pest has become an increasing problem worldwide, potentially compromising the use of milbemectin. In this study, a large collection of European field populations was screened for milbemectin and abamectin resistance, and both target-site and metabolic (cross-)resistance mechanisms were investigated. RESULTS High to very high levels of abamectin resistance were found in one third of all populations, while milbemectin resistance levels were low for most populations. The occurrence of well-known target-site resistance mutations in glutamate-gated chloride channels (G314D in GluCl1 and G326E in GluCl3) was documented in the most resistant populations. However, a new mutation, I321T in GluCl3, was also uncovered in three resistant populations, while a V327G and L329F mutation was found in GluCl3 of one resistant population. A differential gene-expression analysis revealed the overexpression of detoxification genes, more specifically cytochrome P450 monooxygenase (P450) and UDP-glycosyltransferase (UGT) genes. Multiple UGTs were functionally expressed, and their capability to glycosylate abamectin and milbemectin, was tested and confirmed. CONCLUSIONS We found a clear correlation between abamectin and milbemectin resistance in European T. urticae populations, but as milbemectin resistance levels were low, the observed cross-resistance is probably not of operational importance. The presence of target-site resistance mutations in GluCl genes was confirmed in most but not all resistant populations. Gene-expression analysis and functional characterization of P450s and UGTs suggests that also metabolic abamectin resistance mechanisms are common in European T. urticae populations. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Wenxin Xue
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, Ghent, Belgium
| | - Simon Snoeck
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, Ghent, Belgium
| | - Christine Njiru
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, Ghent, Belgium
| | - Emre Inak
- Department of Plant Protection, Faculty of Agriculture, Ankara University, Diskapi, Ankara, Turkey
| | - Wannes Dermauw
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, Ghent, Belgium
| | - Thomas Van Leeuwen
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, Ghent, Belgium
| |
Collapse
|
32
|
Van Leeuwen T, Dermauw W, Mavridis K, Vontas J. Significance and interpretation of molecular diagnostics for insecticide resistance management of agricultural pests. CURRENT OPINION IN INSECT SCIENCE 2020; 39:69-76. [PMID: 32361620 DOI: 10.1016/j.cois.2020.03.006] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 03/06/2020] [Accepted: 03/19/2020] [Indexed: 06/11/2023]
Abstract
Insecticide resistant pests become increasingly difficult to control in current day agriculture. Because of environmental and health concerns, the insecticide portfolio to combat agricultural pests is gradually decreasing. It is therefore crucial to make rational decisions on insecticide use to assure effective resistance management. However, resistance monitoring programs that inform on pest susceptibility and resistance are not yet common practice in agriculture. Molecular markers of resistance that are turned into convenient diagnostic tools are urgently needed and will only increase in importance. This review investigates which factors determine the strength, diagnostic value, and success of a diagnostic marker, and in which cases recent technical advances might provide new opportunities for decision making in an operational meaningful way.
Collapse
Affiliation(s)
- Thomas Van Leeuwen
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium.
| | - Wannes Dermauw
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Konstantinos Mavridis
- Molecuar Entomology Lab, Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology (FORTH), Nikolaou Plastira Street 100, 70013, Heraklion, Crete, Greece
| | - John Vontas
- Molecuar Entomology Lab, Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology (FORTH), Nikolaou Plastira Street 100, 70013, Heraklion, Crete, Greece; Pesticide Science Laboratory, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855, Athens, Greece
| |
Collapse
|