1
|
Otto S, Berkelmann-Löhnertz B, May B, Kauer R, Schweiggert R. Impact of Spray Concentration and Application Frequency to Modulate Phosphonic Acid Residues in Container-Grown Grapevines. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:10110-10118. [PMID: 40249654 PMCID: PMC12046596 DOI: 10.1021/acs.jafc.4c12228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 04/01/2025] [Accepted: 04/02/2025] [Indexed: 04/19/2025]
Abstract
This study investigated the translocation and persistence of inorganic phosphonate in container-grown vines of Vitis vinifera L. cv. Riesling after foliar and soil applications over two consecutive years. Phosphonate concentrations were monitored in leaves, petioles, grape canes, shoot tips, inflorescences, and berries during the season, applying an identical total amount of 3 or 4 sprays of 0.54 or 0.4% (w/v, aq) phosphonate, respectively. The overall uptake of inorganic phosphonate into the leaves was either identical (year 1) or substantially lower (year 2) when spraying 3 times (0.54%) instead of 4 times (0.4%) as expressed by the area under the concentration vs time curve. Residues found in leaves at the end of the vegetation period were also lower when spraying 3 times. Across both years, residues in berries were also significantly lower when applying the 0.54% phosphonate solution (20.2-30.9 mg/kg) 3 times as compared with the 4× application of 0.4% phosphonate (38.5-40.6 mg/kg). Soil applications resulted in a comparably low overall uptake but still yielding measurable residues in berries (6.0 ± 1.2 mg/kg). Further data on grape cane, shoot tips, and inflorescences supported the hypothesis that phosphonate residues in the plant and, ultimately, in the berries and the resulting products might be significantly reduced when spraying 3 times (0.54%) instead of 4 times (0.4%).
Collapse
Affiliation(s)
- Sören Otto
- Department
of Beverage Research, Chair of Analysis
& Technology of Plant-based Foods Geisenheim University, Von-Lade-Street 1, Geisenheim D-65366, Germany
| | - Beate Berkelmann-Löhnertz
- Department
of Crop Protection, Chair of Crop Protection
in Viticulture and Horticulture Geisenheim University, Von-Lade-Street 1, Geisenheim D-65366, Germany
| | - Bianca May
- Department
of Enology, Chair of Wine and Beverage Chemistry
Geisenheim University, Von-Lade-Street 1, Geisenheim D-65366, Germany
| | - Randolf Kauer
- Department
of Viticulture, Chair of Organic Viticulture
Geisenheim University, Von-Lade-Street 1, Geisenheim D-65366, Germany
| | - Ralf Schweiggert
- Department
of Beverage Research, Chair of Analysis
& Technology of Plant-based Foods Geisenheim University, Von-Lade-Street 1, Geisenheim D-65366, Germany
| |
Collapse
|
2
|
Liu Y, Li Y, Tian Y, Guo Y, Wei R, Huang X, Qian L, Liu S, Chen G, Che Z. Synthesis of novel 18 β-glycyrrhetinic acid sulfonate derivatives displaying significant anti-oomycete activity against Phytophthora capsici. Nat Prod Res 2025; 39:1880-1888. [PMID: 37950734 DOI: 10.1080/14786419.2023.2280999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/18/2023] [Accepted: 11/03/2023] [Indexed: 11/13/2023]
Abstract
Using 18β-glycyrrhetinic acid (GA) as the lead compound, fourteen GA sulphonate derivatives (3a-n) were prepared by modifying its C-3 OH group, and their structures were well confirmed by 1H NMR, 13C NMR, HRMS and melting points. Moreover, we screened the anti-oomycete activity of these compounds against Phytophthora capsici by using the mycelial growth rate method. Among the fourteen GA sulphonate derivatives evaluated, four compounds 3f, 3j, 3k and 3l exhibited more potent anti-oomycete activity than that of the positive control zoxamide (EC50 = 25.17 mg/L), and had the median effective concentration (EC50) values of 23.04, 16.16, 22.55, and 13.93 mg/L, respectively. Especially compound 3l showed the best anti-oomycete activity against P. capsici with EC50 value of 13.93 mg/L. Overall, the introduction of sulfonyloxy groups at the C-3 position of GA has a significant impact on its anti-oomycete activity, and the corresponding derivative activity varies significantly with different substituents R.
Collapse
Affiliation(s)
- Yibo Liu
- Department of Plant Protection, Laboratory of Pesticidal Design & Synthesis, College of Horticultrue and Plant Protection, Henan University of Science and Technology, Luoyang, China
| | - Yan Li
- Department of Plant Protection, Laboratory of Pesticidal Design & Synthesis, College of Horticultrue and Plant Protection, Henan University of Science and Technology, Luoyang, China
| | - Yuee Tian
- Department of Plant Protection, Laboratory of Pesticidal Design & Synthesis, College of Horticultrue and Plant Protection, Henan University of Science and Technology, Luoyang, China
| | - Yihao Guo
- Department of Plant Protection, Laboratory of Pesticidal Design & Synthesis, College of Horticultrue and Plant Protection, Henan University of Science and Technology, Luoyang, China
| | - Ruxue Wei
- Department of Plant Protection, Laboratory of Pesticidal Design & Synthesis, College of Horticultrue and Plant Protection, Henan University of Science and Technology, Luoyang, China
| | - Xiaobo Huang
- Department of Plant Protection, Laboratory of Pesticidal Design & Synthesis, College of Horticultrue and Plant Protection, Henan University of Science and Technology, Luoyang, China
| | - Le Qian
- Department of Plant Protection, Laboratory of Pesticidal Design & Synthesis, College of Horticultrue and Plant Protection, Henan University of Science and Technology, Luoyang, China
| | - Shengming Liu
- Department of Plant Protection, Laboratory of Pesticidal Design & Synthesis, College of Horticultrue and Plant Protection, Henan University of Science and Technology, Luoyang, China
| | - Genqiang Chen
- Department of Plant Protection, Laboratory of Pesticidal Design & Synthesis, College of Horticultrue and Plant Protection, Henan University of Science and Technology, Luoyang, China
| | - Zhiping Che
- Department of Plant Protection, Laboratory of Pesticidal Design & Synthesis, College of Horticultrue and Plant Protection, Henan University of Science and Technology, Luoyang, China
| |
Collapse
|
3
|
Zhang P, Wang Y, Deng Z, Gao J. Synthetic versatility: the C-P bond odyssey. Org Biomol Chem 2025; 23:546-578. [PMID: 39569945 DOI: 10.1039/d4ob01461h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
C-P bond formation reactions have garnered significant attention due to the widespread presence of organophosphorus compounds in pharmaceuticals, phosphine-containing ligands, pesticides, and materials science. Consequently, various efficient methodologies have been established in recent decades for constructing C-P bonds. This review article traces the historical evolution of C-P bond research and explores the prospects of C-P bond formation. It contrasts biotechnological approaches with chemical synthesis, emphasizing the critical importance of precision and innovation in developing novel C-P structures. A forward-looking perspective is provided on the role of computational tools and machine learning in optimizing C-P bond synthesis and discovering new compounds. The article explores prospective avenues for reactions that form C-P bonds and advocates for enhanced interdisciplinary collaboration to propel scientific and technological advancements.
Collapse
Affiliation(s)
- Peng Zhang
- Key BioAI Synthetica Lab for Natural Product Drug Discovery, National and Local United Engineering Laboratory of Natural Biotoxin, College of Bee and Biomedical Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Yinan Wang
- Key BioAI Synthetica Lab for Natural Product Drug Discovery, National and Local United Engineering Laboratory of Natural Biotoxin, College of Bee and Biomedical Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism, Joint International Laboratory on Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Jiangtao Gao
- Key BioAI Synthetica Lab for Natural Product Drug Discovery, National and Local United Engineering Laboratory of Natural Biotoxin, College of Bee and Biomedical Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
4
|
Stanton CR, Petrovski S, Batinovic S. Isolation of a PRD1-like phage uncovers the carriage of three putative conjugative plasmids in clinical Burkholderia contaminans. Res Microbiol 2024; 175:104202. [PMID: 38582389 DOI: 10.1016/j.resmic.2024.104202] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 03/27/2024] [Accepted: 03/27/2024] [Indexed: 04/08/2024]
Abstract
The Burkholderia cepacia complex (Bcc) is a group of increasingly multi-drug resistant opportunistic bacteria. This resistance is driven through a combination of intrinsic factors and the carriage of a broad range of conjugative plasmids harbouring virulence determinants. Therefore, novel treatments are required to treat and prevent further spread of these virulence determinants. In the search for phages infective for clinical Bcc isolates, CSP1 phage, a PRD1-like phage was isolated. CSP1 phage was found to require pilus machinery commonly encoded on conjugative plasmids to facilitate infection of Gram-negative bacteria genera including Escherichia and Pseudomonas. Whole genome sequencing and characterisation of one of the clinical Burkholderia isolates revealed it to be Burkholderia contaminans. B. contaminans 5080 was found to contain a genome of over 8 Mbp encoding multiple intrinsic resistance factors, such as efflux pump systems, but more interestingly, carried three novel plasmids encoding multiple putative virulence factors for increased host fitness, including antimicrobial resistance. Even though PRD1-like phages are broad host range, their use in novel antimicrobial treatments shouldn't be dismissed, as the dissemination potential of conjugative plasmids is extensive. Continued survey of clinical bacterial strains is also key to understanding the spread of antimicrobial resistance determinants and plasmid evolution.
Collapse
Affiliation(s)
- Cassandra R Stanton
- Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University, Bundoora, Victoria, Australia
| | - Steve Petrovski
- Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University, Bundoora, Victoria, Australia.
| | - Steven Batinovic
- Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University, Bundoora, Victoria, Australia; Division of Materials Science and Chemical Engineering, Yokohama National University, Yokohama, Kanagawa, Japan
| |
Collapse
|
5
|
Zhu L, Tian Y, Wang T, Huang X, Zhou L, Shengming L, Chen G, Che Z. Semisynthesis, anti-oomycete and anti-fungal activities of ursolic acid ester derivatives. Nat Prod Res 2024; 38:906-915. [PMID: 37115170 DOI: 10.1080/14786419.2023.2207135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 04/15/2023] [Indexed: 04/29/2023]
Abstract
Using ursolic acid (UA) as the lead compound, thirteen UA ester derivatives (3 and 7a-l) were synthesized by modifying their C-3 and C-28 positions, respectively, and their structures were well characterized by 1H NMR, 13C NMR, HRMS and melting points. Furthermore, we evaluated the anti-oomycete and anti-fungal activities of these compounds against Phytophthora capsici and Fusarium graminearum in vitro. The results showed that compound 7h exhibited prominent anti-oomycete and anti-fungal activities, and the median effective concentration (EC50) values of 7h against P. capsici and F. graminearum were 70.49 and 113.21 mg/L, respectively. This study suggested that the anti-oomycete and anti-fungal activities of esters synthesized by introducing acyloxy group at C-3 position of UA was more conspicuous than that of esters synthesized by introducing benzyloxy group at C-28 position. This result will pave the way for further modification of UA to develop potential new fungicides.
Collapse
Affiliation(s)
- Lina Zhu
- Laboratory of Pesticidal Design & Synthesis, Department of Plant Protection, College of Horticultrue and Plant Protection, Henan University of Science and Technology, Luoyang, China
| | - Yuee Tian
- Laboratory of Pesticidal Design & Synthesis, Department of Plant Protection, College of Horticultrue and Plant Protection, Henan University of Science and Technology, Luoyang, China
| | - Tiewei Wang
- ShanDong New Power Biology Science &Technology Co., Ltd, Jinan, China
| | - Xiaobo Huang
- Laboratory of Pesticidal Design & Synthesis, Department of Plant Protection, College of Horticultrue and Plant Protection, Henan University of Science and Technology, Luoyang, China
| | - Lin Zhou
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Liu Shengming
- Laboratory of Pesticidal Design & Synthesis, Department of Plant Protection, College of Horticultrue and Plant Protection, Henan University of Science and Technology, Luoyang, China
| | - Genqiang Chen
- Laboratory of Pesticidal Design & Synthesis, Department of Plant Protection, College of Horticultrue and Plant Protection, Henan University of Science and Technology, Luoyang, China
| | - Zhiping Che
- Laboratory of Pesticidal Design & Synthesis, Department of Plant Protection, College of Horticultrue and Plant Protection, Henan University of Science and Technology, Luoyang, China
| |
Collapse
|
6
|
Jolliffe JB, Dann EK, van der Rijst M, Masikane SL, Novela P, Mohale P, McLeod A. Effect of Sampling Time, Quantification Method, and Tree Sample Pooling on Phytophthora cinnamomi Root Quantities in South African Avocado Orchards. PLANT DISEASE 2024; 108:725-736. [PMID: 37807091 DOI: 10.1094/pdis-07-23-1457-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Phytophthora cinnamomi is a destructive soilborne pathogen causing Phytophthora root rot on avocados worldwide. Little is known about the effect of root sampling time, root quantification method (quantitative real-time PCR [qPCR] versus baiting), and tree sample pooling strategies on the quantification of the pathogen in roots in avocado orchard trees. This was investigated in six avocado orchards in two climatically different production regions (Mooketsi and Letaba) in the Limpopo Province, South Africa, over a 2-year period. Two different tree sample pooling strategies, consisting of either a four-pooled group (four groups each containing five pooled trees) or a single-pooled group (20 trees pooled) per 1 ha, were both shown to be suitable for quantifying P. cinnamomi in tree roots using qPCR or root baiting. P. cinnamomi root quantities from the two tree sample pooling strategies were significantly correlated for both quantification methods. Both quantification methods were suitable for quantifying the pathogen in roots, although qPCR was superior to root baiting at identifying significant differences in P. cinnamomi quantities among root sampling time points. The effect of sampling time was dependent on the investigated year. In 2017, root quantities, which were only evaluated using qPCR, did not reveal a consistent trend of a specific sampling time yielding the highest root quantities for most of the orchards. However, five of the orchards in 2018, based on the qPCR analyses, contained significantly higher P. cinnamomi root quantities in May (late autumn) than in March (early autumn), August (late winter), and October/November (late spring). In 2018, P. cinnamomi root DNA quantities were significantly positively correlated with the number of soil temperature hours at 20 to 24 and 20 to 29°C 2 months preceding the root sampling dates and negatively correlated with the number of hours at 15 to 19°C 2 months preceding root sampling. Our study has identified P. cinnamomi root quantification methods and tree sample pooling strategies, which will be useful for understanding the biology of the pathogen and when disease management strategies should be in place.
Collapse
Affiliation(s)
- Jenna B Jolliffe
- Department of Plant Pathology, Stellenbosch University, Stellenbosch 7600, South Africa
| | - Elizabeth K Dann
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Australia
| | | | - Siyethemba L Masikane
- Department of Plant Pathology, Stellenbosch University, Stellenbosch 7600, South Africa
| | | | | | - Adéle McLeod
- Department of Plant Pathology, Stellenbosch University, Stellenbosch 7600, South Africa
| |
Collapse
|
7
|
Chen Y, Zhang S, Tian Y, Huang X, Zhou L, Liu S, Chen G, Che Z. Synthesis, Anti-Oomycete and Anti-fungal Activities of Novel Cinchona Alkaloid Derivatives Containing Sulfonate Moiety. Chem Biodivers 2023; 20:e202300607. [PMID: 37334925 DOI: 10.1002/cbdv.202300607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/06/2023] [Accepted: 06/06/2023] [Indexed: 06/21/2023]
Abstract
Using cinchona alkaloid as the lead compound, twenty-four cinchona alkaloid sulfonate derivatives (1 a-l, 2 a-c, 3 a-c, 4 a-c, and 5 a-c) were designed and prepared by modifying their C9 position, and structurally confirmed by 1 H-NMR, 13 C-NMR, HR-MS and melting points. Moreover, the stereochemical configurations of compounds 1 f and 1 l were unambiguously confirmed by single-crystal X-ray diffraction. Furthermore, we determined the anti-oomycete and anti-fungal activities of these target compounds against Phytophthora capsici and Fusarium graminearum in vitro. The results showed that two compounds 4 b and 4 c exhibited prominent anti-oomycete activity, and the median effective concentration (EC50 ) values of 4 b and 4 c against P. capsici were 22.55 and 16.32 mg/L, respectively. This study suggested that when the C9 position of cinchona alkaloid sulfonate derivatives is in the S configuration and the 6'-position methoxy group is not present, the anti-oomycete activity is superior. In addition, five compounds 1 e, 1 f, 1 k, 3 c and 4 c displayed significant anti-fungal activity, with EC50 values of 43.64, 45.07, 80.18, 48.58 and 41.88 mg/L against F. graminearum, respectively. This result indicates that only when a specific substituent is introduced into the structural framework of the target compound, the corresponding compound exhibits significant inhibitory activity against fungi.
Collapse
Affiliation(s)
- Yingwu Chen
- Laboratory of Pesticidal Design & Synthesis, Department of Plant Protection, College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, P. R. China
| | - Song Zhang
- Laboratory of Pesticidal Design & Synthesis, Department of Plant Protection, College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, P. R. China
| | - Yuee Tian
- Laboratory of Pesticidal Design & Synthesis, Department of Plant Protection, College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, P. R. China
| | - Xiaobo Huang
- Laboratory of Pesticidal Design & Synthesis, Department of Plant Protection, College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, P. R. China
| | - Lin Zhou
- College of Plant Protection, Henan Agricultural University, Zhengzhou, 450002, China
| | - Shengming Liu
- Laboratory of Pesticidal Design & Synthesis, Department of Plant Protection, College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, P. R. China
| | - Genqiang Chen
- Laboratory of Pesticidal Design & Synthesis, Department of Plant Protection, College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, P. R. China
| | - Zhiping Che
- Laboratory of Pesticidal Design & Synthesis, Department of Plant Protection, College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, P. R. China
| |
Collapse
|
8
|
Cohen Y, Weitman M. Mobility of oxathiapiprolin in and between tomato plants. PEST MANAGEMENT SCIENCE 2023; 79:1102-1112. [PMID: 36334022 PMCID: PMC10099527 DOI: 10.1002/ps.7280] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/30/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Oxathiapiprolin (OXPT; FRAC code 49) is a new piperidinyl-thiazole isooxazoline anti-oomycete fungicide that targets oxysterol-binding proteins. The fungicide is known to translocate acropetally from root to shoot to protect plants against fungal attack. RESULTS OXPT is ambimobile. It can also translocate basipetally from shoot to root. OXPT exhibits an unprecedented capacity for trans-plant protection. When two tomato plants are grown in one pot, and one is treated with OXPT (on the stem, leaves or apex), while the other plant and soil surface are adequately covered, both plants become protected against late blight caused by Phytophthora infestans. CONCLUSION Trans-plant systemic protection induced by OXPT involves translocation of the fungicide from the shoot of the treated plant to its root, exudation into the soil and uptake by the root of the neighboring untreated plant to protect it against the disease. Liquid chromatography-tandem mass spectrometry analyses confirmed the occurrence of OXPT in root exudates of OXPT-treated tomato plants in quantities sufficient to protect detached tomato leaves and intact plants against P. infestans. © 2022 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Yigal Cohen
- Faculty of Life Sciences Bar Ilan UniversityRamat GanIsrael
| | - Michal Weitman
- Department of Chemistry Bar Ilan UniversityRamat GanIsrael
| |
Collapse
|
9
|
Nader W, Zahm A, Jaschik J. Phosphonic acid in plant-based food and feed products – Where does it come from? Food Control 2023. [DOI: 10.1016/j.foodcont.2023.109701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
10
|
Corapi A, Gallo L, Lucadamo L. Simulation of Drift Depositional Rate of the Fungicide Fosetyl and Its Effects on Non-vascular Plants: Study Case of the Epiphytic Lichen Pseudevernia furfuracea. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2023; 84:73-84. [PMID: 36566463 DOI: 10.1007/s00244-022-00973-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 12/14/2022] [Indexed: 06/17/2023]
Abstract
The epiphytic lichen Pseudevernia furfuracea was exposed to a simulation of drift deposition rate of the fungicide Fosetyl-Al in an indoor controlled environment by testing two exposure factors: pesticide concentrations (based on the application rates of 4 kg ha-1 and 1.6 kg ha-1) and drop sizes (anti-drift nozzle: 386-484 μm; non-anti-drift nozzle: 159-231 μm) for a total of four treatments. Drift for higher application rate was simulated once and that for the lower one twice to reproduce agricultural practices. Following fungicide spraying, we measured the concentration of Fosetyl and phosphonic acid in lichen thalli, and the response of ecophysiological status parameters. No trace of Fosetyl was quantifiable 4 days after each treatment, being detected only phosphonic acid whose concentrations stayed substantially unchanged for the whole duration of the experiment (40 days) and resulting affected by application rate and not by drop size. Both pesticide concentrations caused a remarkable harmful effect that, however, was statistically significant vs control group only starting from the 20th day of stay in the climatic chamber. The drift associated with the higher rate resulted, on average, to be 83% more effective, with the most affected parameters being membrane integrity, lipid peroxidation and photosynthetic pigments. Because the selected lower rate can be considered a quite low value when compared with the rank of used rates for crop protection, the Fosetyl-Al formulate is classifiable as hazardous for its effect on non-target organisms.
Collapse
Affiliation(s)
- Anna Corapi
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036, Arcavacata di Rende, CS, Italy.
| | - Luana Gallo
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036, Arcavacata di Rende, CS, Italy
| | - Lucio Lucadamo
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036, Arcavacata di Rende, CS, Italy
| |
Collapse
|
11
|
Wu PH, Chang HX, Shen YM. Effects of synthetic and environmentally friendly fungicides on powdery mildew management and the phyllosphere microbiome of cucumber. PLoS One 2023; 18:e0282809. [PMID: 36888572 PMCID: PMC9994715 DOI: 10.1371/journal.pone.0282809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 02/23/2023] [Indexed: 03/09/2023] Open
Abstract
Modern agricultural practices rely on synthetic fungicides to control plant disease, but the application of these fungicides has raised concerns regarding human and environmental health for many years. As a substitute, environmentally friendly fungicides have been increasingly introduced as alternatives to synthetic fungicides. However, the impact of these environmentally friendly fungicides on plant microbiomes has received limited attention. In this study, we used amplicon sequencing to compare the bacterial and fungal microbiomes in the leaves of powdery mildew-infected cucumber after the application of two environmentally friendly fungicides (neutralized phosphorous acid (NPA) and sulfur) and one synthetic fungicide (tebuconazole). The phyllosphere α-diversity of both the bacterial and fungal microbiomes showed no significant differences among the three fungicides. For phyllosphere β-diversity, the bacterial composition exhibited no significant differences among the three fungicides, but fungal composition was altered by the synthetic fungicide tebuconazole. While all three fungicides significantly reduced disease severity and the incidence of powdery mildew, NPA and sulfur had minimal impacts on the phyllosphere fungal microbiome relative to the untreated control. Tebuconazole altered the phyllosphere fungal microbiome by reducing the abundance of fungal OTUs such as Dothideomycetes and Sordariomycetes, which included potentially beneficial endophytic fungi. These results indicated that treatments with the environmentally friendly fungicides NPA and sulfur have fewer impacts on the phyllosphere fungal microbiome while maintaining the same control efficacy as the synthetic fungicide tebuconazole.
Collapse
Affiliation(s)
- Ping-Hu Wu
- Department of Plant Pathology and Microbiology, National Taiwan University, Taipei City, Taiwan
| | - Hao-Xun Chang
- Department of Plant Pathology and Microbiology, National Taiwan University, Taipei City, Taiwan
| | - Yuan-Min Shen
- Master Program for Plant Medicine, National Taiwan University, Taipei City, Taiwan
- * E-mail:
| |
Collapse
|
12
|
Giudice G, Moffa L, Niero M, Duso C, Sandrini M, Vazzoler LF, Luison M, Pasini E, Chitarra W, Nerva L. Novel sustainable strategies to control Plasmopara viticola in grapevine unveil new insights on priming responses and arthropods ecology. PEST MANAGEMENT SCIENCE 2022; 78:2342-2356. [PMID: 35246907 DOI: 10.1002/ps.6860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 01/26/2022] [Accepted: 03/04/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Reduction of fungicide consumption in agriculture is globally recognized as a priority. Government authorities are fostering research to achieve a reduction of risks associated with conventional pesticides and promoting the development of sustainable alternatives. To address these issues, in the present study, alternative protocols for the control of downy mildew infection in grapevine were compared to the standard protocol. In the first protocol, only resistance inducers were used, comprising a single formulation with Acibenzolar S-methyl, laminarin and disodium-phosphonate. The second and third protocols followed the standard protocol but substituted phosphonates with phosphorus pentoxide and Ecklonia maxima extract. RESULTS The results showed that at veraison downy mildew incidence and severity in all tested protocols were significantly reduced compared to nontreated controls on both canopy and bunches. Expression analysis of key genes involved in plant stress response, indicated that the two protocols for phosphites substitution induced a remodulation of salicylic acid (SA) and jasmonic acid (JA), with positive impact on yields. Analysis of the first protocol revealed that the primed state induced a short delay in bunch ripening, with a shift of carbohydrate metabolism to boost the plant defences, involving an upregulation of defence related-gene, SAR response and a decreased ROS detoxification. Additionally, analysis on the arthropods populations, in parallel with the positive results achieved using alternatives to conventional fungicides, were enriched by those showing the potential of naturally occurring predators of spider mites. CONCLUSION This study provides practical solutions to reduce the environmental impact of treatments for the control downy mildew in viticulture. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Gaetano Giudice
- Council for Agricultural Research and Economics, Research Centre for Viticulture and Enology CREA-VE, Conegliano, Italy
- Department of Agricultural and Environmental Sciences-Production, Landscape, Agroenergy (DiSAA), University of Milano, Milan, Italy
| | - Loredana Moffa
- Council for Agricultural Research and Economics, Research Centre for Viticulture and Enology CREA-VE, Conegliano, Italy
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Udine, Italy
| | - Marina Niero
- Council for Agricultural Research and Economics, Research Centre for Viticulture and Enology CREA-VE, Conegliano, Italy
| | - Carlo Duso
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, Padova, Italy
| | - Marco Sandrini
- Council for Agricultural Research and Economics, Research Centre for Viticulture and Enology CREA-VE, Conegliano, Italy
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Udine, Italy
| | | | | | | | - Walter Chitarra
- Council for Agricultural Research and Economics, Research Centre for Viticulture and Enology CREA-VE, Conegliano, Italy
- Institute for Sustainable Plant Protection, CNR, Torino, Italy
| | - Luca Nerva
- Council for Agricultural Research and Economics, Research Centre for Viticulture and Enology CREA-VE, Conegliano, Italy
- Institute for Sustainable Plant Protection, CNR, Torino, Italy
| |
Collapse
|
13
|
Cybulska P, Legrand YM, Babst-Kostecka A, Diliberto S, Leśniewicz A, Oliviero E, Bert V, Boulanger C, Grison C, Olszewski TK. Green and Effective Preparation of α-Hydroxyphosphonates by Ecocatalysis. Molecules 2022; 27:3075. [PMID: 35630556 PMCID: PMC9146293 DOI: 10.3390/molecules27103075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/05/2022] [Accepted: 05/07/2022] [Indexed: 11/29/2022] Open
Abstract
A green and effective approach for the synthesis of structurally diversed α-hydroxyphosphonates via hydrophosphonylation of aldehydes under solventless conditions and promoted by biosourced catalysts, called ecocatalysts "Eco-MgZnOx" is presented. Ecocatalysts were prepared from Zn-hyperaccumulating plant species Arabidopsis halleri, with simple and benign thermal treatment of leaves rich in Zn, and without any further chemical treatment. The elemental composition and structure of Eco-MgZnOx were characterized by MP-AES, XRPD, HRTEM, and STEM-EDX techniques. These analyses revealed a natural richness in two unusual and valuable mixed zinc-magnesium and iron-magnesium oxides. The ecocatalysts were employed in this study to demonstrate their potential use in hydrophosphonylation of aldehydes, leading to various α-hydroxyphosphonate derivatives, which are critical building blocks in the modern chemical industry. Computational chemistry was performed to help discriminate the role of some of the constituents of the mixed oxide ecocatalysts. High conversions, broad substrate scope, mild reaction conditions, and easy purification of the final products together with simplicity of the preparation of the ecocatalysts are the major advantages of the presented protocol. Additionally, Eco-MgZnOx-P could be recovered and reused for up to five times.
Collapse
Affiliation(s)
- Pola Cybulska
- Department of Physical and Quantum Chemistry, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland;
| | - Yves-Marie Legrand
- Bio-Inspired Chemistry and Ecological Innovations (ChimEco), UMR 5021 CNRS, University of Montpellier, Cap Delta, 1682 rue de la Valsière, 34790 Grabels, France;
| | - Alicja Babst-Kostecka
- Department of Environmental Science, The University of Arizona, Tucson, AZ 85721, USA;
| | - Sébastien Diliberto
- Institut Jean Lamour, UMR 7198 CNRS, University of Lorraine, 57000 Metz, France; (S.D.); (C.B.)
| | - Anna Leśniewicz
- Analytical Chemistry and Chemical Metallurgy Division, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland;
| | - Erwan Oliviero
- ICGM, University of Montpellier, CNRS, 34090 Montpellier, France;
| | - Valérie Bert
- Clean Technologies and Circular Economy Unit, SIT Department, INERIS, Parc Technologique Alata BP 2, 60550 Verneuil en Halatte, France;
| | - Clotilde Boulanger
- Institut Jean Lamour, UMR 7198 CNRS, University of Lorraine, 57000 Metz, France; (S.D.); (C.B.)
| | - Claude Grison
- Bio-Inspired Chemistry and Ecological Innovations (ChimEco), UMR 5021 CNRS, University of Montpellier, Cap Delta, 1682 rue de la Valsière, 34790 Grabels, France;
| | - Tomasz K. Olszewski
- Department of Physical and Quantum Chemistry, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland;
| |
Collapse
|
14
|
Acosta-González U, Silva-Rojas HV, Fuentes-Aragón D, Hernández-Castrejón J, Romero-Bautista A, Rebollar-Alviter A. Comparative Performance of Fungicides and Biocontrol Products in the Management of Fusarium Wilt of Blackberry. PLANT DISEASE 2022; 106:1419-1427. [PMID: 34879723 DOI: 10.1094/pdis-08-21-1742-re] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Fusarium wilt of blackberry (FWB) is an emerging disease caused by a Fusarium oxysporum species complex. More than 3,000 ha of blackberry (Rubus spp.) crops have been lost in Mexico since 2011. The objectives of this research were: to evaluate the sensitivity of pathogenic F. oxysporum isolates recovered from symptomatic blackberry plants to fungicides with different modes of action; to assess the potential of these fungicides and plant resistance inducers against FWB in the greenhouse; and to determine the effects of commercial biofungicides and two indigenous strains of Trichoderma spp. on the incidence of FWB. The EC50 values of the fungicides prochloraz, thiabendazole, azoxystrobin, thiophanate-methyl, difenoconazole, triflumizole, and potassium phosphite for six pathogenic F. oxysporum isolates were determined. In a separate experiment, the fungicides acibenzolar-s-methyl (ASM), potassium phosphite, and commercial biofungicides, as well as two soil microbial inoculants and two indigenous Trichoderma strains, were tested for protection against wilt development in blackberry plants in the greenhouse. Prochloraz showed an average sensitivity for EC50 of 0.01 μg ml-1 for the tested F. oxysporum isolates, followed by difenoconazole and thiabendazole. Prochloraz and ASM proved to be the most effective treatments in the greenhouse. In contrast, potassium phosphite was ineffective in both the in vitro and in vivo experiments. The soil bioinoculants MicroSoil, Baktillis, T. koningiopsis, and T. asperellum significantly reduced the incidence of disease in the greenhouse. These results provide evidence for the potential of the various tools as useful components of integrated FWB management in the field.
Collapse
Affiliation(s)
| | - Hilda V Silva-Rojas
- Producción de Semillas, Colegio de Postgraduados, Montecillo, Texcoco, Estado de México 56230, Mexico
| | - Dionicio Fuentes-Aragón
- Posgrado en Fitosanidad, Colegio de Postgraduados, Montecillo, Texcoco, Estado de México 56230, Mexico
| | | | | | - Angel Rebollar-Alviter
- Centro Regional Morelia, Universidad Autónoma Chapingo, Morelia, Michoacán 58170, Mexico
| |
Collapse
|
15
|
Duke SO. Success, despite another plague year. PEST MANAGEMENT SCIENCE 2022; 78:7-11. [PMID: 34874600 DOI: 10.1002/ps.6708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
|
16
|
Separation of fosetyl and phosphonic acid in food matrices with mixed-mode HPLC column coupled with tandem mass spectrometric detection and method application to other highly polar pesticides. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1189:123083. [PMID: 34953446 DOI: 10.1016/j.jchromb.2021.123083] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/24/2021] [Accepted: 12/09/2021] [Indexed: 11/23/2022]
Abstract
The aluminum salt of fosetyl (tris(ethyl phosphonate)) is an antifungal agrochemical. This paper presents a novel high performance liquid chromatography (HPLC) method for the simultaneous determination of fosetyl and the phosphonic acid, its main metabolite, in food samples. The method is based on an ion-displacement separation performed on the recently released Luna Omega PS C18 mixed-mode HPLC column. Baseline separation of fosetyl and phosphonic acid was feasible. This was achieved by optimizing the mobile phase composition and by introducing ethylenediaminetetraacetate for all matrices in the generally used extraction medium for polar pesticides and the injection solution. The binary mobile phase consisted of 10% (v/v) methanol in water and aqueous formate buffer (pH = 3.5) in gradient elution mode. The main advantages of the method over previous method include the stable retention time and peak resolution without the need for long column priming, conditioning or regeneration. Moreover, the approach was tested with other polar pesticides including glyphosate, glufosinate, and perchlorate and showed fit-for-purpose separation. The method was validated for spinach, cherry, and wheat flour samples, and was successfully applied on oat flour and arugula quality control samples. The results obtained for the five analytes met the requirements set by EU. The limit of quantifications was much lower than the maximum residue limits and ranged from 0.02 to 0.20 mg/kg.
Collapse
|
17
|
Nyoni M, Mazzola M, Wessels JPB, McLeod A. Phosphonate Treatment Effects on Phytophthora Root Rot Control, Phosphite Residues and Phytophthora cactorum Inoculum in Young Apple Orchards. PLANT DISEASE 2021; 105:3835-3847. [PMID: 34270911 DOI: 10.1094/pdis-01-21-0067-re] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Phytophthora root rot, caused by Phytophthora cactorum, is an economically important disease on young apple trees. Limited information is available on the effect of different phosphonate application methods and dosages on disease control, fruit and root phosphite concentrations, and soil and root pathogen inoculum levels. Evaluation of phosphonate treatments in three apple orchard trials (two in the Grabouw and one in the Koue Bokkeveld region) showed that foliar sprays (ammonium or potassium phosphonate), trunk sprays and trunk paints, were equally effective at increasing trunk diameter in one trial and yield in a second trial over a 25-month period. Foliar ammonium and potassium phosphonate sprays (12 g of phosphorous acid/tree), and two different dosages of the ammonium phosphonate sprays (∼4.8 g or 12 g of phosphorous acid/tree) were all equally effective at improving tree growth. The addition of a bark penetrant (polyether-polymethylsiloxane-copolymer) to trunk sprays did not improve the activity of trunk sprays. The low dosage ammonium phosphonate foliar spray (∼4.8 g a.i./tree) was the only treatment that, in general, yielded significantly lower root phosphite concentrations than the other phosphonate treatments. Root phosphite concentrations were significantly positively correlated (P < 0.0001) with an increase in trunk diameter and negatively (P < 0.0001) with P. cactorum root DNA quantities. Phosphite fruit residues were <31 ppm for all treatments, with the trunk paint treatment (80 g of phosphorous acid/tree applied annually) yielding significantly lower residues than the higher dosage foliar sprays (∼12 g a.i./tree). Twenty-one months posttreatment, most of the phosphonate treatments in all of the trials similarly significantly reduced P. cactorum DNA quantities estimated directly from roots, but not from soil based on soil baiting DNA analysis. Pathogen quantities in fine feeder roots did not differ significantly from those in higher-order roots (<5 mm diameter). P. cactorum DNA quantities estimated using DNA quantification directly from roots were significantly correlated (P < 0.0001) with those obtained through root leaf baiting DNA analysis and, to a lesser extent, with soil leaf baiting DNA quantities (P = 0.025).
Collapse
Affiliation(s)
- M Nyoni
- Department of Plant Pathology, Stellenbosch University, Matieland, 7600, South Africa
| | - M Mazzola
- Department of Plant Pathology, Stellenbosch University, Matieland, 7600, South Africa
| | - J P B Wessels
- ProCrop (Pty) Ltd., Somerset West, 7130, South Africa
| | - A McLeod
- Department of Plant Pathology, Stellenbosch University, Matieland, 7600, South Africa
| |
Collapse
|
18
|
Gbubele JD, Olszewski TK. Asymmetric synthesis of organophosphorus compounds using H-P reagents derived from chiral alcohols. Org Biomol Chem 2021; 19:2823-2846. [PMID: 33710223 DOI: 10.1039/d1ob00124h] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Chiral organophosphorus compounds, especially those containing C-stereogenic carbons in the proximity of the phosphorus atom, are known for their unique properties and have found wide applications that span from medicinal chemistry to enantioselective catalysis. However, the synthesis of such chiral molecules, especially with the precise control of stereochemistry at chiral carbon atoms, still remains a very challenging task. This review summarizes recent advances in the highly stereoselective formation of C- and, in some cases, also P-stereogenic organophosphorus compounds. The presented synthesis strategy is based on the use of H-P reagents bearing TADDOL, BINOL or a menthol moiety attached to the phosphorus atom and serving as a chiral auxiliary. Reactions of such chiral H-P species with different partners, e.g., alkenes, alkynes, imines, and carbonyl compounds, leading to structurally diverse chiral organophosphorus compounds with up to five chiral centers are comprehensively discussed. In each case, the stereochemical outcome of the reaction is influenced by the presence of the chiral alcohol used; therefore, the content of this review is compiled into sections with respect to the type of chiral alcohol attached to the phosphorus atom in the H-P species applied.
Collapse
Affiliation(s)
- Joseph D Gbubele
- Faculty of Chemistry, Wrocław University of Science and Technology, ul. Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland.
| | | |
Collapse
|
19
|
Screening a Natural Product-Inspired Library for Anti- Phytophthora Activities. Molecules 2021; 26:molecules26071819. [PMID: 33804938 PMCID: PMC8037946 DOI: 10.3390/molecules26071819] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/15/2021] [Accepted: 03/21/2021] [Indexed: 11/17/2022] Open
Abstract
Phytophthora is a genus of microorganisms that cause devastating dieback and root-rot diseases in thousands of plant hosts worldwide. The economic impact of Phytophthora diseases on crops and native ecosystems is estimated to be billions of dollars per annum. These invasive pathogens are extremely difficult to control using existing chemical means, and the effectiveness of the few treatments available is being jeopardized by increasing rates of resistance. There is an urgent need to identify new chemical treatments that are effective against Phytophthora diseases. Natural products have long been regarded as "Nature's medicine chest", providing invaluable leads for developing front-line drugs and agrochemical agents. Here, we have screened a natural product-inspired library of 328 chemicals against two key Phytophthora species: Phytophthora cinnamomi and Phytophthora agathidicida. The library was initially screened for inhibition of zoospore germination. From these screens, we identified twenty-one hits that inhibited germination of one or both species. These hits were further tested in mycelial growth inhibition studies to determine their half-maximal inhibitory concentrations (IC50s). Four compounds had IC50 values of approximately 10 µM or less, and our best hit had IC50s of approximately 3 µM against both Phytophthora species tested. Overall, these hits may serve as promising leads for the development of new anti-Phytophthora agrochemicals.
Collapse
|